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Abstract. Qualitative logical modelling techniques play an important role in biology and are seen as
crucial for developing scalable methods for modelling and synthesizing biological systems. While a
range of interesting work has been done in this area there still exists challenging issues that need to be
addressed for the practical application of these modelling techniques. In this paper we present an al-
gebraic framework for exploring these issues by developing techniques for modelling and analysing
qualitative biological models using Rewriting Logic (RL). The aim here is to develop a universal
formal framework which is able to integrate models expressed in different formalisms (e.g. Boolean
networks, Petri Nets and process algebra) and provide a basis for new work in this area (e.g. merg-
ing models based on different formalisms; compositional model construction and analysis; and tools
for synthetic biology). We take as our starting point Multi-valued networks (MVNs), a simple yet
expressive qualitative state based modelling approach widely used in biology. We develop a seman-
tic translation from MVNs to a corresponding RL model and formally show that this translation is
correct. We consider both the asynchronous and synchronous update semantics, and investigate the
use of rewriting strategies to enable synchronisation to be modelled. We illustrate the RL framework
developed and the potential RL analysis possible by presenting two detailed case studies.

Keywords: rewriting logic, qualitative modelling, genetic regulatory networks, multi-valued net-
works

1. Introduction

Logical modelling techniques play an increasingly important role in biology where they are used to
qualitatively model complex biological control systems (see [1] for a recent survey). They are seen as
a crucial approach for developing scalable formal methods for modelling and synthesizing biological
systems. Multi-valued networks (MVNs) [2, 3] are an expressive qualitative modelling approach for
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biological systems (for example, see [3, 4, 5]). They extend the well–known Boolean network [6] ap-
proach by allowing the state of each control entity to be within a given range of discrete values. In an
MVN the entities interact to regulate their state using either synchronous updates [7], where the state
of all entities is updated simultaneously, or asynchronous updates [8], where entities update their state
independently. Both update semantics are important and used widely in the literature; the synchronous
semantics leads to simpler dynamic behaviour which aids analysis (thus historically it was favoured)
while the asynchronous semantics is seen as providing a more realistic model since entities are allowed
to react independently. While a range of interesting work has been done to support qualitative modelling
there still exists a number of important challenges for which further techniques and tools are required
(for example, merging models based on different formalisms; compositional model construction and
analysis; multi–scale modelling techniques; and tools for synthetic biology).

Rewriting Logic (RL) [9] is an algebraic formalism that extends standard algebraic specification
techniques by allowing the dynamic behaviour of systems to be modelled using rewrite rules. The idea
in RL is to define the static state based aspects of a system using an equational specification and to then
use rewrite rules to specify the dynamic, non–deterministic state transition behaviour of the system. RL
provides rewrite strategies which are able to control the application of rewrite rules and so allow an RL
specification to capture subtle aspects of the behaviour of a dynamic system. RL has been successfully
applied to modelling a wide range of different systems (for example, see [10, 11, 12, 13, 14, 15]). One
important motivation for using RL is the powerful support tools available for simulating and analysing
RL models, such as Maude [16]; Elan [17]; and Tom [18].

In this paper we consider using RL as a framework for developing and analysing both synchronous
and asynchronous MVN models. The key motivation here is to introduce a new range of algebraic
tools for MVNs and to provide an extendable framework which can be used as the basis for the future
development of tools and techniques for MVNs. We begin by introducing the basic definitions for MVNs,
and the synchronous and asynchronous update semantics. We then develop semantic translations for both
asynchronous and synchronous MVNs into a corresponding RL model which is based on deriving a set of
rewrite rules to represent the entity state updates that can occur in an MVN. The key idea is to represent
the next–state functions associated with entities in an MVN as Boolean equations. These equations can
then be simplified and used to directly derive the required rewrite rules for the RL model. We show that
in the case of the synchronous update semantics it is necessary to make use of rewriting strategies [19] to
be able to cope with the synchronization of updates. We formally show that the semantical translations
developed are correct by proving that the derived RL models are sound (each state transition possible
in the RL model has a counter part in the MVN) and complete (every global state update in an MVN is
captured by a rewriting step in the RL model).

To illustrate the RL modelling techniques introduced we present two detailed case studies. In the
first case study we consider modelling and analysing the genetic regulatory network controlling the
biosynthesis of tryptophan in the bacteria Escherichia coli [20, 21] using an asynchronous MVN derived
from an existing logical model in the literature [22]. The second case study illustrates the techniques
developed for synchronous MVNs by considering an existing synchronous MVN model for the genetic
regulatory network controlling the lysis–lysogeny switch in the bacteriophage λ [23, 4]. Importantly,
both case studies illustrate the interesting range of analysis possible using the Maude rewriting tool [16].

One closely related modelling framework to this work is Pathway Logic (PL) [14, 15], an existing
RL framework for symbolically modelling and analysing signal transduction and metabolic pathways. It
represents each biomolecule involved in a biological pathway using a term containing three components:
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the name of the biomolecule; a modifier which indicates the state of the biomolecule (such as whether
it is phoshorylatd or not); and the location of the biomolecule. Using the standard RL approach, the
state of a cellular pathway is represented as a multi-set of biomolecule terms. Rewrite rules are used
to capture the local changes that occur to biomolecules during the signal transduction steps and these
rules then form the so called Rule Knowledge Base which specifies how a pathway can be traversed. The
resulting pathway model can then be executed and analysed in Maude using the tool’s model checking
capabilities. A range of work has been done to develop interesting techniques and tools for PL (see [24]
for an overview) and the end result is a powerful framework for engineering biological pathways.

The RL framework presented here for MVNs has a different focus to PL which is primarily used
for signal transduction pathways. In particular, we set out to develop a formally verified correct RL
framework that was specifically tailored to MVNs and which naturally represented them in RL. While
it is possible to model asynchronous MVNs using PL it would require substantial work along the lines
presented here in terms of an appropriate mapping and correctness proof. It is also important to note
that since PL has an inherently asynchronous semantics it is not suited to modelling synchronous MVNs
which further motivates our work.

The paper is organized as follows. In Section 2 we provide a brief introduction to RL and in Section
3 we introduce MVNs. In Section 4 we develop a semantical translation of an asynchronous MVN into
a corresponding RL model and formally show its correctness. We conclude this section with a case
study to illustrate the techniques developed and the analysis capabilities of RL. In Section 5 we extend
the semantical translation to apply to synchronous MVNs and again illustrate the techniques developed
with a detailed case study. Then in Section 6 we evaluate the performance of the RL framework we
have developed using an artificial, scalable test model. Finally, in Section 7 we present some concluding
remarks and consider future work.

2. Rewriting Logic

Rewriting logic (RL) [9] is an algebraic specification framework which is capable of modelling and
analysing the behaviour of dynamic, concurrent systems. RL has been successfully used to model a wide
range of different formalisms and systems, such as process algebras [10, 11], Petri nets [12, 13], and
biological systems [14, 15]. For a detailed introduction to RL we recommend [9, 16].

In RL the static states of a system are described using a standard equational specification. The
dynamic behaviour of the system is then modelled using rewrite rules which are able to capture the non–
deterministic state transitions that occur in such systems. RL also provides rewrite strategies which are
able to control the application of rewrite rules and so allow an RL model to capture subtle aspects of the
behaviour of a dynamic system.

As an example of using RL, consider modelling the following simple dynamic system in which
system states are multi–sets consisting of the symbols A, B, and C. The system’s dynamic behaviour
occurs by transforming symbols and can be summarised as follows: symbol A can dynamically change
to B; if symbol B is present then symbol C can change to an A; and two occurrences of symbol B can
be replaced by symbol C. An RL specification for this dynamic system is given below (based on the
syntax of the Maude tool [16]).

mod EX1 is

sorts Symbol State .
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subsort Symbol < State .

ops A B C : -> Symbol .

op __ : Symbol Symbol -> State [assoc comm].

rl [rule1] : A => B .

rl [rule2] : B C => B A .

rl [rule3] : B B => C .

endm

The above RL specification introduces the sorts Symbol and State to represent symbols and multi–
sets of symbols. Note that sort Symbol is declared to be a subsort State, and so every symbol can be
veiwed as a singleton multi–set. Three constants are declared to represent the symbols A, B and C in
the system and an implicit union operator __ : State State → State (where _ is used to denote an infix
argument location [16]) is declared which we define to be associative and commutative (this can be done
by adding appropriate equations or using appropriate flags within a rewriting tool as is done here).

