
Program Verification using
Constraint Handling Rules and

Array Constraint Generalizations?

Emanuele De Angelis1,3, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy,
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy,
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy, maurizio.proietti@iasi.cnr.it

Abstract. The transformation of constraint logic programs (CLP pro-
grams) has been shown to be an effective methodology for verifying prop-
erties of imperative programs. By following this methodology, we encode
the negation of a partial correctness property of an imperative program
prog as a predicate incorrect defined by a CLP program P , and we
show that prog is correct by transforming P into the empty program
through the application of semantics preserving transformation rules.
Some of these rules perform replacements of constraints that encode
properties of the data structures manipulated by the program prog. In
this paper we show that Constraint Handling Rules (CHR) are a suit-
able formalism for representing and applying constraint replacements
during the transformation of CLP programs. In particular, we consider
programs that manipulate integer arrays and we present a CHR encod-
ing of a constraint replacement strategy based on the theory of arrays.
We also propose a novel generalization strategy for constraints on inte-
ger arrays that combines the CHR constraint replacement strategy with
various generalization operators for linear constraints, such as widening
and convex hull. Generalization is controlled by additional constraints
that relate the variable identifiers in the imperative program prog and
the CLP representation of their values. The method presented in this
paper has been implemented and we have demonstrated its effectiveness
on a set of benchmark programs taken from the literature.

1 Introduction

It has long been recognized that Constraint Logic Programming (CLP) is a for-
malism that provides very suitable inference mechanisms for the verification of
properties of imperative programs. The landmark paper [41] has shown that:
(i) the operational semantics of imperative programs can easily be formalized
as an interpreter written in CLP, and (ii) by specializing that interpreter with
? This work has been partially supported by the National Group of Computing Science

(GNCS-INDAM).

114

respect to a given imperative program, say prog , one can derive a new CLP pro-
gram, say VC , representing the verification conditions for prog in purely logical
form. In particular, in the specialized CLP program VC there are no references
to the imperative constructs of prog . Relevant properties of the execution of prog
(such as its loop invariants) can then be inferred by analyzing the program VC .

Many verification methods within the CLP paradigm have been developed.
Some methods, directly following the approach presented in [41], are based on
abstract interpretation [8] and compute an overapproximation of the least model
of the CLP program under consideration by a bottom-up evaluation of an ab-
straction of the program [2, 28, 39]. Other methods use goal directed evaluation
of CLP programs combined with other symbolic techniques such as interpola-
tion [17, 20, 31, 30]. Some other methods, like the ones presented in [5, 25, 43, 45],
combine CLP (also called constrained Horn clauses in those papers) with dif-
ferent reasoning techniques developed in the areas of Software Model Checking
and Automated Theorem Proving, such as CounterExample-Guided Abstraction
Refinement (CEGAR) and Satisfiability Modulo Theory (SMT).

In this paper we follow the approach based on transformations of CLP pro-
grams presented in [12, 13]. We encode the negation of a partial correctness
property of an imperative program prog as a predicate incorrect defined by a
CLP program P . Similarly to [41], we generate a CLP program VC representing
the verification conditions for prog, by specializing P with respect to the CLP
representation of prog. However, at this point the transformation-based method
departs from the ones considered above. Indeed, it continues by applying further
equivalence preserving transformations to VC with the objective of deriving ei-
ther (i) the empty CLP program, hence proving that incorrect does not hold
and prog is correct, or (ii) a CLP program containing the fact incorrect, hence
proving that prog is incorrect. Due to the undecidability of partial correctness, it
may be the case that we derive a CLP program containing one or more clauses
of the form incorrect:- G, where G is a non-empty conjunction, and we are
able to conclude neither that prog is correct nor that prog is incorrect.

Thus, CLP program transformation provides a uniform framework for reason-
ing about the correctness of imperative programs in which, as we have explained,
one can generate the verification conditions and also check their validity. More-
over, that framework is parametric with respect to the syntax and the semantics
of the programs to be verified, and optimizing transformations considered in
the literature [42] can be applied to improve the efficiency of the verification
method. Finally, transformations can easily be composed together into a se-
quence of transformations, so as to derive very sophisticated verification meth-
ods. For instance, in [15] it is shown that the iteration of program specialization
can significantly improve the precision of our program verification method and
indeed, by implementing Iterated Specialization the VeriMAP system [14] is com-
petitive with state-of-the-art CLP-based verifiers such as ARMC [43], HSF [25],
and TRACER [30].

The main contributions of this paper are the following.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

115

(1) We consider imperative programs that manipulate integers and integer
arrays, and we generate verification conditions where read and write operations
on arrays are represented as constraints. Then we show that Constraint Handling
Rules (CHR) are a suitable formalism for manipulating constraints during the
transformation of the CLP verification conditions. In particular, we present CHR
rules based on the theory of arrays [7, 23, 37] and we show how they can be
combined with unfold/fold transformation rules for CLP programs [18] with the
objective of proving properties of the given imperative programs.

(2) We propose a powerful transformation strategy that guides the applica-
tion of both the CHR and the unfold/fold transformation rules. In particular, we
design a novel array constraint generalization strategy that automatically intro-
duces, during CLP transformation, the new predicate definitions (corresponding
to program invariants) required for the verification of the properties of interest.
Our generalization strategy combines CHR manipulation of array constraints
with the widening and convex hull operators for linear constraints considered in
the field of abstract interpretation [10]. Generalization is controlled by means of
additional constraints that relate the variable identifiers in the given imperative
programs and the CLP representations of their values.

(3) Finally, we present an implementation of the method in the VeriMAP
system [14], and we demonstrate its effectiveness on a set of benchmark programs
taken from the literature.

2 The Transformation-Based Verification Method

In this section we introduce a class of Constraint Logic Programs with constraints
on integers and integer arrays, and we show how partial correctness properties
of imperative programs can be encoded as programs of that class.

