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Abstract

We consider a communication channel in which the only available mode of communication
is transmitting beeps. A beep transmitted by a station attached to the channel reaches all the
other stations instantaneously. Stations are anonymous, in that they do not have any individual
identifiers. The algorithmic goal is to assign names to the stations in such a manner that the
names make a contiguous segment of positive integers starting from 1. We develop a Las Vegas
naming algorithm, for the case when the number of stations n is known, and a Monte Carlo
algorithm, for the case when the number of stations n is not known. The given randomized
algorithms are provably optimal with respect to the expected time O(n log n), the expected
number of used random bits O(n log n), and the probability of error.
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1 Introduction

The considered model of communication is anonymous channel with beeping. There are a number

of stations attached to the channel that are devoid of any identifying features they can refer to

during communication. The goal is to have the stations assign names to themselves by executing a

distributed communication algorithm.

The stations communicate among themselves in synchronous rounds. All of them start together

in the same round. The channel provides a binary feedback to all the attached stations: when no

stations transmit then nothing is sensed on the communication medium, and when some station

does transmit then every station detects a beep.

A beeping channel resembles multiple-access channels, in that it can be interpreted as a single-

hop radio network. The difference between the two models is in the feedback they provide. Multiple

access channels come in two variants: with and without collision detection. A multiple access

channel without collision detection provides the following binary feedback: when exactly one station

transmits then the transmitted message is heard by every station, and otherwise, when either no

station transmits or multiple stations do, then this results in each station sensing silence. A multiple

access channel with collision detection provides the following ternary feedback: silence occurs when

no station transmits, a message is heard when exactly one station transmits, and collision occurs

when multiple stations transmit simultaneously, which prevents any of the transmitted messages

to be heard and is sensed as distinct from silence.

A channel with beeping has its communication capabilities restricted only to carrier sensing,

without even the functionality of transmitting specific bits as messages. The only apparent mode

of exchanging information on such a synchronous channel with beeping is to suitably encode it by

sequences of beeps and silences.

Modeling communication by a mechanism as limited as beeping has been motivated by diverse

aspects of communication and distributed computing. Beeping provides a detection of collision

on a transmitting medium by sensing it. Communication only by carrier sensing can be placed

in a general context of investigating wireless communication on the physical level and modeling

interference of concurrent transmissions, of which the signal-to-interference-plus-noise ratio (SINR)

model is among the most popular and well studied; see [39, 45, 55]. Beeping is then a very limited

mode of wireless communication, with feedback in the form of either a simplest signal, which is

identical to interference, or lack thereof.

Another motivation comes from biological systems, in which agents exchange information in a

distributed manner, while the environment severely restricts how such agents communicate; see [2,

44, 52].

Finally, communication with beeps belongs to the area of distributed computing by weak devices,

where the involved agents have restricted computational and communication capabilities. In this

context, the devices are modeled as finite-state machines that communicate asynchronously by

exchanging states or messages from a finite alphabet. Examples of this approach include the

“population-protocols” model introduced by Angluin et at. [5], (see also [6, 8, 49]), and the “stone-

age” distributed computing model proposed by Emek and Wattenhofer [30].

Previous work. The model of communication by discrete beeping was introduced by Cornejo

and Kuhn [21], who considered a general-topology wireless network in which nodes use only carrier
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sensing to communicate, and developed algorithms for node coloring. They were inspired by “con-

tinuous” beeping studied by Degesys et al. [28] and Motskin et al. [50], and by the implementation

of coordination by carrier sensing given by Flury and Wattenhofer [33].

Afek et al. [1] considered the problem to find a maximal independent set of nodes in a distributed

manner when the nodes can only beep, under additional assumptions regarding the knowledge of

the size of the network, waking up the network by beeps, collision detection among concurrent

beeps, and synchrony. Brandes et al. [11] studied the problem of randomly estimating the number

of nodes attached to a single-hop beeping network. Czumaj and Davies [23] approached systemat-

ically the tasks of deterministic broadcasting, gossiping, and multi-broadcasting on the bit level in

general-topology symmetric beeping networks. In a related work, Hounkanli and Pelc [42] studied

deterministic broadcasting in asynchronous beeping networks of general topology with various lev-

els of knowledge about the network. Förster et al. [34] considered leader election by deterministic

algorithms in general multi-hop networks with beeping. Gilbert and Newport [38] studied the effi-

ciency of leader election in a beeping single-hop channel when nodes are state machines of constant

size with a specific precision of randomized state transitions. Huang and Moscibroda [43] consid-

ered the problems of identifying subsets of stations connected to a beeping channel and compared

their complexity to those on multiple-access channels. Yu et al. [58] considered the problem of

constructing a minimum dominating set in networks with beeping.