Let A C be a multi–set representing the initial state of the system. Then the following rewrite trace
represents one possible evolution of the system:

A C => B C => B A => B B => C

An important motivation for using RL is the powerful support tools available (e.g. [16, 17, 18]). We
have chosen to use Maude [16] in this work due to its range of analysis tools, such as a Linear Temporal
Logic model checker [25], and meta–programming capabilities. As an example, we consider using
Maude’s built–in search command search S =>+ P, which allows us to check if a pattern term P can
be reached by rewriting an initial ground term S. Note that here =>+ indicates one or more rewrites must
occur (alternatives include only one rewrite =>1, and rewrite to termination =>!). We can use this search
command to investigate whether we can reach a state containing C C from an initial state A A B A A:

search A A B A A =>+ C C s:State .

This search returns true and we can view a corresponding witness rewrite trace. We can check that all
four A’s are needed by executing the search

search A A B A =>+ C C s:State .

which returns false. We consider Maude’s analysis tools in more detail in Section 4.3.
The meta–programming capabilities offered by Maude are invaluable as they allow the construction

of rewriting strategies which can control how rewrite rules are applied. As an example, suppose we want
to prioritise the application of rule1 over the other two rules. Then we can construct a corresponding
rewrite strategy oneFirst in Maude to do this as shown below.

ceq oneFirst(T) = if Step? :: Result4Tuple then getTerm(Step?)

else (if Step2? :: ResultPair then getTerm(Step4?) else T fi) fi

if Step? := metaXapply(upModule('EXABC,false),T,'rule1,none,0,unbounded,0)

/\ Step2? := metaRewrite(upModule('EXABC,false),T,1) .
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This strategy is implemented using a conditional equation and makes use of two metalevel operations:
metaXapplywhich allows a specific rule to be applied (in this case rule1) to a term T ; and metaRewrite
which allows a term T to be rewritten a given number of times using all rules in a module. Note
the use of type checking to see whether the metalevel operations have been successfully applied, e.g.
Step? :: Result4Tuple is used to check if rule1 has been successfully applied. For full details of
the notation used here and further strategy examples see the Maude manual [26].

3. Multi-Valued Networks

Multi-valued networks (MVNs) [2, 3] provide a logical framework for qualitatively modelling and then
analysing control systems. They have been successfully applied to biological systems [3, 4, 27, 5] and
circuit design [2, 28]. In this section we introduce the basic definitions for MVNs and provide an illus-
trative example.

An MVN comprises a set of control entities each of which has a discrete state taken from a given set
of states. The state of each entity is regulated by a subset of entities in the MVN and we refer to this
subset as the neighbourhood of an entity (an entity may or may not be in its own neighbourhood). An
entity updates its state by applying a logical next–state function to the current states of the entities in its
neighbourhood. A formal definition of an MVN can be given as follows.

Definition 1. An MVN MV is a four-tuple MV = (G,D,N, F ) where:
i) G = {g1, . . . , gn} is a non-empty, finite set of entities;
ii) D = (D(g1), . . . , D(gn)) is a tuple of state sets, where each D(gi) = {0, . . . ,mi}, for some mi ≥ 1,
is the state space for entity gi;
iii) N = (N(g1), . . . , N(gn)) is a tuple of neighbourhoods, such that N(gi) ⊆ G is the neighbourhood
of gi; and
iv) F = (fg1 , . . . , fgn) is a tuple of next-state multi-valued functions, such that if N(gi) = {gi1 , . . . , gin}
then the function fgi : D(gi1)× · · · ×D(gin) → D(gi) defines the next state of gi. 2

To illustrate the above definition consider the example MVN PL2 presented in Figure 1 which models
the regulatory network underlying the lysis–lysogeny switch in the bacteriophage λ [3, 23, 29]. This
MVN consists of two entities CI and Cro, defined with neighbourhoods N(CI ) = {CI ,Cro} and
N(Cro) = {CI ,Cro}. These entities have the state spaces D(CI ) = {0, 1} and D(Cro) = {0, 1, 2},
and their next-state functions are defined by the state transition tables given in Figure 1.(b). In this MVN
the entity Cro inhibits the expression of CI (i.e. acts to lower its state) and at higher levels of expression,
also inhibits itself. Meanwhile, entity CI inhibits the expression of Cro and promotes its own expression
(i.e. acts to increase its state).

In the sequel, let MV = (G,D,N, F ) be an arbitrary MVN. A global state of an MVN MV with
n entities is represented by a tuple of states (s1, . . . , sn), where si ∈ D(gi) represents the state of entity
gi. The set of all global states, denoted SMV , is then defined by SMV = D(g1) × · · · × D(gn). As
a notational convenience we normally write s1 . . . sn to represent a global state (s1, . . . , sn) ∈ SMV .
When the current state of an MVN is clear from the context we let gi denote both the name of an entity
and its corresponding current state.

The global state of an MVN can be updated synchronously [6, 7], where the state of all entities is
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CI Cro

CI Cro CI

0 0 1
0 1 0
0 2 0
1 0 1
1 1 0
1 2 0

CI Cro Cro

0 0 1
0 1 2
0 2 1
1 0 0
1 1 0
1 2 1

(a) Network structure (b) State transition tables

0112 02

1000 11

0110 02

12

00

11

(c) Synchronous state graph (d) Asynchronous state graph

Figure 1. An MVN model PL2 of the regulatory network for the lysis-lysogeny switch in bacteriophage λ (based
on [23]).

updated simultaneously in a single step, or asynchronously [30, 8], where entities update their state in-
dependently.

Definition 2. (Synchronous Update) Given two states S1, S2 ∈ SMV , we let S1
Syn−−→ S2 represent a

synchronous update step such that S2 is the state that results from S1 by simultaneously updating the
state of each entity gi, for i = 1, . . . , n, using its next-state function fgi and the appropriate states from
S1 as indicated by the neighbourhood N(gi). 2

Given a global state S0 we can generate a (synchronous) trace by repeatedly applying the syn-

chronous update step S0
Syn−−→ S1

Syn−−→ S2
Syn−−→ · · · . Note in the sequel we will often represent such

traces simply as a comma separated list of global states S0, S1, S2, . . .. Such traces are deterministic
and so each possible initial state generates only a single trace. Since the set of global states is finite this
means the set of synchronous traces is always finite. Each synchronous trace is itself infinite and will
eventually enter an attractor cycle [31, 7]). For example, under the synchronous semantics PL2 has three
attractors: a point attractor 10, 10, . . .; and two cyclic attractors 00, 11, 00, . . . and 01, 02, 01, . . ..

Definition 3. (Asynchronous Update) For any entity gi ∈ G in MV and any state S ∈ SMV we let
[S]gi denote the global state that results by updating the state of gi in S using fgi . Define the global state
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function nextMV : SMV → P(SMV ) on any state S ∈ SMV by

nextMV (S) = {[S]gi | gi ∈ G and [S]gi ̸= S}

Given S1 ∈ SMV and S2 ∈ nextMV (S1), we let S1
Asy−−→ S2 denote an asynchronous update step. 2

Note that given the above definition, only asynchronous update steps that result in a change in the
current global state are considered (see [8]). In the asynchronous case, traces are non-deterministic and
can be finite or infinite. A single initial state can have an infinite number of possible asynchronous traces
starting from it and thus in the asynchronous case there can be an infinite number of traces.

To illustrate the above, consider the global state 12 for PL2 (see Figure 1) in which CI has state 1
and Cro has state 2. Then a single synchronous update step will result in the state 01. Applying the

asynchronous update semantics, we have nextPL2(12) = {02, 11} and so 12
Asy−−→ 02 and 12

Asy−−→ 11
are valid asynchronous update steps.