First we need the following definitions. An atomic integer constraint is either
p1=p2, or p1�p2, or p1>p2, where p1 and p2 are linear polynomials with inte-
ger variables and coefficients (sum and multiplication are denoted by + and *,
respectively). An atomic array constraint is either dim(a, n) denoting that the
dimension of the array a is n, or read(a, i, v) denoting that the i-th element of
the array a is the integer v, or write(a, i, v, b) denoting that the array b is equal
to the array a, except that its i-th element is v. The read and write constraints
satisfy the following axioms [7, 23], where variables are universally quantified at
the front:
(A1)I=J, read(A, I, U), read(A, J, V) ! U=V (array congruence)
(A2)I=J, write(A, I, U, B), read(B, J, V) ! U=V (read-over-write:case =)
(A3)I 6=J, write(A, I, U, B), read(B, J, V) ! read(A, J, V)(read-over-write:case 6=)
A constraint is either true, or an atomic (integer or array) constraint, or a
conjunction of constraints. An atom is a formula of the form p(t1,...,tm), where
p is a predicate symbol not in {=, �, >, dim, read, write} and t1, . . . , tm are
terms constructed out of variables, constants, and function symbols different
from + and *. A CLP program is a finite set of clauses of the form A :- c, B,
where A is an atom, c is a constraint, and B is a (possibly empty) conjunction of

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

116

atoms. Given a clause A :- c, B, the atom A is called the head, and c, B is called
the body. We assume that in every clause all integer arguments in its head are
distinct variables. A clause A :- c is called a constrained fact. If c is true, then
it is omitted and the constrained fact is called a fact. A CLP program is said to
be linear if all its clauses are of the form A :- c, B, where B consists of at most
one atom.

An A-interpretation I is a set D, together with a function f in Dn !D for
each function symbol f of arity n, and a relation p on Dn for each predicate
symbol p of arity n, such that: (i) the set D is the Herbrand universe [36] con-
structed out of the set Z of the integers, the constants, and the function symbols
different from + and (ii) I assigns to the symbols +, *, =, >, > the usual meaning
in Z, (iii) for all sequences a0 . . . an�1, for all integers d, dim(a0 . . . an�1, d) is true
in I iff d=n, (iv) for all sequences a0 . . . an�1 and b0 . . .bm�1 of integers, for all
integers i and v, read(a0 . . . an�1, i, v) is true in I iff 0in�1 and v=ai, and
write(a0 . . .an�1, i, v, b0 . . . bm�1) is true in I iff 0in�1, n=m, bi=v, and
for j=0, . . . , n�1, if j 6=i then aj=bj, (v) I is an Herbrand interpretation [36]
for function and predicate symbols different from +, *, =, >, >, dim, read, and
write.

We can identify an A-interpretation I with the set of all ground atoms that
are true in I, and hence A-interpretations are partially ordered by set inclusion.
A constraint c is said to be satisfiable if A |= 9(c), where in general, for every
formula ', 9(') denotes the existential closure of '. We say that I is an A-model
of ' if ' is true in I. We write A |= ' if every A-interpretation is an A-model of
'. In particular, every A-interpretation is an A-model of Axioms (A1)–(A3). A
constraint c entails a constraint d, denoted c v d, if A |= 8(c ! d). By vars(')
we denote the free variables of '. The semantics of a CLP program P is the least
A-model of P , denoted M(P) and constructed as usual for CLP programs [29].

We consider imperative programs with integer and array variables. Every
program has a single halt command whose execution causes the program to
terminate. The semantics of programs is defined in terms of a transition rela-
tion, denoted =), between configurations. A configuration is a pair hhc, �ii of a
labeled command c and an environment � that maps: (i) every integer variable
identifier x to its value v , and (ii) every integer array identifier a to a finite
sequence a0 . . .an�1 of integers, where n is the dimension of the array a. The
transition relation specifies the ‘small step’ operational semantics and its defini-
tion is similar to that in [44] and is omitted. An environment � is said to satisfy
a formula '(z1, . . . , zr) iff '(�(z1), . . . , �(zr)) holds.

Given two formulas 'init and 'error that are disjunctions of constraints with
free variables z1, . . . , zr, we say that program prog is incorrect with respect to
these formulas iff there exist two environments �init and �h such that: (i) �init
satisfies 'init , (ii) hh`0:c0, �init ii =)⇤ hh`h:halt, �hii, and (iii) �h satisfies 'error ,
where `0 :c0 is the first labeled command of prog and `h : halt is the unique
halt command of prog. A program is said to be correct if it is not incorrect.
(In [11] the reader may find an extension of these definitions where 'init and
'error are predicates defined by any CLP program.) Our notion of correctness

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

117

is equivalent to the Hoare notion of partial correctness specified by the triple
{'init} prog {¬'error}.

We translate the problem of checking whether or not the program prog is
incorrect into the problem of checking whether or not the atom incorrect is a
consequence of the following CLP program T :

incorrect :- errorConf(X), reach(X).
reach(Y) :- tr(X, Y), reach(X).
reach(Y) :- initConf(Y).

where initConf(X), errorConf(X), and tr(X, Y) are defined by CLP clauses so
that the following conditions hold. For all configurations X and Y, (i) initConf(X)
holds iff X is an initial configuration, that is, a configuration of the form hh`0 :
c0, �init ii and �init satisfies 'init , (ii) errorConf(X) holds iff X is an error config-
uration, that is, a configuration of the form hh`h:halt, �hii and �h satisfies 'error ,
and (iii) tr(X, Y) holds iff X =) Y holds.
reach(Y) holds iff the configuration Y can be reached from a configuration X
whose environment satisfies 'init . Program prog is correct with respect to 'init

and 'error iff incorrect 62M(T).
Our verification method applies unfold/fold rules to the initial program T and

consists of following two steps [13]. (i) VCGen: the Generation of the Verification
Conditions, and (ii) VCTransf : the Satisfiability Checking of the Verification
Conditions. The soundness of our method follows from the fact that for each
program U obtained from T by applying the unfold/fold rules, incorrect 2
M(T) iff incorrect2M(U).

VCGen performs a specialization of program T with respect to the given tr
(which depends on prog), initConf, and errorConf predicates, thereby deriving
a new program T 1, whose clauses are said to be the verification conditions for
prog, such that tr does not occur in T 1 (for this reason this step is also called
the removal of the interpreter). During this specialization step all occurrences
of the dim predicate are replaced by suitable constraints on the indexes of the
arrays. We say that verification conditions are satisfiable iff incorrect 62 M(T 1),
and thus their satisfiability guarantees that prog is correct with respect to 'init

and 'error . VCTransf , which will be described in detail in Section 3, checks the
satisfiability of the verification conditions generated at the end of VCGen.