Related work. A beeping channel is related to multiple access channels and single-hop radio

networks [14]. The similar task to the one considered in this paper, to have all stations transmit

successfully, once by each station among the n stations, can be accomplished in the expected

time O(n) on a multiple access channel. This variant of the “contention resolution problem” for

such channels has been the topic of continuous interest, since multiple access channels started to

be investigated [7, 13, 20, 24, 26, 25, 40, 41, 56]. In view of the lower bound Ω(n log n) on time of

naming for beeping channels, given in this paper, resolving contention in the model of a beeping

channel is demonstrably more costly, in that it involves the additional logarithmic multiplicative

overhead. This can be attributed to the key difference between the two models, in that a multiple

access channel differentiates between single and multiple transmissions by its feedback, while a

beeping channel returns a beep in both cases.

The requirements of the contention resolution problem can be weakened such that we want to

hear just some node as soon as possible; this problem is called waking up the network when nodes

start spontaneously rather than coordinated from the start. This problem was studied initially for

multiple access channels [27, 35], and further for radio networks [19] and multi-channel networks [15].

Networks of nodes communicating by beeps share common features with radio networks with

collision detection. Ghaffari and Haeupler [36] gave efficient leader election algorithm by treating

collision detection as “beeping” and transmitting messages as bit strings. Their approach by way

of “beep waves”was adopted to broadcasting in networks with beeping by Czumaj and Davies [23].

In a related work, Ghaffari et al. [37] developed randomized broadcasting and multi-broadcasting

in radio networks with collision detection.

Communication in anonymous networks was first considered by Angluin [4], who showed that

randomization was necessary to name nodes in suitably symmetric communication settings. The

work that followed was either on specific network topologies, like rings or hypercubes, or on problems

in general message-passing systems. The early work on anonymous rings was done by Attiya et

al. [10], while anonymous hypercubes were studied first by Kranakis and Krizanc [46]. Algorithmic
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problems in anonymous networks of general topologies were considered by Afek and Matias [3]

and Schieber and Snir [54]. Angluin et al. [6] considered self-stabilizing protocols for anonymous

asynchronous agents.

Anonymous systems of asynchronous processes communicating by shared memory were studied

by Lipton and Park [48], Eğecioğlu and Singh [29], Panconesi et al. [53], Kutten et al. [47], and

Buhrman et al. [12], among others. Chlebus et al. [16, 18] considered synchronous anonymous

distributed computing with shared read-write memory.

Impossibility results and lower bounds are surveyed by Attiya and Ellen [9] and Fich and

Ruppert [32]. Yao’s minimax principle was formulated by Yao [57], with an alternative direct proof

given by Fich et al. [31]; see also the book by Motwani and Raghavan [51] for a presentation of

applications.

2 Technical preliminaries

A beeping channel is a network consisting of some n stations connected to a communication medium.

The channel provides a very limited feedback: when no stations transmit at a point in time then

nothing is sensed on the communication medium, and when some station does transmit then every

station detects a beep.

We consider synchronous beeping channels, in the sense that an execution of a communication

algorithm is partitioned into consecutive rounds. All the stations start execution together. In each

round, a station may either beep or pause. When some station beeps in a round, then each station

hears the beep in this round, otherwise all the stations receive silence as feedback in this round.

When multiple stations beep together in a round then this creates a collision.

We say that a parameter of a communication network is known when it can be used in codes

of algorithms. The relevant parameter used in this paper is the number of stations n. We consider

two cases, in which either n is known or it is not, respectively.

The stations attached to the channel are anonymous in that they do not have any predetermined

identifiers that can be referred to when executing a communication algorithm. The stations are

distinguishable by an external observer, and we may refer to such an observer’s “names” when

referring to stations when we want to distinguish the stations among themselves.

Randomized algorithms use random bits, understood as outcomes of tosses of a fair coin. All

different random bits used by our algorithms are considered stochastically independent from one

another.

Randomized algorithms are often categorized as Las Vegas or Monte Carlo, see [51]. We use

these terms in the following meaning. An algorithm is Las Vegas when it terminates almost surely

and it returns a correct output upon termination. An algorithm is Monte Carlo when it terminates

almost surely but an error may occur when the algorithm terminates; the probability of error

converges to zero with the number of communicating agents converging to infinity. An “error”

occurs when the output generated by the algorithm does not satisfy all the desired properties,

as specified in the correctness requirements. Our naming algorithms have as their goal to assign

unique identifiers to the stations, moreover we want names to be integers in the contiguous range

{1, 2, . . . , n}; we denote this rage as [n]. The Monte Carlo naming algorithm that we develop assigns

names that completely fill in an interval of integers of the form [k], for k ≤ n. If it happens that
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Procedure Detect-Collision

tossv ← outcome of a random coin toss

if tossv = heads /∗ first round ∗/

then beep else pause

if tossv = tails /∗ second round ∗/

then beep else pause

return (a beep was heard in each of the two rounds)

Figure 1: A pseudocode for a station v. The procedure takes two rounds to be
executed. It detects a collision and returns “true”when a beep is heard in each of the
two rounds, otherwise it does not detect a collision and returns “false.”

k < n then this means that there are duplicate integers assigned as names, which is the only form

of error that can possibly occur.

