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Abstract

This paper investigates the application of consensus clustering and
meta-clustering to the set of all possible partitions of a data set. We
show that when using a ”complement” of Rand Index as a measure of
cluster similarity, the total-separation partition, putting each element in
a separate set, is chosen.

Index Terms— cluster analysis, partitioning, clustering, consensus functions,
ensemble, knowledge reuse, unsupervised learning, meta-clustering

1 Introduction

It is a well-known phenomenon that for the same data set various clustering algo-
rithms may produce different partitions. This is true both for objects described
by continuous variables (like results of measurements) and for ones described by
discrete features (like documents treated as points in term space). Consensus
clustering and meta-clustering are two known techniques helping to select the
best one among the competing partitions. It is also well known that by changing
the geometry of the data space we may even obtain all possible partitions of the
dataset.

In this paper we investigate which partition would be selected if we apply
consensus clustering or meta-clustering to the set of all possible partitions. In
particular we formulate (in Section 3) and prove (in Section 4) that, using
the so-called Rand Index as a measure of partition similarity, we obtain via
consensus clustering the partition putting each element in a separate set (which
we will call subsequently total-separation partition) as a ”consensus” between
these partitions. In Section 5 we discuss briefly practical lessons from this
theorem. In Section 6 we demonstrate that a similar theorem can be formulated
for the more realistic case where we consider only partitions containing not more
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clusters than a predefined threshold. In Section 7 we show experimentally that
also the very same similarity measure applied in meta-clustering1 leads towards
a similar choice of best partition.

We start with Section 2 explaining the concepts of concensus clustering and
meta-clustering as well as pointing to the research on these topics. In Section 8
we summarise our findings and point to further research directions.

2 Previous work

Two main types of methods for handling the grieving issue of conflicting parti-
tions of the same set are currently under development in the literature:

• the meta-clustering

• the consensus clustering (called also in various brands ensemble clustering
[27] or cluster aggregation [10])

In the meta-clustering stream it is claimed that maybe the choice of the
best partition should be left to the user who should only be assisted by group-
ing potential partitions into groups of similar ones.To facilitate user selection
of the right clustering, [5] (also compare [21, 4, 3, 7, 6]) suggests to provide
the user with meta-clusters (clusters of partitions) in order that the user better
understands the choices. To facilitate their creation, [5] proposes to use a dis-
similarity measure that they call ”Cluster Difference”, closely related to Rand
Index (which is a similarity measure) as distance measure between partitions.
The sum of Rand Index and Cluster Difference is equal 1 The Rand Index (and
as a consequence Cluster Difference) essentially is based on the calculation how
many times elements are in the same or in different clusters. Assume that the
set X to be clustered, of cardinality n consists of elements {1, 2, . . . , n}. Let
the quantity Iij be equal to 1 if the elements (objects) i and j are in the same
cluster of the first clustering, and different in the second one or vice versa.
Otherwise, Iij is 0. Then the distance CD between the two partitions Γ1,Γ2

(Cluster Difference) is defined as

CD(Γ1,Γ2) =

∑
i,j∈X,i<j Iij

n(n− 1)/2
(1)

where n is the number of objects in the collection. The value of CD ranges
from 0 for completely identical partitions to 1 for extremely different ones.
The extremes are e.g. two partitions: all-in-one (Γ consisting of exactly one
cluster containing all elements) and total-separation (every element in a separate
cluster).

1Rand Index is frequently used in both consensus clustering and meta-clustering in search
for a compromise clustering
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If we wish to compare only partitions over the same set of elements (with
cardinality n), we can use the unnormalised version of CD:

unCD(Γ1,Γ2) =
∑

i,j∈X,i<j

Iij (2)

In such a case the unCD between all-in-one and total-separation partitions

amounts to n(n−1)
2 .

But here we encounter the problem: n objects can be divided into k clusters
in O(kn) ways2. So we have to do with an NP-hard task.

In consensus clustering [24] a kind of optimisation problem (combinatorial
optimisation) is formulated and solved. A similarity measure between partitions
is introduced and data is re-clustered to get a clustering close to the original
ones. Alternatively groups of clusters are formed (a kind of meta-clustering)
where the meta-clusters compete for objects performing just a re-clustering. A
number of other techniques in this direction was reviewed in [11, 14, 9, 16, 22,
18, 25, 20, 28, 26]. We are particularly interested in the one initiated by [2, 13],
and further studied [12] and applied [19]. This approach to consensus clustering
seeks to find a new clustering that is as close as possible to all the partitions
obtained. The closeness is estimated e.g. (again) as the averaged Rand Index
[19].

It has been noticed in the past that various clustering quality indices are
biased, and in particular the Rand Index which we discuss in this paper, see for
example [15, 17, 8]. It has been reported that Rand Index tends to prefer smaller
clusters rather than bigger ones when using it as an external cluster validity
index, as for example in the study [8], which concentrated on clusterings into the
same number of clusters. [8] demonstrates both theoretically and empirically,
that with the increase of the number of clusters, Rand index quickly heads
towards stating that compared clusterings are identical. However, in this paper
we do not handle the case of clusterings into one fixed number of clusters but
rather allow for any number of clusters in a partition.

[15] demonstrates, when studying balanced partitions with different number
of clusters, that this time Rand index behaves differently, thus invalidating the
generalisations from [8]. The direction of the bias depends on the ground truth
clustering (see Theorem 1 in [15] and further ones). The reversal of the bias
was also reported from empirical studies [17]. So in fact, the bias tendency of
Rand Index remains under these circumstances undecided if we do not know
the ground truth partition or we do not know whether it is balanced or not. 3

Note that the paper [15] and other concentrate on the relationship between an
empirical partition and the ground truth.

2 More precisely, [1] shows that this number amounts to

1

k!

k∑
j=1

(−1)k−j
( k

j

)
jn (3)

3 Note that the bias has also been studied in the context of stable level of the indicator for
randomly assigned partitions under various conditions, see e.g. [23].
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However, a study on Rand index bias in the context of consensus clustering
and meta-clustering seems not have been performed so far. In such a case, the
ground truth cannot be referred to because it is not available. 4 Furthermore,
the previous studies concentrate on ”preferences” of Rand Index without ques-
tioning the existence of ground truth. We demonstrate here that it points at a
clustering even if there is no ground truth, no really discernible base clustering.

3 Theorem on consensus clustering

It is well known that when we treat all possible geometries of the data set, we can
obtain all possible partitions of the data set. Which one shall we choose? Under
these circumstances, as we will show, consensus clustering is not useful in the
selection process of the partition that is the closest to all the other ones. Because
the closest partition is a partition that puts each element (object, document)
into a separate cluster.