Before starting the specialization, VCGen adds to the initial program T some
additional constraints that are needed for controlling the generalization strategy
described in Section 3.3. These constraints use the predicate val that relates
some of the variable identifiers occurring in the imperative program prog and
the CLP representation of their values. The meaning of the val constraints is
as follows: for every variable identifier i of the program prog, for every value I,
the constraint val(i, I) (where i is a constant uniquely associated with i) holds
iff there exists a configuration whose environment � maps i to I. These val
constraints will be used by our generalization strategy to distinguish among dif-
ferent read constraints, thereby making the strategy more effective as confirmed
by the experimental results reported in Section 4. For instance, the constraint
‘val(i, I), val(j, J), read(A, I, U), read(A, J, V)’ expresses the property that the

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

118

first read gets the array element at index i and the second read gets the array
element at index j, while without the val constraints, ‘read(A, I, U), read(A, J, V)’
does not express this property.

Now, let us see our verification method in action on a simple example. Let
us consider the following program that, given the array a[0 .. (n�1)] and any
i2{0, . . . , n�1} places in a[n�i�1] the maximum value of the leftmost portion
a[0 .. (n�i�1)] by iteratively swapping adjacent elements.
bubblesort-inner : for (j =0; j <n�i�1; j++) {

if (a[j]>a[j+1]) {tmp=a[j]; a[j]=a[j+1]; a[j+1]= tmp; } }
Let us also consider the two properties 'init (i, n, a) ⌘ 0 i<n ^̂ dim(a,n) and
'error (i,j,n,a) ⌘ 9k9x9y0i<n^̂0k<j^̂j=n�i�1^̂read(a,k,x) ^̂ read(a,j,y)^̂x>y.
These two properties are expressed in CLP as follows:
phiInit(I, N, A) :- 0I, I<N, dim(A, N).
phiError(I, J, N, A) :- 0I, I<N, 0K, K<J, J=N�I�1, X>Y, read(A,K,X), read(A,J,Y),

val(k, K), val(j, J).

Note the two val constraints that relate the index variables k and j to their
values K and J, respectively. At the end of VCGen we get the following CLP
program T 1 that expresses the verification conditions for the program bubblesort-
inner :
1. incorrect :- 0I, 0K, KJ, J=N�I�1, X>Y,

read(A, K, X), read(A, J, Y), val(k, K), val(j, J), new1(I, J, N, A,Tmp, K).
2. new1(I,J1,N,A2,W,K) :- J1=1+J, J<N�I�1, J�0, J<N�1, X>Y,

read(A, J, X), read(A, J1, Y), read(A, J, W), read(A, J1, Z), write(A, J, Z, A1),
write(A1, J1, W, A2), val(j, J1), val(j, J), val(k, K), new1(I, J, N, A,Tmp, K).

3. new1(I, J1, N, A, Tmp, K) :- J1=J+1, J<N�I�1, J�0, J<N�1, XY,
read(A, J, X), read(A, J1, Y), val(j, J1), val(j, J), val(k, K), new1(I, J, N, A,Tmp, K).

4. new1(I, J, N, A, Tmp, K) :- 0I, I<N, J=0, val(j, J), val(k, K).

where new1 is a new predicate symbol introduced during program specialization
by VCGen. The definition of the predicate new1 is associated with the for-loop
of the bubblesort-inner program and consists of clauses 2–4 that represent the
execution of the for statement. In particular, we have that (see the underlined
constraints): (i) clauses 1 and 4 represent the exit and the entry of the for-loop,
respectively, and (ii) clauses 2 and 3 represent the execution of the conditional
in the a[j]>a[j+1] case and in the a[j]a[j+1] case, respectively.

3 A Transformation Strategy for Verification

The VCTransf step of our verification method transforms the CLP program T 1
derived at the end of VCGen to a program T 2 such that incorrect2 M(T 1)
iff incorrect2M(T 2). This transformation makes use of transformation rules
that preserve the least A-model semantics of CLP programs. In particular, we
apply the following rules, that are collectively called unfold/fold rules: unfolding,
constraint replacement, clause removal, definition, and folding. These rules are an
adaptation to CLP programs of the unfold/fold rules for general CLP programs
(see, for instance, [18]).

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

119

VCTransf applies the unfold/fold rules according to a strategy that performs
the propagation of the constraints of the error property phiError in a backward
way from the error configuration towards the initial configuration, so as to derive
a program T 2 where the predicate incorrect is defined by either (i) the fact
incorrect (in which case the imperative program prog is incorrect), or (ii) the
empty set of clauses (in which case prog is correct). In the case where neither (i)
nor (ii) holds, that is, in program T 2 the predicate incorrect is defined by a
non-empty set of clauses not containing the fact incorrect, we cannot conclude
anything about the correctness of prog. However, similarly to what has been
proposed in [12], in this case we can perform again VCTransf by propagating
the initial property phiInit, and continue alternating the propagation of the
error and initial properties in the hope of deriving a program where either (i)
or (ii) holds. Obviously, due to the undecidability of program correctness, it may
be the case that this process does not terminate.

3.1 The Transformation Strategy

VCTransf is performed by applying the unfold/fold transformation rules ac-
cording to the Transform strategy shown in Figure 1. Let us briefly describe the
various rules used by the Transform strategy.
• The Unfolding rule performs one step of backward propagation of the error
property phiError.
• The Constraint Replacement rule infers new constraints on the variables
of the single atom that occurs in the body of each clause obtained by Unfold-

ing. Constraint Replacement makes use of a function Repl that, given a
clause C of the form H :- c0, B, returns a set {H :-c1, B, . . . , H :-cn, B} of clauses
(with n � 0), where c1, . . . , cn are constraints such that A |= 8 ((9X0 c0) $
(9X1 c1 __ . . . __ 9Xn cn)) holds, and for i=0, . . . , n, we have that Xi = vars(ci)�
vars(H, B). In particular, if c0 is unsatisfiable, then n=0 and clause C is removed.
The function Repl is implemented by a CHR program as described in Section 3.2.
• The rules of Removal of Useless Clauses and Removal of Subsumed

Clauses remove clauses that do not contribute to the least model of the CLP
program at hand.
• The Definition rule introduces new predicate definitions by suitable general-
izations of the constraints. Generalization is performed by using a function Gen
such that, for any given clause E of the form H :- e(V,X), p(X) and set Defs of
predicate definitions, Gen(E,Defs) is a clause of the form newq(X):- gen(X),p(X),
where: (i) newq is a new predicate symbol, and (ii) gen(X) is a constraint such
that e(V,X)v gen(X).
• The Folding rule replaces the clause H:-e(V,X),p(X) by the clause H:-e(V,X),
newq(X).