The state transition behaviour of an MVN can be represented by a state graph [32] in which the nodes
of the graph are the global states and the edges are precisely the update steps allowed. The synchronous
and asynchronous state graphs for PL2 are presented in Figure 1.

Any state S ∈ SMV which cannot be asynchronously updated, i.e. nextMV (S) = {}, is a point
attractor. The notion of a simple cyclic attractor is not valid in the asynchronous case and instead we
consider terminal connected components in an MVN’s asynchronous state graph to be attractors [32, 33].
For example, the MVN PL2 has one point attractor 10 and one cyclic attractor 01, 02, 01, . . ..

In the example presented we defined the next–state function for each entity using a state transition
table. An alternative approach is to specify the next–state function equationally [2, 28] by using Boolean
terms called literals to represent when an entity gi is in one of its given states. The literals have the form
giS, for any S ⊆ D(gi), and evaluate to true when gi ∈ S and to false otherwise. The literals can be
combined using conjunction resulting in product terms which represent possible states for a collection of
entities. These can then be used to construct equations to represent the next–state function for an entity.

As an example, consider the entity CI in the MVN PL2. From the state transition table in Figure
1.(b) we can see that CI will have next state 1 when we are in state CI = 0, Cro = 0 or when we are
in state CI = 1, Cro = 0. Therefore, the product term CI {0, 1}Cro{0} specifies when CI ’s next state
will be 1. Using this approach we are able to completely specify equationally the next–state functions
for the entities, as presented below:

CI {0} = CI {0, 1}Cro{1, 2} Cro{0} = CI {1}Cro{0, 1}
CI {1} = CI {0, 1}Cro{0} Cro{1} = CI {0}Cro{0, 2}+ CI {1}Cro{2}

Cro{2} = CI {0}Cro{1}

An important observation is that the Boolean terms derived above can normally be simplified using
multi-valued logic minimization techniques [28] and we make use of this when modelling an MVN in
the next section.
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4. Modelling Asynchronous MVNs using RL

In this section we develop an RL model for MVNs based on their asynchronous update semantics. In
particular, we present an approach for translating an MVN into an RL model and provide a formal cor-
rectness argument for this translation. We illustrate the techniques developed and the resulting analysis
possible by presenting a detailed case study as the end of the section.

4.1. Constructing an RL Model for an Asynchronous MVN

Let MV = (G,D,N, F ) be an MVN and assume that we are using the asynchronous update semantics.
Then we construct a corresponding RL model RLA(MV ) as follows.

For each discrete state space D(g) = {0, . . . ,m} associated with some entity g ∈ G define a
corresponding sort Dm in RLA(MV ) with constants i : Dm, for i = 0, . . . ,m. We define the sort Entity
in RLA(MV ) for entities and represent each entity g ∈ G in our MVN by a function g : Dm → Entity,
where D(g) = {0, . . . ,m}.

We represent global states in an MVN as non-empty multi–sets of entities. To do this we introduce
the sort GState, defining Entity to be a subsort of GState, and then use the normal approach of adding an
implicit union operator (see the example in Section 3). Note that given the above definitions not all terms
of sort GState will correspond to well–defined global states of MV (they may omit an entity or contain
multiple terms for an entity). For simplicity, we avoid restricting the generation of global state terms and
instead introduce appropriate restrictions as part of our correctness argument (see Section 4.2 below).

As an example, consider the following signature generated for our running example PL2 (see Figure
1) presented using the Maude syntax [16]:

mod PL2 is

sorts Entity GState .

sorts D1 D2 .

subsort Entity < GState .

ops 0 1 : -> D1 .

ops 0 1 2 : -> D2 .

op CI : D1 -> Entity .

op Cro : D2 -> Entity .

op __ : Entity Entity -> GState [assoc comm].

endm

Given the above definitions a global state in which CI has state 1 and Cro has state 2 would be
represented by the term CI(1) Cro(2).

The final stage in modelling an MVN is to represent within our RL model the next–state function
associated with each entity and the associated asynchronous update rule. Note that in doing this we will
implicitly capture the neighbourhood information associated with the MVN. In order to do this we begin
by deriving a equational representation for the next–state functions as described in Section 3. We then
simplify the resulting equations using multi–valued logic minimization techniques [28] (note that this
process can be automated using tools such as MVSIS [34]). Each of the simplified equations will have
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the general form
g{s} = P1 + · · ·+ Pk

for some k > 0, g ∈ G and s ∈ D(g). The equation specifies that g will have next state s precisely when
one or more of the product terms P1, . . . , Pk is true. We generate the rewrite rules for asynchronously
updating g to state s by deriving a set of rewrite rules for each product term Pi, i = 1, . . . , k, as follows.

First we need to ensure that a term representing the current state of g occurs within Pi. To do this we
check Pi and if no term of the form gS′ is present, for some S′ ⊆ D(g), then we use conjunction to add
the term g(D(g) − {s}) to Pi (in a slight abuse of notation we let Pi still denote this new term). Now
suppose

Pi = gE1S1 . . . gEmSm gSm+1

for some m ≥ 0, and state sets Sj ⊆ D(gEj ), 1 ≤ j ≤ m and Sm+1 ⊆ D(g). Then we add the following
rewrite rules to RLA(MV ):

gE1(u1) . . . gEm(um) g(um+1) =⇒ gE1(u1) . . . gEm(um) g(s)

for each uj ∈ Sj , 1 ≤ j ≤ m + 1, such that um+1 ̸= s. Note the final restriction um+1 ̸= s is needed
here to ensure that only state transitions which change the current state of entity g are allowed (this is a
fundamental part of the asynchronous update semantics).

To illustrate the above process consider applying it to our running example PL2. First we derive the
equations for PL2 (see Section 3). We then apply multi–valued logic minimization to simplify these to
the following set of equations:

CI {0} = Cro{1, 2} Cro{0} = CI {1}Cro{0, 1} Cro{2} = CI {0}Cro{1}
CI {1} = Cro{0} Cro{1} = CI {0}Cro{0}+ Cro{2}

The final stage is to use the simplified equations to derive a set of rewrite rules to model the asynchronous
update of PL2. To illustrate the approach defined above consider deriving the rewrite rules for Cro en-
tering state 0. From the equations above we see that Cro has next state 0 whenever CI is in state 1 and
Cro is in state 0 or 1. However, a state change occurs here only if Cro is currently in state 1 so we need
only one rewrite rule to model this state transition:

CI (1) Cro(1) =⇒ CI (1) Cro(0)

The full set of rules derived to model the asynchronous next–state functions for PL2 is given below:

rl [CI0] : CI(1) Cro(1) => CI(0) Cro(1) .

rl [CI0] : CI(1) Cro(2) => CI(0) Cro(2) .

rl [CI1] : CI(0) Cro(0) => CI(1) Cro(0) .

rl [Cro0] : CI(1) Cro(1) => CI(1) Cro(0) .

rl [Cro1] : CI(0) Cro(0) => CI(0) Cro(1) .

rl [Cro1] : Cro(2) => Cro(1) .

rl [Cro2] : CI(0) Cro(1) => CI(0) Cro(2) .

A prototype tool has been developed that given an XML description of an MVN will automatically
apply the above translation process (this tool is available from the authors on request).
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4.2. RL Model Correctness

In this section we formally show that our translation from an asynchronous MVN to an RL model given
in the previous section is correct. To do this we show that: 1) (soundness) each global state transition
possible in our RL model represents a corresponding asynchronous update in the original MVN; and 2)
(completeness) every asynchronous update possible in an MVN is specified in our RL model.

We begin by precisely defining which terms in our RL model represent well–defined global states.
Let MV be an MVN with entities G = {g1, . . . , gn}, for some n > 0. Then we define the set
validGS(MV ) of RL terms of sort GState representing well–defined global states in MV by

validGS(MV ) = {g1(s1) . . . gn(sn) | s1 ∈ D(g1), . . . , sn ∈ D(gn)}

The following result shows that rewrite steps in our RL model preserve valid global state terms.

Theorem 4. For any GS1 ∈ validGS(MV ), if GS1 =⇒ GS2 in one rewrite step in RLA(MV )
then GS2 ∈ validGS(MV ).