In particular we will prove the following

Theorem 1. For any n objects, among all partitions the partition where each
object falls into a separate cluster (called subsequently total-separation parti-
tion) has the lowest average distance to the other partitions in terms of Cluster
Difference CD.

As we consider a fixed n, let us concentrate on the unnormalised version
unCD.

Note first one of the most serious implications of this theorem: We consider
a world of all possible partitions so one might think that this world is totally
symmetric, and any partition may be a centre of such a universe. But this is
not the case. The distance function distinguishes one of the elements. So in fact
it is biased in some way.

There exist plenty of other clustering quality assessment functions and a
similar analysis should be performed for them.

So let us state beforehand that when performing a clustering task, we shall
pick at random neither the clustering function, nor the distance function nor
the quality assessment function because each of them is biased and we shall care
whether or not each function reflects our business purposes.

4 The proof

It is assumed that all the elements (objects, documents) of a set to be partitioned
possess identifiers being consecutive numbers starting with 1. The proof will be
performed by induction on relabelling the objects in a cyclic manner combined
with narrowing the set of candidates for the closest element.

First step of checking validity of the theorem (subsection 4.1) for small n =
2, 3 is trivial, but still necessary. Subsequent subsections seek to establish the

4One may say that we use Rand Index rather as internal and not external quality measure.
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induction step by demonstrating a special role of the so-called simple extension
of a partition (to be introduced in subsection 4.2, along with the concept of
reduct). The important feature here is that total-separation partition of n +
1 elements is a simple extension of total-separation partition of n elements.
Furthermore, as demonstrated in subsection 4.3, distances between partitions
of n + 1 elements can be derived from distances between their reducts.

The idea of the inductive step is as follows. First we consider all extensions
of a single partition. It is shown in subsection 4.4 that on average the simple
extension is the closest one to all the other extensions.

Then in subsection 4.5 we establish, that among all extensions of one parti-
tion the simple extension is on average the closest one to all the extensions of
some other partition.

These two facts mean that among all extensions of a partition of a set of n
elements the simple extension is on average the closest one to all the partitions
of a set of n+1 elemets. Hence, when looking for the consensus partition among
all partitions of a set of n+1 elements we need to consider only those partitions
that are simple extensions of partitions of n elements. In subsection 4.6 we
prove that among these candidates (the simple extensions) the simple extension
of total-separation partition of n elements, that is total-separation partition of
n + 1 elements is the closest one on average. The induction proceed as follows.
First we establish that the solution (the partition closest to all) is among those
partitions that have the (n + 1)st element in a singleton cluster and at least
0 first elements being in singleton clusters. Then we have the inductive step:
If the solution is among those partitions that have the (n + 1)st element in a
singleton cluster and at least i first elements being in singleton clusters, then the
solution is among those partitions that have the (n+1)st element in a singleton
cluster and at least i + 1 first elements being in singleton clusters. After n
inductive steps all n+ 1 elements will be in singleton clusters that is we get the
total-separation partition as the solution.

4.1 Cases n = 2, 3

Consider the unnormalised version of Cluster Difference.
If n = 2, then there exist only two partitions: Γ1;2 = {{1}, {2}} and Γ2;2 =

{{1, 2}} The unCD (as well as CD) between them equals 1. So for both the
average is identical and minimal. The theorem is O.K.

With n=3 we get partitions

• Γ1;3 = {{1}, {2}, {3}} (average unCD distance to other partitions 1.5,
(normalised CD 0.5),

• Γ2;3 = {{1, 3}, {2}} (average unCD distance to other partitions 1.75)

• Γ3;3 = {{1}, {2, 3}} (average unCD distance to other partitions 1.75)

• Γ4;3 = {{1, 2}, {3}} (average unCD distance to other partitions 1.75)

• Γ5;3 = {{1, 2, 3}} (average unCD distance to other partitions 2.25).
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Theorem is also in this case O.K.

4.2 Case n→ n + 1 - reducts and extensions

Consider now what happens when we have computed the unnormalised Cluster
Difference between partitions for n elements and want to compute it for n + 1
elements.

Each partition Γ of n+1 elements has a unique partition Γ∗ with n elements
(called its reduct) from which it can be derived by adding the (n+ 1)st element
to an existent cluster or by forming a new one. Γ on the other hand is called
an extension of Γ∗

Let us introduce the concepts of extension and reduct more formally.

Definition 1. Let Γ∗ be a partition of n elements.

• If Γ is a partition of n+ 1 elements such that Γ = Γ∗ ∪ {{n+ 1}}, then Γ
will be called a simple extension of Γ∗ (Γ = simpleextension(Γ∗))

• If Γ is a partition of n + 1 elements such that there exists a set S ∈ Γ∗

such that Γ = (Γ∗ − {S})∪{S∪{n+ 1}}, then Γ will be called a complex
extension of Γ∗

Both simple extension and complex extension are extensions. In both cases Γ∗

will be called a reduct of Γ (Γ∗ = reduct(Γ)). With allextensions(Γ∗) we shall
denote the set of all (simple and complex) extensions of Γ∗.

We distinguish complex and simple extensions in order to emphasise the role
of a simple extension among the extensions of a partition – on the one hand
due to the simplicity of derivation of distances between extensions from the
distances between their reducts (subsection 4.3), and on the other because a
simple extension is closer to all the other extensions of the same partition than
any complex extension, as will be shown later in Section 4.4.

Example 1. It is easily seen, using the notation from the previous section
that Γ1;3,Γ2;3,Γ3;3 are extensions of Γ1;2, while Γ4;3,Γ5;3 are extensions of Γ2;2.
Γ1;3,Γ4;3 are hereby simple extensions, while Γ2;3,Γ3;3,Γ5;3 are complex exten-
sions.

For another example of a reduct, simple and complex extensions see Figure
1.

4.3 Distances between partitions and their reducts

So consider partitions Γ1,Γ2 of n+1 elements, being extensions of two partitions
Γ∗1,Γ

∗
2 of n elements resp. Let us denote with unCD(Γ∗1,Γ

∗
2;n) the unnormalised

Cluster Difference unCD(Γ∗1,Γ
∗
2), where the parameter n draws our attention

to the fact that both partitions are defined over the set {1, ..., n}.
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Figure 1: Illustration of the concept of reducts, simple and complex ex-
tensions. The partition Γ∗ = {{1, 2, 3}{4, 5}{6, 7}} is a reduct for each
of the partitions Γ0={{1, 2, 3}{4, 5}{6, 7}{8}}, Γ1={{1, 2, 3, 8}{4, 5}{6, 7}},
Γ2={{1, 2, 3}{4, 5, 8}{6, 7}} and Γ3={{1, 2, 3}{4, 5}{6, 7, 8}}. Γ1,Γ2,Γ3 are
complex extensions of Γ∗. Γ0 is a simple extension of Γ∗.