Note that the input program T 1 of the Transform strategy is a linear CLP
program. Indeed, during VCGen the atoms different from reach are unfolded
and hence a linear program is generated.

The new predicates introduced by the Definition rule can be understood
as over-approximations of the sets of configurations that are backward-reachable

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

120

from the error configuration. Note, however, that the folding rule preserves
equivalence, as e(V,X),p(X) is equivalent to e(V,X), newq(X). In Section 3.3 we
present a generalization function that guarantees the termination of Transform
and, at the same time, allows us to prove the correctness of non-trivial programs.

Input : A linear CLP program T1.
Output : Program T2 such that incorrect2M(T1) iff incorrect2M(T2).

Initialization:
Let InDefs be the set of all clauses of T1 whose head is the atom incorrect;
T2:=; ; Defs := InDefs ;
while in InDefs there is a clause C of the form H :- c,A do

Unfolding: Let {Ki :- ci,Bi | i = 1, . . . , m} be the set of the (renamed apart)
clauses of T1 such that, for i=1, . . . , m, A is unifiable with Ki via the most
general unifier #i.
Then TransfC := {(H :- c,ci,Bi) #i | i = 1, . . . , m};

Constraint Replacement: TransfC := [D2TransfCRepl(D);
Removal of Subsumed Clauses: Remove from TransfC every clause H :- d,B

such that there exists a distinct clause H :- e in TransfC with d v e;
Definition&Folding:
while in TransfC there is a clause E of the form H :- e(V,X), p(X), where e(V,X)
is a constraint and p is a predicate defined in T1 do
if in Defs there is a clause D of the form newp(X) :- c(X), p(X), where c(X)
is a constraint such that e(V,X) v c(X)

then TransfC := (TransfC � {E}) [{H :- e(V,X), newp(X)};
else let Gen(E,Defs) be newq(X) :- gen(X), p(X);

Defs := Defs [{Gen(E,Defs)};
InDefs := (InDefs � {C}) [{Gen(E,Defs)};
TransfC := (TransfC � {E}) [{H :- e(V,X), newq(X)}

end-while;
T2 := T2 [TransfC

end-while;
Removal of Useless Clauses:
Remove from T2 all clauses with head predicate p, if in T2 there is no constrained fact
q(. . .) :- c where q is either p or a predicate on which p depends.

Fig. 1. The Transform strategy.

We assume that the set Defs is structured as a tree of clauses where, with
reference to Figure 1, clause C is said to be the parent of clause Gen(E,Defs),
and the ancestor relation is defined as the reflexive, transitive closure of the
parent relation.

3.2 Constraint Replacement via CHR

In this section we show how Constraint Handling Rules with disjunction can
be used to realize in a very natural way the constraint rewritings based on Ax-

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

121

ioms (A1)–(A3) for array operations, which allow us to apply the Constraint

Replacement rule during the Transform strategy.
CHR is a committed-choice language based on rewriting rules. It was specif-

ically designed for building custom constraint solvers [22]. A CHR program con-
sists of a set of guarded rules that rewrite multisets of constraints. Constraint
predicates are of two different kinds: (i) built-in constraints, whose entailment is
checked by using a domain-specific constraint solver, and (ii) user-defined con-
straints, which are rewritten as specified by the CHR program. We assume that
the set of built-in constraints contains the constraints true, false, and syntac-
tic equalities. Built-in constraints and user-defined constraints are closed under
conjunction. A constraint goal is either a (built-in or user-defined) constraint, or
a conjunction of constraint goals, or a disjunction of constraint goals.

CHR rules are of the form: r @ H1 \ H2 , G | B, where the @ symbol
separates the optional rule identifier r from the rest of the rule, the user-defined
constraints H1 and H2 are the kept head and the removed head, respectively, the
built-in constraint G is the guard, and B is a constraint goal. Either H1 or H2 is a
non-empty conjunction. If H2 is empty then the rule is called a propagation rule
and can be written as follows: H1) G | B. The logical meaning of the CHR rule
H1 \ H2 , G | B is the guarded equivalence 8(G ! ((H1 ^ H2) $ (H1 ^ 9Y B))),
where Y is the set of variables occurring in B and not in the rest of the rule.

The operational semantics of CHR is formally defined in terms of a transition
relation between CHR states as described in [1]. A CHR state is a triple hg, u, bi,
where g is a constraint goal, u is a user-defined constraint and b is a built-in
constraint. An initial state is a state of the form hg, true, truei. Starting from
an initial state, constraints are rewritten as long as possible by applying CHR
rules. A final state is a state from which no transition is applicable. A final
state is failed if it is of the form hg, u, falsei. Note that, since constraint goals
may contain disjunctions, the transition relation is nondeterministic, and thus
it generates a tree of computations whose leaves correspond to the final states.
A terminating CHR program is one for which there is no infinite sequence of
transitions, that is, the tree of computations is finite.

The CHR program Arr used for constraint replacement in the Transform
strategy consists of the following rules:
ac @ read(A1, I, X)\read(A2, J, Y) , A1 == A2, I=J | X = Y.

cac @ read(A1, I, X), read(A2, J, Y)) A1 == A2, X <> Y | I<>J.

row @ write(A1, I, X, A2)\read(A3, J, Y), A2==A3 | (I=J,X=Y); (I<>J,read(A1,J,Y)).

These rules encode the axioms (A1)–(A3) presented in Section 2. Rules ac and
cac encode the array congruence axiom (A1) and its contrapositive version,
respectively, and rule row encodes the two so-called read-over-write axioms (A2)
and (A3). The symbol ‘==’ denotes syntactic equality, while ‘=’ and ‘<>’ denote
integer equality and inequality, respectively. Note that we use the semicolon ‘;’
for denoting disjunction in the right-hand side of the rule row.