Proof. Let GS1 = g1(s1) . . . gn(sn) ∈ validGS(MV ), for some si ∈ D(gi), 1 ≤ i ≤ n. Sup-
pose that GS1 =⇒ GS2 in one rewrite step in RLA(MV ). Then by the definition of the rewrite rules in
RLA(MV ) we know that no term representing the state of an entity is added or removed from a global
state term when a rewrite rule is applied. Noting that the multi–set union operator is associative and
commutative, it therefore follows that GS2 must have the form GS2 = g1(s

′
1) . . . gn(s

′
n), where for

some j ∈ {1, . . . , n} we have s′i = si, for i = 1, . . . , n, i ̸= j, and s′j ∈ D(gj) such that s′j ̸= sj . Then
by definition we have GS2 is a valid global state term (i.e. GS2 ∈ validGS(MV )). 2

In order to formally map global states of an MVN MV to corresponding global state terms in
RLA(MV ) we define a global state term mapping ϕ : D(g1)× · · · ×D(gn) → validGS(MV ) by

ϕ(s1 . . . sn) = g1(s1) . . . gn(sn),

for any states si ∈ D(gi), 1 ≤ i ≤ n. Note that since ϕ can be shown to be a bijective mapping it has an
inverse ϕ−1 : validGS(MV ) → (D(g1)× · · · ×D(gn)).

We can now show that RLA(MV ) is sound and complete with respect to MV .

Theorem 5. (Soundness) Let GS1, GS2 ∈ validGS(MV ) be any valid global state terms such that

GS1 =⇒ GS2 in a single rewrite step in RLA(MV ). Then ϕ−1(GS1)
Asy−−→ ϕ−1(GS2).

Proof. Suppose that GS1 =⇒ GS2 in a single rewrite step in RLA(MV ). Then a rewrite rule with
the following form must have been applied:

gE1(s1) . . . gEm(sm) g(s) =⇒ gE1(s1) . . . gEm(sm) g(s′)

for some m ∈ N, distinct gE1 , . . . , gEm , g ∈ G, si ∈ D(gEi), i = 1, . . . ,m, and s, s′ ∈ D(g)
such that s ̸= s′. By the definition of RLA(MV ) this rule was derived from an equation of the form
g{s′} = P1 + · · · + Pk, for some k > 0 and product terms Pi, i = 1, . . . , k. In particular, the rewrite
rule was derived from one of the product terms, say Pi, for some i ∈ {1, . . . , k}. It is therefore clear that
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product term Pi must be true in global state ϕ−1(GS1) and so the state of entity g can be asynchronously

updated to state s′ (as specified by the equation). In other words, we have that ϕ−1(GS1)
Asy−−→ ϕ−1(GS2)

as required. 2

Theorem 6. (Completeness) Let S1, S2 ∈ D(g1) × · · · × D(gn) be global states in MV such that

S1
Asy−−→ S2. Then ϕ(S1) =⇒ ϕ(S2) in a single rewrite step in RLA(MV ).

Proof. Suppose that the asynchronous update S1
Asy−−→ S2 can occur in MV . Then this means the

global state S2 is produced by updating the state of one entity in S1 while keeping the states of all other
entities the same. Suppose that the entity which has been updated is g, for some g ∈ G and that its state
has changed from s to s′, for some states s, s′ ∈ D(g) such that s ̸= s′. Then there must exist an equation
of the form g{s′} = P1 + · · · + Pk, for some k > 0 and product terms Pi, i = 1, . . . , k. Furthermore,
at least one of the product terms Pi, for some i ∈ {1, . . . , k}, must evaluate to true in the global state
S1. It follows by the definition of RLA(MV ) that there must exist a rewrite rule derived from the above
equation and in particular, derived from the product term Pi which has the form:

gE1(s1) . . . gEm(sm) g(s) =⇒ gE1(s1) . . . gEm(sm) g(s′)

for some m ∈ N, distinct gE1 , . . . , gEm ∈ G, si ∈ D(gEi), i = 1, . . . ,m. Clearly, given the assumptions
above we must be able to apply this rewrite rule to ϕ(S1) and the resulting state term will correspond to
ϕ(S2). In other words, we have that ϕ(S1) =⇒ ϕ(S2) in a single rewrite step in RLA(MV ) as required.

2

4.3. Case Study: Tryptophan Biosynthesis

We illustrate the RL framework developed above by presenting a case study based on modelling and
analysing the genetic regulatory network for the synthesis of tryptophan in E. coli [20, 21]. This case
study helps to motivate our RL framework by illustrating the analysis techniques and flexibility available
when using RL and the tool Maude [16].

The biosynthesis of the amino acid tryptophan in E. coli is carefully regulated since it is essential
for the growth of the bacteria but is also costly to produce. For this reason tryptophan biosynthesis only
occurs when no external source of tryptophan is available [20, 21]. An MVN for the underlying genetic
regulatory network for the biosynthesis of tryptophan in E. coli (based on [22]) is presented in Figure 2.
The MVN consists of four regulatory entities:

TrpE – indicates the presence of the activated enzyme required for synthesising tryptophan, has neigh-
bourhood N(TrpE) = {TrpR,Trp} and state space D(TrpE) = {0, 1};
TrpR – indicates if the repressor gene for tryptophan production is active, has neighbourhood N(TrpR) =
{Trp} and state space D(TrpR) = {0, 1};
TrpExt – an input entity indicating the level of external tryptophan, has D(TrpExt) = {0, 1, 2};
Trp – indicates the level of tryptophan within the bacteria, has neighbourhood N(Trp) = {TrpExt,TrpE}
and state space D(Trp) = {0, 1, 2}.

We use the above entity order when presenting global states for MTRP.
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Trp

TrpRTrpE

TrpExt

2

TrpE TrpExt Trp [Trp]

0 0 0,1 0
0 0 2 1
0 1 0,1,2 1
0 2 0 1
0 2 1,2 2
1 0,1 0,1,2 1
1 2 0 1
1 2 1,2 2

Trp [TrpR]

0,1 0
2 1

Trp TrpR [TrpE]

0 0 1
0 1 0

1,2 0,1 0

Figure 2. An MVN model MTRP of the regulatory mechanism for the biosynthesis of tryptophan in E. coli (based
on [22]). The state transition table for TrpExt has been omitted as this is a simple input entity.

The regulatory network works as follows: the activated enzyme TrpE is required to synthesise tryp-
tophan but this enzyme is deactivated by the presence of tryptothan within E. coli and at higher-levels
of tryptophan the production of TrpE is inhibited by the activation of the repressor TrpR. The asyn-
chronous state graph for MTRP consists of 36 global states and has the following three attractors: two
point attractors 0011 and 0122 which occur in the presence of external tryptophan; and a cyclic attractor
0000, 1000, 1001, 0001, 0000 representing tryptophan synthesis.

Following the approach defined in Section 4.1 we can construct an RL model RLA(MTRP) for
MTRP. We begin by deriving equations for the next–state functions of MTRP from the state transition
tables in Figure 2. Simplifying these results in the equations below:

TrpE{0} = TrpR{1} + Trp{1, 2}TrpR{0}, TrpR{0} = Trp{0, 1},
TrpE{1} = Trp{0}TrpR{0}, TrpR{1} = Trp{2},
Trp{0} = TrpE{0}TrpExt{0}Trp{0, 1}, Trp{2} = TrpExt{2}Trp{1, 2}
Trp{1} = TrpE{0}TrpExt{0}Trp{2} + TrpExt{1} + TrpExt{2}Trp{0} + TrpE{1}TrpExt{0},

These equations are then used to derive the set of rewrite rules for RLA(MTRP) to model the asyn-
chronous behaviour of MTRP as described in Section 4.1. We present the rewrite rules derived for Trp
below as an example (the remaining rules are omitted for brevity).

rl [Trp0] : TrpE(0) TrpExt(0) Trp(1) => TrpE(0) TrpExt(0) Trp(0) .

rl [Trp1] : TrpE(0) TrpExt(0) Trp(2) => TrpE(0) TrpExt(0) Trp(1) .

rl [Trp1] : TrpExt(1) Trp(0) => TrpExt(1) Trp(1) .
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rl [Trp1] : TrpExt(1) Trp(2) => TrpExt(1) Trp(1) .

rl [Trp1] : TrpE(1) TrpExt(0) Trp(0) => TrpE(1) TrpExt(0) Trp(1) .

rl [Trp1] : TrpE(1) TrpExt(0) Trp(2) => TrpE(1) TrpExt(0) Trp(1) .

rl [Trp1] : TrpExt(2) Trp(0) => TrpExt(2) Trp(1) .

rl [Trp2] : TrpExt(2) Trp(1) => TrpExt(2) Trp(2) .

