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Abstract. In a previous paper, an ACP-style process algebra was pro-
posed in which propositions are used as the visible part of the state of
processes and as state conditions under which processes may proceed.
This process algebra, called ACPps, is built on classical propositional
logic. In this paper, we present a version of ACPps built on a paracon-
sistent propositional logic which is essentially the same as CLuNs. There
are many systems that would have to deal with self-contradictory states
if no special measures were taken. For a number of these systems, it
is conceivable that accepting self-contradictory states and dealing with
them in a way based on a paraconsistent logic is an alternative to tak-
ing special measures. The presented version of ACPps can be suited for
the description and analysis of systems that deal with self-contradictory
states in a way based on the above-mentioned paraconsistent logic.
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1 Introduction

Algebraic theories of processes such as ACP [11], CCS [27], and CSP [25], as well
as most algebraic theories of processes in the style of these ones, are concerned
with the behaviour of processes only. That is, the state of processes is kept
invisible. In [8], an ACP-style process algebra, called ACPps, was proposed in
which processes have their state to some extent visible. The visible part of the
state of a process, called the signal emitted by the process, is a proposition of
classical propositional logic. Propositions are not only used as signals emitted
by processes, but also as conditions under which processes may proceed. The
intuition is that the signal emitted by a process is a proposition that holds at its
start and the condition under which processes may proceed is a proposition that
must hold at its start. Thus, by the introduction of signal emitting processes,
an answer is given to the question what determines whether a condition under
which a process may proceed is met.

If the signals emitted by two processes are contradictory, then the signal
emitted by the parallel composition of these processes is self-contradictory. For
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example, if the signals emitted by the two processes, being propositions, are
each others negation, then they are contradictory and their conjunction, which
is the signal emitted by the parallel composition of these processes, is self-
contradictory. Intuitively, a process emitting a self-contradictory signal is an
impossibility. Therefore, a special process has been introduced in ACPps to deal
with it. In practice, there are many systems that would have to deal with self-
contradictory states if no special prevention measures or special detection and
resolution measures were taken. Some typical examples are web-service-oriented
applications and autonomous robotic agents (see e.g. [23,29,30]). At least for
a number of these systems, it is conceivable that accepting self-contradictory
states and dealing with them in a way based on a suitable paraconsistent logic
is an alternative to taking special measures. It may even be the only workable
alternative because a system may have to cope with inconsistencies occurring on
a large scale.

What exactly does it mean to deal with self-contradictory states in a way
based on a paraconsistent logic? The systems referred to above are systems whose
behaviour is made up of discrete steps where, upon each step performed, the way
in which the behaviour proceeds is conditional on the current state of the system
concerned. If the propositions by which the visible part of the possible states of
a system can be characterized are used as conditions, then it can be established
in accordance with a paraconsistent propositional logic whether a condition is
met in a state. This is what is meant by dealing with self-contradictory states
in a way based on a paraconsistent logic. We think that a version of the process
algebra ACPps that is built on an appropriate paraconsistent propositional logic
instead of classical propositional logic can be suited for the description and
analysis of systems that deal with self-contradictory states in a way based on
a paraconsistent logic. The important point here is that, in such a logic, it is
generally not possible to deduce an arbitrary formula from two contradictory
formulas.

The question remains: what is an appropriate paraconsistent propositional
logic? The ones that have been proposed differ in many ways and whether one of
them is more appropriate than another is fairly difficult to make out. A paracon-
sistent propositional logic is a logic that does not have the property that every
proposition is a logical consequence of every set of hypotheses that contains con-
tradictory propositions. A paraconsistent propositional logic with the property
that every proposition is a logical consequence of every set of hypotheses that
contains contradictory propositions but one is far from appropriate. Such a logic
is a minimal paraconsistent logic. Maximal paraconsistency, i.e. a logical con-
sequence relation that cannot be extended without loosing paraconsistency, is
generally considered an important property. There are various other properties
that have been proposed as characteristic of reasonable paraconsistent proposi-
tional logics, but their importance remains to some extent open to question.

The properties that have been proposed as characteristic of reasonable para-
consistent propositional logics do not include all properties that are required of
an appropriate one to build a version of ACPps on. These properties include,
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among other things, properties needed to retain the basic axioms of ACP-style
process algebras. In this paper, we present a version of ACPps built on the para-
consistent propositional logic for which the name LP⊃,F was coined in [26]. This
logic, which is essentially the same as J3 [20], CLuNs [12], and LFI1 [19], has
virtually all properties that have been proposed as characteristic of reasonable
paraconsistent propositional logics as well as all properties that are required of
an appropriate one to build a version of ACPps on. LP⊃,F can be replaced by
any paraconsistent propositional logics with the latter properties, but among the
paraconsistent propositional logics with the former properties, LP⊃,F is the only
one with the latter properties.

The structure of this paper is as follows. First, we give a survey of the para-
consistent propositional logic LP⊃,F (Section 2). Next, we present BPAct

ps, the

subtheory of the version of ACPps built on LP⊃,F that does not support paral-
lelism and communication (Sections 3 and 4). After that, we present ACPct

ps, the

version of ACPps built on LP⊃,F, as an extension of BPAct
ps (Sections 5 and 6).

Following this, we introduce a useful additional feature, namely a generaliza-
tion of the state operators from [6] (Section 7). Then, we treat the addition
of guarded recursion to ACPct

ps (Section 8). Finally, we make some concluding
remarks (Section 9).

2 The Paraconsistent Logic LP⊃,F

A set of propositions Γ is contradictory if there exists a proposition A such
that both A and ¬A can be deduced from Γ . A proposition A is called self-
contradictory if {A} is contradictory. In classical propositional logic, every propo-
sition can be deduced from a contradictory set of propositions. A paraconsistent
propositional logic is a propositional logic in which not every proposition can be
deduced from each contradictory set of propositions.

In [28], Priest proposed the paraconsistent propositional logic LP (Logic of
Paradox). The logic introduced in this section is LP enriched with an implication
connective for which the standard deduction theorem holds and a falsity con-
stant. This logic, called LP⊃,F, is in fact the propositional fragment of CLuNs [12]
without bi-implications.

LP⊃,F has the following logical constants and connectives: a falsity constant
F, a unary negation connective ¬, a binary conjunction connective ∧, a binary
disjunction connective ∨, and a binary implication connective ⊃. Truth and bi-
implication are defined as abbreviations: T stands for ¬F and A≡B stands for
(A⊃B) ∧ (B ⊃A).

A Hilbert-style formulation of LP⊃,F is given in Table 1. In this formulation,
which is taken from [4], A, B, and C are used as meta-variables ranging over all
formulas of LP⊃,F. The axiom schemas on the left-hand side of Table 1 and the
single inference rule (modus ponens) constitute a Hilbert-style formulation of the
positive fragment of classical propositional logic. The first four axiom schemas
on the right-hand side of Table 1 allow for the negation connective to be moved
inward. The fifth axiom schema on the right-hand side of Table 1 is the law of
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Table 1. Hilbert-style formulation of LP⊃,F

Axiom Schemas :

A⊃ (B ⊃ A)

(A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃C))

((A⊃B)⊃ A)⊃ A

F⊃ A

(A ∧ B)⊃ A

(A ∧ B)⊃B

A⊃ (B ⊃ (A ∧ B))

A⊃ (A ∨B)

B ⊃ (A ∨B)

(A⊃ C)⊃ ((B ⊃C)⊃ ((A ∨B)⊃C))

¬¬A≡ A

¬(A⊃B)≡ A ∧ ¬B
¬(A ∧ B)≡ ¬A ∨ ¬B
¬(A ∨ B)≡ ¬A ∧ ¬B

A ∨ ¬A

Rule of Inference :

A A⊃B

B

the excluded middle. This axiom schema can be thought of as saying that, for
every proposition, the proposition or its negation is true, while leaving open the
possibility that both are true. If we add the axiom schema ¬A⊃ (A⊃B), which
says that any proposition follows from a contradiction, to the given Hilbert-
style formulation of LP⊃,F, then we get a Hilbert-style formulation of classical
propositional logic (see e.g. [4]). We write ⊢ for the syntactic logical consequence
relation induced by the axiom schemas and inference rule of LP⊃,F.