If we adopt an operational semantics that prevents trivial non-termination
cases by applying a propagation rule at most once to the same constraints [1],
then it can be shown that the CHR program Arr terminates for all constraint

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

122

goals generated during the application of our transformation strategy. Indeed,
the only rule that may lead to a non-terminating behavior is row. By using this
rule, a constraint containing

(g1) write(U,I,X,V), write(V,I,H,U), read(V,J,Y)

could be rewritten as a constraint containing

(g2) write(U,I,X,V), write(V,I,H,U), read(U,J,Y)

and then, by interchanging the roles of the two write constraints in the ap-
plication of the row rule, a constraint containing (g2) could be rewritten to a
constraint containing (g1), thereby giving rise to an infinite branch in the tree
of computation. However, it can be shown that a constraint goal of the form
(g1) cannot be generated by the Unfolding rule during the application of the
Transform strategy. Informally, in every clause, the constraints can be ordered
from left to right following the order of execution of the corresponding read and
write operations, and hence a variable V occurring in a constraint of the form
write(U, I, X, V), does not occur to the left of that constraint. This argument
is formalized by considering the transitive closure �+ of the following relation
between the variables of a clause: U�V iff the constraint write(U, I, X, V) occurs
in the clause. It can be shown that in every clause derived by the Unfolding

rule during the application of the Transform strategy, �+ is irreflexive. Thus,
the termination of Arr follows from the fact that an application of the row rule
will replace a constraint of the form read(V,J,Y) by a constraint of the form
read(U,J,Y) with U�V.

Given a clause D of the form H :- d, B, derived by the Unfolding rule, let
{hg1, u1, b1i, . . . , hgn, un, bni} be the set of all non-failed final states computed
from the initial state hd, true, truei. Let di be the conjunction hgi, ui, bii. We
assume that, for i=1, . . . , n, the variables occurring in di and not in d are
fresh, and thus they occur neither in H nor in B. By the soundness of CHR
we have that A |= 8(d $ (9X1 d1 __ . . . __ 9Xn dn)) where, for i=1, . . . , n, Xi =
vars(di)�vars(d). Thus, the applicability conditions of the Constraint Re-

placement rule are satisfied, and in the Transform strategy we define Repl(D)
to be {H :-d1, B, . . . , H :-dn, B}.

To see how the CHR program Arr works, let us consider again the bubblesort-
inner example of Section 3. By applying the unfolding rule to clause 1 the
Transform strategy derives a set of clauses including the following one:
new2(I, J1, N, A2, W, K):-J1=1+J, J<N�I�1, KJ,Z<W, I�0, K�0,J�N� I�3, X>Y,

write(A, J, Z, A1), write(A1, J1, W, A2), read(A, J, W), read(A, J1, Z),

read(A2, K, X), read(A2, J1, Y), val(j, J1), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

The CHR program Arr rewrites the constraint occurring in the above clauses
and the Constraint Replacement rule derives the following clause:
new2(I, J1, N, A2, W, K):-J1=1+J, J<N� I�1, KJ, Z<W,I�0, K�0, J�N�I�3, X>Y,

write(A, J, Z, A1), write(A1, J1, W, A2), read(A, J, Y), read(A, J1, Z),

read(A, K, X), Y=W, J>K,J1>K, val(j, J1), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

123

where (i) by row, the constraint read(A2, J1, Y) has been replaced by the equality
constraint Y=W (ii) by row, in the constraint read(A2, K, X), the variable A2,
denoting the array a after the write operation, has been replaced by the variable
A, denoting the array a before the write operation, and (iii) the constraint
‘J>K, J1>K’ has been added by the built-in solver on linear constraints.

3.3 Generalization Strategy

The most critical step of the Transform strategy is the introduction of new pred-
icates during Definition&Folding. Indeed, it should guaranteed that a finite
number of new predicates is introduced, to avoid the non-termination of Trans-
form. For this reason, as usual in many program transformation techniques [19],
we collect in the set Defs all predicate definitions introduced by the strategy,
and before introducing a new predicate definition D, we match it against the
ones already in Defs. If D is ‘similar’ to a definition A in Defs (formalized via
the embedding relation defined below), then the function Gen introduces a new
definition which is a generalization of A and D, instead of D. The function Gen
defined in this section, makes use of operators for generalizing array constraints
that ensure that no infinite number of distinct generalizations can be obtained,
and hence a finite number of new predicates is introduced during the Transform
strategy. The embedding relation and the generalization strategy take into con-
sideration the val constraints between the integer CLP variables occurring in
read constraints and the identifiers of the imperative program with which they
are associated. By doing so we will be able to identify similarities between defi-
nitions that go beyond syntactic variance, hence improving the level of precision
of the verification technique.

In the following we will denote constraints as conjunctions of the form i, r, w, v,
where i is an integer constraint, and r, w, and v are conjunctions of read, write,
and val constraints, respectively. We assume that all integer variables in read
constraints are distinct and do not occur in any (non constraint) atom of the
clause at hand (this condition can always be satisfied by adding some integer
equalities).

Given a clause D of the form H :- i, r, w, v, B, for every integer variable I
occurring in a read atom in r we compute the set ids(I) of identifiers id such
that an atom val(id, J) occurs in v and the constraint I = J is entailed by i.
We define the clause identifier set of D, denoted ids(D), as the set of pairs
(ids(I), ids(U)) such that a constraint of the form read(A, I, U) occurs in r. For
example, if the constraint occurring in the body of clause D is

M=0, N>M, V=0, read(A, M, U), read(A, N, V), val(m, M), val(n, N), val(v, V)
then we have that ids(D) = {({m, v}, {}), ({n}, {m, v})}.

Given two clause identifier sets R1 and R2, we say that R1 is embedded into R2

via the set relation rel iff for each pair (I1, U1) in R1 there exists a pair (I2, U2)
in R2 such that (i) rel(I1, I2) and rel(U1, U2) hold and (ii) R1 � {(I1, U1)} is
embedded into R2 � {(I2, U2)} via rel . In our experiments we have considered
two embedding relations based on the following definitions of rel(s1, s2): (1)
s1 ✓ s2 (subset relation), and (2) s1es2 defined as (s1 = s2 = ;) _ (s1\s2 6= ;).

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

124

We say that a clause D1 is embedded into a clause D2 via the relation rel iff
ids(D1) is embedded in ids(D2) via rel .

Given a clause E of the form H :- e(V,X),p(X) and a set Defs of definitions,
the generalization function Gen computes a definition newq(X):- gen(X),p(X),
where newq is a new predicate symbol and gen(X) is a constraint such that
e(V,X) v gen(X), which is constructed as follows. Let e(V, X) be of the form
i, r, w, v and let newq(X) :-iX, rX, vX, p(X) be the candidate definition clause for
E, where: (i) rX is the conjunction of the read(A, I, V) constraints in r such
that A occurs in X and, for some val(j, J) in v we have that J occurs in X and
either I = J or V = J is entailed by i, (ii) iX is the constraint obtained from
i by projecting away the variables not occurring in X or rX, and (iii) vX is the
conjunction of the val(j, J) constraints in v such that J occurs in X.