Note that

unCD(Γ1,Γ2;n + 1) =

n∑
i=1

n+1∑
j=i+1

Iij (4)

=

n∑
i=1

n∑
j=i+1

Iij +

n∑
i=1

Ii,n+1

=

n−1∑
i=1

n∑
j=i+1

Iij +

n∑
i=1

Ii,n+1

= unCD(Γ∗1,Γ
∗
2;n) +

n∑
i=1

Ii,n+1

This implies that if both Γ1,Γ2 are simple extensions of Γ∗1,Γ
∗
2 that is Γ1 =

Γ∗1∪{{n+1}} and Γ2 = Γ∗2∪{{n+1}}, then the unnormalised Cluster Difference
between Γ1 and Γ2 is the same as between Γ∗1 and Γ∗2 because both in Γ1 and
Γ2 element n + 1 is separated from any other element.

If Γ1 = Γ∗1 ∪ {{n + 1}} and Γ∗2 − Γ2 = {S2} where S2 is not empty, then
unCD(Γ1,Γ2;n + 1) = unCD(Γ∗1,Γ

∗
2;n) + card(S2).

If Γ∗1 − Γ1 = {S1} and Γ∗2 − Γ2 = {S2} where S1, S2 are both not empty,
then the distance unCD(Γ1,Γ2;n + 1) = unCD(Γ∗1,Γ

∗
2;n) + card(S2 − S1) +
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card(S1 − S2).

4.4 Centricity of a simple extension among all extensions

In this proof extensions of a partition play a very special role, because they
constitute units for which properties of cumulative distances can be derived in
closed form. In particular we show in this subsection that among the extensions
of a partition the simple extension is the closest one to all the other extensions.
In the next subsection we will demonstrate a similar property between the ex-
tensions of two different partitions. The formulas of this subsection are in fact
special cases of those in the next subsection, but we believe that by separation
of these cases the derivations will be easier to understand.

Let us now consider all extensions with n+ 1 elements of a partition Γ∗ of n
elements. Let Γ∗ contain k clusters S1, ..., Sk. Γ0 be the simple extension and
Γl be a complex extension containing the cluster Sl ∪ {n + 1}.

Let us compute the sum of distances of simple extension to all the other
extensions.

k∑
l=1

unCD(Γ0,Γl) =

k∑
l=1

card(Sl) = n (5)

Let us derive the formula for the sum of distances of a complex extension Γl′ to
all the other extensions (remember that clusters of a partition are disjoint, S0

be an empty set).

k∑
l=0,l 6=l′

unCD(Γl,Γl′) =

k∑
l=0,l 6=l′

(card (Sl − Sl′) + card (Sl′ − Sl))

=

k∑
l=0,l 6=l′

(card (Sl) + card (Sl′))

= k · card (Sl′) + (n− card (Sl′))

= (k − 1) · card (Sl′) + n ≥ n (6)

Obviously, as the cardinality of the set of extensions is fixed, the simple extension
has the lowest average distance to other extensions among extensions of the same
reduct.

Example 2. Consider the partition Γ∗ = {{1, 3}{2}} and its extensions. The
sums of distances of each of them to all the other are: 5 for {{1, 3, 4}{2}}, 4 for
{{1, 3}{2, 4}}, 3 for {{1, 3}{2}{4}}. The last one is the simple extension and
has the lowest sum of distances.

4.5 Distance from a simple and a complex extension

Let us now consider a simple extension Γ0 and a complex one Γm, m > 0 having
the same reduct Γ∗ and all the partitions Γ′l with a different common reduct
Γ∗′. Assume that both Γ∗ and Γ∗′ are partitions over the set {1, ..., n}.

8



Let Γ∗′ contain k clusters S′1, ..., S
′
k. Γ0 be the simple extension and Γl be a

complex extension containing the cluster Sl ∪ {n + 1}. Sl defined as previously
Let us calculate the sum of distances of simple extension Γ0 to all the ex-

tensions of Γ∗′.

k∑
l=0

unCD(Γ0,Γ
′
l) =

k∑
l=0

(
unCD (Γ∗,Γ∗′;n) + card (S′l)

)
= n +

k∑
l=0

unCD(Γ∗,Γ∗′;n)

= n + (k + 1)unCD(Γ∗,Γ∗′;n) (7)

Let us determine the sum of distances of complex extension Γm to all the
extensions of Γ∗′.

k∑
l=0

unCD(Γm,Γ′l) =

k∑
l=0

(unCD (Γ∗,Γ∗′;n) + card (Sm − S′l) + card (S′l − Sm))

=

k∑
l=0

(unCD (Γ∗,Γ∗′;n) + card (Sm)− card (Sm ∩ S′l)

+card (S′l)− card (S′l ∩ Sm))

=

k∑
l=0

unCD(Γ∗,Γ∗′;n) + (k + 1) · card(Sm) + n

−
k∑

l=0

card(Sm ∩ S′l)−
k∑

l=0

card(S′l ∩ Sm)

= (k + 1)unCD (Γ∗,Γ∗′;n) + (k + 1) · card (Sm) + n

− card (Sm)− card (Sm)

= (k + 1)unCD(Γ∗,Γ∗′;n) + (k − 1) · card(Sm) + n

≥ (k + 1)unCD(Γ∗,Γ∗′;n) + n (8)

Obviously, as the number of elements in the set of extensions is fixed, the
simple extension of Γ∗ has the lowest average distance to those extensions of
Γ∗′ among extensions of the Γ∗.

Example 3. Consider the partitions Γ = allextensions({{1, 3}{2}}) and let
Γ′ = allextensions({{1, 2}{3}}). Let us compute for each partition from the
set Γ the sum of distances to all partitions from Γ′. We obtain: 11 for
{{1, 3, 4}{2}}, 10 for {{1, 3}{2, 4}}, 9 for {{1, 3}{2}{4}}. The last partition
is the simple extension and has the lowest sum of distances.

Therefore we can conclude that if among the extensions of Γ∗ there exists
a partition that is on average the closest one to any other partition, then this
partition is for sure the simple extension of Γ∗.
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4.6 The partition closest to all the others

So we can summarize sections 4.4 and 4.5 as follows:

Lemma 1. A partition of n + 1 elements closest (on average) to all the other
partitions is among the simple extensions of all the partitions of n elements.

