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Abstract. We consider state-based systems modelled as coalgebras whose type incorporates branch-
ing, and show that suitably adapting the definition of coalgebraic bisimulation yields a general and
uniform account of the linear-time behaviour of a state in such a coalgebra. By moving away from
a boolean universe of truth values, our approach can measure the extent to which a state in a system
with branching is able to exhibit a particular linear-time behaviour. This instantiates to measuring
the probability of a specific behaviour occurring in a probabilistic system, or measuring the minimal
cost of exhibiting a given behaviour in the case of weighted computations.
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1. Introduction

When analysing process behaviour, one of the early choices one has to make is between a linear and a
branching view of time. In branching-time semantics, the choices a process has for proceeding from a
particular state are taken into account when defining various notions of process equivalence (with bisim-
ulation being the typical such equivalence), whereas in linear-time semantics such choices are abstracted
away and the emphasis is on the individual executions that a process can exhibit. From a system verifi-
cation perspective, one often chooses the linear-time view, as this not only leads to simpler specification
logics and associated verification techniques, but also meets the practical need to verify all possible
system executions.

Beginning with the 1990s, coalgebras have become increasingly recognised as a suitable universal
model of computational systems, and more generally of dynamical systems [24]. From the outset, the
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Figure 1. Two transition systems with different linear-time behaviours

theory of coalgebras was able to provide a uniform account of various bisimulation-like observational
equivalences between states of a computational system (and later, also of various simulation-like be-
havioural preorders). However, it has so far not been equally successful in giving a generic account
of the linear-time behaviour of states in systems whose type incorporates some form of branching. A
generic theory of finite traces for coalgebraic models was developed by Hasuo, Jacobs and Sokolova
[12]. This applies to coalgebras of type T ◦ F , with the monad T : Set → Set specifying a branching
type (e.g. non-deterministic or probabilistic), and the endofunctor F : Set → Set defining the structure
of individual transitions (e.g. labelled transitions or successful termination). The approach in loc. cit. is
complemented by that of Jacobs, Silva and Sokolova [16], where traces are derived using a determinisa-
tion procedure similar to the one for non-deterministic automata. The latter approach applies to systems
modelled as coalgebras of typeG◦T, where again a monad T : Set→ Set is used to model branching be-
haviour, and an endofunctorG specifies the transition structure. Neither of these approaches is, however,
able to account for potentially infinite traces, which arguably provide a better semantics for linear-time
behaviour – in the same way as the notion of bisimulation involves exploring the often infinite behaviour
of states. A coalgebraic account of infinite traces for non-deterministic systems, modelled as coalgebras
of P ◦ F with P : Set → Set the powerset monad and F a polynomial endofunctor, was given by
Jacobs [14]. Also, a coalgebraic approach to defining infinite (as well as finite) traces for probabilistic
systems, modelled as coalgebras of type G◦F with G : Meas→ Meas the Giry monad on the category of
measurable spaces, was given by Kerstan and König [18]. Finally, a more general approach to defining
infinite traces, which applies to both non-deterministic and probabilistic systems, also exists [1]; how-
ever, this approach fails to distinguish the two transition systems in Figure 1 (viewed as coalgebras of
type P ◦ (1 + Id), with 1 a one-element set and Id : Set→ Set the identity functor), one with only finite
maximal traces and another which can also exhibit an infinite trace. The root of the problem is the lack of
a certain limit-preservation property for the powerset monad, see [1] for details. (Interestingly, the Giry
monad used in the modelling of probabilistic systems is better behaved in this respect, and this results
in probabilistic traces being obtained through a universal property in the Kleisli category of this monad.
Both [1] and [18] follow this approach.) We also note that none of the above-mentioned approaches
exploits the compositionality that is intrinsic to the coalgebraic approach. In particular, coalgebras of
type G ◦ T ◦ F (of which systems with both inputs and outputs are an instance, see Example 5.14) can
not be accounted for by any of the existing approaches.

This paper addresses the limitations identified above by providing a uniform and compositional treat-
ment of (possibly infinite) linear-time behaviour in systems with branching. Our approach also provides
an adequate treatment of the two systems in Figure 1.
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In the case of T ◦ F -coalgebras over Set, working in the Kleisli category of the monad T proved
to provide an elegant definition of finite traces via a finality argument [12]. A similar argument, this
time carried out in the Eilenberg-Moore category of the monad T, was possible for G ◦ T-coalgebras
over Set [16]. However, for maximal (and hence possibly infinite) traces, a general approach based on
finality appears not to exist (although, as noted earlier, this is possible for ”well-behaved” monads such
as the Giry monad). Here, we tackle the problem of getting a handle on the linear-time behaviour of a
state in a coalgebra with branching from a different angle: we do not attempt to directly define a notion
of trace equivalence between two states (e.g. via finality in some category), but focus on measuring the
extent to which a state is able to exhibit a particular maximal trace. This ”measuring” relates to the
type of branching present in the system, and instantiates to familiar concepts such as the probability
of exhibiting a given trace in probabilistic systems, the minimal cost of exhibiting a trace in weighted
systems, and simply the ability to exhibit a trace in non-deterministic systems.

The technical tool for achieving this goal is a generalisation of the notions of relation and relation
lifting [13], which lie at the heart of the definition of coalgebraic bisimulation. Specifically, we employ
relations valued in a partial semiring, and a corresponding generalised version of relation lifting. Our
approach applies to coalgebras whose type is obtained as the composition of several endofunctors on Set:
one of these is a monad T that accounts for the presence of branching in the system, while the remaining
endofunctors, assumed here to be polynomial, jointly determine the notion of linear-time behaviour. This
strictly subsumes the types of systems considered in earlier work on maximal traces [14, 1, 18], while
also providing compositionality in the system type.

Our main contribution, presented in Section 5, is a uniform and compositional account of linear-time
behaviour in state-based systems with branching. A by-product of our work is an extension of the study
of additive monads carried out by Coumans and Jacobs [6], which itself follows earlier work by Kock
[19], to what we call partially additive monads (Section 3). This generalisation of the notion of additive
monad is key to our approach, as it allows systems with probabilistic branching to also be accounted for.

Our approach can be summarised as follows:

• We move from two-valued to multi-valued relations, with the universe of truth values being in-
duced by the choice of monad for modelling branching. This instantiates to relations valued in
the interval [0, 1] in the case of probabilistic branching, the set N∞ = N ∪ {∞} in the case of
weighted branching, and simply {⊥,>} in the case of non-deterministic branching. This reflects
our view that the notion of truth used to reason about the observable behaviour of a system should
be dependent on the branching behaviour present in that system. Such a dependency also yields
more natural temporal logics that have a conceptually simpler semantics [4]. In deriving a suit-
able structure on the universe of truth values, we generalise results on additive monads [19, 6] to
partially additive monads. Specifically, we show that for a commutative, partially additive monad
T on Set, the set T1 carries a partial semiring structure with an induced preorder, which in turn
makes T1 an appropriate choice of universe of truth values.

• We generalise and adapt the notion of relation lifting used in the definition of coalgebraic bisimu-
lation, in order to (i) support multi-valued relations, and (ii) abstract away branching. Specifically,
we make use of the partial semiring structure carried by the universe of truth values to generalise
relation lifting of polynomial endofunctors to multi-valued relations, and employ a canonical ex-
tension lifting induced by the monad T to capture a move from branching to linear time. The use of
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this extension lifting allows us to make formal the idea of measuring to what extent a state in a coal-
gebra with branching can exhibit a particular linear-time behaviour. Our approach resembles the
idea employed by partition refinement algorithms for computing bisimulation on labelled transi-
tion systems [17]. There, one starts from a single partition of the state space, with all states related
to each other, and repeatedly refines it through step-wise unfolding of the transition structure, until
a fixpoint is reached. Similarly, we start by assuming that a state in a system with branching can
exhibit any linear-time behaviour, and moreover, assign the maximum possible value to each pair
consisting of a state and a linear-time behaviour. We then repeatedly refine the values associated
to such pairs, through step-wise unfolding of the coalgebraic structure.

While our interest in this paper is in linear-time behaviour, and therefore in maximal traces, the same
ideas can equally be applied to define finite trace behaviour (see Remark 5.9), thereby providing an
alternative treatment of finite traces. The usefulness of such a definition and its relationship to existing
accounts of finite traces [12, 16] is left as future work. At the same time, replacing the coalgebra of all
maximal traces with a suitably-crafted coalgebra aimed at capturing error behaviour, our approach also
has potential applications in verification (see Remark 5.9 for an example).

The present paper is an extended version of the conference paper [3]. It is also closely related to our
previous work on maximal traces and path-based logics [2], where a game-theoretic approach to testing
if a system with non-deterministic branching is able to exhibit a particular trace was described. Here
we consider arbitrary branching types, and our use of fixpoints has a similar flavour to that of the graph
games used in [2]. At the same time, the present work constitutes the starting point for a systematic study
of coalgebraic linear-time logics, with initial results appearing in [4].