Suppose that clause E has been derived from clause C at the end of the
Removal of Subsumed Clauses step. Gen(E,Defs) is defined as follows.
If in Defs there is an ancestor A of C of the form H0 :- i0, r0, v0, p(X), such that

r0 is a subconjunction of rX, and A is embedded into newq(X) :-iX, rX, vX, p(X),
Then let i1 be the constraint obtained from iX by projecting away the variables

not occurring in X or r0; compute a generalization g of the constraints
i1 and i0 such that i1 v g, by using a generalization operator for linear
constraints. Define the constraint gen(X) as g, r0, v0;

Else define the constraint gen(X) as iX, rX, vX.
For the projection and generalization operations we apply the usual operators
for linear constraints on the reals (and in particular the widening and convex
hull generalization operators defined in [10, 19, 40]). These operators are correct
because they guarantee that i v g.

To see an example of application of the generalization strategy let us con-
sider the clause that was derived in Section 3.2 by applying the Constraint

Replacement rule. The candidate definition for that clause is:
new4(I, J, N, A, Tmp, K) :- J<N�I�1, I�0, K�0, J�N�I�3, X>W, J>K,

read(A, J, W), read(A, K, X), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

and Defs contains the following ancestor definition:
new2(I, J, N, A, Tmp, K) :- J<N�I�1, I�0, K�0, J�N�I�2, X>W, J>K,

read(A, J, W), read(A, K, X), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

Since the ancestor definition is embedded into the candidate definition via ✓ or e
(indeed, the two clauses have the same clause identifier set {({j}, {}), ({k}, {})}),
we obtain a generalization of the candidate definition by applying the widening
operator between the linear constraints, hence dropping the constraint J�N�I�2
of the ancestor definition, and we introduce the following generalized definition:

new4(I, J, N, A, Tmp, K):- J<N�I�1, I�0, K�0, X>W, J>K,
read(A, J, W), read(A, K, X), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

The correctness of the Transform strategy with respect to the least A-model
semantics follows from the correctness results for the unfold/fold rules proved
in [18].

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

125

The termination of the Transform strategy is based on the following facts:
(i) Constraint satisfiability and entailment are checked by a terminating solver
(note that completeness is not necessary for the termination of Transform).
(ii) The CHR program Arr implementing Constraint Replacement termi-
nates. (iii) The set of new clauses that, during the execution of the Transform
strategy, can be introduced by Definition&Folding steps is finite. Indeed, by
construction, they are all of the form H :- i, r, v, p(X), where: (1) X is a tuple of
variables, (2) i is an integer constraint, (3) r is a conjunction of array constraints
of the form read(A, I, V), where A is a variable in X and the variables I and V
occur in i only, (4) the set of identifiers of the imperative program is finite, and
hence the embedding relation is a thin well-quasi ordering [19] (this property
guarantees that generalization is eventually triggered, and that a definition can
be generalized a finite number of times only), (5) the cardinality of r is bounded,
because if in Defs there exists a clause A of the form H0 :- i0, r0, vX, p(X), then
generalization does not introduce a descendant definition clause D of the form
newp(X) :- iX, r0, r1, vX, p(X) such that A is embedded into D, (6) we assume
that the generalization operator on linear constraints has the following finite-
ness property: only finite chains of generalizations of any given constraint can
be generated by applying the operator. The already mentioned generalization
operators presented in [10, 19, 40] satisfy this finiteness property. Thus, we have
the following result.

Theorem 1. (i) The Transform strategy terminates. (ii) Let program T 2 be the
output of Transform applied to the input program T 1. Then, incorrect2M(T 1)
iff incorrect2M(T 2).

Let us now conclude our bubblesort-inner example. After a few iterations,
the outermost while-loop of the Transform strategy terminates and produces
the following set T 2 of clauses (which we list as they have been automatically
generated):
incorrect :- A =�1+B�C, D =�1+B�C, E�F �1, G � 0, C � 0, B�G�C � 2,

read(H, D, E), read(H, G, F), val(j, A), val(k, G), new1(C, A, B, H, I, G).
new1(A, B, C, D, E, F) :- G � F+1, H � F+1, A =�2+C�G, B = 1+G, I = 1+G, H = 1+G,

J = 1+G, K = 1+G, F�G  0, L�E �1, F � 0, C�G � 2, M�E � 1,
read(N, F, M), read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(j, G), val(k, F), val(j, B), new2(A, G, C, N, P, F).

new1(A, B, C, D, E, F) :- G � F+1, A =�2+C�G, B = 1+G, H = 1+G, I = 1+G, F�G  0,
F � 0, C�G � 2, J�K � 1, K�L � 0, read(D, G, L), read(D, F, J), read(D, H, K),
val(j, G), val(k, F), val(j, B), new2(A, G, C, D, E, F).

new2(A, B, C, D, E, F) :- G � F+1, H � F+1, B = 1+G, I = 1+G, H = 1+G, J = 1+G,
K = 1+G, A�C+G �2, F�G  0, L�E �1, A � 0, F � 0, A�C+G ��3, M�E � 1,
read(N, F, M), read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(j, G), val(k, F), val(j, B), new4(A, G, C, N, P, F).

new2(A, B, C, D, E, F) :- G � F+1, B = 1+G, H = 1+G, I = 1+G, A�C+G �2, F�G  0,
A � 0, F � 0, A�C+G ��3, J�K � 1, K�L � 0, read(D, G, L), read(D, F, J),
read(D, H, K), val(j, G), val(k, F), val(j, B), new4(A, G, C, D, E, F).

new4(A, B, C, D, E, F) :- G � F+1, H � F+1, B = 1+G, I = 1+G, H = 1+G, J = 1+G,
K = 1+G, A�C+G �2, F�G  0, L�E �1, A � 0, F � 0, M�E � 1, read(N, F, M),
read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

126

val(j, G), val(k, F), val(j, B), new4(A, G, C, N, P, F).
new4(A, B, C, D, E, F) :-G � F+1, B = 1+G, H = 1+G, I = 1+G, A�C+G �2, F�G  0,

A � 0, F � 0, J�K � 1, K�L � 0, read(D, G, L), read(D, F, J), read(D, H, K),

val(j, G), val(k, F), val(j, B), new4(A, G, C, D, E, F).