We can strengthen Lemma 1 by stating:

Lemma 2. If among extensions of partitions of n elements in the set Γ there
is a partition of n + 1 elements closest (on average) to all the other partitions
of n + 1 elements, then such a partition exists among simple extensions of Γ.

Now we are ready to prove by induction that the total-separation partition
is the closest on average to all partitions.

Our working hypothesis is as follow: For any i = 0, ..., n, the solution of the
problem of finding the partition of n + 1 elements closest on average to all the
possible partitions of the same set is contained in the set Ci of such partitions for
which the (n + 1)st element constitutes a singleton in this partition (a cluster
with one element only) and the elements 1, 2, ..., i constitute also singletons.
Obviously, if i = n−1, then the set containing the solution contains one element
only that is the total-separation partition (if all elements but n are singletons,
then also n is).

Let us first establish the validity of the claim for i = 0. Let ΓA(n) denote
the set of all partitions of n elements. Lemma 1 states that a partition closest
on average to all partitions in ΓA(n+1) is among simple extensions of ΓA(n).
So this is exactly the set of candidates for the on average closest elements de-
noted previously as C0. So initially C0 = simpleextension(ΓA(n)), where
simpleextension() is a function producing simple extensions of partitions.

Next we shall prove the inductive step. That is that if Ci contains the
solution then Ci+1 contains also the solution. For this purpose consider the op-
eration of re-labelling elements of partitions. If Γ is a partition, then relabel(Γ)
is a partition obtained by changing an identifier i of an element to i+1 except for
the element with the highest identifier n+1 that will be turned to 1. It is obvious
that unCD (Γ1,Γ2) = unCD (relabel (Γ1) , relabel (Γ2)). It is also obvious that
relabel(ΓA(n+1)) = ΓA(n+1), though in general relabel(Ci) 6= Ci. However, an
element closest on average to each element of ΓA(n+1) is among relabel (Ci).
But note that simpleextension (reduct (relabel (Ci))) ⊆ relabel (Ci) (as we
consider n ≥ 3). Therefore according to Lemma 2 we can obtain a new can-
didate set by the operation Ci+1 := simpleextension (reduct (relabel (Ci))).
This is because in relabel (Ci) in each partition elements 1, ..., i + 1 are single-
tons, as 1, ..., i were singletons in Ci as well as n+1 and now via relabeling they
became 2, ..., i+1 and 1 respectively. The operation simpleextension (reduct ())
eliminates everything from relabel (Ci) except for simple extensions which have
n + 1 as singletons. This proves the validity of the induction step. Obviously,
the set of candidates will be reduced in this way.

By induction our claim is valid. Theorem 1 is proven.
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Example 4. Consider the set

ΓA(4) ={{{1, 2, 3, 4}} , {{1, 2, 3}{4}} , {{1, 2, 4}{3}} , {{1, 2}{3, 4}} ,
{{1, 2}{3}{4}} , {{1, 3, 4}{2}} , {{1, 3}{2, 4}} , {{1, 3}{2}{4}} ,
{{1, 4}{2, 3}} , {{1}{2, 3, 4}} , {{1}{2, 3}{4}} , {{1, 4}{2}{3}} ,
{{1}{2, 4}{3}} , {{1}{2}{3, 4}} , {{1}{2}{3}{4}}}

The set of candidates C0, being the simple extensions among the above, is

C0 ={{{1, 2, 3}{4}} , {{1, 2}{3}{4}} , {{1, 3}{2}{4}} ,
{{1}{2, 3}{4}} , {{1}{2}{3}{4}}}

relabel(C0) changes it to

relabel(C0) ={{{1}{2, 3, 4}} , {{1}{2, 3}{4}} , {{1}{2, 4}{3}} ,
{{1}{2}{3, 4}} , {{1}{2}{3}{4}}}

The transformation to C1 yields C1 = {{{1}{2, 3}{4}} , {{1}{2}{3}{4}}}.
The transformation to C2 yields C2 = {{{1}{2}{3}{4}}}.

5 Practical implications

At the first glance Theorem 1 may seem to be trivial, useless, unrealistic and
impractical. Trivial because it may appear to be obvious that a total-separation
partition is closest to all the other partitions. Useless because nobody is inter-
ested in obtaining a consensus in terms of a total-separation partition. Unre-
alistic because the space of all possible clusterings is so immense, that for real
world sample sizes one would never run so many clustering algorithms as to
fill the whole partition universe. Impractical because one usually restricts the
number of clusters k in a partition by an upper bound (much) lower than the
number of elements n.

In order to demonstrate that these intuitions are wrong, we performed a
series of simulation experiments results of which are summarized in Tables 1
(sampling the universe, no structure in the underlying data assumed ), 2 (sam-
pling the universe with a modified partition dissimilarity measure, no structure
in the underlying data assumed ), 3 (sampling a subuniverse where the presence
of a simple structure in the data is assumed), and further ones, discussed in the
next section.

With the experiments, we address the following questions:

• Does the bias of Rand index to choose the total-separation partition as
consensus for the whole universe of partitions persist if we consider only
a uniform random sample from this universe?

• Is this bias a general property of cluster quality indices or is it specific to
Rand index?

11



• Does the bias of Rand index to choose the total-separation partition per-
tain if there is a structure in the partitions for which a consensus is sought?

While these questions are addressed in the current section, we pose them again
in the next section in the context of constraining the set of partitions to those
with an upper bound on the number of partitions.

Recall that consensus clustering uses Cluster Difference (derived from Rand
Index) as a measure of distance between partitions in order to identify the
consensus partition. We have already demonstrated theoretically, that if the
set of our clustering algorithms would yield all possible partitions, then Rand
index would pick up the total-separation partition. But of course the space
of all partitions is too large so that we will never get all possible partitions.
Nonetheless by manipulating clustering algorithm parameters in an irresponsible
way we can obtain a random sample from this universe. In fact it is quite easy
to invent clustering algorithms delivering for the same set of data any clustering
we want. This section simulates such a situation and shows experimentally
what the outcome of consensus clustering will be questionable also in such a
case. See comments on experiments in tables 1 and 2 below. This suggests
that the user exploiting the technology of consensus clustering must at least
have an approximate vision of the geometry of the data space and parametrise
clustering algorithms in a way not disturbing this geometry. Only in this case
the consensus clustering may be helpful in the choice of appropriate compromise
clustering. See the comments below on comparison of tables 1 and 3.