Once a model has been developed for a biological system then the next stage is to analyse its be-
haviour. The idea is to validate the model by checking that it has known biological properties and to
produce important new insights that can then be experimentally investigated by biologists. We illustrate
the wide range of analysis possible using our RL framework and the support tool Maude by providing a
selection of analysis examples for RLA(MTRP).

We begin by considering Maude’s built-in command search [16] which provides interesting ways
to search the states reachable from a given initial state. For example, the following search allows the
attractors in our model to be investigated by checking whether an initial state leads to a point attractor
(note the use of =>! here to ensure the rewriting terminates).

search TrpE(1) TrpR(0) TrpExt(2) Trp(2) =>! GS:GState .

This command confirms that 1022 leads to the point attractor 0122 in MTRP and we can view the asso-
ciated trace for this behaviour. A similar search shows that the initial state 1102 does not lead to a point
attractor. We can also check general invariant properties on the state space reachable from a given initial
state as the example below illustrates.

search TrpE(1) TrpR(1) TrpExt(1) Trp(0) =>+ Trp(2) GS:GState .

This search confirms that Trp can not reach state 2 from the initial state 1110. A similar search shows
that Trp can reach state 2 from initial state 0120 (in fact, there are four different traces that result in this
behaviour and we can view these). As a final example, consider the following search which confirms that
TrpE and TrpR are not mutually exclusive from the initial state 0120.

search TrpE(0) TrpR(1) TrpExt(2) Trp(0) =>+ TrpE(1) TrpR(1) GS:GState .

Maude indicates there is a single counter example trace here and we able to view it to gain insight into
this behaviour. A similar search confirms that TrpE and TrpR are mutually exclusive from 0121.

Maude also provides a model checking tool for Linear Temporal Logic (LTL) [35] which allows
dynamic properties not checkable with the search command to be analysed for finite state rewrite systems
[25]. Since any MVN has a finite state space we can use this model checking tool to investigate a wide
range of biologically relevant dynamic properties of an MVN. To use the model checker we define a
range of atomic propositions to represent the key properties of interest. For example, for MTRP we
might define an atomic proposition atTrp:D2 -> Prop, where atTrp(s) is true only if Trp is in state
s. This can be done equationally as follows (where [owise] is a Maude shortcut which allows all
remaining possibilities to be covered):

eq Trp(s2) GS |= atTrp(s2) = true .

eq GS |= atTrp(s2) = false [owise] .
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We can then model check a range of interesting dynamic properties expressed using the temporal opera-
tors of LTL as illustrated by the examples below for MTRP.

The first property we consider is used to validate the model by showing that tryptophan is al-
ways eventually present in the bacteria. We represent this property in Maude using the LTL formula
[] <> (atTrp(1) \/ atTrp(2)), where [] stands for the always operator and <> for eventually [35].
We can check this LTL formula for the initial state 0000 using the following Maude command:

red modelCheck(TrpE(0) TrpR(0) TrpExt(0) Trp(0), [] <> (atTrp(1) \/ atTrp(2)))

This returns true showing that the property holds and indeed it holds for all initial states considered.
Another property we might consider is whether from a given initial state an entity eventually becomes

stable in a given state. For example, suppose we want to check that from initial state 0020 that Trp must
eventually become fixed in state 2 (i.e. present at high–levels in the bacteria). We can confirm this
property holds using the command:

red modelCheck(TrpE(0) TrpR(0) TrpExt(2) Trp(0), <> [] atTrp(2))

We can extend this property further to check whether a high–level of external tryptophan is enough
to ensure a high–level of tryptophan in the bacteria. We represent this property using the formula
atExt(2) -> (<> [] atTrp(2)), and model checking shows it holds for all initial states sampled.

As a final example, suppose we want to check whether an entity entering a specific state can trigger
some important behaviour. For example, the following LTL formula [] (atTrp(2) -> <> atR(1)),
captures the property that if Trp is ever fully expressed then eventually TrpR must become active. We
can model check this LTL formula for some intial state, say 1002, using the following Maude command:

red modelCheck(TrpE(1) TrpR(0) TrpExt(0) Trp(2), [] (atTrp(2) -> <> atR(1)))

This returns false showing that the formula does not hold and provides a counter example trace which
gives important insight into the result. Repeating the above check we are able to confirm that the property
does hold for initial state 1020.

5. Modelling Synchronous MVNs using RL

In this section we build on the results of the previous section by developing an RL model for synchronous
MVNs. The challenge here is to be able to coordinate update steps and we make use of Maude’s metalevel
capabilities to achieve this. We again show that the resulting model construction is formally correct and
illustrate the developed RL framework for synchronous MVNs with a case study.

5.1. Constructing an RL Model for a Synchronous MVN

Modelling the synchronous update semantics for an MVN in RL follows along similar lines to the asyn-
chronous approach in Section 4.1. However, it is more complex since we have to ensure that all entities
update their state simultaneously when moving from one global state to another. For this reason we use a
two phase update approach [36] for computing global next states: 1) compute and record the next state of
each entity while preserving their current states; and 2) update the current states of all entities to reflect
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the recorded next states. Given an MVN MV = (G,D,N, F ) we let RLS(MV ) represent the RL model
resulting from the construction outlined below for the synchronous update semantics of MV .

To model the first phase of the update step we take the basic sort and function definitions given in
Section 4.1 and adapt the term representation of entities so that they contain a second state component
to represent the recorded next state. For each entity g ∈ G in the MVN we define the function g :
Dm Dm → Entity, where D(g) = {0, . . . ,m}. The idea is that g(s1, s2) represents that g is currently in
state s1 and will have next state s2. We will use the convention that before a synchronous update takes
place each entity’s current and next state are the same. For example, the global state 12 in the example
MVN PL2 (see Section 3) would be represented by the term CI(1,1) Cro(2,2). Thus the current and
next states of an entity will only differ when we are partly through the synchronous update step.

We formalize the next–state function associated with each entity using a similar approach to that
detailed in Section 4.1 for the asynchronous model. The difference here is that we reformulate the
resulting rewrite rules so that the current state is not changed at this stage and instead the next state of an
entity is simply recorded. To illustrate this consider the rewrite rule

rl [CI0] : CI(1) Cro(1) => CI(0) Cro(1) .

derived previously to represent an asynchronous update of CI from state 1 to 0 in PL2. This rule is
replaced by the following one in the synchronous case:

rl [CI0] : CI(1,1) Cro(1,s2) => CI(1,0) Cro(1,s2) .

The use of variable s2 is needed since the next state of Cro may or may not have been updated at this
stage. Note that this rule can only be applied if the current and next state of CI are the same. This is
important as it ensures the rule can only be applied at most once during a given update step and links to
our assumption above about the representation of global states.

The full set of rewrite rules used to model the synchronous case for PL2 is presented below:

rl [CI0] : CI(1,1) Cro(1,s2) => CI(1,0) Cro(1,s2) .

rl [CI0] : CI(1,1) Cro(2,s2) => CI(1,0) Cro(2,s2) .

rl [CI1] : CI(0,0) Cro(0,s2) => CI(0,1) Cro(0,s2) .

rl [Cro0] : CI(1,s1) Cro(1,1) => CI(1,s1) Cro(1,0) .

rl [Cro1] : CI(0,s1) Cro(0,0) => CI(0,s1) Cro(0,1) .

rl [Cro1] : Cro(2,2) => Cro(2,1) .

rl [Cro2] : CI(0,s1) Cro(1,1) => CI(0,s1) Cro(1,2) .