The following outline of the semantics of LP⊃,F is based on [4]. Like in the
case of classical propositional logic, meanings are assigned to the formulas of
LP⊃,F by means of valuations. However, in addition to the two classical truth
values t (true) and f (false), a third meaning b (both true and false) may be
assigned. A valuation for LP⊃,F is a function ν from the set of all formulas of
LP⊃,F to the set {t, f, b} such that for all formulas A and B of LP⊃,F:

ν(F) = f,

ν(¬A) =







t if ν(A) = f

f if ν(A) = t

b otherwise,

ν(A ∧B) =







t if ν(A) = t and ν(B) = t

f if ν(A) = f or ν(B) = f

b otherwise,

ν(A ∨B) =







t if ν(A) = t or ν(B) = t

f if ν(A) = f and ν(B) = f

b otherwise,

ν(A ⊃B) =

{

t if ν(A) = f

ν(B) otherwise.

The classical truth-conditions and falsehood-conditions for the logical connec-
tives are retained. Except for implications, a formula is classified as both-true-
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and-false exactly when when it cannot be classified as true or false by the clas-
sical truth-conditions and falsehood-conditions. The definition of a valuation
given above shows that the logical connectives of LP⊃,F are (three-valued) truth-
functional, which means that each n-ary connective represents a function from
{t, f, b}n to {t, f, b}.

For LP⊃,F, the semantic logical consequence relation, denoted by �, is based
on the idea that a valuation ν satisfies a formula A if ν(A) ∈ {t, b}. It is defined
as follows: Γ � A iff for every valuation ν, either ν(A′) = f for some A′ ∈ Γ or
ν(A) ∈ {t, b}. We have that the Hilbert-style formulation of LP⊃,F is strongly
complete with respect to its semantics, i.e. Γ ⊢ A iff Γ � A (see e.g. [12]).

For all formulas A of LP⊃,F in which F does not occur, for all formulas B of
LP⊃,F in which no propositional variable occurs that occurs in A, {A,¬A} 6⊢ B
if 6 ⊢ B (see e.g. [1]).1 Hence, LP⊃,F is a paraconsistent propositional logic.

For LP⊃,F, the logical equivalence relation ⇔ is defined as for classical propo-
sitional logic: A ⇔ B iff for every valuation ν, ν(A) = ν(B). Unlike in classical
propositional logic, we do not have that A⇔ B iff ⊢ A≡B.

For LP⊃,F, the consistency property is defined as to be expected: A is con-
sistent iff for every valuation ν, ν(A) 6= b.

The following are some important properties of LP⊃,F:

(a) containment in classical logic: ⊢ ⊆ ⊢CL;
2

(b) proper basic connectives : for all sets Γ of formulas of LP⊃,F and all formulas
A, B, and C of LP⊃,F:
(b1) Γ ∪ {A} ⊢ B iff Γ ⊢ A⊃B,
(b2) Γ ⊢ A ∧B iff Γ ⊢ A and Γ ⊢ B,
(b3) Γ ∪ {A ∨B} ⊢ C iff Γ ∪ {A} ⊢ C and Γ ∪ {B} ⊢ C;

(c) weakly maximal paraconsistency relative to classical logic: for all formulas
A of LP⊃,F with 6 ⊢ A and ⊢CL A, for the minimal consequence relation ⊢′

such that ⊢ ⊆ ⊢′ and ⊢′ A, for all formulas B of LP⊃,F, ⊢′ B iff ⊢CL B;
(d) strongly maximal absolute paraconsistency: for all logics L with the same

logical constants and connectives as LP⊃,F and a consequence relation ⊢′

such that ⊢ ⊂ ⊢′, L is not paraconsistent;
(e) internalized notion of consistency: A is consistent iff ⊢ (A⊃F)∨ (¬A⊃ F);
(f) internalized notion of logical equivalence: A⇔ B iff ⊢ (A≡B)∧(¬A≡¬B);
(g) the laws given in Table 2 hold for the logical equivalence relation of LP⊃,F.

Properties (a)–(f) have been mentioned relatively often in the literature (see
e.g. [1,2,3,5,12,19]). Properties (a), (b1), (c), and (d) make LP⊃,F an ideal para-
consistent logic in the sense made precise in [2]. By property (e), LP⊃,F is also a
logic of formal inconsistency in the sense made precise in [19]. Properties (a)–(c)
indicate that LP⊃,F retains much of classical propositional logic. Actually, prop-
erty (c) can be strengthened to the following property: for all formulas A of
LP⊃,F, ⊢ A iff ⊢CL A.

1 We use the notation ⊢ A for ∅ ⊢ A, 6 ⊢ A for not ∅ ⊢ A, and Γ 6 ⊢ A for not Γ ⊢ A.
2 We use the symbol ⊢CL to denote the logical consequence relation of classical propo-
sitional logic.
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Table 2. Laws that hold for the logical equivalence relation of LP⊃,F

(1) A ∧ F ⇔ F

(3) A ∧ T ⇔ A

(5) A ∧A⇔ A

(7) A ∧B ⇔ B ∧ A
(9) (A ∧B) ∧ C ⇔ A ∧ (B ∧ C)

(11) A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C)

(13) (A⊃B) ∧ (A⊃ C) ⇔ A⊃ (B ∧ C)

(15) (A ∨ ¬A)⊃B ⇔ B

(2) A ∨ T ⇔ T

(4) A ∨ F ⇔ A

(6) A ∨ A⇔ A

(8) A ∨ B ⇔ B ∨A
(10) (A ∨B) ∨ C ⇔ A ∨ (B ∨ C)

(12) A ∨ (B ∧ C) ⇔ (A ∨B) ∧ (A ∨ C)

(14) (A⊃ C) ∧ (B ⊃ C) ⇔ (A ∨B)⊃ C

(16) A⊃ (B ⊃ C) ⇔ (A ∧B)⊃C

From Theorem 4.42 in [1], we know that there are exactly 8192 different three-
valued paraconsistent propositional logics with properties (a) and (b). From
Theorem 2 in [2], we know that properties (c) and (d) are common properties of
all three-valued paraconsistent propositional logics with properties (a) and (b1).
From Fact 103 in [19], we know that property (f) is a common property of all
three-valued paraconsistent propositional logics with properties (a), (b) and (e).
Moreover, it is easy to see that that property (e) is a common property of
all three-valued paraconsistent propositional logics with properties (a) and (b).
Hence, each three-valued paraconsistent propositional logic with properties (a)
and (b) has properties (c)–(f) as well.

Property (g) is not a common property of all three-valued paraconsistent
propositional logics with properties (a) and (b). To our knowledge, properties
like property (g) are not mentioned in the literature. However, like property (f),
property (g) is essential for the process algebra presented in this paper. Among
the 8192 three-valued paraconsistent propositional logics with properties (a)–(e),
which are considered desirable properties, LP⊃,F is one out of four with the
essential properties (f) and (g).

Proposition 1 (Almost Uniqueness). There are exactly four three-valued
paraconsistent propositional logics with the logical constants and connectives of
LP⊃,F that have the properties (a)–(g) mentioned above.

Proof. Because property (f) is a common property of all 8192 three-valued para-
consistent propositional logics with properties (a)–(e), it is sufficient to prove
that, among these 8192 logics, there exists only one that has property (g). Be-
cause ‘non-deterministic truth tables’ that uniquely characterize the 8192 log-
ics are given in [2], the theorem can be proved by showing that, for each of
the connectives, only one of the ordinary truth tables represented by the non-
deterministic truth table for that connective is compatible with the laws given
in Table 2. It can be shown by short routine case analyses that only one of the
8 ordinary truth tables represented by the non-deterministic truth tables for
conjunction is compatible with laws (1), (3), (5), and (7) and only one of the
32 ordinary truth tables represented by the non-deterministic truth tables for
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disjunction is compatible with laws (2), (4), (6), and (8). The truth tables con-
cerned are compatible with laws (9)–(12) as well. Given the ordinary truth table
for conjunction and disjunction so obtained, it can be shown by slightly longer
routine case analyses that exactly four of the 16 ordinary truth tables repre-
sented by the non-deterministic truth table for implication are compatible with
laws (13)–(15). The four truth tables concerned are compatible with law (16) as
well. ⊓⊔
The next corollary follows from the proof of Proposition 1.

Corollary 1 (Uniqueness). LP⊃,F is the only three-valued paraconsistent pro-
positional logic with the logical constants and connectives of LP⊃,F that has
the properties (a)–(g) mentioned above and moreover the property that the law
¬¬A⇔ A holds for its logical equivalence relation.

Corollary 1 may be of independent importance to the area of paraconsistent
logics.

From now on, we will use the following abbreviations: A ↔ B stands for
(A≡B) ∧ (¬A≡ ¬B) and ◦A stands for (A⊃ F) ∨ (¬A⊃ F).