The experiments consisted in drawing 1,000 samples from the partition uni-
verse for each parameter setting (characterised by columns 1-4) and computed
results are presented in column 5 (eventually column 6). So for example in Ta-
ble 1 in the second data row we have the information, that samples were drawn
from the universe of partitions over 4 elements, that the number of possible
partitions is 15, out of them samples of 8 partitions were drawn which were
intended to be 50% of the sample space, and the evaluation result was 88.2%.

The experiment underlying Table 1 was devised to find out how often the
total-separation partition will turn out to be the consensus partition for a uni-
formly randomly drawn sample of partitions. The results are visible in column
5.

The experiment underlying Table 2 was essentially the same as the previous
one, but instead of dissimilarity measure unCD its modification unCDm(a, b) =

unCD10(a, b)= (unCD(a, b))
10

was used. Again the total-separation partition
occurrence as consensus partition was counted. The results are visible in column
5.

The experiment underlying Table 3 differs from the previous two in that not
the whole universe of partitions of n elements was considered, but only those
partitions for which there exists a ”structure” that is where elements 1, 3 occur
always in the same cluster. Here unCD was used as distance measure as in
Table 1. The 5th column counts the number of occurrences of total-separation
cluster as consensus, while the 6th column tells how frequently the expected
partition (where all elements are singletons except for elements 1 and 3 that
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constitute one cluster) is discovered as consensus partition.
Comparing Tables 1 and 2 (rows where the 3rd column contains 100% entry)

we see first of all that the result of the Theorem 1 is far from being trivial. Total-
separation partition does not need to be the default choice for a consensus of the
entire universe of possible partitions. A skilled choice of dissimilarity function
may point at any partition. It is the particular property of Rand Index (Cluster
Difference) that distinguishes total-separation partition. So one can say that
Rand Index is biased towards total-separation partition in case of no pattern
in the data. This property seems to be vital and has never been reported in
the context of consensus clustering. An investigation of other measures with
respect to their behaviour under missing structure should be carried out.

Let us compare column 5 of tables 1 and 3. In table 1 we simulated the
case that there was no intrinsic structure behind the data, so that the parti-
tions obtained from various algorithms just provide random samples from the
universe of all possible partitions. We count how frequently the total-separation
partition will occur as the consensus between the diverse partitions. It turns
out that it happens quite often even if we have small sets of partitions. In table
3 on the other hand such a situation never happens. Furthermore, in column
6 of this table one can see that the centre of the set of clusters exhibiting the
assumed structure occurs quite often as the consensus in this experiment. So
non-occurring of total-separation partition as a consensus under a sufficiently
large set of competing partitions can be considered as a good indicator of ex-
istence of some structure in the data. So the ability of a consensus clustering
algorithm to provide total-separation partition as the consensus is a very useful
property because it allows us to discern between a meaningful and meaningless
set of outcomes of diverse clustering algorithms.

The Theorem 1 provides us with an important insight into the partition
space because the indicated behaviours are observed not only in the whole uni-
verse, but also in sufficiently big samples. Hence the distance of the actual
consensus from the total-separation partition is an important indicator of the
actual structure in the data. Enforcing exclusion of total-separation partition
from consensus seeking algorithm is not a wise decision. So the result is very
practical.

Let us also stress that for too small sample sizes one can get impression of
existence of a structure in the data even if there is none. Hence in practice one
should verify the validity of the consensus in the application domain.

We will postpone the discussion of the restriction of the number of clusters
k in a partition by an upper bound to the next section as it requires some
additional theoretical discussion.

In summary, the experiments allow to answer the posed questions as follows:

• The bias of Rand index to choose the total-separation partition as con-
sensus for the whole universe of partitions persists if we consider only a
uniform random sample from this universe?

• This bias is not a general property of cluster quality indices and the direc-
tion of the bias should be investigated separately for other cluster quality

13



Table 1: Results of consensus clustering of randomly selected partitions
data set size number of all

possible clus-
terings

sample size percentage
of possible
clusterings

percentage
of total-
separation
partitions in
consensus

1 2 3 4 5

4 15 15 100 % 100 %
4 15 8 50 % 88.2 %
5 52 52 100 % 100 %
5 52 26 50 % 100 %
5 52 21 40 % 97.2 %
5 52 10 20 % 78.9 %
5 52 5 10 % 23.1 %
6 203 203 100 % 100 %
6 203 102 50 % 100 %
6 203 81 40 % 100 %
6 203 41 20 % 99.9 %
6 203 20 10 % 96.5 %
7 877 88 10 % 100 %
7 877 44 5 % 99.9 %
7 877 35 4 % 99.7 %
7 877 18 2 % 93.7 %
7 877 9 1 % 49.9 %
8 4140 41 1 % 100 %
8 4140 21 0.5 % 94 %
8 4140 17 0.4 % 89 %
8 4140 8 0.2 % 61 %
8 4140 4 0.1 % 38 %
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Table 2: Results of consensus clustering of randomly selected partitions for a
modified distance measure

data set size number of all
possible clus-
terings

sample size percentage
of possible
clusterings

percentage
of total-
separation
partitions in
consensus

1 2 3 4 5

4 15 15 100 % 0 %
4 15 8 50 % 30.2 %
5 52 52 100 % 0 %
5 52 26 50 % 6.5 %
5 52 21 40 % 4.4 %
5 52 10 20 % 16.2 %
5 52 5 10 % 16.4 %
6 203 203 100 % 0 %
6 203 102 50 % 0.7 %
6 203 81 40 % 3.2 %
6 203 41 20 % 11.3 %
6 203 20 10 % 5.5 %
7 877 88 10 % 1.5 %
7 877 44 5 % 2.3 %
7 877 35 4 % 2.9 %
7 877 18 2 % 8.6 %
7 877 9 1 % 6.8 %
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Table 3: Results of consensus clustering of randomly selected partitions from a
set of partitions exhibiting simple structure

data set size number of
all cluster-
ings with
structure

sample size percentage
of possible
clusterings

percentage
of total-
separation
partitions in
consensus

percentage
of structure
set centre

1 2 3 4 5 6

4 5 5 100 % 0 % 100 %
4 5 2.5 50 % 0 % 69.2 %
5 15 15 100 % 0 % 100 %
5 15 8 50 % 0 % 89.7 %
5 15 6 40 % 0 % 74 %
5 15 3 20 % 0 % 22.8 %
5 15 2 10 % 0 % 53.1 %
6 52 52 100 % 0 % 100 %
6 52 26 50 % 0 % 100 %
6 52 21 40 % 0 % 97.2 %
6 52 10 20 % 0 % 77.3 %
6 52 5 10 % 0 % 23.5 %
7 203 41 20 % 0 % 99.9 %
7 203 20 10 % 0 % 95.8 %
7 203 16 8 % 0 % 90.4 %
7 203 8 4 % 0 % 70.2 %
7 203 4 2 % 0 % 47.6 %
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indices.