Acknowledgements Several fruitful discussions with participants at the 2012 Dagstuhl Seminar on
Coalgebraic Logics helped refine the ideas presented here. Our use of relation lifting was inspired by
the recent work of Hasuo on coinductive predicates [11], itself based on the seminal work of Hermida
and Jacobs on the use of predicate and relation lifting in the formalisation of induction and coinduction
principles [13]. Finally, the comments received from the anonymous reviewers considerably improved
the presentation of the paper.

2. Preliminaries

2.1. Relation Lifting

The concepts of predicate lifting and relation lifting, to our knowledge first introduced by Hermida
and Jacobs [13], are by now standard tools in the study of coalgebraic models, used e.g. to provide an
alternative definition of the notion of bisimulation [15], or to describe the semantics of coalgebraic modal
logics [23, 22]. While these concepts are very general, their use so far usually restricts this generality
by viewing both predicates and relations as sub-objects in some category (possibly carrying additional
structure). In this paper, we make use of their full generality and move from the standard view of relations
as subsets to a setting where relations are valuations into a universe of truth values. This section recalls
the definition of relation lifting in the standard setting where relations are given by monomorphic spans.

Throughout this section (only), Rel denotes the category whose objects are binary relations (R, 〈r1, r2〉)
with 〈r1, r2〉 : R → X × Y a monomorphic span, and whose arrows from (R, 〈r1, r2〉) to (R′, 〈r′1, r′2〉)
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are given by pairs of functions (f : X → X ′ , g : Y → Y ′) s.t. (f × g) ◦ 〈r1, r2〉 factors through
〈r′1, r′2〉:

R

��

//
〈r1,r2〉

// X × Y
f×g
��

R′ //
〈r′1,r′2〉// X ′ × Y ′

.

In this setting, the relation lifting of a functor F : Set→ Set is defined as a functor Rel(F ) : Rel→ Rel
taking a relation 〈r1, r2〉 : R→ X×Y to the relation defined by the span 〈Fr1, F r2〉 : FR→ FX×FY ,
obtained via the unique epi-mono factorisation of 〈Fr1, F r2〉:

R��

〈r1,r2〉
��

FR

〈Fr1,F r2〉
��

// // Rel(F )(R)
ww

ww

X × Y FX × FY

.

For example, if F = P , Rel(F ) takes a relation R ⊆ X × Y to the relation R′ ⊆ PX × PY given by

(U, V ) ∈ R′ if and only if for all x ∈ U, there exists y ∈ V such that (x, y) ∈ R, and conversely.

It follows easily that this construction is functorial, and in particular preserves the order ≤ between
relations on the same objects given by (R, 〈r1, r2〉) ≤ (S, 〈s1, s2〉) if and only if 〈r1, r2〉 factors through
〈s1, s2〉:

R // //
//

〈r1,r2〉
//

S //
〈s1,s2〉

// X × Y .

An alternative definition of Rel(F ) for F a polynomial functor (i.e. constructed from the identity and
constant functors using finite products and set-indexed coproducts) can be given by induction on the
structure of F . We refer the reader to [15, Section 3.1] for details of this definition. An extension of this
definition to a more general notion of relation will be given in Section 4.

2.2. Coalgebras

We model state-based, dynamical systems as coalgebras over the category of sets. Given a functor
F : C → C on an arbitrary category, an F -coalgebra is given by a pair (C, γ) with C an object of C,
used to model the state space, and γ : C → FC a morphism in C, describing the one-step evolution
of the system states. Then, a canonical notion of observational equivalence between the states of two
F -coalgebras is provided by the notion of bisimulation. Of the many, and under the assumption that
F preserves weak pullbacks, equivalent definitions of bisimulation (see [15] for a detailed account), we
recall the one based on relation lifting. This applies to coalgebras over the category of sets (as described
below), but also more generally to categories with so-called logical factorisation systems1 (as described

1These are factorisation systems (M, E) with the additional assumptions that (i) the maps inM are monos, (ii)M is closed
under pullback, and (iii) pullbacks of maps in E along maps inM are themselves in E .
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in [15]). According to this definition, an F -bisimulation between coalgebras (C, γ) and (D, δ) over Set
is a Rel(F )-coalgebra (R, ρ):

R
ρ
//

��

��

Rel(F )(R)
��

��

C ×D
γ×δ
// FC × FD

.

In the remainder of this section we outline a coalgebraic generalisation of a well-known partition refine-
ment algorithm for computing bisimilarity (i.e. the largest bisimulation) on finite-state labelled transition
systems [17] (see also [25]). For an arbitrary endofunctor F : Set → Set and two finite-state F -
coalgebras (C, γ) and (D, δ), the generalised algorithm iteratively computes increasingly finer relations
'i ⊆ C ×D with i = 0, 1, . . . as follows:

• '0 = C ×D

• 'i+1 = (γ × δ)∗(Rel(F )('i)) for i = 0, 1, . . .

where (γ×δ)∗ takes a relationR ⊆ FC×FD to the relationR′ = {(c, d) ∈ C×D | (γ(c), δ(d)) ∈ R};

that is, R′ is obtained by taking the pullback of R // // FC × FD along C ×D γ×δ
// FC × FD :

R′ //
��

��

R��

��

C ×D
γ×δ
// FC × FD

.

Thus, in the initial approximation'0 of the bisimilarity relation, all states are related, whereas at step i+1
two states are related if and only if their one-step observations are related using the relation Rel(F )('i).
Given the finite state space assumption, the chain of relations '0⊇'1⊇ . . . stabilises after a finite
number of steps. Bisimilarity between the coalgebras (C, γ) and (D, δ) thus arises as the greatest fixpoint
of a monotone operator on the complete lattice of relations between C and D, which takes a relation
R ⊆ C × D to the relation (γ × δ)∗(Rel(F )(R)). This characterisation extends to coalgebras with
infinite state spaces, however, in this case the fixpoint can not, in general, be reached in a finite number
of steps (see [25, Section 2] for the case of labelled transition systems with infinite state spaces).

The above greatest fixpoint characterisation of bisimilarity will be adapted in Section 5, in order to
characterise the extent to which a state in a coalgebra with branching can exhibit a given linear-time
behaviour. Therein, the two coalgebras in question will have different types: one of the coalgebras will
incorporate branching behaviour and will be used to model the system of interest, whereas the other will
have linear behaviour only and will be used to describe the domain of possible traces.
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2.3. Monads

In what follows, we use monads (T, η, µ) on Set to capture branching in coalgebraic types. Here, η :
Id⇒ T and µ : T ◦ T⇒ T are the unit and multiplication of T, subject to the following laws:

T3 Tµ +3

µT
��

T2

µ

��
T2

µ
+3 T

T
ηT +3

Tη
��

T2

µ

��
T2

µ
+3 T

.

Moreover, we assume that these monads are strong and commutative. A strong monad comes
equipped with a strength map stX,Y : X × TY → T(X × Y ), natural in X and Y and subject to
coherence conditions w.r.t. η and µ (see e.g. [15, Section 5.2]). For such a monad, one can also define a
swapped strength map st′X,Y : TX × Y → T(X × Y ) by:

TX × Y
twTX,Y

// Y × TX
stY,X

// T(Y ×X)
TtwY,X

// T(X × Y )

where twX,Y : X × Y → Y × X is the twist map taking (x, y) ∈ X × Y to (y, x). Commutative
monads are strong monads where the maps µX×Y ◦ Tst′X,Y ◦ stTX,Y : TX × TY → T(X × Y )
and µX×Y ◦ TstX,Y ◦ st′X,TY : TX × TY → T(X × Y ) coincide, yielding a double strength map
dstX,Y : TX × TY → T(X × Y ) for each choice of sets X,Y .

Example 2.1. As examples of (commutative) monads, we consider:

1. the powerset monad P : Set→ Set, modelling non-deterministic computations and given by

PX = {U | U ⊆ X} (Pf)(U) = {f(x) | x ∈ U}

for f : X → Y and U ∈ PX . Its unit is given by singletons whereas its multiplication is given by
unions. Its strength and double strength are given by

stX,Y (x, V ) = {x} × V dstX,Y (U, V ) = U × V

for x ∈ X , U ∈ PX and V ∈ PY .