The idea is that rewriting using the resulting set of rewrite rules will update the next states of entities
and that when rewriting terminates the first phase of the two phase synchronous update will be complete.
To model the second, synchronization phase of the update we need to replaces each current state by
its recorded next state. In order to do this we define an update function upDate:GState -> GState

recursively using the following equations (where gs and gs2 are variables of sort GState):

eq upDate(CI(s1,s11)) = CI(s11,s11) .

eq upDate(Cro(s2,s22)) = Cro(s22,s22) .

eq upDate(gs gs2) = upDate(gs) upDate(gs2) .
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We now have all the functionality required to implement the two phase synchronous state update and
what is now needed is a way to combine them correctly. We do this by making use of Maude’s metalevel
capabilities [16] to define an operator to capture the required rewriting strategy. When working at the
metalevel global states will be represented using Maude’s meta–notation and are given the meta–type
Term. For example, the metalevel term '__['CI['0.D1,'0.D1],'Cro['1.D2,'1.D2]] will be used
to represent the global state term CI(0,0) Cro(1,1) (Note that Maude provides the operator upTerm
to lift a term to the metalevel.)

The rewriting strategy we require for synchronous updates is defined in two parts. First, we define
a metalevel operation phaseOne : Term -> Term which implements the first phase of the global state
update by applying the synchronous rewrite rules (in this case assumed to be in module EXPL2) to a
global state term T using metaRewrite (see Section 2).

ceq phaseOne(T) = if Step?::ResultPair then getTerm(Step?) else T fi

if Step? := metaRewrite(upModule('EXPL2, false), T, unbounded) .

We then build on this by defining a metalevel operation next : Term -> Termwhich applies phaseOne
to a term and then resets the current state using the upDate function.

ceq next(T) = if Step?::ResultPair then getTerm(Step?) else T1 fi

if T1 := phaseOne(T) /\

Step? := metaReduce(upModule('EXPL2, false), 'upDate[T1]) .

Note that in the above we use the metalevel representation of upDate as indicated by the backquote and
that metaReduce is used to apply its defining equations. We can now use the metalevel operator next

to simulate synchronous update steps. For example, the synchronous step 12
Syn−−→ 01 in PL2 can be

reproduced by the following Maude command:

red next('__['CI['1.D1,'1.D1],'Cro['2.D2,'2.D2]]) .

which correctly returns the metalevel state term '__['CI['0.D1,'0.D1],'Cro['1.D2,'1.D2]].
The above process is supported by a prototype tool (this tool is available from the authors on request).

5.2. RL Model Correctness

We now show that the RL model proposed above for an MVN using the synchronous update semantics
is correct by following a similar approach to that used in Section 4.2 for the asynchronous case. We
begin by precisely defining which terms in our RL model represent well–defined global states in the
synchronous case:

validGS(MV ) = {g1(s1, s1) . . . gn(sn, sn) | s1 ∈ D(g1), . . . , sn ∈ D(gn)}

The following result shows that the metalevel operator next preserves valid global state terms. Note
that to apply next we need to move to and from the metalevel representation of state terms.

Theorem 7. For any GS1 ∈ validGS(MV ), if GS1 =⇒ GS2 in one application of next in RLS(MV )
then GS2 ∈ validGS(MV ).
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Proof. Let GS1 = g1(s1, s1) . . . gn(sn, sn) ∈ validGS(MV ), for some si ∈ D(gi), 1 ≤ i ≤ n.
Suppose that GS1 =⇒ GS2 in one application of next in RLS(MV ). By the definition of phaseOne
and the synchronous rewrite rules in RLS(MV ) we know that no term representing the state of an entity
is added or removed from a global state term. It follows that after applying phaseOne to GS1 we must
have a state term of the form g1(s1, s

′
1) . . . gn(sn, s

′
n), for some s′i ∈ D(gi), 1 ≤ i ≤ n. Applying the

reset function upDate to this state term will result in the state term GS2 = g1(s
′
1, s

′
1) . . . gn(s

′
n, s

′
n)

which is clearly a valid global state term as defined above. 2

We define a global state term mapping ϕ : D(g1)× · · · ×D(gn) → validGS(MV ) by

ϕ(s1 . . . sn) = g1(s1, s1) . . . gn(sn, sn),

for any states si ∈ D(gi), 1 ≤ i ≤ n.
The following results show that RLS(MV ) is a correct (i.e. sound and complete) model of MV

under the synchronous update semantics.

Theorem 8. (Soundness) Let GS1, GS2 ∈ validGS(MV ) be any valid global state terms such that

GS1 =⇒ GS2 in one application of next in RLS(MV ). Then ϕ−1(GS1)
Syn−−→ ϕ−1(GS2).

Proof. Let GS1 = g1(s1, s1) . . . gn(sn, sn), GS2 = g1(s
′
1, s

′
1) . . . gn(s

′
n, s

′
n) ∈ validGS(MV ),

for some si, s
′
i ∈ D(gi), 1 ≤ i ≤ n. Suppose that GS1 =⇒ GS2 in one application of next in

RLS(MV ). Then by the definition of ϕ we need to show that s1 . . . sn
Syn−−→ s′1 . . . s

′
n.

For each i = 1, . . . , n there are two possible cases to consider:

Case 1: Suppose si ̸= s′i. Then a rewrite rule with the following form must have been applied:

gE1(sE1 , v1) . . . gEm(sEm , vm) gi(si, si) =⇒ gE1(sE1 , v1) . . . gEm(sEm , vm) gi(si, s
′
i)

for some m ∈ N, distinct entities gE1 , . . . , gEm ∈ G and state variables v1, . . . , vm. By the definition of
RLS(MV ) this rule was derived from an equation of the form gi{s′i} = P1 + · · ·+ Pk, for some k > 0
and product terms Pj , j = 1, . . . , k. It is therefore clear that the right hand side of the equation must be
true in the global state s1 . . . sn and so by definition the state of entity gi must be updated to s′i after a
synchronous update is applied.

Case 2: Suppose si = s′i. Then the state of entity gi is not changed meaning that none of the rewrite
rules updating gi were applicable in GS1. Since by the definition the rewrite rules of RLS(MV ) are
derived from the next state equations of MV this implies that the only equation applicable for gi was of
the form gi{si} = P1 + · · · + Pk. Therefore, it follows that the state of gi remains unchanged after a
synchronous update step is applied to s1 . . . sn. 2

Theorem 9. (Completeness) Let S1, S2 ∈ D(g1) × · · · × D(gn) be global states in MV such that

S1
Syn−−→ S2. Then ϕ(S1) =⇒ ϕ(S2) in one application of next in RLS(MV ).

Proof. Let S1 = s1 . . . sn, S2 = s′1 . . . s
′
n ∈ D(g1) × · · · × D(gn) and suppose that the synchronous
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update step s1 . . . sn
Syn−−→ s′1 . . . s

′
n can occur. Then for each i = 1, . . . , n there are two cases to consider:

Case 1: Suppose si ̸= s′i. Then the state of gi changes from si to s′i during the synchronous step
and so the next–state equation applicable for gi must have been of the form g{s′i} = P1 + · · ·+ Pk, for
some k > 0 and product terms Pj , j = 1, . . . , k. In particular, at least one of the product terms, say Pj ,
for some j ∈ {1, . . . , k}, must be true. Then by definition of RLS(MV ) there must be a rewrite rule

gE1(sE1 , v1) . . . gEm(sEm , vm) gi(si, si) =⇒ gE1(sE1 , v1) . . . gEm(sEm , vm) gi(si, s
′
i)

that was derived from the equation above based on Pj . Clearly, this rewrite rule will be applicable in
the global state term ϕ(S1) and so by definition of next the entity term gi(si, si) must be updated to
gi(s

′
i, s

′
i) as required.