• Rand index behaves differently if there is a structure in the partitions for
which a consensus is sought.

6 Imposing a limit on the number of clusters to
be considered

Partitions explored practically in the case of consensus clustering always contain
much fewer clusters compared to the size of the set of objects (k << n). The
question is: would a limitation on the number of clusters k < kmax change
anything with respect to the previous results?

Note that for a partition consisting of k sets each of its complex extensions
contains also k sets, but the simple extension contains k + 1 sets. Therefore,
as long as k < kmax, nothing changes in the discussion of sections 4.4 and 4.5.
But for k = kmax, we need to update equations (6), (7) and (8), because we
will no longer consider (hence count) distances to the simple extensions. So the
equation (6) has to be substituted by

k∑
l=1,l 6=l′

unCD(Γl,Γl′) =

k∑
l=1,l 6=l′

(card (Sl − Sl′) + card (Sl′ − Sl))

=

k∑
l=1,l 6=l′

(card (Sl) + card (Sl′))

= (k − 1) · card (Sl′) + (n− card (Sl′))

= (k − 2) · card (Sl′) + n ≥ n (9)

which holds of course only if kmax > 1, which is rather a non-restrictive as-
sumption.

The equation (7) has to be substituted by

k∑
l=1

unCD(Γ0,Γ
′
l) =

k∑
l=1

(
unCD (Γ∗,Γ∗′;n) + card (S′l)

)
= n +

k∑
l=1

unCD(Γ∗,Γ∗′;n)

= n + k · unCD(Γ∗,Γ∗′;n) (10)

The equation (8) has to be substituted by
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k∑
l=1

unCD(Γm,Γ′l) =

k∑
l=1

(unCD (Γ∗,Γ∗′;n) + card (Sm − S′l) + card (S′l − Sm))

=

k∑
l=1

(unCD (Γ∗,Γ∗′;n) + card (Sm)− card (Sm ∩ S′l)

+card (S′l)− card (S′l ∩ Sm))

=

k∑
l=1

unCD(Γ∗,Γ∗′;n) + k · card(Sm) + n

−
k∑

l=1

card(Sm ∩ S′l)−
k∑

l=1

card(S′l ∩ Sm)

= k · unCD (Γ∗,Γ∗′;n) + k · card (Sm) + n

− card (Sm)− card (Sm)

= k · unCD(Γ∗,Γ∗′;n) + (k − 2) · card(Sm) + n

≥ k · unCD(Γ∗,Γ∗′;n) + n (11)

which is again valid under kmax > 1.
Hence lemmas 1 and 2 retain their validity for the restricting kmax and hence

the reasoning presented in section 4.6.
So the following theorem holds:

Theorem 2. For any n objects, among all partitions the partition where each
object falls into a separate cluster (called subsequently total-separation parti-
tion) has the lowest average Cluster Difference CD to the other partitions con-
sisting of at most kmax > 1 clusters.

But of course the limitation of the number of clusters still leaves a huge space
of possible partitions of the set of elements. So let us return to the discussion
of sampling this space.

Experiments analogous to those of previous section have been performed
and are summarized in Table 4. Random samples from the space of permissable
clusterings (with k < kmax ) were drawn and the suitability of total-separation
partition as consensus cluster was checked. A similar pattern to table 1 was
observed – with sufficiently large samples total-separation partition indicates
that there is no real relationship underlying the various clusterings.

The question can be raised: Can it really be so bad that modern day clus-
tering techniques would provide a clustering when no clusters are there in the
data. Vast majority of clustering algorithms produce partitions whatever data
they get. We can just point at k-means algorithm, but others, like DBSCAN,
single-link etc. could be used. Imagine a large collection of data points in
a high-dimensional space. Furthermore imagine the points are randomly uni-
formly distributed in space. Imagine that in order to perform k-means clustering
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Table 4: Results of consensus clustering of randomly selected partitions with
upper limit on k equal 4

data set size number of all
possible clus-
terings

sample size percentage
of possible
clusterings

percentage
of total-
separation
partitions in
consensus

1 2 3 4 5

6 187 187 100 % 100 %
6 187 94 50 % 100 %
6 187 75 40 % 100 %
6 187 37 20 % 99.6 %
6 187 19 10 % 81.5 %
7 715 143 20 % 100 %
7 715 72 10 % 100 %
7 715 57 8 % 99.8 %
7 715 29 4 % 95.5 %
7 715 14 2 % 76.6 %

efficiently, samples from this collection are drawn and k-means algorithm is per-
formed on each of them. As k-means always clusters the entire space (computes
centroids), we would have in fact a random sample of partitions from this uni-
verse. Now let the many partitions be processed by consensus clustering using
Rand Index. A consensus partition will be undoubtedly found. The lesson from
our theorem will be that it should converge towards total-separation partition.

But we can face also another serious real problem. Assume that we have a
data set with an underlying structure (say with two dense areas separated by
empty space), but located in a highly dimensional space. k-means algorithm
has the known property of being k-rich that is upon proper transformation of
distances between data points ANY clustering consisting of k clusters may be
obtained. And upon applying various clustering algorithms indeed distances are
transformed, e.g. by standardization, normalization, spectral transformations
etc. This means, however, that upon irresponsible choice of distance transfor-
mations we may sample from the universe of all possible partitions in spite of
the fact that the data has originally a structure. And here again, as a result
of consensus clustering, we can get total-separation partition, which would be
really bothering. So any transformation we apply to the data as an element
of the clustering process must not violate the geometrical structure of the data
space we expect to see.

So whether or not we restrict ourselves to an upper limit of clusters in a
partition, same answers are to be given to our questions driving the experiments.
So either we have to live with the risk that a consensus clustering returns us a
meaningless consensus or have to further develop these consensus methods so
that they are able to refuse to return a partition if no real structure in the data
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exists.

7 Remarks on meta-clustering

The formulas derived in the preceding sections shed also some light on possible
outcome of meta-clustering. It is obvious that assuming a sufficiently ”large”
number of clusters, the simple extensions will be cluster centres and clusters
will consist of extensions of the same reduct.