In Section 3, where we will use formulas of LP⊃,F as terms, equality of for-
mulas will be interpreted as logical equivalence. This means that equality of
formulas can be formally proved using the fact that A ⇔ B iff ⊢ A↔ B. This
fact also suggests that LP⊃,F may be Blok-Pigozzi algebraizable [18]. It is shown
in [19] that actually all 8192 three-valued paraconsistent propositional logics re-
ferred to above are Blok-Pigozzi algebraizable. Although there must exist one,
a conditional-equational axiomatization of the algebras concerned in the case
of LP⊃,F has not yet been devised. Owing to this, the equations derivable in
the version of ACPps built on LP⊃,F presented in this paper cannot always be
derived by equational reasoning only.

3 Contradiction-Tolerant BPA with Propositional Signals

BPAps is a subtheory of ACPps that does not support parallelism and commu-
nication. In this section, we present the contradiction-tolerant version of BPAps.
In this version, which is called BPAct

ps, processes have their state to some extent
visible. The visible part of the state of a process, called the signal emitted by
the process, is a proposition of LP⊃,F. These propositions are not only used as
signals emitted by processes, but also as conditions under which processes may
proceed. The intuition is that the signal emitted by a process is a proposition
that holds at its start and the condition under which processes may proceed is
a proposition that must holds at its start.

In BPAct
ps, just as in BPAps, it is assumed that a fixed but arbitrary finite

set A of actions, with δ 6∈ A, and a fixed but arbitrary finite set Bat of atomic
propositions have been given. We write Aδ for A ∪ {δ}.

The algebraic theory BPAct
ps has two sorts:

– the sort P of processes ;
– the sort B of propositions.
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The algebraic theory BPAct
ps has the following constants and operators to build

terms of sort B:

– for each P ∈ Bat, the atomic proposition constant P :B;
– the falsity constant F :B;
– the unary negation operator ¬ :B → B;
– the binary conjunction operator ∧ :B×B → B;
– the binary disjunction operator ∨ :B×B → B;
– the binary implication operator ⊃ :B×B → B.

The algebraic theory BPAct
ps has the following constants and operators to build

terms of sort P:

– the deadlock constant δ :P;
– for each a ∈ A, the action constant a :P;
– the inaccessible process constant ⊥ :P;
– the binary alternative composition operator + :P×P → P;
– the binary sequential composition operator · :P×P → P;
– the binary guarded command operator :→ :B×P → P;
– the binary signal emission operator ∧N :B×P → P.

It is assumed that there are infinitely many variables of sort P, including x, y,
and z.

We use infix notation for the binary operators. The following precedence
conventions are used to reduce the need for parentheses. The operators to build
terms of sort B bind stronger than the operators to build terms of sort P. The
operator · binds stronger than all other binary operators to build terms of sort
P and the operator + binds weaker than all other binary operators to build
terms of sort P.

Let p and q be closed terms of sort P and φ be a closed term of sort B.
Intuitively, the constants and operators to build terms of sort P can be explained
as follows:

– δ is not capable of doing anything, the proposition that holds at the start of
δ is T;

– a is only capable of performing action a unconditionally and next terminating
successfully, the proposition that holds at the start of a is T;

– ⊥ is not capable of doing anything; there is an inconsistency at the start
of ⊥;

– p + q behaves either as p or as q but not both, the proposition that holds
at the start of p + q is the conjunction of the propositions that hold at the
start of p and q;

– p · q first behaves as p and on successful termination of p it next behaves as
q, the proposition that holds at the start of p ·q is the proposition that holds
at the start of p;

– φ :→ p behaves as p under condition φ, the proposition that holds at the
start of φ :→ p is the implication with φ as antecedent and the proposition
that holds at the start of p as consequent;
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Table 3. Axioms of BPAct
ps

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

T :→ x = x GC1

F :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ ∧ ψ) :→ x GC6

(φ ∨ ψ) :→ x = φ :→ x+ ψ :→ x GC7

x+⊥ = ⊥ NE1

⊥ · x = ⊥ NE2

a · ⊥ = δ NE3

φ = ψ if ⊢ φ↔ ψ IMP

T ∧N x = x SE1

F ∧N x = ⊥ SE2

φ ∧N ⊥ = ⊥ SE3

φ ∧N x+ y = φ ∧N (x+ y) SE4

(φ ∧N x) · y = φ ∧N x · y SE5

φ ∧N (ψ ∧N x) = (φ ∧ ψ) ∧N x SE6

φ ∧N (φ :→ x) = φ ∧N x SE7

φ :→ (ψ ∧N x) = (φ⊃ ψ) ∧N (φ :→ x) SE8

– φ ∧N p behaves as p if the proposition that holds at its start does not equal
F and as ⊥ otherwise, in the former case, the proposition that holds at the
start of φ ∧N p is the conjunction of φ and the proposition that holds at the
start of p.

The axioms of BPAct
ps are the axioms given in Table 3. In this table, a stands

for an arbitrary constant from A∪{δ}, φ and ψ stand for arbitrary closed terms
of sort B, and ⊢ is the logical consequence relation of LP⊃,F. A1–A7 are the
axioms of BPAδ, the subtheory of ACP that does not support parallelism and
communication (see e.g. [11]). NE1–NE3, GC1–GC7, and SE1–SE8 have been
taken from [8], using a different numbering.3 By IMP, the axioms of BPAct

ps

include all equations φ = ψ for which φ ↔ ψ is a theorem of LP⊃,F. This is
harmless because the connective ↔, which is the internalization of the logical
equivalence relation ⇔ of LP⊃,F, is a congruence.

The following generalizations of axioms SE4 and SE7 are among the equations
derivable from the axioms of BPAct

ps:

φ ∧N x+ ψ ∧N y = (φ ∧ ψ) ∧N (x+ y) ,

(φ ∧ ψ) ∧N (φ :→ x) = (φ ∧ ψ) ∧N x ,

φ ∧N ((φ ∧ ψ) :→ x) = φ ∧N (ψ :→ x) ;

3 The axioms of BPAct
ps are not independent: A3, A6, and A7 are derivable from GC1–

GC7 and IMP, NE1 and NE2 are derivable from SE1–SE8, and SE3 is derivable from
SE6 and IMP.
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the following specialization of axiom SE4 is among the equations derivable from
the axioms of BPAct

ps:

φ ∧N δ + x = φ ∧N x ;

and the following equations concerning the inaccessible process are among the
equations derivable from the axioms of BPAct

ps:

φ ∧N ⊥ = ⊥ ,

φ :→⊥ = (φ⊃ F) ∧N δ .

The derivable equations mentioned above are derivable from the axioms of
BPAps as well. The equation φ :→ ⊥ = ¬φ ∧N δ, which is derivable from the
axioms of BPAps, is not derivable from the axioms of BPAct

ps.
Let φ be a closed term of sort B such that not ⊢ φ ↔ F and not ⊢ ¬φ ↔ F.

Then, because not ⊢ φ ∧ ¬φ ↔ F, we have that a · (φ ∧N x + ¬φ ∧N y) = a · (F ∧N

(x + y)) = δ, which is derivable from the axioms of BPAps, is not derivable
from the axioms of BPAct

ps. This shows the main difference between BPAct
ps and

BPAps: the alternative composition of two processes of which the propositions
that hold at the start of them are contradictory does not lead to an inconsistency
in BPAct

ps, whereas it does lead to an inconsistency in BPAps. This is why BPAct
ps

is called the contradiction-tolerant version of BPAps.
Let φ be a closed term of sort B such that not ⊢ φ ↔ F and not ⊢ ¬φ ↔ F.

We can derive a · (φ ∧N b+¬φ ∧N c) = a · ((φ ∧¬φ) ∧N (b+ c)) = δ from the axioms
of BPAps because, in the case of BPAps, a · (φ ∧N b + ¬φ ∧N c) is not capable of
doing anything. We can only derive a · (φ ∧N b+¬φ ∧N c) = a · ((φ∧¬φ) ∧N (b+ c))
from the axioms of BPAct

ps because, in the case of BPAct
ps, a · (φ ∧N b + ¬φ ∧N c)

is capable of first performing a and next either performing b and after that
terminating successfully or performing c and after that terminating successfully
— although the proposition that holds at the start of the process that remains
after performing a is the contradiction φ ∧ ¬φ.