We will use a procedure to detect collisions, called Detect-Collision, whose pseudocode is

in Figure 1. The procedure is executed by a group of stations, and they all start their executions

simultaneously. The procedure takes two rounds. Each of the participating stations simulates

the toss of a fair coin, with the outcomes mutually independent among the participating stations.

Determined by the outcome of a toss, a station beeps either in the first round or the second one of

the allocated pair of rounds. A collision is detected only when two consecutive beeps are heard.

Lemma 1 If k stations perform m time-disjoint calls of procedure Detect-Collision, with each

station participating in exactly one call, then collision is not detected in any of these calls with

probability 2−k+m.

Proof: Consider a call of Detect-Collision performed concurrently by i stations, for i ≥ 1. We

argue by “deferred decisions.” One of these stations tosses a coin and determines its outcome X.

The other i− 1 stations participating concurrently in this call also toss their coins. Here we have

i − 1 ≥ 0, so it could be the case that there is no such a station; if i = 1 then collision cannot be

detected. The only possibility not to detect a collision in the case of i−1 > 0 is for each among these

i− 1 stations to also produce X. This happens with probability 2−i+1 in one call. The probability

of producing only outcome false during the m calls is the product of these probabilities. When we

multiply them out over m instances of the procedure being performed, then the outcome is 2−k+m,

because the numbers i sum up to k and the number of factors is m. �

Pseudocode conventions and notations. We present algorithms formally using pseudocodes,

like the one in Figure 1. The convention we apply is that all the stations stay synchronized to execute

the same line of code in each round. This means that if a conditional statement is executed, like

an if-then instruction or a while-loop, then a station that pauses through its duration still counts

rounds to stay synchronized, as if it were actively executing the code.
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Each station has its private copy of every among the variables used in the pseudocode. When

the values of these copies may vary across the stations, then we add the station’s external-observer

“name” as a subscript of the variable’s name to emphasize this, and otherwise, when all the copies

of a variable are equal at all times across all the stations then no subscript is used.

We use the notation lg x to denote the logarithm to the base 2 of x. The base of logarithms is

not specified when this is not necessary, like in an asymptotic notation O(log x).

3 Lower bounds and impossibilities

We will show impossibility results to justify methodological approach to naming algorithms we ap-

ply, and use lower bounds on performance metrics for such algorithms to argue about the optimality

of the algorithms, as developed in subsequent sections. We begin with an observation, formulated

as Proposition 1, that if a system is sufficiently symmetric then randomness is necessary to break

symmetry. The given argument is standard and is given for completeness sake; see [4, 9, 32].

Proposition 1 There is no deterministic naming algorithm for a synchronous channel with beeping

with at least two stations, in which all stations are anonymous, such that it eventually terminates

and assigns proper names.

Proof: We argue by contradiction. Suppose that there exists a deterministic algorithm that

eventually terminates with proper names assigned to the anonymous stations. Let all the stations

start initialized to the same initial state. The following invariant is maintained in each round: the

internal states of the stations are all equal.

We proceed to show this invariant by induction on the round numbers. The base of induction

is satisfied by the assumption about the initialization. For the inductive step, we assume that the

stations are in the same state, by the inductive hypothesis. Then either all of them pause or all

of them beep in the next round, as determined by the state. The effect is that either all of them

hear their own beep or all of them pause and hear silence. This results in the same internal state

transition, which completes the inductive step.

When the algorithm eventually terminates, then each station assigns to itself the identifier

determined by its state. The identifier is the same in all stations because their states are the same,

by the invariant. This violates the desired property of names to be distinct, because there are at

least two stations with the same name. �

Proposition 1 justifies developing randomized naming algorithms. We continue with “entropy”

arguments; see the book by Cover and Thomas [22] for a systematic exposition of information

theory.

An execution of a randomized naming algorithm coordinates and translates random bits into

names. This same amount of entropy needs to be processed/communicated on the channel, by the

Shannon’s noiseless coding theorem. An analogue of the following Proposition 2 was stated in [16]

for the model of synchronized processors communicating by reading and writing to shared memory.

The proof is similar, we include it here for completeness sake.
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Proposition 2 If a randomized naming algorithm for a channel with beeping is executed by n

anonymous stations and is correct with probability pn then it requires the total of Ω(n log n) ran-

dom bits generated with probability at least pn. In particular, a Las Vegas naming algorithm uses

Ω(n log n) random bits almost surely.

Proof: Let us refer to the n anonymous stations by the identifiers known only to an external

observer; we call them the unknown names. The names given by an execution of a randomized

naming algorithms are referred to as the given names.