Let us introduce the concept of p-th order reduct and p-th order extension.
If Γ∗ is a reduct of Γ, then it is the 1st order reduct of Γ, and Γ is the 1st
order extension of Γ∗. If it is a simple extension, then it is the 1st order simple
extension. If Γ+ is a p-th order reduct of Γ∗ and Γ∗ is a reduct of Γ, then Γ+

is the (p+1)st order reduct of Γ and Γ is the (p+1)st order extension of Γ+. If
at the same time Γ∗ is a p-th order simple extension of Γ+ and Γ is a simple
extension of Γ∗, then Γ is the (p+1)st order simple reduct of Γ+. Otherwise Γ
is its complex extension.

With the above definition let us arrange a hierarchical clustering, where
the p-th level (from the bottom) consists of clusters with common p-th degree
reduct. In this case it is easy to see from Theorem 1 that the cluster centres
would be p-th degree simple extensions of the respective reduct, around which
the cluster is defined. This hierarchy would be a local minimum for the combined
distance of elements from their cluster centres at respective levels (each element
of a cluster is closer to its own cluster centre than to any other cluster centre).
One can in fact check that at the top level of such a hierarchy moving any object
between classes is not possible.

Let us demonstrate it by considering two meta-cluster centres over the set
of partitions of n elements: Γ0 being total-separation partition and Γ1 in which
elements 1, 2 are in one cluster and the others in separate clusters. Consider
now a partition Γq in which elements 1 and 2 are in separate clusters, and no
assumption with respect to other is done.

unCD(Γ0,Γq) = I12/0q +

n∑
j=3

I1j/0q +

n∑
j=3

I2j/0q +

n−1∑
i=3

n∑
j=i+1

Iij/0q

unCD(Γ1,Γq) = I12/1q +

n∑
j=3

I1j/1q +

n∑
j=3

I2j/1q +

n−1∑
i=3

n∑
j=i+1

Iij/1q (12)

where Ijk/lm means indicator of membership of element j, k in same clus-
ter in one of partitions Γl,Γm and in different in the other. It is eas-
ily checked that

∑n
j=3 I1j/0p =

∑n
j=3 I1j/1p,

∑n
j=3 I2j/1p =

∑n
j=3 I2j/1p and∑n−1

i=3

∑n
j=i+1 Iij/0p =

∑n−1
i=3

∑n
j=i+1 Iij/1p. The only difference is I12/1q equal

to one and I12/0q equal to zero. Γq is closer to Γ0 than to Γ1, as expected. If on
the other hand both 1 and 2 would be in the same cluster in Γq, the situation
would be inversed.
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Let us consider more detailed levels of meta-clustering, that is let Γ0 and Γ1

be pth simple extensions of Γ∗0 and Γ∗1 (over same set of elements) resp. and let
Γq be pth extension of Γ∗0.

unCD(Γ0,Γq) =

n−p∑
i=1

n−p∑
j=i+1

Iij/0q +

n−p∑
i=1

n∑
j=n−p+1

Iij/0q +

n−1∑
i=n−p+1

n∑
j=i+1

Iij/0q

unCD(Γ1,Γq) =

n−p∑
i=1

n−p∑
j=i+1

Iij/1q +

n−p∑
i=1

n∑
j=n−p+1

Iij/1q +

n−1∑
i=n−p+1

n∑
j=i+1

Iij/1q

(13)

Again obviously
∑n−p

i=1

∑n
j=n−p+1 Iij/0q =

∑n−p
i=1

∑n
j=n−p+1 Iij/1q,∑n−1

i=n−p+1

∑n
j=i+1 Iij/0q =

∑n−1
i=n−p+1

∑n
j=i+1 Iij/1q, so that again∑n−p

i=1

∑n−p
j=i+1 Iij/0q = 0 (as both Γ0 and Γq have the same reduct) and∑n−p

i=1

∑n−p
j=i+1 Iij/1q > 0 make the difference. One concludes that if the

meta-clustering is a hierarchical one and the clusters are build around same
reducts then the clusters at each hierarchy level are stable.

Hence it is obvious that also meta-clustering is biased - there exists a struc-
ture in spite of filling in the whole sample space.

The above meta-clustering ”algorithm” was pretty much manual. One can
ask whether or not other algorithms will exhibit the same tendency. In particular
if it turns out that the total-separation partition is chosen as centre of any of
the meta-clusters.

Let us try out k-medoids clustering, implemented in R as pam algorithm and
the popular k-means algorithm as meta-clustering methods. For this purpose
let us span a (n − 1) · n/2 dimensional space for partitions of n elements. For
a partition Γ, for 1 ≤ i < j ≤ n the (j − 1) · (j − 2)/2 + i-th coordinate in
this space would be equal to 1 if both elements i, j belong to the same cluster
and equal to 0 otherwise. It is easily seen that unCD is the taxicab-distance
between partitions in this space or the square of Euclidean distance, making it
reasonable to apply e.g. k-means algorithm. Let us have a look at the meta-
clusters generated using k-means and pam algorithm (as implemented in R
system) under this representation.

For a set of 4 elements, k-means algorithm with k = 2 splits the set of
all partitions into the meta-clusters: Meta-cluster 1 with minimal distance to
meta-cluster centre 1.5 containing 10 partitions:
{{1, 2, 4}{3}},
{1, 2}{3, 4}},
{{1, 2}{3}{4}},
{{1, 4}{2, 3}},
{{1}{2, 3, 4}},
{{1}{2, 3}{4}},
{{1, 4}{2}{3}},
{{1}{2, 4}{3}},
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{{1}{2}{3, 4}},
{{1}{2}{3}{4}}.
The last one is the closest point to centroid of this meta-cluster. Meta-cluster
2 with minimal distance to meta-cluster centre 2 containing 5 partitions:
{{1, 2, 3, 4}},
{{1, 2, 3}{4}},
{{1, 3, 4}{2}},
{{1, 3}{2, 4}},
{{1, 3}{2}{4}}
The last one is the closest point to centroid of this meta-cluster.

On the other hand, the pam algorithm with split parameter set to 2 creates
a meta-cluster consisting of partitions {{1, 2, 3, 4}} and {{1}{2, 3, 4}}, while
the other meta-cluster contains all the other partitions, with {{1}{2}{3}{4}}
(total-separation partition) being the medoid.

For 5 elements k-means provides two meta-clusters: meta-cluster 1 minimum
distance to meta-cluster centroid equal 2.432 and of card. 37 with element
closest to the centroid {{1}{2}{3}{4}{5}} and a meta-cluster 2 (min. dist. 3
card. 15) with element closest to the centroid {{1, 2}{3}{4}{5}}.