Let φ be a closed term of sort B such that not ⊢ φ ↔ F and not ⊢ ¬φ ↔ F.
Then, because ⊢ ◦φ ∧ φ ∧ ¬φ ↔ F, we have that a · (◦φ ∧N (φ ∧N x + ¬φ ∧N y)) =
a · (F ∧N (x + y)) = δ is derivable from the axioms of BPAct

ps. This shows that it
can be enforced by means of a consistency proposition (◦φ) that the alternative
composition of two processes of which the propositions that hold at the start of
them are contradictory leads to an inconsistency in BPAct

ps.
Hereafter, we will write [φ] for the equivalence class of φ modulo ⇔. That is,

[φ] = {ψ | φ⇔ ψ}. Hence, [φ] = {ψ | ⊢ φ↔ ψ}.
All processes that can be described by a closed term of BPAct

ps, can be de-
scribed by a basic term. The set B of basic terms is inductively defined by the
following rules:

– ⊥ ∈ B;
– if φ /∈ [F], then φ ∧N δ ∈ B;
– if φ /∈ [F] and a ∈ A, then φ :→ a ∈ B;
– if φ /∈ [F], a ∈ A, and p ∈ B, then φ :→ a · p ∈ B;
– if p, q ∈ B, then p+ q ∈ B.
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Each basic term can be written as ⊥ or in the form

χ ∧N δ +
∑

i∈{1,...,n}

φi :→ ai · pi +
∑

j∈{1,...,m}

ψj :→ bj ,

where n,m ∈ N, where χ /∈ [F], where φi /∈ [F], ai ∈ A, and pi ∈ B for all
i ∈ {1, . . . , n}, and where ψj /∈ [F] and bj ∈ A for all j ∈ {1, . . . ,m}. The subterm
χ is called the root signal of the basic term and the subterms φi :→ ai · pi and
ψj :→ bj are called the summands of the basic term.

All closed BPAct
ps terms of sort P can be reduced to a basic term.

Proposition 2 (Elimination). For all closed BPAct
ps terms p of sort P, there

exists a q ∈ B such that p = q is derivable from the axioms of BPAct
ps.

Proof. The proof is straightforward by induction on the structure of closed term
p. If p is of the form ⊥, a, p′ + p′′ or φ ∧N p′, then it is trivial to show that there
exists a q ∈ B such that p = q is derivable from the axioms of BPAct

ps. If p is
of the form p′ · p′′ or φ :→ p′, then it follows immediately from the induction
hypothesis and the following claims:

– for all p, p′ ∈ B, there exists a p′′ ∈ B such that p · p′ = p′′ is derivable from
the axioms of BPAct

ps;
– for all φ /∈ [F] and p ∈ B, there exists a p′ ∈ B such that φ :→ p = p′ is

derivable from the axioms of BPAct
ps.

Both claims are easily proved by induction on the structure of basic term p. ⊓⊔

4 Semantics of BPAct

ps

In this section, we present a structural operational semantics of BPAct
ps, define

a notion of bisimulation equivalence based on this semantics, and show that
the axioms of BPAct

ps are sound and complete with respect to this bisimulation
equivalence.

We start with the presentation of the structural operational semantics of
BPAct

ps. The following transition relations on closed terms of sort P are used:

– for each ℓ ∈ C × A, a binary action step relation ℓ−→ ;

– for each ℓ ∈ C × A, a unary action termination relation
ℓ−→√

;

– for each φ ∈ C, a unary signal emission relation sφ;

where C is the set of all closed terms φ of sort B such that φ /∈ [F]. We write

p
{φ} a−−−→ q instead of (p, q) ∈ (φ,a)−−−→, p

{φ} a−−−→ √
instead of p ∈ (φ,a)−−−→√

, and
s(p) = φ instead of p ∈ sφ. These relations can be explained as follows:

– p
{φ} a−−−→√

: p is capable of performing action a under condition φ and then
terminating successfully;

11



Table 4. Transition rules for BPAct
ps

a
{T} a−−−→√

x
{φ} a−−−→√

, s(x+ y) = ψ

x+ y
{φ} a−−−→√ ψ /∈ [F]

y
{φ} a−−−→√

, s(x+ y) = ψ

x+ y
{φ} a−−−→√ ψ /∈ [F]

x
{φ} a−−−→ x′, s(x+ y) = ψ

x+ y
{φ} a−−−→ x′

ψ /∈ [F]
y

{φ} a−−−→ y′, s(x+ y) = ψ

x+ y
{φ} a−−−→ y′

ψ /∈ [F]

x
{φ} a−−−→√

, s(y) = ψ

x · y {φ} a−−−→ y
ψ /∈ [F]

x
{φ} a−−−→ x′

x · y {φ} a−−−→ x′ · y
x

{φ} a−−−→√

ψ :→ x
{φ∧ψ} a−−−−−→√ φ ∧ ψ /∈ [F]

x
{φ} a−−−→ x′

ψ :→ x
{φ∧ψ} a−−−−−→ x′

φ ∧ ψ /∈ [F]

x
{φ} a−−−→√

, s(ψ ∧N x) = χ

ψ ∧N x
{φ} a−−−→√ χ /∈ [F]

x
{φ} a−−−→ x′, s(ψ ∧N x) = χ

ψ ∧N x
{φ} a−−−→ x′

χ /∈ [F]

s(⊥) = F s(a) = T

s(x) = φ, s(y) = ψ

s(x+ y) = φ ∧ ψ
s(x) = φ

s(x · y) = φ

s(x) = φ

s(ψ :→ y) = ψ ⊃ φ

s(x) = φ

s(ψ ∧N y) = ψ ∧ φ

– p
{φ} a−−−→ q: p is capable of performing action a under condition φ and then

proceeding as q;
– s(p) = φ: the proposition that holds at the start of p is φ.

The structural operational semantics of BPAct
ps is described by the transition

rules given in Table 4. In this table, a stands for an arbitrary constant from
A ∪ {δ} and φ, ψ, and χ stand for arbitrary closed terms of sort B.

A bisimulation is a binary relation R on closed BPAct
ps terms of sort P such

that, for all closed BPAct
ps terms p, q of sort P with (p, q) ∈ R, the following

conditions hold:

– if p
{φ} a−−−→ p′, then, for all valuations ν with ν(s(p)) 6= f and ν(φ) 6= f, there

exists a closed term ψ of sort B and a closed term q′ of sort P such that

ν(φ) = ν(ψ), q
{ψ} a−−−−→ q′, and (p′, q′) ∈ R;

– if q
{ψ} a−−−−→ q′, then, for all valuations ν with ν(s(q)) 6= f and ν(ψ) 6= f, there

exists a closed term φ of sort B and a closed term p′ of sort P such that

ν(ψ) = ν(φ), p
{φ} a−−−→ p′, and (p′, q′) ∈ R;

– if p
{φ} a−−−→√

, then, for all valuations ν with ν(s(p)) 6= f and ν(φ) 6= f, there

exists a closed term ψ of sort B such that ν(φ) = ν(ψ) and q
{ψ} a−−−−→√

;

– if q
{ψ} a−−−−→√

, then, for all valuations ν with ν(s(q)) 6= f and ν(ψ) 6= f, there

exists a closed term φ of sort B such that ν(ψ) = ν(φ) and p
{φ} a−−−→√

;
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– if s(p) = φ, then there exists a closed term ψ of sort B such that s(q) = ψ
and φ⇔ ψ;

– if s(q) = ψ, then there exists a closed term φ of sort B such that s(p) = φ
and ψ ⇔ φ.

Two closed BPAct
ps terms p, q of sort P are bisimulation equivalent, written p↔ q,

if there exists a bisimulation R such that (p, q) ∈ R. Let R be a bisimulation
such that (p, q) ∈ R. Then we say that R is a bisimulation witnessing p↔ q.

Henceforth, we will loosely say that a relation contains all closed substitution
instances of an equation if it contains all pairs (t, t′) such that t = t′ is a closed
substitution instance of the equation.

Because a transition on one side may be simulated by a set of transitions on
the other side, a bisimulation as defined above is called a splitting bisimulation
in [15].

Bisimulation equivalence is a congruence with respect to the operators of
BPAct

ps.

Proposition 3 (Congruence). For all closed BPAct
ps terms p, q, p′, q′ of sort

P and closed BPAct
ps terms φ of sort B, p↔ q and p′ ↔ q′ imply p+ p′ ↔ q+ q′,

p · p′ ↔ q · q′, φ :→ p↔ φ :→ q, and φ ∧N p↔ φ ∧N q.

Proof. We can reformulate the transition rules such that:

– bisimulation equivalence based on the reformulated transition rules accord-
ing to the standard definition of bisimulation equivalence coincides with
bisimulation equivalence based on the original transition rules according to
the definition of bisimulation equivalence given above;

– the reformulated transition rules make up a complete transition system spec-
ification in panth format.