Case 2: Suppose si = s′i. Then the state of entity gi is not changed in the update step meaning that
the only next–state equation applicable for gi was of the form gi{si} = P1 + · · · + Pk. Therefore, it
follows by definition that no rewrite rule exists in RLS(MV ) that can be applied to the global state term
ϕ(S1) and so the entity term gi(si, si) remains unchanged from ϕ(S1) to ϕ(S2) as required. 2

5.3. Case Study: Lysis–Lysogeny Switch

In this section we illustrate the RL framework developed for synchronous MVNs by considering an
existing MVN model for the genetic regulatory network controlling the lysis–lysogeny switch in the
bacteriophage λ [23, 4]. The bacteriophage λ is a virus which makes an interesting choice after infecting
the bacteria Escherichia coli between two different ways of propagating itself [3, 29]. In most cases, λ
enters the lytic cycle, where it generates as many new viral particles as the host cell resources allow before
producing an enzyme to lyse the cell wall, releasing the new phage into the environment. However, it can
decide to enter the lysogenic cycle where it integrates its DNA into the host’s DNA and then lies dormant
simply replicating with each subsequent cell division of the host. In this case the host cell becomes
immune to external infection from phages since the genes expressed in the λ DNA synthesize a repressor
blocking other phage genes (including its own excision genes).

An MVN PL4 of the resulting regulatory network underlying the lysis–lysogeny switch is presented
in Figure 3. This MVN extends PL2 [23] and contains four entities: N , with D(N ) = {0, 1}, which pro-
motes CII expression; CII , with D(CII ) = {0, 1}, which activates CI ; CI , with D(CI ) = {0, . . . , 2},
a repressor which is expressed in the lysogenic cycle; and Cro, with D(Cro) = {0, . . . , 3}, a repres-
sor present in the lytic cycle. This MVN has a global state space consisting of 48 states and has two
attractor cycles: 0003, 0002, 0003, . . . which corresponds to the lytic cycle; and 0020, 0020, . . . which
corresponds to the lysogenic cycle.

Applying our RL translation approach detailed above we begin by deriving the following simplified
equations for PL4 from the truth tables given in Figure 3:

[N {0}] = CI {0}Cro{2, 3} + CI {1, 2}, [CII {0}] = N {0}+ Cro{3}+ CI {2},
[N {1}] = CI {0}Cro{0, 1}, [CII {1}] = N {1}CI{0, 1}Cro{0, 1, 2},
[CI {0}] = CII {0}CI {0, 1}Cro{1, 2, 3}, [CI {1}] = CII {1}CI {0} + CII {0}CI {0}Cro{0},
[CI {2}] = CII {1}CI {1} + CII {0, 1}CI {2} + CII {0}CI {1}Cro{0},
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3CroCI

CII N

2

2

2

3

2 CI Cro [N ]

0 0,1 1
0 2,3 0

1,2 0,1,2,3 0

CI Cro CII [CI ]

0,1 1,2,3 0 0
0 0,1,2,3 1 1
0 0 0 1
1 0,1,2,3 1 2
2 0,1,2,3 0,1 2
1 0 0 2

CI Cro [Cro]

0,1 0 1
0,1 1 2
0,1 2 3

0,1,2 3 2
2 0,1 0
2 2 1

CI Cro N [CII ]

0,1,2 0,1,2,3 0 0
0,1 0,1,2 1 1
0 3 1 0
1 3 1 0
2 0,1,2,3 1 0

Figure 3. An extended MVN model PL4 of the control mechanism for the lysis-lysogeny switch in bacteriophage
λ (based on [23]).

[Cro{0}] = CI {2}Cro{0, 1}, [Cro{1}] = CI {0, 1}Cro{0} + CI {2}Cro{2},
[Cro{2}] = CI {0, 1}Cro{1} + Cro{3}, [Cro{3}] = CI {0, 1}Cro{2}

From these equations we are then able to derive the rewrite rules required in RLS(PL4) to model the
synchronous behaviour of PL4. To illustrate further this approach we present below the rewrite rules
derived for CI (the remaining rules are omitted for brevity).

rl [CI0] : CII(0,s1) CI(1,1) Cro(1,S3) => CII(0,s1) CI(1,0) Cro(1,S3) .

rl [CI0] : CII(0,s1) CI(1,1) Cro(2,S3) => CII(0,s1) CI(1,0) Cro(2,S3) .

rl [CI0] : CII(0,s1) CI(1,1) Cro(3,S3) => CII(0,s1) CI(1,0) Cro(3,S3) .

rl [CI1] : CII(1,s1) CI(0,0) => CII(1,s1) CI(0,1) .

rl [CI1] : CII(0,s1) CI(0,0) Cro(0,s3) => CII(0,s1) CI(0,1) Cro(0,s3) .

rl [CI2] : CII(1,s1) CI(1,1) => CII(1,s1) CI(1,2) .

rl [CI2] : CII(0,s1) CI(1,1) Cro(0,s3) => CII(0,s1) CI(1,2) Cro(0,s3) .

As in the previous case study (see Section 4.3), we are now able to use the full range of Maude’s
analysis tools to investigate the behaviour of the PL4 model. In order to do this we have to ensure the
rewriting strategy next we developed is invoked when rewriting the model at the metalevel. This can be
done by adding the following rewrite rule:

rl [step] : '__[T1,T2,T3,T4] => next('__[T1,T2,T3,T4]) .

This approach allows next to be introduced after each synchronous update step and is based on the fact
that Maude always applies equations first before considering rewrite rules.
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With the above in place we can then do searches at the metalevel similar to those illustrated in
Section 4.3. For example, the following search checks whether CI and CII can be simultaneously in
state 1 starting from initial state 0000:

search '__['N['0.D1,'0.D1],'CII['0.D1,'0.D1],'CI['0.D2,'0.D2],'Cro['0.D3,'0.D3]]

=>+ '__['CI['1.D2,'1.D2],'CII['1.D1,'1.D1],T1:Term,T2:Term] .

Maude returns that this search has no solutions showing that the property doesn’t hold. A similar search
using initial state 1001 does hold and this indicates there is one solution that results in state 0113.

Identifying the point attractors for a model is an important part of the analysis. This was straight-
forward in the asynchronous case since point attractors represented deadlocked global states. However,
in the synchronous case all traces are infinite and so additional work is needed. One way to address
this is to introduce a Boolean operator repState at the metalevel that indicates if a global state remains
unchanged after a synchronous update step. (Note that this again illustrates the expressiveness provided
by Maude’s metalevel capabilities.) This can be defined equationally as follows:

eq repState(T) = same(T,next(T)) .

where same is an equationally defined function that returns true only if two metalevel state terms contain
the same entities in the same states. We can then use this together with the search command to find
point attractors. For example, the following search shows that state 1010 will eventually enter the point
attractor 0020, 0020, . . . (note the use of such that to place a condition on the result of the search).

search '__['N['1.D1,'1.D1],'CII['0.D1,'0.D1],'CI['1.D2,'1.D2],'Cro['0.D3,'0.D3]]

=>+ T:Term such that repState(T) .

Further analysis of PL4 can be done by again utilizing the LTL model checker provided by Maude.
This can be applied in a similar way to that illustrated in Section 4.3 but in this case it will work at the
metalevel. To illustrate this, consider checking the hypothesis that when CI becomes permanently inac-
tive then Cro must continually be able to reach full activation. This can be checked using the following
model checking instruction:

red modelCheck('__['CI['1.D2,'1.D2],'CII['1.D1,'1.D1],'Cro['2.D3,'2.D3],

'N['0.D1,'0.D1]], <> [] atCI('0) -> []<> atCro('3)) .

This holds for the given initial state 0112, and further tests indicate this is a potential invariant.
We can further extend our analysis capabilities by developing our own metalevel operators which can

be used to define interesting atomic propositions. As an example, consider using the metalevel Boolean
operator repState to define an atomic proposition rept : -> Prop as follows:

eq T |= rept = repState(T) .

where T is a variable of type Term. This atomic proposition can the be used to form interesting LTL
formulas for model checking. For example, suppose we want to check whether N and CII becoming
simultaneously active is a predictor for a point attractor. The following model checking instruction shows
the property is true for initial state 1000.

red modelCheck('__['CI['0.D2,'0.D2],'CII['0.D1,'0.D1],'Cro['0.D3,'0.D3],

'N['0.D1,'0.D1]], (<> (atN('1) /\ atCII('1))) -> <> rept) .