Since this set contains no constrained facts, by Removal of Useless Clauses

we remove all clauses from T 2 and the Transform strategy outputs the empty
program. Thus, incorrect 62 M(T 2) and we conclude that the program bubblesort-
inner is correct with respect to the given 'init and 'error properties.

4 Experimental Evaluation

We have implemented our verification method as a module of the VeriMAP soft-
ware model checker [14] (available at http://map.uniroma2.it/VeriMAP) and
we have performed an experimental evaluation of our method on a benchmark
set of programs taken from the literature [6, 9, 16, 27, 35] (the source code is
available at http://map.uniroma2.it/smc/array-chr).

We have applied the Transform strategy presented in Section 3 using different
generalization strategies that combine the widening and convex hull operators
together with various embedding relations. Different embedding relations are
obtained: (i) by selecting different sets of variable identifiers for the introduction
of the val constraints, and (ii) by using different relations to compare sets of
identifiers (see Section 3.3). In particular, we have considered the following gen-
eralization strategies: GenW,I,e, GenH,V,✓, GenH,V,e, GenH,I,✓, and GenH,I,e,
where the subscripts should be interpreted as follows. The first subscript denotes
the generalization operator: W stands for the widening operator, and H stands
for the widening-and-convex-hull operator. The second subscript denotes the se-
lected set of identifiers: I stands for the set of variable identifiers associated with
the second argument (that is, the index) of the read constraints, and V stands
for the set of identifiers associated with the third argument (that is, the value)
of the read constraints. The third subscript denotes the relation rel 2 {✓,e}
that is used for comparing the sets of identifiers.

The results of our experiments are summarized in Table 1. The experiments
have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of
memory under GNU/Linux OS. We have that the strategies based on GenH,I,rel

are more precise than those based on GenH,V,rel , for any rel 2 {✓,e}. Simi-
larly, the strategies based on GenH,S ,e are more precise than those based on
GenH,S ,✓, for any S 2 {I, V}. Note that by generalizing the constraints, the
Transform strategy may get an empty set of identifiers associated with a given
variable, thereby making the generalizations based on the operator ✓ less useful
that those based on the operator e. The best trade-off between precision and
performance is obtained by GenH,I,e that allowed us to prove all programs we
have considered. Note also that the bubblesort-inner program can be proved only
by generalizations based on GenW,I,e or GenH,I,e.

5 Related Work and Conclusions

The technique presented in this paper is an extension of the one presented in [13].
The novel contributions of this paper are the following. (1) We have formalized

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

127

Program GenW,I,e GenH,V,✓ GenH,V,e GenH,I,✓ GenH,I,e

bubblesort-inner 0.9 unknown unknown unknown 1.52
copy-partial unknown unknown 3.52 3.51 3.54
copy-reverse unknown unknown 5.25 unknown 5.23
copy unknown unknown 5.00 4.88 4.90
find-first-non-null 0.14 0.66 0.64 0.28 0.27
find 1.04 6.53 2.35 2.33 2.29
first-not-null 0.11 0.22 0.22 0.22 0.22
init-backward unknown 1.04 1.04 1.03 1.04
init-non-constant unknown 2.51 2.51 2.47 2.47
init-partial unknown 0.9 0.89 0.9 0.89
init-sequence unknown 4.38 4.33 4.41 4.29
init unknown 1.00 0.97 0.98 0.98
insertionsort-inner 0.58 2.41 2.4 2.38 2.37
max unknown unknown 0.8 0.81 0.82
partition 0.84 1.77 1.78 1.76 1.76
rearrange-in-situ unknown unknown 3.06 3.01 3.03
selectionsort-inner unknown time-out unknown 2.84 2.83
precision 6 10 15 15 17
total time 3.61 21.42 34.76 31.81 38.45
average time 0.60 2.14 2.31 2.12 2.26

Table 1. Verification results using VeriMAP. Time is in seconds. By ‘unknown’ we
indicate that VeriMAP terminates without being able to prove correctness or incor-
rectness. By ‘time-out ’ we indicate that VeriMAP is unable to provide an answer within
5 minutes.

constraint replacement as a CHR program representing the Theory of Arrays,
whereas in [13] constraint replacement was implemented directly in CLP. We
have shown that the approach based on CHR allows a very elegant combina-
tion of constraint manipulation with transformations based on unfold/fold rules.
(2) We have presented a novel strategy that controls the generalization of array
constraints during CLP transformation by taking into account the information
relating the variable identifiers in the imperative program and the CLP rep-
resentation of their values. We have shown that our generalization strategy is
effective on several examples taken from the literature.

In the Introduction we mentioned some CLP-based program verification
methods. Here we briefly recall other methods, not based on CLP, for the veri-
fication of array programs.

Some of these methods use abstract interpretation. In [27], which builds
upon [24], invariants are discovered by partitioning the arrays into symbolic
slices and associating an abstract variable with each slice. A similar approach is
followed in [9] where a scalable framework for the automatic analysis of array
programs is introduced. In [21, 34] a predicate abstraction for inferring univer-
sally quantified properties of array elements is presented, and in [26] the authors
present a similar technique which uses template-based quantified abstract do-
mains. In [46] a backward reachability analysis based on predicate abstraction
and abstraction refinement is used for verifying assertions which are universally
quantified over array indexes.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

128

The methods based on abstract interpretation construct over-approximations,
that is, invariants implied by the program executions. These methods have the
advantage of being quite efficient because they fix in advance a finite set of ba-
sic assertions from which the invariants can be constructed. However, for the
same reason, these methods may lack flexibility as the abstraction should be
re-designed when verification fails.

Also theorem provers have been applied for discovering invariants and prov-
ing verification conditions generated from the programs. In particular, in [7] a
satisfiability decision procedure for a decidable fragment of a theory of arrays
is presented. That fragment is expressive enough to prove properties such as
sortedness of arrays. In [32, 33, 38] the authors present some techniques that use
theorem proving for generating array invariants. Some theorem proving tech-
niques for program verification are based on Satisfiability Modulo Theory (SMT)
(see, for instance, [3, 4, 35]). The approaches based on theorem proving and SMT
are more flexible with respect to those based on abstract interpretation because
no finite set of assertions is fixed in advance and, instead, the suitable assertions
needed for the proofs can be generated on demand.