A permutation of the unknown names is produced by ordering the stations by the given names,

with the respective probability. The algorithm determines a probability distribution on these per-

mutations, conditional on successful naming. The conditional distribution is uniform because of

the symmetry: all the processors execute the same code, without explicit private identifiers, and all

use random bits produced by tossing fair coins. This determines a probability space of n! elemen-

tary events, each identified by a permutation of the unknown identifiers. Each such an elementary

event occurs with the conditional probability 1/n!. The Shannon entropy of this random variable

equals lg(n!) = Θ(n log n). Setting on one permutation, by way of assigning names, requires the

amount lg(n!) = Θ(n log n) of entropy, by the Shannon’s noiseless coding theorem. The source of

this entropy are random bits generated by the stations. �

One round of an execution of a naming algorithm allows the stations that do not transmit to

learn at most one bit, because, from the perspective of these stations, a round is either silent or

there is a beep. Intuitively, the running time is proportional to the amount of entropy that is needed

to assign names. This intuition leads to Proposition 3. In its proof, we combine the Shannon’s

entropy [22] with the Yao’s principle [57].

Proposition 3 A randomized naming algorithm for a beeping channel with n stations operates in

Ω(n log n) expected time, when it is either a Las Vegas algorithm or a Monte Carlo algorithm with

the probability of error smaller than 1/2.

Proof: We apply the Yao’s minimax principle to bound the expected time of a randomized algo-

rithm by the distributional complexity of naming. We consider Las Vegas algorithms first.

A randomized algorithm using strings of random bits generated by stations can be considered as

a deterministic algorithm D on all possible assignments of such (sufficiently long) strings of bits to

stations as their inputs. We consider assignments of strings of bits of equal length, with the uniform

distribution among all such assignments of strings of the same length. On a given assignment of

input strings of bits to stations, the deterministic algorithms either assigns proper names or fails to

do so. A failure to assign proper names with some input is interpreted as the randomized algorithm

continuing to work with additional random bits, which comes at an extra time cost. This is justified

by a combination of two factors. One is that the algorithm is Las Vegas, so it halts almost surely

and with a correct output. The other is that the probability to assign a specific finite sequence as

a prefix of a used sequence of random bits is positive. So, if starting with a specific string of bits,

as a prefix of a possibly longer needed string, would mean the inability to terminate with a positive

probability, then the naming algorithm would not be Las Vegas.

The common length of these input strings is a parameter. We consider all sufficiently large

positive integer values for this parameter such that there exist strings of bits of this length resulting
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in assignments of proper names. For a given length of input strings, we remove input assignments

that do not result in assignment proper names and consider a uniform distribution of the remaining

inputs. This is the same as the uniform distribution conditional on the algorithm terminating with

input strings of bits of a given length.

Let us consider such a deterministic algorithm D assigning names, and using strings of bits at

stations as inputs, these strings being of a fixed length, assigned under a uniform distribution for

this length, and such that they result in termination. An execution of this algorithm produces a

“feedback sequence of bits,” where we translate the feedback from the channel round by round, say,

with symbol 1 representing a beep and symbol 0 representing silence. Each such a feedback sequence

translates into a specific assignment of names, because this is the only information shared by all

the stations. These feedback sequences also have a uniform distribution, by the same symmetry

argument as used in the proof of Proposition 2. The expected length of such a feedback sequence

is the expected time of algorithm D. The expected time of algorithm D is therefore at least

lg n! = Ω(n log n), by the Shannon’s noiseless coding theorem. We conclude that, by the Yao’s

principle, the original randomized Las Vegas algorithm has the expected time that is Ω(n log n).

A similar argument, by the Yao’s principle, applies to a Monte Carlo algorithm that is incorrect

with a constant probability smaller than 1/2. The only difference in the argument is that when a

given assignment of input string bits does not result in a proper assignment of names, then either

the algorithm continues to work with more bits for an extra time, or terminates with error. �

Next, we consider the case when the number of stations n is unknown. The following Propo-

sition 4 is about the inevitability of error in such situations, which is due to the fact that we

cannot compare the number of randomly assigned names to the (unknown) number of comput-

ing/communicating agents. Intuitively, when two computing/communicating agents generate the

same string of bits, then their actions are the same, and so they get the same name assigned. In

other words, we cannot distinguish the case when there is only one such an agent present from

cases when at least two of them work in unison.

Proposition 4 was formulated in [16] for the model of synchronous parallel random-access ma-

chine, in which processors communicate among themselves by reading from and writing to shared

read-write registers. It applies to a synchronous beeping channel, when we understand actions

of stations as either beeping or pausing in a round; we include the proof to make the exposition

self-contained.

Proposition 4 ([16]) For an unknown number of stations n, if a randomized naming algorithm

is executed by n anonymous stations, then an execution is incorrect, in that duplicate names are

assigned to different stations, with probability that is at least n−Ω(1), assuming that the algorithm

uses O(n log n) random bits with probability 1− n−Ω(1).

Proof: Suppose the algorithm uses at most cn lg n random bits with probability pn when executed

by a channel with n stations, for some constant c > 0. Then one of these stations uses at most

c lg n bits with probability pn, by the pigeonhole principle.