2. the semiring monad TS : Set→ Set, with (S,+, 0, •, 1) a commutative semiring, given by

TSX = {ϕ : X → S | sup(ϕ) is finite} (TSf)(ϕ)(y) =
∑

x∈sup(ϕ),f(x)=y

ϕ(x)

for f : X → Y , ϕ ∈ TSX and y ∈ Y , where sup(ϕ) = {x ∈ X | ϕ(x) 6= 0} is the support of ϕ.
Its unit and multiplication are given by

ηX(x)(y) =

{
1 if y = x

0 otherwise
µX(Φ) =

∑
ϕ∈sup(Φ)

∑
x∈sup(ϕ)

Φ(ϕ) • ϕ(x)
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for x, y ∈ X and Φ ∈ S(SX), while its strength and double strength are given by

stX,Y (x, ψ)(z, y) =

{
ψ(y) if z = x

0 otherwise
dstX,Y (ϕ,ψ)(z, y) = ϕ(z) • ψ(y)

for x, z ∈ X , ϕ ∈ TSX , ψ ∈ TSY and y ∈ Y . As a concrete example, we will consider
the semiring W = (N∞,min,∞,+, 0) (sometimes referred to as the tropical semiring), and use
TW to model weighted computations. We also note that, while the finite powerset monad on
Set can be recovered as a particular case of the semiring monad TS (namely by taking S =
({⊥,>},∨,⊥,∧,>)), the full powerset monad can not (because of the finite support restriction in
the definition of TS).

3. the sub-probability distribution monad S : Set → Set, modelling probabilistic computations and
given by

SX = {ϕ : X → [0, 1] |
∑

x∈sup(ϕ)

ϕ(x) ≤ 1} (Sf)(ϕ)(y) =
∑

x∈sup(ϕ),f(x)=y

ϕ(x)

for f : X → Y , ϕ ∈ SX and y ∈ Y . Its unit, multiplication, strength and double strength
are defined similarly to those of the semiring monad, only with the semiring operations replaced
by + and ∗ respectively. We note that the above definition of S also allows for sub-probability
distributions with countable support.

4. the lift monad L : Set→ Set, modelling exceptions, and given by

LX = {⊥}+X Lf = id{⊥} + f

for f : X → Y . Its unit is given by the coproduct injections ι2 : X → LX , whereas its
multiplication takes both ι1(⊥) and ι2(ι1(⊥)) to⊥, and ι2(ι2(x)) to ι2(x), for x ∈ X . Its strength
and double strength are given by

stX,Y (x, ι1(⊥)) = ι1(⊥) stX,Y (x, ι2(y)) = ι2(x, y)

dstX,Y (ι1(⊥), ι1(⊥)) = dstX,Y (ι1(⊥), ι2(y)) = dstX,Y (ι1(x), ι2(⊥)) = ι1(⊥)

dstX,Y (ι2(x), ι2(y)) = ι2(x, y)

for x ∈ X and y ∈ Y .

3. From Partially Additive, Commutative Monads to Partial Commuta-
tive Semirings with Order

Later in this paper we will consider coalgebras whose type is given by the composition of several end-
ofunctors on Set, one of which is a commutative monad T : Set → Set accounting for the presence
of branching in the systems of interest. This section builds on results by Kock [19], and by Coumans
and Jacobs [6], in order to derive a suitably-structured universe of truth values from such a monad. The
assumption of loc. cit. concerning the additivity of the monad under consideration is here weakened to
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partial additivity (see Definition 3.2); this allows us to incorporate the sub-probability distribution monad
and the lift monad (neither of which is additive) into our framework. Specifically, we show that any com-
mutative, partially additive monad T : Set → Set induces a partial commutative semiring structure on
the set T1, with 1 = {∗} a final object in Set. We recall that a commutative semiring consists of a set
S carrying two commutative monoid structures (+, 0) and (•, 1), with the latter distributing over the
former: s • 0 = 0 and s • (t + u) = s • t + s • u for all s, t, u ∈ S. A partial commutative semiring is
defined similarly, except that + is now a partial operation subject to the condition that whenever t + u
is defined, then so is s • t + s • u, and moreover s • (t + u) = s • t + s • u. The relevance of a partial
commutative semiring structure on the set of truth values will become clear in Sections 4 and 5.

It follows from results in [6] that any commutative monad (T, η, µ) on Set induces a commutative
monoid (T1, •, η1(∗)), with multiplication • : T1× T1→ T1 given by the composition

T1× T1
dst1,1

// T(1× 1)
Tπ2 // T1 .

Alternatively, this multiplication can be defined as the composition

T1× T1
st′1,T1

// T(1× T1)
Tπ2 // T21

µ1
// T1

or as

T1× T1
stT1,1

// T(T1× 1)
Tπ1 // T21

µ1
// T1 .

(While the previous two definitions coincide for commutative monads, this is not the case in general.)

Remark 3.1. The following maps define left and right actions of (T1, •) on TX:

T1× TX
dst1,X

// T(1×X)
Tπ2 // TX TX × T1

dstX,1
// T(X × 1)

Tπ1 // TX .

On the other hand, any monad T : Set → Set with T∅ = 1 is such that, for any X , TX has a zero
element 0 ∈ TX , obtained as (T?X)(∗), with the map ?X : ∅ → X arising by initiality. This yields a
zero map 0 : Y → TX for any X,Y , obtained as the composition

Y
!Y // T∅ T?X // TX

with the map !Y : Y → T∅ arising by finality. Now consider the unique map δX,Y = 〈µX ◦ Tp1, µY ◦
Tp2〉 : T(X + Y )→ TX × TY making the following diagram commute:

TX T2X
µXoo T(X + Y )

δX,Y

��

Tp1
oo

Tp2
// T2Y

µY // TY

TX × TY

π1

ii

π2

55 (1)

where p1 = [ηX , 0] : X + Y → TX and p2 = [0, ηY ] : X + Y → TY . [6, Lemma 15, (i)] shows that
the maps δX,Y define a natural transformation.
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Definition 3.2. (Partially additive monad)
A monad T : Set→ Set is called partially additive if T∅ = 1 and moreover, the natural transformation
δ arising from (1) is a natural monomorphism.

Remark 3.3. If δ is a natural isomorphism, then T is called additive. Additive monads were studied in
[19, 6]. Additivity can be regarded as a generalisation of the isomorphism P(X + Y ) ' PX × PY
(natural in X and Y ) to an arbitrary monad on Set, whereas partial additivity captures a similar property
of the sub-probability monad. The latter is clearly not additive, since two sub-probability distributions,
over X and respectively Y , can not always be amalgamated into a sub-probability distribution over
X+Y . However, any sub-probability distribution overX+Y naturally induces a pair of sub-probability
distributions, over X and respectively Y , and moreover, this map is mono. A similar observation holds
for the lift monad, which, like the sub-probability distribution monad, is not additive.

Example 3.4. All the monads in Example 2.1 are partially additive.

1. For T = P , the zero map 0 : Y → PX takes y ∈ Y to ∅ ∈ PX , and δX,Y : P(X + Y ) →
PX × PY takes Z ⊆ X + Y to ((ι1)−1(Z), (ι2)−1(Z)) ∈ PX × PY .

2. For T = TS with (S,+, 0, •, 1) a commutative semiring, the zero map 0 : Y → TSX takes
y ∈ Y to the map x 7→ 0 for x ∈ X , whereas δX,Y : SX+Y → SX × SY takes ϕ ∈ SX+Y to
(ϕ ◦ ι1, ϕ ◦ ι2) ∈ SX × SY .

3. For T = S , the zero map 0 : Y → SX takes y ∈ Y to the sub-probability distribution x 7→ 0 for
x ∈ X , whereas δX,Y : S(X+Y )→ SX×SY takes ϕ ∈ S(X+Y ) to (ϕ◦ι1, ϕ◦ι2) ∈ SX×SY .
(Since ϕ is a sub-probability distribution, so are ϕ ◦ ι1 and ϕ ◦ ι2.)

4. For T = L, the zero map 0 : Y → LX takes y ∈ Y to ι1(⊥), whereas δX,Y : {⊥}+ (X + Y )→
({⊥}+X)× ({⊥}+Y ) takes ι1(⊥) to (ι1(⊥), ι1(⊥)), ι2(ι1(x)) to (ι2(x), ι1(⊥)), and ι2(ι2(y))
to (ι1(⊥), ι2(y)).

In the first two cases, δX,Y is an isomorphism, whereas in the last two cases, for X 6= ∅ and Y 6= ∅, δX,Y
is only a monomorphism.

For a (partially) additive monad T, the (partial) inverse qX,X : TX × TX → T(X +X) of the map
δX,X : T(X + X) → TX × TX can be used to define a (partial) addition on the set TX , given by
T[1X , 1X ] ◦ qX,X :

TX T(X +X)
δX,X

//T[1X ,1X ]
oo TX × TX

qX,X

oo

+

jj
.

That is, a + b is defined if and only if (a, b) ∈ Im(δX,X). A similar, but total, addition operation is
defined in [19, 6] for additive monads.