The two meta-clusters returned by pam have cardinality 6 with medoid
{{1, 2, 3, 4, 5}} and card. 46 with medoid {{1, 2}{3}{4}{5}}. Here, total-
separation partition was not selected, but still is among the candidates.

For 6 elements k-means creates one meta-cluster of card. 156 with the
total-separation partition being the closest one to the centroid, while the other
meta-cluster of card. 47 has 25 elements with minimal distance of 7.40 from the
centroid.

pam provides two meta-clusters of card. 52 and 151 with medoids
{{1}{2}{3}{4}{5, 6}} and total-separation one resp.

For 7 elements k-means returns a meta-cluster of card. 582 with the total-
separation partition being the closest one (dist. 3.463) to the centroid, and
another meta-cluster of card. 295 105 elements closest to the centroid (dist.
9.264406)

pam provides two meta-clusters of card. 203 and 674 with medoids
{{1}{2}{3}{4}{5}{6, 7}} and total-separation one resp.

For 8 elements in k-means we have one meta-cluster of card. 2570 with the
total-separation partition being the closest one to the centroid (dist. 4.21), while
the other meta-cluster of card. 1570 has 700 elements with minimal distance of
11.37 from the centroid.

pam provides two meta-clusters of card. 877 and 3263 with medoids
{{1}{2}{3}{4}{5}{6}{7, 8}} and total-separation one resp.

For k-means it should be underlined that the distance between cluster centres
does not exceed 1 in any of the above cases.

It is worth noting that the meta-cluster around the total-separation partition
is the larger one. In fact, with k-means for 8 elements if k grows even to
100, this meta-cluster (with total-separation partition) is the largest one. The
percentage of variance explained (betweenness/ totals) is however low. With
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k=2 3% is explained, with k=20 26% is explained, with k=50 41% is explained,
with k=100 54%, with k=150 60%, with k=200 64%.

We also see in these experiments that split into two classes as performed
by pam is in agreement with our claim that p-th order simple extensions will
become meta-cluster centres. This is even true for k-means with the total
separation partition.

A comment on the difference between pam and k-means results seems to be
required. First of all we made here a trick of pressing the distances between
partitions into a vector space. This should not affect pam algorithm as the
distances in this space are the same as the original space, but it may be a little
bit confusing for k-means which actually uses the square roots of the original
distances. Furthermore, the dense partition space was replaced by a sparse
vector space. This leads k-means to explore places in this space (as centroids)
that also not have a clear interpretation. Possibly one could investigate a kind of
fuzzification here in order to have an insight into what the centroid may mean.
This may be a future research path.

Finally, let us have a look at the performance of pam when we do not (meta)-
cluster the universe of all possible partitions, but only random samples from it.
We check again if the total-separation partition is among the candidates. We
have, however, one difference here compared to the settings of experiments in
Section 5. As pam seeks for medoids, total-separation partition must be among
the partitions to be meta-clustered, so we enforce selecting it when randomly
sampling. Table 5 shows the behaviour of pam when the samples are uniformly
drawn from the universe of partitions. Total-separation partition is the dom-
inating option for medoid of at least one of two meta-clusters, that pam is
requested to generate. Table 6 shows the behaviour of pam when we draw the
samples from the sub-universe with a structure as done in Table 3. Here, for
sufficiently large random samples the total-separation partition, though present
in each sample, is rarely chosen.

8 Conclusions and future work

As the number of available clustering algorithms applicable to the same data is
growing, and the potential outputs may differ substantially, methodologies to
reconcile them like meta-clustering or consensus clustering are under develop-
ment.

In this paper we demonstrated that both consensus clustering and meta-
clustering using Cluster Difference (derived from Rand Index) as a measure
of distance between partitions, when applied to the universe of all possible
partitions, point to the partition containing each element in a separate set as
the best compromise.

This suggests that the user performing the task of clustering must at least
have an approximate vision of the geometry of the data space. Only in this case
the mentioned techniques may be helpful in the choice of appropriate compro-
mise clustering.
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Table 5: Results of meta-clustering via pam of randomly selected partitions
data set size number of all

possible clus-
terings

sample size percentage
of possible
clusterings

percentage
of total-
separation
partitions as
meta-cluster
centre

1 2 3 4 5

4 15 15 100 % 100 %
4 15 8 50 % 64.9 %
5 52 52 100 % 100 %
5 52 27 50 % 99.6 %
5 52 21 40 % 97.8 %
5 52 11 20 % 83.7 %
5 52 6 10 % 68.9 %
6 203 203 100 % 100 %
6 203 102 50 % 100 %
6 203 82 40 % 100 %
6 203 41 20 % 99.9 %
6 203 21 10 % 98 %
7 877 89 10 % 100 %
7 877 45 5 % 100 %
7 877 36 4 % 100 %
7 877 19 2 % 99.6 %
7 877 10 1 % 96.9 %
8 4140 84 2 % 100 %
8 4140 42 1 % 100 %
8 4140 34 0.8 % 100 %
8 4140 18 0.4 % 99 %
8 4140 9 0.2 % 99 %
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Table 6: Results of meta-clustering via pam of randomly selected partitions out
of a set with structure

data set size number of all
possible clus-
terings

sample size percentage
of possible
clusterings

percentage
of total-
separation
partitions as
meta-cluster
centre

1 2 3 4 5

4 6 6 100 % 0 %
4 6 3 50 % 10.8 %
5 16 16 100 % 0 %
5 16 9 50 % 0.2 %
5 16 7 40 % 1.4 %
5 16 4 20 % 10.1 %
5 16 3 10 % 25 %
6 53 53 100 % 0 %
6 53 27 50 % 0 %
6 53 22 40 % 0 %
6 53 11 20 % 1.5 %
6 53 6 10 % 9.5 %
7 204 42 20 % 0.1 %
7 204 21 10 % 3.6 %
7 204 17 8 % 5.1 %
7 204 9 4 % 19.6 %
7 204 5 2 % 35.2 %
8 878 71 8 % 6 %
8 878 36 4 % 16 %
8 878 29 3.2 % 22 %
8 878 15 1.6 % 32 %
8 878 8 0.8 % 43 %
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It seems also worth investigating, how other cluster quality functions used
as distances between partitions would behave under consensus clustering of the
space of all possible partitions.

It seems also worth investigating how such measures would behave not in
the full universe of all partitions but rather for uniform random samples of
it. Such a sampling would then constitute a background for investigations into
the behaviour of other partition comparison indexes, of consensus and meta-
clustering methods as well as for checking if a resultant consensus-partition or
meta-cluster really gives a new insight or is just a random artefact.
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