The reformulation goes like the one for the transition rules for BPAps outlined
in [8]. The proposition follows now immediately from the well-known result that
bisimulation equivalence according to the standard definition of bisimulation
equivalence is a congruence if the transition rules concerned make up a complete
transition system specification in panth format (see e.g. [21]). ⊓⊔

The underlying idea of the reformulation referred to above is that we replace
each transition p

{φ} a−−−→ p′ by a transition p
{ν} a−−−→ p′ for each valuation ν such

that ν(φ) 6= f, and likewise p
{φ} a−−−→√

and s(p) = φ. Thus, in a bisimulation,
a transition on one side must be simulated by a single transition on the other
side. We did not present the reformulated structural operational semantics in
this paper because it is, in our opinion, intuitively less appealing.

BPAct
ps is sound with respect to ↔ for equations between closed terms.

Theorem 1 (Soundness). For all closed BPAct
ps terms p, q of sort P, p = q is

derivable from the axioms of BPAct
ps only if p↔ q.
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Proof. Because of Proposition 3, it is sufficient to prove the theorem for all closed
substitution instances of each axiom of BPAct

ps.
For each axiom, we can construct a bisimulation R witnessing p↔ q for all

closed substitution instances p = q of the axiom as follows:

– in the case of A1–A4 and A6, we take the relation R that consists of all closed
substitution instances of the axiom concerned and the equation x = x;

– in the case of A5, we take the relation R that consists of all closed substitu-
tion instances of A5, SE5, and the equation x = x;

– in the case of A7, NE1–NE3, GC2–GC3, and SE2–SE3, we take the relation
R that consists of all closed substitution instances of the axiom concerned;

– in the case of GC1, GC4–GC7, SE1, and SE4–SE8, we take the relation R
that consists of all closed substitution instances of the axiom concerned and
the equation x = x.

The laws from property (8) of LP⊃,F mentioned in Section 2 are needed to check
that these relations are witnessing ones. ⊓⊔

The proof of Theorem 1 goes along the same line as the soundness proof for
BPAps outlined in [8]. The laws from property (8) of LP⊃,F mentioned in Sec-
tion 2 are laws that LP⊃,F has in common with classical propositional logic.
They are needed in the soundness proof for BPAps as well, but their use is left
implicit in the proof outline given in [8].

BPAct
ps is complete with respect to ↔ for equations between closed terms.

Theorem 2 (Completeness). For all closed BPAct
ps terms p, q of sort P, p = q

is derivable from the axioms of BPAct
ps if p↔ q.

Proof. By Proposition 2 and Theorem 1, it is sufficient to prove the theorem for
basic terms p and q.

For p, p′ ∈ B, p′ is called a basic subterm of p if p′ ≡ p or there exists an
a ∈ A such that a · p′ is a subterm of p.

We introduce a reduction relation  on B. The one-step reduction relation
 on B is inductively defined as follows:

– if p′ is a basic subterm of p and q′ occurs twice as summand in p′, then p r
where r is p with one occurrence of q′ removed;

– if p′ is a basic subterm of p and both φ :→ a · q′ and ψ :→ a · q′ occur as
summand in p′, then p  r where r is p with the occurrence of φ :→ a · q′
replaced by φ ∨ ψ :→ a · q′ and the occurrence of ψ :→ a · q′ removed;

– if p′ is a basic subterm of p and both φ :→ a and ψ :→ a occur as summand
in p′, then p  r where r is p with the occurrence of φ :→ a replaced by
φ ∨ ψ :→ a and the occurrence of ψ :→ a removed.

The one-step reductions correspond to sharing of double states and joining of
transitions as in [16]. The reduction relation  is the reflexive and transitive
closure of, and the conversion relation is the reflexive and transitive closure
of  ∪ 

−1.
The following are important properties of :
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(1)  is strongly normalizing;
(2) for all p, q ∈ B, p q only if p↔ q;
(3) for all p, q ∈ B that are in normal form, p↔ q only if p = q is derivable from

axioms A1 and A2;
(4) for all p, q ∈ B, p q only if p = q is derivable from the axioms of BPAct

ps.

Verifying properties (1), (2), and (4) is trivial. Property (3) can be verified by
proving it, simultaneously with the property

for all p ∈ B that are in normal form, any bisimulation between p and itself
is the identity relation,

by induction on the number of occurrences of a constant from A in p and q. The
proof is similar to the proof of Theorem 2.12 from [13], but easier.

From properties (1), (2) and (3), it follows immediately that, for all p, q ∈ B,
p↔ q iff p q. From this and property (4), it follows immediately that, for all
p, q ∈ B, p↔ q only if p = q is derivable from the axioms of BPAct

ps. ⊓⊔

5 Contradiction-Tolerant ACP with Propositional Signals

In this section, we present the contradiction-tolerant version of ACPps. This ver-
sion, which is called ACPct

ps, is an extension of BPAct
ps that supports parallelism

and communication.
In ACPct

ps, just as in BPAct
ps, it is assumed that a fixed but arbitrary finite

set A of actions, with δ 6∈ A, and a fixed but arbitrary finite set Bat of atomic
propositions have been given. In ACPct

ps, it is further assumed that a fixed but
arbitrary commutative and associative communication function | :Aδ×Aδ → Aδ,
such that δ | a = δ for all a ∈ Aδ, has been given. The function | is regarded
to give the result of synchronously performing any two actions for which this is
possible, and to be δ otherwise.

The algebraic theory ACPct
ps has the sorts, constants and operators of BPAct

ps

and in addition the following operators:

– the binary parallel composition operator ‖ :P×P → P;
– the binary left merge operator ⌊⌊ :P×P → P;
– the binary communication merge operator | :P×P → P;
– for each H ⊆ A, the unary encapsulation operator ∂H :P → P.

We use infix notation for the additional binary operators as well.
The constants and operators of ACPct

ps to build terms of sort P are the
constants and operators of ACP and additionally the guarded command operator
and the signal emission operator.

Let p and q be closed terms of sort P. Intuitively, the additional operators
can be explained as follows:

– p‖q behaves as the process that proceeds with p and q in parallel, the propo-
sition that holds at the start of p ‖ q is the conjunction of the propositions
that hold at the start of p and q;
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Table 5. Additional axioms for ACPct
ps

x ‖ y = x ⌊⌊ y + y ⌊⌊ x+ x | y CM1

a ⌊⌊ x = a · x+ ∂A(x) CM2S

a · x ⌊⌊ y = a · (x ‖ y) + ∂A(y) CM3S

(x+ y) ⌊⌊ z = x ⌊⌊ z + y ⌊⌊ z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

(φ :→ x) ⌊⌊ y = φ :→ (x ⌊⌊ y) + ∂A(y) GC8S

(φ :→ x) | y = φ :→ (x | y) + ∂A(y) GC9S

x | (φ :→ y) = φ :→ (x | y) + ∂A(x) GC10S

∂H(φ :→ x) = φ :→ ∂H(x) GC11

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

(φ ∧N x) ⌊⌊ y = φ ∧N (x ⌊⌊ y) SE9

(φ ∧N x) | y = φ ∧N (x | y) SE10

x | (φ ∧N y) = φ ∧N (x | y) SE11

∂H(φ ∧N x) = φ ∧N ∂H(x) SE12

– p ⌊⌊ q behaves the same as p ‖ q, except that it starts with performing an
action of p, the proposition that holds at the start of p ⌊⌊ q is the conjunction
of the propositions that hold at the start of p and q;

– p |q behaves the same as p‖q, except that it starts with performing an action
of p and an action of q synchronously, the proposition that holds at the start
of p |q is the conjunction of the propositions that hold at the start of p and q;

– ∂H(p) behaves the same as p, except that the actions in H are blocked, the
proposition that holds at the start of ∂H(p) is the proposition that holds at
the start of p.

The axioms of ACPct
ps are the axioms of BPAct

ps and the additional axioms
given in Table 5. In this table, a, b, c stand for arbitrary constants from A ∪ {δ}
and φ stands for an arbitrary closed term of sort B. A1–A7, CM1–CM9 with
CM1S and CM2S replaced by a ⌊⌊x = a ·x and a · x ⌊⌊ y = a · (x ‖ y), C1–C3, and
D1–D4 are the axioms of ACP (see e.g. [11]). GC11 and SE9–SE12 have been
taken from [8] and GC9S and GC10S have been taken from [8] with subterms of
the form s(x) ∧N δ replaced by ∂A(x). CM2S, CM3S and GC8S differ really from
the corresponding axioms in [8] due to the choice of having as the proposition
that holds at the start of the left merge of two processes, as in the case of the
communication merge, always the conjunction of the propositions that hold at
the start of the two processes.