Coumans and Jacobs [6, Section 5.2] explore the connection between additive, commutative monads
and commutative semirings. The next result provides a generalisation to partially additive, commutative
monads and partial commutative semirings. Its proof is an adaptation of the corresponding proofs in [6].

Proposition 3.5. Let T be a commutative, (partially) additive monad. Then:
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1. (T1, •, η1(∗)) is a commutative monoid.

2. (TX, 0,+) is a (partial) commutative monoid, for each set X .

3. (T1, 0,+, •, η1(∗)) is a (partial) commutative semiring.

Proof:
Statement 1 follows directly from [6, Lemma 10], using the commutativity of T.

The proof of 2 is similar to that of [6, Lemma 17, (i) and (ii)]. To show that 0 is a right unit for +,
consider the following diagram:

TX

Tι1

##

〈1TX ,!TX〉
// TX × T∅ T1X×T?X //

qX,∅

��

TX × TX

qX,X

��

T(X + ∅)

δX,∅

OO

T[1X ,?X ]

%%

T(1X+?X)
// T(X +X)

δX,X

OO

T[1X ,1X ]

��

TX

.

The top-right rectangle of this diagram (solid lines) commutes as a result of the (bi)naturality of δ, proved
in [6, Lemma 15, (i)] for any monad T such that T∅ = 1; concretely, (Tf×Tg)◦δX,Y = δU,V ◦T(f+g)
for any f : U → X and g : V → Y . Commutativity of the rest of the diagram (solid lines) follows
directly from the definition of δX,∅ (top-left triangle) and from standard properties of coproducts. Finally,
since δX,∅ is an isomorphism (as T∅ = 1), so is qX,∅, and therefore x+0 = (T[1X , 1X ]◦ qX,X ◦ (T1X ×
T?X) ◦ 〈1TX , !TX〉)(x) is always defined, and equal to x ∈ TX .

The commutativity of + (whenever one of the sides of the commutativity law is defined) follows
from the commutativity of the following diagram (solid lines):

TX × TX

〈π2,π1〉

��

qX,X
//
T(X +X)

δX ,X
oo

T[ι2,ι1]

��

T[1X ,1X ]
// TX

TX × TX
qX,X

// T(X +X)
δX,X
oo T[1X ,1X ]

// TX

where the commutativity of the left rectangle (solid lines) follows from [6, Lemma 15, (ii)] (which only
requires T∅ = 1). This, in turn, results in b + a (given by (T[1X , 1X ] ◦ qX,X ◦ 〈π2, π1〉)(a, b)) being
defined whenever a+ b (given by (T[1X , 1X ] ◦ qX,X)(a, b)) is defined, which then yields commutativity
of the left rectangle (dashed lines) and therefore commutativity of the outer rectangle. The latter finally
gives a+ b = b+ a whenever a+ b is defined.

The associativity of + (whenever one of the sides of the associativity law is defined) follows similarly,
although the proof is somewhat more involved.
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Finally, the proof of 3 relies on the commutativity of the following diagram (solid lines):

T1× T1

•

��

T(1 + 1)× T1
T[1X ,1X ]×1T1
oo

aT(1+1)

��

δ1,1×1T1
//
(T1× T1)× T1

q1,1×1T1
oo

〈π1×id,π2×id〉
��

(T1× T1)× (T1× T1)

•×•
��

T1 T(1 + 1)
δ1,1

//

T[1X ,1X ]
oo T1× T1

q1,1
oo

where aTX : TX × T1→ TX is the right action from Remark 3.1. The composition • ◦ (T[1X , 1X ]×
1T1)◦(q1,1×1T1) captures the computation of (a+b)•c, whereas the composition T[1X , 1X ]◦q1,1◦(•×
•) ◦ 〈π1× id, π2× id〉 captures the computation a • c+ b • c, with a, b, c ∈ T1. The fact that δ commutes
with the strength map (by [6, Lemma 15, (iv)]), together with aT(1+1) and • being essentially given by
the double strength maps dst1+1,1 and dst1,1, yields (•×•)◦〈π1× id, π2× id〉◦ (δ×1T1) = δ ◦aT(1+1),
that is, commutativity (via the solid lines) of the right side of the above diagram. This immediately
results in a • c + b • c being defined whenever a + b is defined, and hence in the commutativity of the
right side of the diagram also via the dashed lines. This, combined with the commutativity of the left
side of the diagram (which is simply the naturality of the right action a), gives (a+ b) • c = a • c+ b • c
whenever a+ b is defined. ut

Example 3.6. For the monads in Example 2.1, one obtains the commutative semirings ({⊥,>},∨,⊥,∧,>)
when T = P and W = (N∞,min,∞,+, 0) when T = TW , and the partial commutative semirings
([0, 1],+, 0, ∗, 1) when T = S (with a+ b defined if and only if a+ b ≤ 1) and ({0, 1},+, 0, ∗, 1) when
T = L (where for convenience we now write 0 for ι1(⊥), and where again, a + b is defined if and only
if a + b ≤ 1). Moreover, it is a straightforward calculation to show that, for any commutative semiring
(S,+, 0, •, 1), the semiring induced by the monad TS coincides with (S,+, 0, •, 1).

4. Generalised Relations and Relation Lifting

This section introduces generalised relations valued in a partial commutative semiring, and shows how to
lift polynomial endofunctors on Set to the category of generalised relations. We begin by fixing a partial
commutative semiring (S,+, 0, •, 1), and noting that the partial monoid (S,+, 0) can be used to define
a preorder relation on S as follows:

x v y if and only if there exists z ∈ S such that x+ z = y

for x, y ∈ S. It is then straightforward to show (using the definition of a partial commutative semiring)
that the preorderv has 0 ∈ S as bottom element, and is preserved by • in each argument. Proper (i.e. not
partial) semirings where the preorder v is a partial order are called naturally ordered [8].

Example 4.1. For the monads in Example 2.1, the preorders associated to the induced (partial) semirings
(see Example 3.6) are all partial orders: ≤ on {⊥,>} for T = P , ≥ on N∞ for T = TW , ≤ on [0, 1]
for T = S, and ≤ on {0, 1} for T = L.
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We now let Rel denote the category2 with objects given by triples (X,Y,R), where R : X × Y → S
is a function defining a multi-valued relation (or S-valued relation), and with arrows from (X,Y,R) to
(X ′, Y ′, R′) given by pairs of functions (f, g) as below, such that R v R′ ◦ (f × g):

X × Y

v

f×g
//

R
��

X ′ × Y ′

R′

��

S S

.

Here, the order v on S has been extended pointwise to S-valued relations with the same carrier.
We write RelX,Y for the fibre over (X,Y ), i.e. the subcategory of Rel with objects given by S-

valued relations over X × Y and arrows given by (1X , 1Y ). It is straightforward to check that the
functor q : Rel → Set × Set taking (X,Y,R) to (X,Y ) defines a fibration [15]: the reindexing functor
(f, g)∗ : RelX′,Y ′ → RelX,Y takes R′ : X ′ × Y ′ → S to R′ ◦ (f × g) : X × Y → S.

We now proceed to generalising relation lifting to S-valued relations.

Definition 4.2. (Generalised relation lifting)
Let F : Set→ Set. A relation lifting of F is a functor3 Γ : Rel→ Rel such that q ◦ Γ = (F × F ) ◦ q:

Rel

q

��

Γ // Rel

q

��

Set× Set
F×F

// Set× Set

.

We immediately note a fundamental difference compared to standard relation lifting as defined in Sec-
tion 2.1. While in the case of standard relations each functor admits exactly one lifting, Definition 4.2
implies neither the existence nor the uniqueness of a lifting. We defer the study of a canonical lifting
(similar to Rel(F ) in the case of standard relations) to future work, and show how to define a relation
lifting of F in the case when F is a polynomial functor. To this end, we make the additional assumption
that the unit 1 of the semiring multiplication is a top element (which we also write as >) for the preorder
v. Recall that v also has a bottom element (which we will sometimes denote by ⊥), given by the unit
0 of the (partial) semiring addition. The definition of the relation lifting of a polynomial functor F is by
structural induction on F and makes use of the partial semiring structure on S:

• If F = Id, Rel(F ) takes an S-valued relation to itself.

• If F = C, Rel(F ) takes an S-valued relation to the equality relation Eq(C) : C × C → S given
by

EqC(c, c′) =

{
> if c = c′

⊥ otherwise
.

2To keep notation simple, the dependency on S is left implicit.
3Given the definition of the fibration q, such a functor is automatically a morphism of fibrations.
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• If F = F1 × F2, Rel(F ) takes an S-valued relation R : X × Y → S to:

(F1X × F2X)× (F1Y × F2Y )
〈π1×π1,π2×π2〉

// (F1X × F1Y )× (F2X × F2Y )
Rel(F1)(R)×Rel(F2)(R)

// S × S • // S .