Although the approach based on CLP program transformation shares many
ideas and techniques with abstract interpretation and automated theorem prov-
ing, we believe that it offers a higher degree of flexibility and parametricity.
Indeed, the transformation-based method for the generation of the verification
conditions and their proof, is to a large extent independent of the imperative
program and the property to be verified.

The use of CHR further enhances the flexibility of our transformation-based
approach because CHR manipulate the constraints that represent operations on
the data structures (such as the read and write operations in the case of arrays),
while the unfold/fold rules manipulate the non-constraint atoms of the CLP
programs. The experimental results we have reported in this paper demonstrate
that the combination of the two kind of rules, those for constraints and those for
non-constraint atoms, is a promising, powerful technique for proving program
properties.

As future work we plan to extend our transformation-based method to the
verification of programs which manipulate dynamic data structures such as lists
or heaps. To this aim we may combine the CHR axiomatization of heaps proposed
by [17] with the generalization strategies based on widening and convex-hull
considered in this paper.

References

1. S. Abdennadher and H. Schütz. CHR_: A flexible query language. Proc. FQAS ’98,
LNCS 1495, pages 1–14. Springer, 1998.

2. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java
bytecode using analysis and transformation of logic programs. Proc. PADL ’07,
LNCS 4354, pages 124–139. Springer, 2007.

3. F. Alberti, S. Ghilardi, and N. Sharygina. SAFARI: SMT-based abstraction for
arrays with interpolants. Proc. CAV ’12, LNCS 7358, pages 679–685. Springer,
2012.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

129

4. F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array prop-
erties. Proc. TACAS ’14, LNCS 8413, pages 15–30. Springer, 2014.

5. N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability
modulo theories. Proc. SMT-COMP ’12, pages 3–11, 2012.

6. N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified
Horn clauses. Proc. SAS ’13, LNCS 7935, pages 105–125. Springer, 2013.

7. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? Proc.
VMCAI ’06, volume LNCS 3855, pages 427–442. Springer, 2006.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixpoints.
Proc. POPL ’77, pages 238–252. ACM, 1977.

9. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. Proc. POPL ’11, pages 105–118.
ACM, 2011.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. Proc. POPL ’78, pages 84–96. ACM, 1978.

11. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verification of im-
perative programs by constraint logic program transformation. Proc. SAIRP ’13,
EPTCS 129, pages 186–210, 2013.

12. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying programs
via iterated specialization. Proc. PEPM ’13, pages 43–52. ACM, 2013.

13. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying array pro-
grams by transforming verification conditions. Proc. VMCAI ’14, LNCS 8318,
pages 182–202. Springer, 2014.

14. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A tool for
verifying programs through transformations. Proc. TACAS ’14, LNCS 8413, pages
568–574. Springer, 2014.

15. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Program verification
via iterated specialization. Science of Computer Programming, 2014 (to appear).

16. I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates.
Proc. ESOP ’10, LNCS 6012, pages 246–266. Springer, 2010.

17. G. J. Duck, J. Jaffar, and N. C. H. Koh. Constraint-based program reasoning with
heaps and separation. Proc. CP ’13, LNCS 8124, pages 282–298. Springer, 2013.

18. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101–146, 1996.

19. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies
for the verification of infinite state systems. Theory and Practice of Logic Pro-
gramming, 13(2):175–199, 2013.

20. C. Flanagan. Automatic software model checking via constraint logic. Science of
Computer Programming, 50(1–3):253–270, 2004.

21. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. Proc.
POPL ’02, pages 191–202. ACM, 2002. ACM.

22. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, pages 95–138, Oc-
tober 1998.

23. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for ex-
tensions of the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.

24. D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array
operations. Proc. POPL ’05, pages 338–350. ACM, 2005.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

130

25. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A software verifier based on Horn clauses. Proc. TACAS ’12, LNCS
7214, pages 549–551. Springer, 2012.

26. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
refining abstract interpretations. Proc. TACAS ’08, LNCS 4963, pages 443–458.
Springer, 2008.

27. N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. Proc. PLDI ’08, pages 339–348. ACM, 2008.

28. K. S. Henriksen and J. P. Gallagher. Abstract interpretation of PIC programs
through logic programming. Proc. SCAM ’06, pages 103–179, 2006.

29. J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic
programming. Journal of Logic Programming, 37:1–46, 1998.

30. J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool
for verification. http://paella.d1.comp.nus.edu.sg/tracer/, 2012.

31. J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal.
Proc. CP ’09, LNCS 5732, pages 454–469. Springer, 2009.

32. R. Jhala and K. L. McMillan. Array abstractions from proofs. Proc. CAV ’07,
LNCS 4590, pages 193–206. Springer, 2007.

33. L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using
a theorem prover. Proc. FASE ’09, LNCS 5503, pages 470–485. Springer, 2009.

34. S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates.
ACM Trans. Comput. Log., 9(1), 2007.

35. D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant
generation. Proc. VMCAI ’13, LNCS 7737, pages 169–188. Springer, 2013.

36. J. W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987.
Second edition.

37. J. McCarthy. Towards a mathematical science of computation. Proc. IFIP 1962,
pages 21–28. North Holland, 1963.

38. K. L. McMillan. Quantified invariant generation using an interpolating saturation
prover. Proc. TACAS ’08, LNCS 4963, pages 413–427. Springer, 2008.

39. M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (C)LP-based
approach to the analysis of object-oriented programs. Proc. LOPSTR ’07, LNCS
4915, pages 154–168. Springer, 2008.

40. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of
CLP programs. Proc. LOPSTR ’02, LNCS 2664, pages 90–108. Springer, 2003.

41. J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs
through analysis of constraint logic programs. Proc. SAS ’98, LNCS 1503, pages
246–261. Springer, 1998.

42. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. Journal of Logic Programming, 19,20:261–320, 1994.

43. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction refinement. Proc. PADL ’07, LNCS 4354, pages 245–259.
Springer, 2007.

44. C. J. Reynolds. Theories of programming languages. Cambridge University Press,
1998.

45. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for Horn-clause
verification. Proc. CAV ’13, LNCS 8044, pages 347–363. Springer, 2013.

46. M. N. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quantified
array assertions. Proc. SAS ’09, LNCS 5673, pages 3–18. Springer, 2009.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

131