The following equations are among the equations derivable from the axioms
of ACPct

ps:

(φ ∧N x) ‖ (ψ ∧N y) = (φ ∧ ψ) ∧N (x ‖ y) ,
x ‖ ⊥ = ⊥ , ⊥ ‖ x = ⊥ .
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Let φ be a closed term of sort B such that not ⊢ φ ↔ F and not ⊢ ¬φ ↔ F.
Then, because not ⊢ φ∧¬φ↔ F, we have that a·(φ∧Nx‖¬φ∧Ny) = a·(F∧N(x‖y)) =
δ, which is derivable from the axioms of ACPps, is not derivable from the axioms
of ACPct

ps. This shows the main difference between ACPct
ps and ACPps: the par-

allel composition of two processes of which the propositions that hold at the
start of them are contradictory does not lead to an inconsistency in ACPct

ps,

whereas it does lead to an inconsistency in ACPps. This is why ACPct
ps is called

the contradiction-tolerant version of ACPps.
Let φ be a closed term of sort B such that not ⊢ φ ↔ F and not ⊢ ¬φ ↔ F.

Assume that b|c = d. Then we can derive a·(φ∧Nb‖¬φ∧Nc) = a·((φ∧¬φ)∧N(b‖c)) =
a · ((φ∧¬φ) ∧N (b ·c+c ·b+d)) = δ from the axioms of BPAps because, in the case
of BPAps, a ·(φ ∧Nb‖¬φ ∧Nc) is not capable of doing anything. We can only derive
a · (φ ∧N b ‖¬φ ∧N c) = a · ((φ∧¬φ) ∧N (b ‖ c)) = a · ((φ∧¬φ) ∧N (b · c+ c · b+ d)) from
the axioms of BPAct

ps because, in the case of BPAct
ps, a · (φ ∧N b‖¬φ ∧N c) is capable

of first performing a and next either performing b and c in either order and
after that terminating successfully or performing d and after that terminating
successfully — although the proposition that holds at the start of the process
that remains after performing a is the contradiction φ ∧ ¬φ.

Let φ be a closed term of sort B such that not ⊢ φ ↔ F and not ⊢ ¬φ ↔ F.
Then, because ⊢ ◦φ ∧ φ ∧ ¬φ ↔ F, we have that a · (◦φ ∧N (φ ∧N x ‖ ¬φ ∧N y)) =
a · (F ∧N (x ‖ y)) = δ is derivable from the axioms of ACPct

ps. This shows that
it can be enforced by means of a consistency proposition (◦φ) that the parallel
composition of two processes of which the propositions that hold at the start of
them are contradictory leads to an inconsistency in ACPct

ps.

All closed ACPct
ps terms of sort P can be reduced to a basic term.

Proposition 4 (Elimination). For all closed ACPct
ps terms p of sort P, there

exists a q ∈ B such that p = q is derivable from the axioms of ACPct
ps.

Proof. The proof is straightforward by induction on the structure of closed term
p. If p is of the form ⊥, a, p′ + p′′, p′ · p′′, φ :→ p′ or φ ∧N p′, then it follows
immediately from the induction hypothesis and Proposition 2 that there exists a
q ∈ B such that p = q is derivable from the axioms of ACPct

ps. If p is of the form
p′ ‖ p′′, p′ ⌊⌊ p′′, p′ | p′′ or ∂H(p′), then it follows immediately from the induction
hypothesis and claims similar to the ones from the proof of Proposition 2. The
claims concerning ‖, ⌊⌊, and | are easily proved simultaneously by structural
induction. The claim concerning ∂H is easily proved by structural induction. ⊓⊔

6 Semantics of ACPct

ps

In this section, we present a structural operational semantics of ACPct
ps and

show that the axioms of ACPct
ps are sound and complete with respect to this

bisimulation equivalence.
We start with the presentation of the structural operational semantics of

ACPct
ps. The structural operational semantics of ACPct

ps is described by the tran-

sition rules for BPAct
ps and the additional transition rules given in Table 6. In
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Table 6. Additional transition rules for ACPct
ps

x
{φ} a−−−→√

, s(x ‖ y) = ψ, s(y) = χ

x ‖ y {φ} a−−−→ y
ψ, χ /∈ [F]

y
{φ} a−−−→√

, s(x ‖ y) = ψ, s(x) = χ

x ‖ y {φ} a−−−→ x
ψ, χ /∈ [F]

x
{φ} a−−−→ x′, s(x ‖ y) = ψ, s(x′ ‖ y) = χ

x ‖ y {φ} a−−−→ x′ ‖ y
ψ, χ /∈ [F]

y
{φ} a−−−→ y′, s(x ‖ y) = ψ, s(x ‖ y′) = χ

x ‖ y {φ} a−−−→ x ‖ y′
ψ, χ /∈ [F]

x
{φ} a−−−→√

, y
{ψ} b−−−→√

, s(x ‖ y) = χ

x ‖ y {φ∧ψ} c−−−−−→√ a | b = c, φ ∧ ψ, χ /∈ [F]

x
{φ} a−−−→√

, y
{ψ} b−−−→ y′, s(x ‖ y) = χ

x ‖ y {φ∧ψ} c−−−−−→ y′
a | b = c, φ ∧ ψ, χ /∈ [F]

x
{φ} a−−−→ x′, y

{ψ} b−−−→√
, s(x ‖ y) = χ

x ‖ y {φ∧ψ} c−−−−−→ x′
a | b = c, φ ∧ ψ, χ /∈ [F]

x
{φ} a−−−→ x′, y

{ψ} b−−−→ y′, s(x ‖ y) = χ, s(x′ ‖ y′) = χ′

x ‖ y {φ∧ψ} c−−−−−→ x′ ‖ y′
a | b = c, φ ∧ ψ, χ, χ′ /∈ [F]

x
{φ} a−−−→√

, s(x ⌊⌊ y) = ψ, s(y) = χ

x ⌊⌊ y {φ} a−−−→ y
ψ,χ /∈ [F]

x
{φ} a−−−→ x′, s(x ⌊⌊ y) = ψ, s(x′ ‖ y) = χ

x ⌊⌊ y {φ} a−−−→ x′ ‖ y
ψ, χ /∈ [F]

x
{φ} a−−−→√

, y
{ψ} b−−−→√

, s(x | y) = χ

x | y {φ∧ψ} c−−−−−→√ a | b = c, φ ∧ ψ, χ /∈ [F]

x
{φ} a−−−→√

, y
{ψ} b−−−→ y′, s(x | y) = χ

x | y {φ∧ψ} c−−−−−→ y′
a | b = c, φ ∧ ψ, χ /∈ [F]

x
{φ} a−−−→ x′, y

{ψ} b−−−→√
, s(x | y) = χ

x | y {φ∧ψ} c−−−−−→ x′
a | b = c, φ ∧ ψ, χ /∈ [F]

x
{φ} a−−−→ x′, y

{ψ} b−−−→ y′, s(x | y) = χ, s(x′ ‖ y′) = χ′

x | y {φ∧ψ} c−−−−−→ x′ ‖ y′
a | b = c, φ ∧ ψ, χ, χ′ /∈ [F]

x
{φ} a−−−→√

∂H(x)
{φ} a−−−→√ a 6∈ H

x
{φ} a−−−→ x′

∂H(x)
{φ} a−−−→ ∂H(x′)

a 6∈ H

s(x) = φ, s(y) = ψ

s(x ‖ y) = φ ∧ ψ
s(x) = φ, s(y) = ψ

s(x ⌊⌊ y) = φ ∧ ψ
s(x) = φ, s(y) = ψ

s(x | y) = φ ∧ ψ
s(x) = φ

s(∂H(x)) = φ
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these tables, a, b, and c stand for arbitrary constants from A ∪ {δ} and φ, ψ, χ,
and χ′ stand for arbitrary closed terms of sort B.

In Sections 3 and 5, we have touched upon the main difference between ACPct
ps

and ACPps: the alternative and parallel composition of two processes of which
the propositions that hold at the start of them are contradictory does not lead to
an inconsistency in ACPct

ps, whereas it does lead to an inconsistency in ACPps.

However, the transition rules for ACPct
ps and ACPps seem to be the same. The

difference is fully accounted for by the fact that [F], the equivalence class of F
modulo logical equivalence, contains in the case of LP⊃,F only propositions of
the form φ ∧ ¬φ with φ such that either φ ⇔ F or ¬φ ⇔ F, whereas it contains
in the case of classical propositional logic all propositions of the form φ ∧ ¬φ.