The functoriality of this definition follows from the preservation of v by • (see Section 3).

• if F =
∐
i∈I Fi, Rel(F )(R) : (

∐
i∈I FiX)× (

∐
i∈I FiY )→ S is defined by case analysis:

Rel(F )(R)(ιi(u), ιj(v)) =

{
Rel(Fi)(R)(u, v) if i = j

⊥ otherwise

for i, j ∈ I , u ∈ FiX and v ∈ FjY .

It follows immediately from the above definition that q ◦ Rel(F ) = (F × F ) ◦ q.

Remark 4.3. A general definition of relation lifting, which applies to arbitrary functors on Set, is outside
the scope of this paper. Future work will investigate the relevance of the results in [9, 10] to this question.
The work in loc. cit. shows how to construct truth-preserving predicate liftings and equality-preserving
relation liftings for arbitrary functors on the base category of a Lawvere fibration, to the total category of
that fibration.

For the remainder of this paper, we take (S,+, 0, •, 1) to be the partial semiring derived in Section 3
from a commutative, partially additive monad T, and we refer to the elements of S as truth values. In
the case of the powerset monad, this corresponds to the standard view of relations as subsets, whereas in
the case of the sub-probability distribution monad, this results in relations given by valuations in the unit
interval.

Example 4.4. Let F : Set→ Set be given by FX = 1 +A×X , with A a set (of labels).

• For T = P , Rel(F ) takes a (standard) relation R ⊆ X × Y to the relation

{(ι1(∗), ι1(∗)} ∪ {((a, x), (a, y)) | a ∈ A, (x, y) ∈ R} .

• For T = TW , Rel(F ) takes R : X × Y → N∞ to the relation R′ : FX × FY → N∞ given by

R′(ι1(∗), ι1(∗)) = 0 R′((a, x), (a, y)) = R(x, y) R′(u, v) =∞ in all other cases .

• For T = S, Rel(F ) takes R : X × Y → [0, 1] to the relation R′ : FX × FY → [0, 1] given by

R′(ι1(∗), ι1(∗)) = 1 R′((a, x), (a, y)) = R(x, y) R′(u, v) = 0 in all other cases .

• For T = L, the definition is similar to the case T = S .
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5. From Bisimulation to Traces

Throughout this section we fix a commutative, partially additive monad T : Set → Set and assume,
as in the previous section, that the natural preorder v induced by the partial commutative semiring
obtained in Section 3 has the multiplication unit η1(∗) ∈ T1 as top element. Furthermore, we assume
that this preorder is an ωop-chain complete partial order, where ωop-chain completeness amounts to any
decreasing chain x1 w x2 w . . . having a greatest lower bound ui∈ωxi. These assumptions are clearly
satisfied by the preorders in Example 4.1.

We now show how combining the liftings of polynomial functors to the category of generalised
relations valued in the partial semiring T1 (as defined in Section 4) with so-called extension liftings
arising canonically from the monad T (see Definition 5.2), can be used to give an account of the linear-
time behaviour of a state in a coalgebra with branching. The type of such a coalgebra can be any
composition involving polynomial endofunctors and the branching monad T, although compositions of
type T ◦ F , G ◦ T and G ◦ T ◦ F with F and G polynomial endofunctors are particularly emphasised in
what follows.

We begin with some informal motivation. When Rel is the standard category of binary relations,
recall from Section 2.2 that an F -bisimulation is simply a Rel(F )-coalgebra, and that the largest F -
bisimulation between two F -coalgebras (C, γ) and (D, δ) can be obtained as the greatest fixpoint of the
monotone operator on RelC×D which takes a relationR to the relation (γ×δ)∗(Rel(F )(R)). Generalising
the notion of F -bisimulation from standard relations to T1-valued relations makes little sense when the
systems of interest are F -coalgebras. However, when considering say, coalgebras of type T ◦ F , it
turns out that liftings of F to the category of T1-valued relations (as defined in Section 4) can be used
to describe the linear-time behaviour of states in such a coalgebra, when combined with the previously-
mentioned extension liftings. To see why, let us consider labelled transition systems viewed as coalgebras
of type P ◦ (1 +A× Id). In such a coalgebra γ : C → P(1 +A× C), explicit termination is modelled
via transitions c → ι1(∗), whereas deadlock (absence of a transition) is modelled as γ(c) = ∅. In this
case, Rel(P) ◦ Rel(1 + A× Id) is naturally isomorphic to Rel(P ◦ (1 + A× Id)) 4, and takes a relation
R ⊆ X × Y to the relation R′ ⊆ P(1 +A×X)× P(1 +A× Y ) given by

(U, V ) ∈ R′ if and only if

{
if ι1(∗) ∈ U then ι1(∗) ∈ V, and conversely,
if (a, x) ∈ U then there exists (a, y) ∈ V with (x, y) ∈ R, and conversely.

Thus, the largestP◦(1+A×Id)-bisimulation between two coalgebras (C, γ) and (D, δ) can be computed
as the greatest fixpoint of the operator on RelC,D obtained as the composition

R ⊆ C ×D � Rel(F )
// R1 ⊆ FC × FD � Rel(P)

// R2 ⊆ PFC × PFD � (γ×δ)∗ // R′ ⊆ C ×D (2)

where F = 1 +A× Id. Recall from Section 2.1 that Rel(P) takes a relation R ⊆ X × Y to the relation
R′ ⊆ PX × PY given by

(U, V ) ∈ R′ if and only if for all x ∈ U, there exists y ∈ V such that (x, y) ∈ R, and conversely.

4A similar observation holds more generally for P ◦ F with F a polynomial endofunctor. In general, only a natural transfor-
mation Rel(F ◦G)⇒ Rel(F ) ◦ Rel(G) exists, see [15, Exercise 4.4.6].
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Now consider the effect of replacing Rel(P) in (2) with the lifting L : Rel → Rel that takes a relation
R ⊆ X × Y to the relation R′ ⊆ PX × Y given by

(U, y) ∈ R′ if and only if there exists x ∈ U with (x, y) ∈ R .

To do so, we must change the type of the coalgebra (D, δ) from P ◦ F to just F . A closer look at the
resulting operator on RelC,D reveals that it can be used to test for the existence of a matching trace:
each state of the F -coalgebra (D, δ) can be associated a maximal trace, i.e. an element of the final
F -coalgebra, by finality. In particular, when F = 1 + A × Id, maximal traces are either finite or
infinite sequences of elements of A. Thus, the greatest fixpoint of the newly defined operator on RelC×D
corresponds to the relation on C ×D given by

c 3tr d if and only if there exists a sequence of choices of transitions starting from c ∈ C that leads to

exactly the same maximal trace (element of A∗ ∪Aω) as the single trace of d ∈ D .

This relation models the ability of the state c to exhibit the same trace as that associated to d.
The remainder of this section formalises the above intuitions, and generalises them to arbitrary mon-

ads T and polynomial endofunctors F , as well as to arbitrary compositions involving the monad T and
several polynomial endofunctors. We begin by restricting attention to coalgebras of type T ◦ F , with the
monad T capturing branching and the endofunctor F describing the structure of individual transitions. In
this case it is natural to take the final F -coalgebra as the domain of all observable linear-time behaviours
of states in T ◦ F -coalgebras. Similarly to the above, we let (C, γ) and (D, δ) denote a T ◦ F -coalgebra
and respectively an F -coalgebra. The lifting of F to T1-valued relations will be used as part of a mono-
tone operator on RelC,D. In order to generalise the lifting L above to arbitrary monads T, we recall the
following result from [20], which assumes a strong monad T on a cartesian closed category.

Proposition 5.1. ([20, Proposition 4.1])
Let (B, β) be a T-algebra. For any f : X × Y → B, there exists a unique 1-linear f : TX × Y → B
making the following triangle commute:

TX × Y f
// B

X × Y

ηX×1Y

OO

f

:: .

In the above, 1-linearity is linearity in the first variable, assuming the free T-algebra structure on TX
given by µX . More generally, for T-algebras (A,α) and (B, β), a map f : A×Y → B is called 1-linear
if the following diagram commutes:

TA× Y
st′A,Y

//

α×1Y
��

T(A× Y )
Tf
// TB

β

��

A× Y
f

// B

.

Clearly 1-linearity should be expected of the lifting LR : TX×Y → T1 of a relation R : X×Y → T1,
as this amounts to LR commuting with the T-algebra structures (TX,µX) and (T1, µ1). Given this, the
diagram of Proposition 5.1 forces the definition of the generalised lifting.
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Definition 5.2. (Extension lifting)
The extension lifting LT : Rel → Rel is the functor taking a relation R : X × Y → T1 to its unique
1-linear extension R : TX × Y → T1.