Consider an execution of the same algorithm for n+ 1 stations. Let us distinguish a station v.

One of the remaining n stations, say w, uses at most c lg n bits with the probability pn. Station v

generates the same string of bits with probability 2−c lgn = n−c. The random bits generated

by the station w and v are independent. Therefore, duplicate names occur with probability at
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least n−c · pn. When the bound pn = 1− n−Ω(1) holds, then the probability of duplicate names is

at least n−c(1− n−Ω(1)) = n−Ω(1). �

We conclude this section with a fact about impossibility of developing a Las Vegas naming

algorithm when the number of stations n is unknown.

Proposition 5 ([16, 47]) There is no Las Vegas naming algorithm for a channel with beeping

with at least two stations such that it does not refer to the number of stations.

Proposition 5 was shown by Kutten et al. [47] for the model of processes communicating by

asynchronous processes reading from and writing to shared registers. This fact depends not that

much on asynchrony as on n being unknown, and it was shown by Chlebus et al. [16] to hold for

anonymous synchronous shared-memory systems of read-write registers. The proof given in [16] is

general enough to be directly applicable here as well, as both models are synchronous. Proposition 5

justifies developing Monte Carlo algorithm for unknown n, which we do in Section 5.

4 A Las Vegas algorithm

We give a Las Vegas naming algorithm for the case when n is known. The idea is to have stations

choose rounds to beep from a segment of integers. As a convenient probabilistic interpretation,

these integers are interpreted as bins, and, after selecting a bin, a ball is placed in the bin.

An execution proceeds by considering the consecutive bins one by one. First, a bin is verified to

be nonempty by hearing that the owners of the balls in the bin beep. When no beep is heard then

the next bin is considered, otherwise the nonempty bin is verified for collisions. Such a verification is

performed by O(log n) consecutive calls of procedure Detect-Collision given in Section 2. When

a collision is not detected then the stations that placed their balls in this bin assign themselves the

next available name, otherwise the stations whose balls are in this bin place their balls in a new set

of bins. When each station has a name assigned, we verify if the maximum assigned name is n. If

this is the case then the algorithm terminates, otherwise we repeat this procedure again.

The algorithm is called Beep-Naming-LV, its pseudocode is in Figure 2. This pseudocode

is to be understood that natural inter-processor synchronization occurs, in that when a group of

processors participate in executing an instruction while others do not, then those that are not

involved wait for the duration of the action by the participants to be completed. In particular,

this applies to the for-loop in Figure 2 that is controlled by variable i. If a beep is heard then

this means that some processors will execute the inner for-loop to iterate β lg n times procedure

Detect-Collision while the other stations pause for the same amount of time and resume when

the for-loop has been completed. Otherwise, when a beep is not heard, then all the processors

increment i and execute the next iteration of the for-loop.

Algorithm Beep-Naming-LV is analyzed by modeling its executions by a process of throwing

balls into bins, which we call the ball process. The process proceeds through stages. There are n

balls in the first stage. When a stage begins and there are some i balls eligible for the stage then

the number of used bins is i lg n. Each ball is thrown into a randomly selected bin. Next, balls that

are single in their bins are removed and the remaining balls that participated in collisions advance

to the next stage. The process terminates when no eligible balls remain.

8



Algorithm Beep-Naming-LV

repeat

counter ← 0 ; range ← n lg n ; namev ← null

repeat

slotv ← random number in the interval [left, right]

for i← 1 to range do

if i = slotv then

beep

if a beep was just heard then

collision ← false

for j ← 1 to β lg n do

if Detect-Collision then collision ← true

if not collision then

counter ← counter+ 1

namev ← counter

if namev = null then beep /∗ station v participated in a collision ∗/

if a beep was just heard then

range ← (n− counter) lg n

until no beep was heard in the previous round

until counter = n

Figure 2: The pseudocode for a station v. The number of stations n is known.
The constant β > 1 is a parameter determined in the analysis. Procedure Detect-

Collision has its pseudocode in Figure 1. The variable name is to store the assigned
identifier.

Lemma 2 The number of times a ball is thrown into a bin during an execution of the ball process

that starts with n balls is at most 3n with probability at least 1− e−n/4.

Proof: In each stage, we throw some k balls into at least k lg n bins. The probability that a given

ball ends up single in a bin is at least

1−
k

k lg n
= 1−

1

lg n
,

which we denote as p. A ball is thrown repeatedly in consecutive iterations until it lands single in

a bin. Our immediate concern is the number of trials to have all balls end up as singletons in their

bins.

Suppose that we perform some m independent Bernoulli trials, each with the probability p of

success, and let X be the number of successes. Here a success means that a new ball ends up single

in its bin. We show next that taking m = Θ(n) suffices to have the inequality X ≥ n hold with a

large probability.
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The expected number of successes is E[X] = µ = pm. We use the Chernoff bound in the form

Pr(X < (1− ε)µ) < e−ε2µ/2 , (1)

for any 0 < ε < 1; see [51]. We want the inequality (1− ε)µ ≥ n to hold. Let us set ε = 1
2 , so that

µ ≥ 2n suffices. This means pm ≥ 2n, which is extended into the following form:

(

1−
1

lg n

)

·m ≥ 2n . (2)

If we choose m = 3n then the inequality (2) holds for sufficiently large n.