By this fact, in the case of ACPct
ps, a·(φ∧Nb‖¬φ∧Nc) from the example preceding

Proposition 4 is capable of first performing a and next either performing b and c
in either order and after that terminating successfully or performing d and after
that terminating successfully — although the proposition that holds at the start
of the process that remains after performing a is the contradiction φ ∧ ¬φ —
and, in the case of ACPps, it is not capable of doing anything.

Bisimulation equivalence is a congruence with respect to the operators of
ACPct

ps.

Proposition 5 (Congruence). For all closed ACPct
ps terms p, q, p′, q′ of sort

P and closed ACPct
ps terms φ of sort B, p↔ q and p′ ↔ q′ imply p+ p′ ↔ q+ q′,

p · p′ ↔ q · q′, φ :→ p ↔ φ :→ q, φ ∧N p↔ φ ∧N q, p ‖ p′ ↔ q ‖ q′, p ⌊⌊ p′ ↔ q ⌊⌊ q′,
p | p′ ↔ q | q′, and ∂H(p)↔ ∂H(q).

Proof. The proof goes along the same line as the proof of Proposition 3. ⊓⊔

ACPct
ps is sound with respect to ↔ for equations between closed terms.

Theorem 3 (Soundness). For all closed ACPct
ps terms p, q of sort P, p = q is

derivable from the axioms of ACPct
ps only if p↔ q.

Proof. Because of Proposition 5, it is sufficient to prove the theorem for all closed
substitution instances of each axiom of ACPct

ps.
For each axiom, we can construct a bisimulation R witnessing p↔ q for all

closed substitution instances p = q of the axiom as follows:

– in the case of the axioms of BPAct
ps,we take the same relation as in the proof

of Theorem 1;
– in the case of CM1, we take the relation R that consists of all closed sub-

stitution instances of CM1, the equation x ‖ y = y ‖ x, and the equation
x = x;

– in the case of CM2S–CM9, we take the relation R that consists of all closed
substitution instances of the axiom concerned and the equation x = x;

– in the case of C1–C3 and D1–D2, we take the relation R that consists of all
closed substitution instances of the axiom concerned;
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– in the case of D3–D4, GC8S–GC11, and SE9–SE12, we take the relation R
that consists of all closed substitution instances of the axiom concerned and
the equation x = x.

The laws from property (8) of LP⊃,F mentioned in Section 2 are needed to check
that these relations are witnessing ones. ⊓⊔

ACPct
ps is complete with respect to ↔ for equations between closed terms.

Theorem 4 (Completeness). For all closed ACPct
ps terms p, q of sort P, p = q

is derivable from the axioms of ACPct
ps if p↔ q.

Proof. We have that the axioms of BPAct
ps are complete with respect to↔ (The-

orem 2), the axioms of ACPct
ps are sound with respect to ↔ (Theorem 3), and

for each closed ACPct
ps term p of sort P, there exists a closed BPAct

ps term q such

that p = q is derivable from the axioms of ACPct
ps (Proposition 4). By Theorem

3.14 from [31], the result immediately follows from this and the claim that the
set of transition rules for ACPct

ps is an operational conservative extension of the

set of transition rules for BPAct
ps.

This claim can easily be proved if we reformulate the transition rules for
ACPct

ps in the same way as the transition rules for BPAct
ps have been reformu-

lated to prove Proposition 3. The operational conservativity can then easily be
proved by verifying that the reformulated transition rules for ACPct

ps makes up
a complete transition system specification, the reformulated transition rules for
BPAct

ps— which are included in the reformulated transition rules for ACPct
ps—

are source-dependent, and the additional transition rules have fresh sources (see
e.g. [22]). ⊓⊔

7 State Operators

In this section, we extend ACPct
ps with state operators. The resulting theory

is called ACPct
ps+SO. The state operators introduced here generalize the state

operators added to ACP in [6].
The state operators from [6] were introduced to make it easy to represent the

execution of a process in a state. The basic idea was that the execution of an
action in a state has effect on the state, i.e. it causes a change of state. Moreover,
there is an action left when an action is executed in a state. The main difference
between the original state operators and the state operators introduced here is
that, in the case of the latter, the state in which a process is executed determines
the proposition that holds at its start. Thus, one application of a state operator
may replace many applications of the signal emission operator.

It is assumed that a fixed but arbitrary set S of states has been given, together
with functions act : A × S → Aδ, eff : A × S → S, and sig : S → B, where B is
the set of all closed terms φ of sort B.

For each s ∈ S, we add a unary state operator λs : P → P to the operators
of ACPct

ps.
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Table 7. Axioms for state operators

λs(a) = sig(s) ∧N act(a, s) SO1

λs(a · x) = sig(s) ∧N act(a, s) · λeff(a,s)(x) SO2

λs(x+ y) = λs(x) + λs(y) SO3

λs(φ :→ x) = sig(s) ∧N (φ :→ λs(x)) SO4

λs(φ ∧N x) = φ ∧N λs(x) SO5

Table 8. Transition rules for state operators

x
{φ} a−−−→√

, s(λs(x)) = ψ

λs(x)
{φ} act(a,s)−−−−−−−→√ act(a, s) 6= δ, ψ /∈ [F]

x
{φ} a−−−→ x′, s(λs(x)) = ψ, s(λeff(a,s)(x

′)) = χ

λs(x)
{φ} act(a,s)−−−−−−−→ λeff(a,s)(x

′)
act(a, s) 6= δ, ψ, χ /∈ [F]

s(x) = φ

s(λs(x)) = φ ∧ ψ
sig(s) = ψ

The state operator λs allows, given the above-mentioned functions, processes
to be executed in a state. Let p be a closed term of sort P. Then λs(p) is the
process p executed in state s. The function act gives, for each action a and state
s, the action that results from executing a in state s. The function eff gives, for
each action a and state s, the state that results from executing a in state s. The
function sig gives, for each state s, the proposition that holds at the start of any
process executed in state s.

The additional axioms for λs, where s ∈ S, are given in Table 7. In this table,
a stands for an arbitrary constant from A ∪ {δ} and φ stands for an arbitrary
closed term of sort B. SO1–SO5 have been taken from [8].

The following equations are among the equations derivable from the axioms
of ACPct

ps+SO:

λs(⊥) = ⊥ , λs(δ) = sig(s) ∧N δ .

All closed ACPct
ps+SO terms of sort P can be reduced to a basic term.

Proposition 6 (Elimination). For all ACPct
ps+SO closed terms p of sort P,

there exists a q ∈ B such that p = q is derivable from the axioms of ACPct
ps+SO.

Proof. The proof goes along the same line as the proof of Proposition 2. ⊓⊔

The additional transition rules for the state operators are given in Table 8.
In this table, a stands for an arbitrary constant from A ∪ {δ} and φ stands for
an arbitrary closed term of sort B.

Bisimulation equivalence is a congruence with respect to the operators of
ACPct

ps+SO.
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Proposition 7 (Congruence). For all closed ACPct
ps+SO terms p, q, p′, q′ of

sort P and closed ACPct
ps+SO terms φ of sort B, p ↔ q and p′ ↔ q′ imply

p + p′ ↔ q + q′, p · p′ ↔ q · q′, φ :→ p↔ φ :→ q, φ ∧N p↔ φ ∧N q, p ‖ p′ ↔ q ‖ q′,
p ⌊⌊ p′ ↔ q ⌊⌊ q′, p | p′ ↔ q | q′, ∂H(p)↔ ∂H(q), and λs(p)↔ λs(q).

Proof. The proof goes along the same line as the proof of Proposition 3. ⊓⊔

ACPct
ps+SO is sound with respect to ↔ for equations between closed terms.

Theorem 5 (Soundness). For all closed ACPct
ps+SO terms p, q of sort P,

p = q is derivable from the axioms of ACPct
ps+SO only if p↔ q.

Proof. The proof goes along the same line as the proof of Theorem 3. ⊓⊔

ACPct
ps+SO is complete with respect to↔ for equations between closed terms.

Theorem 6 (Completeness). For all closed ACPct
ps+SO terms p, q of sort P,

p = q is derivable from the axioms of ACPct
ps+SO if p↔ q.

Proof. The proof goes along the same line as the proof of Theorem 4. ⊓⊔

8 Guarded Recursion

In order to allow for the description of processes without a finite upper bound to
the number of actions that it can perform, we add in this section guarded recur-
sion to ACPct

ps and ACPct
ps+SO. The resulting theories are called ACPct

ps+REC

and ACPct
ps+SO+REC, respectively.