Remark 5.3. It follows from results in [20] that a direct definition of the relation R : TX × Y → T1 is
as the composition

TX × Y
st′X,Y

// T(X × Y )
TR // T21

µ1
// T1 .

This also yields functoriality of LT, which follows from the functoriality of its restriction to each fibre
category RelX,Y , as proved next.

Proposition 5.4. The mapping R ∈ RelX,Y 7→ R ∈ RelTX,Y is functorial.

Proof:
Let R,R′ ∈ RelX,Y be such that R v R′. Hence, there exists S ∈ RelX,Y such that R + S = R′

(pointwise). Using Remark 5.3, to show that R v R′, it suffices to show that µ1 ◦ TR v µ1 ◦ TR′
(pointwise). To this end, we note that commutativity of the map δ1,1 with the monad multiplication,
proved in [6, Lemma 15 (iii)] and captured by the commutativity of the lower diagram below (via the
solid lines)

T21
µ1

// T1

T2(1 + 1)
µ1+1

//

Tδ1,1
��

T2!

OO

T(1 + 1)

δ1,1

��

T!

OO

T(T1× T1)

〈Tπ1,Tπ2〉
��

Tq1,1

OO

T21× T21
µ1×µ1

// T1× T1

q1,1

OO

also yields commutativity of the whole diagram (via the dashed arrows). This formalises the commuta-
tivity of + (defined as T! ◦ q1,1) with the monad multiplication. Now pre-composing this commutative
diagram (dashed arrows) with the map

T(X × Y ) // T(T1× T1)

given by the image under T of the map (x, y) 7→ 〈R(x, y), S(x, y)〉 yields

(µ1 ◦ TR) + (µ1 ◦ TS) = µ1 ◦ T(R+ S) = µ1 ◦ TR′

and therefore, using the definition of v, µ1 ◦ TR v µ1 ◦ TR′. This concludes the proof. ut

Thus, LT is a functor making the following diagram commute:

Rel

q

��

LT // Rel

q

��

Set× Set
T×Id

// Set× Set

.
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The (dual of the) following standard result concerning the existence of least fixpoints of monotone
operators on chain-complete partial orders will now be used to define linear-time behaviour.

Theorem 5.5. ([7, Theorem 8.22])
Let P be a complete partial order and let O : P → P be order-preserving. Then O has a least fixpoint.

We are now ready to give an alternative account of maximal traces of (states in) T ◦ F -coalgebras.

Definition 5.6. (Maximal trace map)
Let (C, γ) denote a T ◦ F -coalgebra, and let (Z, ζ) denote the final F -coalgebra. The maximal trace
map trγ : C → (T1)Z of γ is the exponential transpose of the greatest fixpoint R : C × Z → T1 of the
operator O : RelC,Z → RelC,Z given by the composition

RelC,Z
Rel(F )

// RelFC,FZ
LT // RelTFC,FZ

(γ×ζ)∗
// RelC,Z .

Definition 5.6 makes use of Theorem 5.5 applied to the dual of the order v. Our assumption that v
is ωop-chain complete makes the dual order a chain-complete partial order. Monotonicity of the operator
in Definition 5.6 is an immediate consequence of the functoriality of Rel(F ), LT and (γ × δ)∗.

A construction for the least fixpoint of an order-preserving operator on a complete partial order,
which involves taking a limit over an ordinal-indexed chain, is also described in [7]. Instantiating this
construction to the dual of the order v yields an ordinal-indexed sequence of relations (Rα), where:

• R0 = > (i.e. the relation on C × Z given by (c, z) 7→ 1),

• Rα+1 = O(Rα),

• Rα = uβ<αRβ , if α is a limit ordinal.

The greatest fixpoint of the operator O is the limit of this sequence.

Example 5.7. Let F denote an arbitrary polynomial functor (e.g. 1 +A× Id).

• For T = P , the extension lifting LP : Rel → Rel takes a (standard) relation R ⊆ X × Y to the
relation LPR ⊆ PX × Y given by

(U, y) ∈ LPR if and only if there exists x ∈ U with (x, y) ∈ R

for U ∈ PX and y ∈ Y . As a result, the greatest fixpoint of the operator O from Definition 5.6
relates a state c in a P ◦ F -coalgebra (C, γ) with a state z of the final F -coalgebra if and only
if there exists a sequence of choices in the unfolding of γ starting from c, that results in an F -
behaviour bisimilar to z. This was made more precise in [2], where infinite two-player games
were developed for verifying whether a state of a P ◦ F -coalgebra can exhibit a certain maximal
trace (element of the final F -coalgebra).

• For T = TW , the extension lifting LW : Rel→ Rel takes a weighted relation R : X × Y →W to
the relation LWR : TWX × Y →W given by

(LWR)(ϕ, y) = min
x∈sup(ϕ)

(ϕ(x) +R(x, y))
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for ϕ : X → W and y ∈ Y . Thus, the greatest fixpoint of O maps a pair (c, z), with c a state in a
TW ◦F -coalgebra and z a maximal trace, to the cost (computed via the min function) of exhibiting
that trace. The computation of the fixpoint starts from a relation that maps each pair of states (c, z)
to the value 0 ∈ N∞ (the top element for v), and refines this down (w.r.t. the v order) through
step-wise unfolding of the coalgebra structures γ and ζ.

• For T = TS , the extension lifting LS : Rel → Rel takes a valuation R : X × Y → [0, 1] to the
valuation LSR : SX × Y → [0, 1] given by

(LSR)(ϕ, y) =
∑

x∈sup(ϕ)

ϕ(x) ∗R(x, y)

for ϕ ∈ SX and y ∈ Y . Thus, the greatest fixpoint ofO yields, for each state in a S ◦F -coalgebra
and each potential maximal trace, the probability of this trace being exhibited from that state. As
computing these probabilities amounts to multiplying possibly infinitely-many probability values,
the probability of an infinite trace will often be 0 (unless from some point in the unfolding of a
particular state, probability values of 1 are associated to the individual transitions that match a
particular infinite trace). This may appear as a deficiency of our framework, and one could argue
that a measure-theoretic approach, whereby a probability measure is derived from the probabilities
of finite prefixes of infinite traces, would be more appropriate. However, we remark that an exten-
sion of the present approach to linear-time logics, where individual maximal traces are replaced by
linear-time temporal logic formulas, does not suffer from this deficiency [4]. In particular, linear-
time formulas involving least fixpoints can be used to represent finite maximal traces, or sets of
such traces.

• For T = L, the extension lifting LL : Rel → Rel takes a relation R : X × Y → {0, 1} to the
relation (LLR) : LX × Y → {0, 1} given by

(LLR)(ι1(⊥), y) = 0 (LLR)(ι2(x), y) = R(x, y)

for x ∈ X and y ∈ Y . Thus, the greatest fixpoint of O yields, for each state in a L ◦ F -coalgebra
and each potential maximal trace, a value of 1 precisely when that trace is exhibited from the given
state.

Example 5.8. Consider again the two transition systems from Figure 1, viewed asP◦(1+Id)-coalgebras:

x0

{{ �� ##

. . .

y0

|| �� ""

. . .

// y1
// y2 . . .

x1,1 x1,2

��

x1,3

��

y1,1 y1,2

��

y1,3

��
x2,2 x2,3

��

y2,2 y2,3

��
x3,3 y3,3

.

The final 1 + Id-coalgebra has carrier (isomorphic to) N∞, and its coalgebra map takes 0 to ι1(∗),
n + 1 to ι2(n) for n = 0, 1, . . . and∞ to ι2(∞). In this example, Rα+1(x0,∞) = Rα+1(y0,∞) = 1
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for each α < ω (since, for each such α, we have Rα(x1,α+1,∞) = Rα(y1,α+1,∞) = 1), however,
Rω(x0,∞) = 0 (since for each α < ω, Rα+1(x1,α+1,∞) = 0), whereas Rω(y0,∞) = 1 (since
Rα(yn,∞) = 1 for each α < ω and each n ∈ {0, 1, . . .}). As a result, the maximal trace map of
Definition 5.6 distinguishes the states x0 and y0, as claimed earlier.

The next remark highlights the generality of our approach, by showing that it can also be used to
derive finite traces, and at the same time has a potential application to verification.

Remark 5.9. By replacing the F -coalgebra (Z, ζ) by (I, α−1) with (I, α) an initial F -algebra, one
obtains an alternative account of finite traces of states in T ◦ F -coalgebras, with the finite trace map
ftrγ : C → (T1)I of a T ◦ F -coalgebra (C, γ) being obtained via the greatest fixpoint of essentially the
same operator O, but this time on RelC,I . In fact, one can use any F -coalgebra in place of (Z, ζ). For
verification purposes, where one is typically interested in a specific linear-time behaviour (e.g. capturing
an undesirable property), a coalgebra with a finite state space, encoding that particular behaviour, often
suffices. For example, to verify that a non-deterministic system modelled as a P ◦ (1 + Id)-coalgebra
always terminates, one can use the (single-state) 1 + Id-coalgebra (1, ι2), whose only state encodes
non-termination, to check for the existence of a non-terminating behaviour.