The probability that this inequality (2) does not hold is estimated from above by (1). Here we

have that µ ≥ 2n so the right-hand side of (1) is e−n/4. �

We proceed to Theorem 1, which summarizes the desired properties of algorithm Beep-Naming-

LV, in particular that it is Las Vegas. In the proof, we model an execution of the algorithm as

the ball process that starts with n balls. The main difference between the ball process and the

algorithm is that collisions of balls in bins in the ball process are detected with certainty, by the

specification of the process, while collisions between tentative names in the algorithm’s execution

might not be detected with some positive probability.

Theorem 1 Algorithm Beep-Naming-LV, for each β > 0, terminates almost surely and there is

no error when it terminates. For each a > 0, there exists β > 1 and c > 0 such that the algorithm

assigns unique names, works in time at most cn lg n, and uses at most cn lg n random bits, all these

properties holding with the probability that is at least 1− n−a, for sufficiently large n.

Proof: Consider an iteration of the main repeat-loop. An error can occur in this iteration only

when there is a collision that is not detected by procedure Detect-Collision in none of its β lg n

calls. Such an error results in duplicate names, so that the number of assigned different names is

smaller than n. The maximum name assigned in an iteration is the value of the variable counter,

which has the same value at each station. The algorithm terminates by having an iteration that

produces counter = n, but then there are no repetitions among the names, and so there is no error.

Next, we show that termination is a sure event. Consider an iteration of the main repeat-loop.

There are n balls and each of them is being thrown repeatedly until either it is not involved in a

collision or there is a collision but it is not detected. Eventually each ball is left to reside in its bin

with probability 1. This means that each iteration ends almost surely.

The following are notations used in analyzing iterations of the main repeat-loop. Denote by A

the event that there is a collision that passes undetected. The iteration fails to assign proper names

if and only if the event A holds. Let B be the event that the total number of throws of balls into

bins is at most 3n. Denote by ¬E the complements of an event E. We have that Pr(¬B) ≤ e−n/4,

by Lemma 2.

When a ball lands in a bin then it is verified for a collision β lg n times. If there is a collision then

it passes undetected with a probability that is at most n−β. This is because one call of procedure

Detect-Collision detects a collision with a probability that is at least 1
2 , by Lemma 1, in which

m = 1 and k ≥ 2.
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We estimate the probability of the event that an iteration fails to assign proper names, which

is the same as of the event A. This is accomplished as follows:

Pr(A) = Pr(A ∩B) + Pr(A ∩ ¬B)

= Pr(A | B) · Pr(B) + Pr(A | ¬B) · Pr(¬B)

≤ Pr(A | B) + Pr(¬B)

≤ 3n · n−β + e−n/4 , (3)

where we used the union bound to obtain the last line (3). It follows that at least i iterations

are needed with a probability that is at most (e−n/4 + 3n1−β)i, which converges to 0 as i grows

unbounded, assuming only that β > 1 and n is sufficiently large.

Let us consider modeling an iteration of the main repeat loop. The event ¬A ∩B occurs when

balls are thrown at most 3n times and all collisions are detected. The probability that the event

¬A ∩B holds can be estimated from below as follows:

Pr(¬A ∩B) = Pr(¬A | B) · Pr(B)

≥ (1− 3n1−β) · (1− e−n/4)

≥ 1− 3n1−β − e−n/4(1− 3n1−β) . (4)

Bound (4) is at least 1− n−a for sufficiently large β > 1, when also n is large enough.

Bound (4) holds for the first iteration of the main repeat loop. So, with a probability that is at

least 1−n−a, the first iteration assigns proper names with at most 3n balls thrown in total. Let us

assume that this event occurs. Then the whole execution takes time at most cn lg n, for a suitably

large c > 0. This is because procedure Detect-Collision is executed at most 3βn lg n times,

and each of its calls takes two rounds. One assignment of a value to the variable slot requires

lg(n lg n) < 2 lg n bits, for sufficiently large n. There are at most 3n such assignments, for a total

of at most cn lg n random bits, for a suitably large c > 0. �

The optimality of algorithm Beep-Naming-LV follows from the propositions given in Section 3.

The algorithm runs in the optimal expected time O(n log n), by Proposition 3, and it uses the

optimum expected number of random bits O(n log n), by Proposition 2.

5 A Monte Carlo algorithm

We give a randomized naming algorithm for the case when n is unknown. In view of Proposition 5,

no Las Vegas algorithm exists in this case, so we develop a Monte Carlo one.