A recursive specification over ACPct
ps is a set of recursion equations E =

{X = tX | X ∈ V } where V is a set of variables of sort P and each tX is a
term of sort P that only contains variables from V . We write V(E) for the set
of all variables that occur on the left-hand side of an equation in E. A solution
of a recursive specification E is a set of processes (in some model of ACPct

ps)
{PX | X ∈ V(E)} such that the equations of E hold if, for all X ∈ V(E), X
stands for PX .

Let t be a ACPct
ps term of sort P containing a variable X . We call an oc-

currence of X in t guarded if t has a subterm of the form a · t′, where a ∈ A,
with t′ containing this occurrence of X . A recursive specification E over ACPct

ps

is called a guarded recursive specification if all occurrences of variables in the
right-hand sides of its equations are guarded or it can be rewritten to such a
recursive specification using the axioms of ACPct

ps in either direction and/or the

equations in E from left to right. We are only interested in a model of ACPct
ps in

which guarded recursive specifications have unique solutions.
For each guarded recursive specification E over ACPct

ps and each variable
X ∈ V(E), we add a constant of sort P, standing for the unique solution of E
for X , to the constants of ACPct

ps. This constant is denoted by 〈X |E〉.
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Table 9. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E→X = 〈X|E〉 if X ∈ V(E) RSP

Table 10. Transition rules for guarded recursion

〈tX |E〉 {φ} a−−−→√

〈X|E〉 {φ} a−−−→√ X= tX ∈ E
〈tX |E〉 {φ} a−−−→ x′

〈X|E〉 {φ} a−−−→ x′
X= tX ∈ E

s(〈tX |E〉) = φ

s(〈X|E〉) = φ
X= tX ∈ E

We will use the following notation. Let t be a ACPct
ps term of sort P and E

be a guarded recursive specification over ACPct
ps. Then we write 〈t|E〉 for t with,

for all X ∈ V(E), all occurrences of X in t replaced by 〈X |E〉.
The additional axioms for guarded recursion are the equations given in Ta-

ble 9. In this table, X , tX , and E stand for an arbitrary variable of sort P,
an arbitrary ACPct

ps term, and an arbitrary guarded recursive specification over

ACPct
ps, respectively. Side conditions are added to restrict the variables, terms

and guarded recursive specifications for which X , tX and E stand. The ad-
ditional axioms for guarded recursion are known as the recursive definition
principle (RDP) and the recursive specification principle (RSP). The equations
〈X |E〉 = 〈tX |E〉 for a fixed E express that the constants 〈X |E〉 make up a solu-
tion of E. The conditional equations E→X = 〈X |E〉 express that this solution
is the only one.

The additional transition rules for the constants 〈X |E〉 are given in Table 10.
In this table, X , tX and E stand for an arbitrary variable of sort P, an arbi-
trary ACPct

ps term and an arbitrary guarded recursive specification over ACPct
ps,

respectively.
Bisimulation equivalence is a congruence with respect to the operators of

ACPct
ps+REC.

Proposition 8 (Congruence). For all closed ACPct
ps+REC terms p, q, p′, q′ of

sort P and closed ACPct
ps+REC terms φ of sort B, p ↔ q and p′ ↔ q′ imply

p + p′ ↔ q + q′, p · p′ ↔ q · q′, φ :→ p↔ φ :→ q, φ ∧N p↔ φ ∧N q, p ‖ p′ ↔ q ‖ q′,
p ⌊⌊ p′ ↔ q ⌊⌊ q′, p | p′ ↔ q | q′, ∂H(p)↔ ∂H(q).

Proof. The proof goes along the same line as the proof of Proposition 3. ⊓⊔

ACPct
ps+REC is sound with respect to↔ for equations between closed terms.

Theorem 7 (Soundness). For all closed ACPct
ps+REC terms p, q of sort P,

p = q is derivable from the axioms of ACPct
ps+REC only if p↔ q.
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Proof. Because of Proposition 8, it is sufficient to prove the theorem for all closed
ACPct

ps+REC terms p and q for which p = q is a closed substitution instance of an

axiom of ACPct
ps+REC. With the exception of the closed substitution instances

of RSP, the proof goes along the same line as the proof of Theorem 3. The
proof of the validity of RSP is rather involved. We confine ourselves to a very
brief outline of the proof. The transition rules for ACPct

ps+REC determines a

transition system for each process that can be denoted by a closed ACPct
ps+REC

term of sort P. A model of ACPct
ps+REC based on these transition systems can

be constructed along the same line as the models of a generalization of ACPps
constructed in [15]. An equation p = q between closed ACPct

ps+REC terms holds
in this model iff p↔ q. Based on this model, the validity of RSP can be proved
along the same line as in the proof of Theorem 10 from [15]. The underlying
ideas of that proof originate largely from [9]. ⊓⊔

Guarded recursion can be added to ACPct
ps+SO in the same way as it is added

to ACPct
ps above, resulting in ACPct

ps+SO+REC. It is easy to see that the above

results, i.e. Proposition 8 and Theorem 7, go through for ACPct
ps+SO+REC.

Completeness of ACPct
ps+REC and ACPct

ps+SO+REC with respect to ↔ for
equations between closed terms can be obtained by restriction to the finite lin-
ear recursive specifications, i.e. the guarded recursive specifications with finitely
many recursion equations where the right-hand side of each recursion equation
can be written in the form χ ∧Nδ+

∑

i∈{1,...,n} φi :→ai ·Xi+
∑

j∈{1,...,m} ψj :→bj ,

where n,m ∈ N, where χ /∈ [F], where φi /∈ [F], ai ∈ A, and Xi is variable of sort
P for all i ∈ {1, . . . , n}, and where ψj /∈ [F] and bj ∈ A for all j ∈ {1, . . . ,m}.

9 Concluding Remarks

We have presented ACPct
ps, a version of ACPps built on a paraconsistent pro-

positional logic called LP⊃,F. ACPct
ps deals with processes with possibly self-

contradictory states by means of this paraconsistent logic. To our knowledge,
processes with possibly self-contradictory states have not been dealt with in any
theory or model of processes. This leaves nothing to be said about related work.
However, it is worth mentioning that the need for a theory or model of processes
with possibly self-contradictory states was already expressed in [24].

In order to streamline the presentation of ACPct
ps, we have left out the termi-

nal signal emission operator, the global signal emission operator, and the root
signal operator of ACPps and also the additional operators introduced in [8]
other than the state operators. To our knowledge, these are exactly the oper-
ators that have not been used in any work based on ACPps. The root signal
operator is an auxiliary operator which can be dispensed with and the global
signal emission operator is an auxiliary operator which can be dispensed with
in the absence of the terminal signal emission operator. The terminal signal
emission operator makes it possible to express that a proposition holds at the
termination of a process.
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ACPct
ps is a contradiction-tolerant version of ACPps [8]. ACPps itself can

be viewed as a simplification and specialization of ACPS [7]. The simplification
consists of the use of conditions instead of special actions to observe signals. The
specialization consists of the use of the set of all propositions with propositional
variables from a given set instead of an arbitrary free Boolean algebra over a
given set of generators. Later, the generalization of ACPps to arbitrary such
Boolean algebras has been treated in [15]. Moreover, a timed version of ACPps
has been used in [14] as the basis of a process algebra for hybrid systems and a
timed version of ACPps has been used in [17] to give a semantics to a specification
language that was widely used in telecommunications at the time.

Timed versions of ACPct
ps may be useful in various applications. We believe

that they can be obtained by combining ACPct
ps with a timed version of ACP, such

as ACPdrt or ACPsrt from [10], in much the same way as timed versions of ACPps
have been obtained in [14,17]. Because idling of processes is taken into account,
two forms of the guarded command operator can be distinguished in these timed
versions, namely a non-waiting form and a waiting form (see e.g. [17]). A version
of ACPct

ps with abstraction features like in ACPτ (see e.g. [11]) may be useful in

various applications as well. Working out a timed version of ACPct
ps and working

out a version of ACPct
ps with abstraction features are options for further work.

It is very important that case studies are carried out in conjunction with the
theoretical work just mentioned to assess the degree of usefulness in practical
applications.

LP⊃,F is Blok-Pigozzi algebraizable. However, although there must exist one,
a conditional-equational axiomatization of the algebras concerned has not yet
been devised. Owing to this, the equations derivable in ACPct

ps cannot always be
derived by equational reasoning only. Another option for further work is devising
the axiomatization referred to.
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