Remark 5.10. It follows from standard fixpoint theory (see e.g. [25, Theorem 2.12]) that for T = P (in
which case RelC,Z is complete lattice), restricting to a finite-state P ◦ F -coalgebra (C, γ) and a finite-
state F -coalgebra (D, δ) results in the greatest fixpoint of O being reached in a finite number of steps.
However, for T = S or T = TW , this is generally not the case. To see this, it suffices to consider the
following two-state S- and respectively TW -coalgebras:

x1

1/2

!!
x2

1/2

dd
y1

1

  
y2

1

dd

and observe that, while in both cases the domain of linear-time behaviours is the singleton set 1 = {∗}
(as F = Id), the fixpoint only stabilises at ω (to (xi, ∗) 7→ 0, respectively (yi, ∗) 7→ ∞, for i = 1, 2).
However, for probabilistic or weighted computations, an approximation of the greatest fixpoint may be
sufficient in practice, as thresholds can be provided as part of specific verification tasks. For example, in a
probabilistic system, a guarantee that an error behaviour occurs with probability below a given threshold
is often sufficient. Similarly, in weighted computations, a proof that the minimal cost of achieving a
certain linear-time behaviour is larger than an acceptable threshold already indicates a problem.

Remark 5.11. The choice of functor F directly impacts on the notion of linear-time behaviour. For
example, by regarding labelled transition systems as coalgebras of type P ◦ (A× Id) instead of P ◦ (1 +
A × Id) (i.e. not modelling successful termination explicitly), finite traces are not anymore accounted
for, as the elements of the final F -coalgebra are now given by infinite sequences of elements of A. This
should not be regarded as a drawback, in fact it further illustrates the flexibility of our approach, as the
functor F can be chosen so as to match an expected notion of linear-time behaviour. We will return to
this observation in Example 5.12.
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The approach presented above also applies to coalgebras of type G ◦ T with G a polynomial end-
ofunctor, and more generally to coalgebras whose type is obtained as the composition of polynomial
endofunctors and the monad T, with possibly several occurrences of T in this composition. In the case
of G ◦ T-coalgebras, instantiating our approach yields different results to the extension semantics pro-
posed in [16]. Specifically, the instantiation involves taking (Z, ζ) to be a final G-coalgebra and (C, γ)
to be an arbitrary G ◦ T-coalgebra, and considering the monotone operator on RelC,Z given by the com-
position

RelC,Z
LT // RelTC,Z

Rel(G)
// RelG(TC),GZ

(γ×ζ)∗
// RelC,Z . (3)

The following example illustrates the difference between our approach and that of [16].

Example 5.12. For G = 2 × IdA with 2 a two-element set, A a finite alphabet and T = P , G ◦ T-
coalgebras are non-deterministic automata, whereas the elements of the final G-coalgebra, given by
functions z : A∗ → 2, correspond to languages over A. In this case, the greatest fixpoint of the operator
in (3) maps a pair (c, z), with c a state of a non-deterministic automaton and z a language over A, to >
if and only if there exists a sequence of choices in the unfolding of the automaton starting from c that
results in precisely the words in z being accepted – but now by a ”machine” that does not anymore have a
finite number of states, given the unfolding of the original automaton. This is different from the approach
of [16], which precisely matches the notion of language acceptance by a non-deterministic automaton.
In our approach, taking the union of all zs (viewed as languages over A) such that (c, z) is mapped to
> recovers the language accepted by the non-deterministic automaton with c as initial state, but only
under the assumption that for each a ∈ A, an a-labelled transition exists from any state of the automaton.
At the root of this difference w.r.t. [16] lies our choice (reflected in the use of the functor G) to take,
as notion of linear-time behaviour, an entire language over A (as opposed to a single word over A). If
non-deterministic automata were instead modelled as P ◦ (1 + A × Id)-coalgebras (where we note the
isomorphism P ◦ (1 +A× Id) ' P1×PA), this would correspond to linear-time behaviours (elements
of the final 1 +A× Id-coalgebra) being given by finite or infinite sequences of elements of A. This time,
by restricting attention to finite linear-time behaviours (elements of the initial 1 + A × Id-coalgebra,
which correspond to words over A), one recovers the familiar automata-theoretic notion of acceptance
of a word: the greatest fixpoint of the operatorO of Definition 5.6 relates a state c of a P ◦ (1 +A× Id)-
coalgebra with a finite behaviour a1 . . . an∗ if and only if the associated automaton (with initial state c)
accepts the word a1 . . . an.

Finally, we consider the general case of coalgebras whose type is obtained as the composition of several
endofunctors on Set, one of which is a monad T that accounts for the presence of branching in the
system, while the remaining endofunctors are polynomial and jointly determine the notion of linear-time
behaviour. For simplicity of presentation, we only consider coalgebras of type G ◦ T ◦ F , with the final
G ◦ F -coalgebra (Z, ζ) providing the domain of possible linear-time behaviours.

Definition 5.13. (Linear-time behaviour)
The linear-time behaviour of a state in a coalgebra (C, γ) of type G ◦T ◦F is the greatest fixpoint of the
operator O on RelC,Z defined by the composition:

RelC,Z
Rel(F )

// RelFC,FZ
LT // RelTFC,FZ

Rel(G)
// RelGTFC,GFZ

(γ×ζ)∗
// RelC,Z . (4)
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The greatest fixpoint of O measures the extent to which a state in a G ◦ T ◦ F -coalgebra can exhibit a
given linear-time behaviour (element of the final G ◦ F -coalgebra).

Example 5.14. Coalgebras of type G ◦ T ◦ F , where G = IdA and F = 1 + B × Id, model systems
with branching, with both inputs (from a finite set A) and outputs (in a set B). In this case, the possible
linear-time behaviours (elements of the final G ◦F -coalgebra) are given by special trees, with both finite
and infinite branches, whose edges are labelled by elements of A (one outgoing edge from each node for
each a ∈ A), and whose nodes (with the exception of the root, which is not labelled) are either labelled
by ∗ ∈ 1 (in the case of leaves) or by an element of B (in the case of non-leaves). The linear-time
behaviour of a state in a G ◦ T ◦ F -coalgebra then gives:

• the set of such trees that can be exhibited from that state, when T = P ,

• the minimum cost of exhibiting each tree (with the costs associated to different branches of the
tree being added when computing this cost), when T = TW ,

• the probability of exhibiting each such tree (with the probabilities corresponding to different tree
branches being multiplied when computing this probability), when T = S, and

• a value of 1 if and only if such a tree can be exhibited, when T = L.

In the case of probabilistic systems, the intuition is that in order to match a particular tree, one needs
to match the expected behaviour for every possible sequence of inputs, and therefore multiplying prob-
abilities associated to different tree branches (different inputs) is the right choice. Similarly, in the case
of weighted systems, the cost of matching a particular tree must take into account the cost of matching
the specified behaviour for each branch of this tree, and thus taking the sum of the costs associated to
different tree branches (different inputs) gives again the expected result.

Remark 5.15. Our approach does not directly apply to the probability distribution monad (defined sim-
ilarly to the sub-probability distribution monad, but with probabilities adding up to exactly 1), as this
monad does not satisfy the condition T∅ = 1 of Definition 3.2. However, systems where branching is
described using probability distributions can still be dealt with, by regarding all probability distributions
as sub-probability distributions.