The algorithm’s execution can be interpreted as repeatedly throwing balls into bins and verifying

for collisions. A bin is determined by a string of some k bits. Each station chooses one such

a string randomly. The algorithm proceeds by repeatedly identifying the string that is smallest

lexicographically among those that have not been considered yet. This is accomplished by procedure

Next-String which operates as a concurrent search coordinated by beeps. Having identified a

nonempty bin, all the stations that placed their balls into this bin verify if there is a collision in this

bin by calling Detect-Collision a suitably large number of times. In the case when no collision

has been detected, the stations whose balls are in the bin assign themselves the consecutive available

name as a temporary one. This continues until all the balls have been considered. If no collision has

11



Procedure Next-String

string ← a string of k bit positions, with each of them set to 1

for i← 1 to k do

if (my-stringv matches string on the first i− 1 bit positions)

and (the ith bit of my-stringv is 0)

then beep

if a beep was heard in the previous round then

set the ith bit of string to 0

return (string)

Figure 3: The pseudocode for a station v. This procedure is used by algorithm
Beep-Naming-MC. The variables my-string and k are the same as those in the
pseudocode in Figure 4.

ever been detected in the current stage, then the algorithm terminates and the temporary names

are considered as the final assigned names, otherwise the algorithm proceeds to the next stage.

Procedure Next-String operates as a radix search. The goal is to identify the smallest string

of bits by examining consecutive bit positions. The procedure uses two variables my-string and k,

where k is the length of the considered bit strings and my-stringv is the string of k bits generated

by station v. The procedure begins by setting each of the k bit positions in variable string to 1.

Then these bit positions are considered one by one. For a given bit position i, where 1 ≤ i ≤ k,

all the stations v that can still have the smallest string and whose bit on position i in my-stringv

is 0 do beep. This determines the first i bits of the smallest string, because if a beep is heard then

the ith bit of the smallest string is 0 and otherwise it is 1. This is recorded by setting the ith bit

position in the variable string to the determined bit. The stations eligible for beeping, if their ith

bit is 0, are those whose strings agree on the first i − 1 positions with the smallest string. After

all k bit positions have been considered, the variable string is returned.

Procedure Next-String has its pseudocode in Figure 3. Its relevant property is summarized

in Lemma 3.

Lemma 3 Procedure Next-String returns the smallest lexicographically string among the non-

null string values of the private copies of the variable my-string.

Proof: The string that is output is obtained by processing all the input strings my-string through

consecutive bit positions. We show the invariant that after i bits have been considered, for 0 ≤ i ≤ k,

then the bits on these positions make the prefix of the first i bits of the smallest string.

The invariant is shown by induction on i. When i = 1 then the bits on previously considered

positions make an empty string, as no positions have been considered yet, and the empty string

is a prefix of the smallest string. Suppose that the invariant holds for all i such that 0 ≤ i < k,

12



Algorithm Beep-Naming-MC

k ← 1

repeat

k ← 2k

collision ← false

counter ← 0

my-stringv ← a random string of k bits

repeat

if my-stringv 6= null then smallest-string← Next-String

if my-stringv = smallest-string then

for i← 1 to β · k do

if Detect-Collision then collision ← true

if not collision then

counter ← counter+ 1

namev ← counter

my-stringv ← null

if my-stringv 6= null then beep

until no beep was heard in the previous round

until not collision

Figure 4: The pseudocode for a station v. Constant β > 0 is an integer parameter
determined in the analysis. The pseudocode of procedure Detect-Collision is
given in Figure 1 and the pseudocode of procedure Next-String is in Figure 3. The
variable name is to store the assigned identifier.

and consider the stations whose variable my-string has the same bits on these first i positions

as variable string. This set includes the station v with the smallest my-string by the inductive

hypothesis. If the bit on the (i + 1)st position of my-stringv is 0 then v beeps and string has

its bit on position i + 1 set to 0. Otherwise there is no station with 0 on the (i + 1)st position

of my-stringv, because my-stringv is smallest. Then there is no beep and 1 at position i + 1 in

string is not modified. This completes the proof of the invariant.

The procedure Next-String terminates after k bit positions have been processed. The proved

invariant, applied for i = k, means that the final value of the variable string and the smallest

my-stringv, for all the nodes v, are identical. �

The naming algorithm we develop next is called Beep-Naming-MC. Its pseudocode is in Fig-

ure 4.

The algorithm proceeds through stages, where a stage is implemented by an iteration of the

main repeat-loop in the pseudocode. The number of bins in the ith stage is 2k where k = 2i. The
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variable k is doubled in the beginning of each iteration of the main loop. During a stage, first

the next bin with a ball is identified by calling procedure Next-String. Next, this bin is verified

for collisions by calling procedure Detect-Collision βk times, for a constant β > 0, which is a

parameter to be settled in analysis. During such a verification, only the stations whose balls are

in this bin do participate, while the remaining stations pause for the same amount of time. This

is possible to achieve because the number of times procedure Detect-Collision is called is β · k,

and each call takes two rounds.