Checking a further sample of initial states shows that the property is potentially an invariant of the model.
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6. Evaluating the Scalability of the RL Framework

The case studies presented in Sections 4.3 and 5.3 provide a good illustration of the practical application
of the RL techniques we have developed. However, they provide little indication of how the developed
RL approach would scale when applied to larger MVN models and what impact the well–known state
pace explosion problem would have. In this section we set out to address this by investigating how the
our RL framework performs as the MVN size (i.e. number of entities) increases. The approach we
take is to define an artificial, scalable test MVN and then use this to produce an incremental set of test
MVNs. Note that the ease with which this scalable test model can be implemented in our RL framework
illustrates how versatile it is.

The idea is to define a five entity MVN model ABCDI that can be used as a basic building block
and to then compose instances of these basic blocks together to make models of size 10, 15, 20, 25,
etc. The basic building block MVN is presented in Figure 4. To allow multiple instances of this model

A D

B C

I

A{0} = B{0}D{0} + B{1, 2}
A{1} = B{0}D{1}
B{0} = A{0}C{0}
B{1} = A{0}C{1} + A{1}C{0}
B{2} = A{1}C{1}
C{0} = I{1}
C{1} = I{0}
D{0} = I{0} + B{2}
D{1} = B{0, 1}I{1}

Figure 4. An MVN model ABCDI which is used as a basic building block to construct models of increasing size.
Note that I can be viewed as simply an input entity that remains in its initial state.

to be easily composed we represent each entity as a family of entities. This is straightforward to do
in RL by associating a natural number parameter to each entity as the following excerpt shows for the
asynchronous case:

ops A C D I : Nat D1 -> Entity .

op B : Nat D2 -> Entity .

We can then have general rewrite rules for the MVN as the following rules modelling the asynchronous
behaviour of entity A illustrate:

rl [A0] : A(i,1) B(i,0) D(i,0) => A(i,0) B(i,0) D(i,0) .

rl [A0] : A(i,1) B(i,1) => A(i,0) B(i,1) .

rl [A0] : A(i,1) B(i,2) => A(i,0) B(i,2) .

rl [A1] : A(i,0) B(i,0) D(i,1) => A(i,1) B(i,0) D(i,1) .

To compose instances of ABCDI together we simply link them by allowing one instance to influence
the state of entity I in the other instance. For example, to create a model of size 10 we could compose
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two instances, referred to as instance 1 and 2, by having entity A in instance 2 activating entity I in
instance 1. This is straightforward to do by adding the following rules for I in instance 1:

rl [I10]: I(1,1) A(2,0) => I(1,0) A(2,0) .

rl [I11]: I(1,0) A(2,1) => I(1,1) A(2,1) .

We can now create initial states for the new MVN model of size 10 which can be analysed in the normal
way using Maude. For example, the following search checks whether entity B in instance 1 can reach
state 2 starting from the initial global state 0100101100:

search A(1,0) B(1,1) C(1,0) D(1,0) I(1,1) A(2,0) B(2,1) C(2,1) D(2,0) I(2,0)

=>+ B(1,2) GS:GState .

A

I

C

B

D

1

A

I

C

B

D

2

A

I

C

B

D

3

A

I

C

B

D

4

A

I

C

B

D

5

Figure 5. A pictorial representation of the five test MVN models constructed incrementally from the basic build-
ing block MVN given in Figure 4. Note that the arcs ending in arrows represent activation whereas the arcs ending
in bars represent inhibition.

Using the test model generation approach presented above we were able to create a series of MVN test
models in incremental steps of 5 entities as depicted in Figure 5. For each test model we used three simple
types of test searches to see how the model performed: 1) searched for a point attractor; 2) searched for
a state in which all input places become inactive; and 3) checked whether the entities could all go from
being active to being inactive.

A summary of the test results produced is shown in Table 1 below. The tests were carried out using
Maude on a computer with a 2.7 GHz Intel Core i5 processor and containing 16 GB 1333 MHz DDR3
memory. It can be seen that the largest test model that was able to produce results in the asynchronous
case was the one containing 20 entities. The test model with 25 entities did not complete the searches
even after an extended period. This highlights one of the key limitations of MVNs given the state space
explosion problem. In order to allow larger models to be analysed new ways to compositional construct
and analyse MVNs are needed and we discuss this further in the future work section at the end of the
paper. In the synchronous case test results could be obtained for a much larger set of models (upto size
30 and beyond) and the resources needed to carry out the tests scaled well with respect to the MVN size.
This is perhaps not surprising; while the synchronous RL framework is more complex due to the need to
use meta–level strategies the actual dynamics of synchronous MVNs is far less complex (recall traces are
deterministic) than their asynchronous counterparts. Finally, we note that while the performance testing
in this section provides some insight into the scalability of the developed RL framework it is limited in
its scope. Much further work is needed here and in particular, we aim to develop a set of benchmark
scalable test models which can be used to evaluate MVN approaches in the literature.
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Table 1. Summary of test results for performing three simple searches on the series of (A) asynchronous and (B)
synchronous test MVNs.

(A) Asynchronous Test Results
Model Size 5 10 15 20 25

30 2472 150133 8374315 -
Rewrites 33 2632 292228 12696152 -

30 2472 150133 8374315 -
0 17 1040 10.01mins -

Time (ms) 0 17 2234 26mins -
0 17 1145 10.67mins -

(B) Synchronous Test Results
Model Size 5 10 15 20 25 30

120 400 510 805 1080 1395
Rewrites 182 477 752 807 1082 1397

142 452 602 772 962 1307
6 14 19 29 37 48

Time (ms) 8 19 28 28 37 48
7 19 222 27 35 47

7. Conclusions

In this paper, we have developed an algebraic framework for modelling and analysing MVNs using RL.
Our aim here has been to provide a well–supported, unifying algebraic framework which can be used
as the basis for investigating the challenging issues that remain for biological qualitative modelling. In
particular, this work is motivated by interesting interactions with the synthetic biology group at Newcas-
tle1 and their search for powerful, adaptable and scalable formal tools and techniques to support their
work on engineering biological systems. The systematic translation presented from both synchronous
and asynchronous MVNs to RL models with associated formal correctness proofs is therefore an impor-
tant contribution to this work. Further, we have illustrated the potential application of our techniques
with two detailed case studies2 based on using the Maude tool to model and analyse existing genetic
regulatory networks from the literature. In particular, these case studies have highlighted the interesting
range of analysis possible for MVNs using our RL framework and the powerful analysis tools provided
by Maude.

As noted in the introduction, Pathway Logic (PL) [14, 15] is a closely related existing RL framework
for symbolically modelling and analysing signal transduction and metabolic pathways. While the two
RL frameworks have different focuses they can be seen to be complementary and it would be interesting

1www.ncl.ac.uk/csbb/
2All the RL models used in this paper along with a prototype tool automating the translation process are available upon request.
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to consider linking the two approaches (one of the clear advantages afforded by using RL).
Petri nets provide a natural alternative framework for modelling MVNs and a range of work in this

area can be found in the literature (for example, see [4, 36, 5]). One notable tool framework is GinSim
[37] which provides an impressive array of techniques for modelling and analysing asynchronous MVN
models. The work reported here provides an alternative framework to Petri nets and provides an impor-
tant extension to the formal foundations available for exploring the many challenging areas that remain
for MVNs. It is also interesting to note that since Petri nets can be modelled using RL [38] our RL
framework can be seen as as providing a foundation for integrating related models expressed in different
formalisms.

The work presented in this paper provides the foundation for a wide range of interesting further
work. For example, one key area is the development of compositional techniques for the construction
and analysis of MVNs. Work in this area is currently underway with the aim of integrating compositional
methods directly into the RL framework presented here. Another interesting area is the application of this
work to support the scalable automation of engineering techniques in synthetic biology. The idea here
is to investigate using the RL tools and techniques being developed by taking part in a joint project with
the synthetic biology group at Newcastle. Finally, we note that one of the strengths of RL is its ability
to integrate different modelling approaches (e.g. Petri nets, Pathway Logic, process algebra, etc.) within
one formal framework. We intend to explore making use of this feature in future work by considering
how a range of different models for a biological system based on different formalisms can be integrated
and analysed using RL.
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