Definition 5.13 generalises straightforwardly to coalgebraic types given by arbitrary compositions
of polynomial endofunctors and the monad T, with the extension lifting LT being used once for each
occurrence of T in such a composition. However, we currently do not have interesting examples for the
case when the monad T occurs twice in the coalgebraic type. Indeed, in such cases, one may want to treat
the two occurrences of T differently, and view only one of these occurrences as specifying branching –
in the same way in which, when two different monads appear in the coalgebraic type, one typically
chooses one of the monads as the branching type. Our final example illustrates such a situation, by
showing how to extend the definition of linear-time behaviour to coalgebras whose type does not satisfy
the assumptions of Definition 5.13. While not canonical anymore, the resulting notion of linear-time
behaviour can encompass an even wider, and arguably more practically-relevant class of systems with
branching.
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Example 5.16. Coalgebras of type P ◦ S ◦ (A × Id), also known as Segala systems, are models of
systems incorporating both non-deterministic and probabilistic branching. Such models are used e.g. in
the verification of concurrent probabilistic programs, where one needs to consider the interaction between
probabilistic components and non-deterministic schedulers, or in the verification of probabilistic security
protocols, where the unknown environment is modelled non-deterministically. Our approach can be
adapted to accommodate such coalgebras in the following way: the monad S is chosen as the branching
monad (resulting in the unit interval as the universe of truth values), the polynomial endofunctor A× Id
is used to define the notion of trace, and finally a relation lifting L̃P : Rel→ Rel of the functor P × Id is
used to abstract away (to a certain degree) the non-deterministic branching. The corresponding operator
on Rel is thus obtained as the composition:

RelC,Z
Rel(A×Id)

// RelA×C,A×Z
LS // RelS(A×C),A×Z

L̃P // RelPS(A×C),A×Z
(γ×ζ)∗

// RelC,Z

(5)
where the lifting L̃P takes R : X × Y → [0, 1] to the relation L̃PR : PX × Y → [0, 1] given by

(L̃PR)(U, y) = inf
x∈U

R(x, y)

for U ∈ PX and y ∈ Y . (A definition which replaces inf by sup is equally possible.) An alternative
definition of L̃PR is as the composition

PX × Y
st′X,Y

// P(X × Y )
PR // PS1

α // S1

with α : PS1 → S1 taking a set of probability values to its infimum (respectively supremum). We
note the similarity between this latter formulation and the definition of LT, as given in Remark 5.3.
At the same time, we note the difference between the types of the relation liftings Rel(A × Id) and
L̃P : the former is used to propagate linear-time behaviour, whereas the latter is used to abstract away
non-deterministic branching. The induced notion of linear-time behaviour, defined similarly to Defini-
tion 5.13, gives for each state in a Segala system and each maximal trace (infinite sequence of elements
of A), the lowest (respectively highest) probability of that trace being exhibited, taken across all possible
scheduling choices/adversaries. The above fixpoint characterisation is similar to the use of value iteration
in probabilistic model checking (e.g. model checking the logic PCTL interpreted over Markov decision
processes [21]). The use of such an approach to reason about the interaction between components with
different computational types (non-deterministic, stochastic, weighted), will be further explored in future
work.

It is not difficult to see that the approach outlined in Example 5.16 generalises to arbitrary compositions
of (i) a single branching monad, which canonically induces a universe of truth values, (ii) a number of
polynomial endofunctors, which jointly induce a notion of trace, and (iii) several other endofunctors,
each equipped with a suitable lifting to Rel.

In the remainder of this section, we briefly explore the usefulness of an operator similar to O of
Definition 5.6, which employs an extension lifting arising from the double strength of the monad T.
For simplicity of presentation, we do not consider the more general case of Definition 5.13, however,
essentially the same analysis can also be carried out for that case.

We begin by noting that a result similar to Proposition 5.1 is proved in [20] for a commutative monad
on a cartesian closed category.
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Proposition 5.17. ([20, Proposition 9.3])
Let (B, β) be a T-algebra. Then any f : X × Y → B extends uniquely along ηX × ηY to a bilinear
f̃ : TX × TY → B, making the following triangle commute:

TX × TY
f̃
// B

X × Y

ηX×ηY

OO

f

:: .

Here, bilinearity amounts to linearity in each argument, again assuming the free T-algebra structures on
TX and TY given by µX and µY , respectively.

Definition 5.18. (Double extension lifting)
For a commutative monad T : Set → Set, the double extension lifting L′T : Rel → Rel is the functor
taking a relation R : X × Y → T1 to its unique bilinear extension R̃ : TX × TY → T1.

Remark 5.19. An alternative definition of L′T is as the composition of LT with a dual lifting, which
takes a relation R : X × Y → T1 to its unique 2-linear extension R : X × TY → T1.

Remark 5.20. Again, it can be shown that a direct definition of the relation R̃ : TX × TY → T1 is as
the composition

TX × TY
dstX,Y

// T(X × Y )
TR // T21

µ1
// T1 .

Proposition 5.21. The mapping R ∈ RelX,Y 7→ R ∈ RelX,TY is functorial.

We now fix two T ◦ F -coalgebras (C, γ) and (D, δ) and explore the greatest fixpoint of the operator
O′ : RelC,D → RelC,D defined by the composition

RelC,D
Rel(F )

// RelFC,FD
L′T // RelTFC,TFD

(γ×ζ)∗
// RelC,D .

As before, the operator O′ is monotone and therefore admits a greatest fixpoint. We argue (through
the next example) that this fixpoint also yields useful information regarding the linear-time behaviour of
states in T ◦ F -coalgebras. Moreover, this generalises to coalgebras whose types are arbitrary composi-
tions of polynomial functors and the branching monad T.

Example 5.22. Let F : Set → Set be a polynomial endofunctor, defining a certain type of linear-time
behaviour.

1. For non-deterministic systems (T = P), the double extension lifting L′P : Rel → Rel takes a
(standard) relation R ⊆ X × Y to the relation L′PR ⊆ PX × PY given by

(U, V ) ∈ L′PR if and only if there exist x ∈ U and y ∈ V with (x, y) ∈ R

for U ∈ PX and V ∈ PY . The greatest fixpoint of O′ therefore relates two states of two P ◦ F -
coalgebras if and only if they admit a common maximal trace.
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2. For weighted systems (T = TW ), the lifting L′W : Rel → Rel takes a weighted relation R :
X × Y →W to the relation L′WR : TWX × TWY →W given by

(L′WR)(ϕ,ψ) = min
x∈sup(ϕ),y∈sup(ψ)

(ϕ(x) + ψ(y) +R(x, y))

for ϕ : X → W and ψ : Y → W . As a result, the greatest fixpoint of O′ measures the joint
minimal cost of two states of two TW ◦ F -coalgebras exhibiting the same maximal trace.

3. For probabilistic systems (T = S), the lifting L′S is defined similarly to L′W , but with min replaced
by +, and with + replaced by ∗. This time the greatest fixpoint of O′ measures the probability of
two states exhibiting the same maximal trace.

4. For T = L, the lifting L′L : Rel → Rel takes a relation R : X × Y → {0, 1} to the relation
L′LR : LX × LY → {0, 1} given by

(L′LR)(ι2(x), ι2(y)) = R(x, y) (L′LR)(u, v) = 0 in all other cases

for x ∈ X , y ∈ Y , u ∈ LX and v ∈ LY . Thus, the greatest fixpoint of O′ gives a value of 1 for a
pair of states of two L◦F -coalgebras if and only if the two states have normal (i.e. non-exception)
behaviour and they exhibit the same maximal trace.

In all the above cases, the greatest fixpoint of O′ can be viewed as measuring the extent of the similarity
between states of T ◦ F -coalgebras. Again, future work will explore the usefulness of such a fixpoint
characterisation, particularly for model checking, where one can take one of the coalgebras to define the
system to be verified, and the other to specify unacceptable behaviours.

6. Conclusions and Future Work

We have provided a general and uniform account of the linear-time behaviour of a state in a coalgebra
whose type incorporates some notion of branching (captured by a partially additive monad on Set). Our
approach is compositional, and so far applies to notions of linear behaviour specified by polynomial
endofunctors on Set. The key ingredient of our approach is the notion of extension lifting, which allows
the branching behaviour of a state to be abstracted away in a coinductive fashion.

As emphasised in Remark 5.9, our approach goes beyond linear-time behaviour, also allowing a
coalgebraic treatment of finite traces. Future work will investigate the relationship to existing coalgebraic
accounts of finite traces [12, 16]. At this point, we observe that such approaches are dependent on a
choice of distributive law, of either the monad T over the endofunctor F (in the case of T◦F -coalgebras),
or of the endofunctor G over the monad T (in the case of G ◦ T-coalgebras). While our approach does
not assume such a distributive law, one can show that for any commutative monad T on Set, a canonical
choice of distributive law of T over F exists [5]; its definition makes use of the multiplication operation
• on T1. Such a canonical distributive law was used in loc. cit. to study linear time coalgebraic logics
with two equivalent semantics: a step-wise semantics similar to that of other coalgebraic modal logics,
and a path-based semantics akin to those of standard linear-time logics.

Other future work will attempt to exploit the results of [9, 10] in order to define generalised relation
liftings for arbitrary endofunctors on Set, and to extend our approach to other base categories (with the
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category of measurable spaces being one of the categories of interest). The work in loc. cit. could also
provide an alternative description for the greatest fixpoint used in Definition 5.13.

The present work constitutes a stepping stone towards a coalgebraic approach to the formal verifica-
tion of linear-time properties. Some initial steps in this direction have already been made in [4], where
a similar approach to defining linear-time fixpoint logics was taken. However, further work is needed
to study the expressiveness of the proposed logics, as well as suitable verification techniques for these
logics. For the latter, an automata-based approach, as proposed in [2] for the case of non-deterministic
systems, appears promising.
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