Theorem 2 summarizes the properties of algorithm Beep-Naming-MC. In particular, that it

is a Monte Carlo algorithm with a suitably small probability of error.

Theorem 2 Algorithm Beep-Naming-MC, for each β > 0, terminates almost surely. For each

a > 0, there exists β > 0 and c > 0 such that the algorithm assigns unique names, works in time

at most cn lg n, and uses at most cn lg n random bits, all these properties holding with a probability

that is at least 1− n−a.

Proof: We interpret an iteration of the outer repeat-loop as a stage in a process of throwing n

balls into 2k bins and verifying βk times for collisions. The string selected by a station is the name

of the bin. When at least one collision is detected during an iteration of the outer repeat-loop

then variable k gets doubled and another iteration is performed. An error occurs when there is a

collision but it is not detected.

Next we estimate from above the probability of not detecting a collision. To this end, we

consider two cases, depending on which of the inequalities 2k < n or 2k ≥ n hold, for a given k.

In the first case, when 2k < n, collisions occur with certainty, by the pigeonhole principle. Let

m be the number of occupied bins. This results in m ≤ 2k verifications performed, one for each

bin, where procedure Detect-Collision is called βk times per verification. By Lemma 1, the

probability of not detecting a collision, with just one call of Detect-Collision occurring in each

of these verifications, is at most

2−n+m ≤ 2−n+2k .

When βk calls of Detect-Collision occur in each verification, as is the case by the design of the

algorithm, the probability of not detecting a collision is at most

2(−n+2k)βk .

Intuitively at this point, since 2k < n, this probability is maximized for n = 2k + 1 and it is about

2−βk ≈ n−β, as k ≈ lg n.

A precise argument to obtain an estimate is by considering two sub-cases, and is as follows. If

it is the sub-case that 2k < n/2, then

2(−n+2k)βk = 2−Ω(n) .

Otherwise, when it is the sub-case that n > 2k ≥ n/2, then n− 2k ≥ 1 and k ≥ lg n− 1, so that we

obtain the following estimate:

2(−n+2k)βk ≥ 2−β(lg n−1) ≥ 2βn−β .
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We can conclude this sub-case with the following two estimates: 2−Ω(n) and 2βn−β, of which

the latter is larger, for sufficiently large n. It is sufficient to take β > a, as then the inequality

2βn−β < n−a holds for sufficiently large n.

The second case occurs when 2k ≥ n. This implies that k ≥ lg n. When a collision occurs in

a bin, then it is verified by at least β lg n calls of procedure Detect-Collision. This gives the

probability of not detecting one such a collision that is at most n−β. Multiple bins with collisions

make the probability of not detecting any of them even smaller. Now it is enough to take β > a,

as then n−β < n−a holds.

This completes estimating the probability of error by at most n−a, for sufficiently large β, and

all correspondingly large n.

Next, we estimate the probability that the running time is O(n log n). Let us consider a stage

with sufficiently many bins, say, when k = d lg n for d > 2. Then the number of bins is 2k = nd.

The probability that there is no collision at all in this stage is at least

(

1−
n

nd

)n
≥ 1−

n

nd−1
= 1− n−d+2 . (5)

Choosing d = a+2 we obtain that the algorithm terminates by the iteration of the outer repeat-loop

when k = d lg n with a probability that is at least 1− n−a.

One iteration of the outer repeat loop, for some k, is proportional to k ·n. The total time spent

up to and including k = d lg n is proportional to

lg((a+2) lgn)
∑

i=1

2i · n ≤ n · 2(a+ 2) lg n = O(n log n) (6)

with a probability that is at least 1− n−a.

The number of bits generated up to and including the iteration for k = d lg n is also proportional

to (6). This is because the number of bits generated in one iteration of the main repeat-loop is

proportional to k · n, similarly as the running time.

To show that the algorithm terminates almost surely, it is sufficient to demonstrate that the

probability of a collision converges to zero with k increasing. The probability of no collision for

k = d lg n is at most n−d+2, by (6). If k grows to infinity then d = k/ lg n increases to infinity as

well, and then n−d+2 converges to 0 as a function of d. �

Algorithm Beep-Naming-MC is optimal with respect to the following performance measures:

the expected running time O(n log n), by Proposition 3, the expected number of random bits

used O(n log n), by Proposition 2, and the probability of error, as determined by the number of

used bits, by Proposition 4.

6 Conclusion

We considered a channel in which a synchronized beeping is the only means of communication. We

showed that unique names can be assigned to the anonymous stations by randomized algorithms.

The algorithms are either Las Vegas or Monte Carlo, depending on whether the number of stations n

is known or not, respectively. The performance characteristics of the two algorithms, such as the
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running time, the number of random bits used, and the probability of error, are proved to be

asymptotically optimal.

The algorithms we developed rely in an essential manner on synchronization of the channel. It

would be interesting to consider an anonymous asynchronous beeping channel and investigate how

to assign names to stations in such a communication environment.
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