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Abstract. We study how the non-classical n-ary operator ⊗, originally intended to capture the con-

cept of reparative obligation, can be used in the context of social choice theory to model preferences.

A novel possible-world model-theoretic semantics, called sequence semantics, was proposed for the

operator. In this paper, we propose a sound and complete axiomatisation of a minimal modal logic

for the operator, and we extend it with axioms suitable to model social choice consistency principles

such as extension consistency and contraction consistency. We provide completeness results for such

extensions.
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1. Introduction

Theoretical and computational research in social choice theory is now recognised as relevant and is

well-established in the Multi-Agent System (MAS) community. Indeed, it deals with the problem of how

to aggregate in MAS individual preferences into a social or collective preference in order to achieve a

rational collective decision [1].
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Preliminarily to any useful contribution in this area we need to develop suitable formalisms and

reasoning methods to represent and handle agents’ preferences. In the current literature, we can find

several approaches, among which the most remarkable in computational social choice theory are perhaps

the following [2]:

• conditional preference networks, or CP-nets [3];

• prioritised goals [4, 5].

The second approach uses logical formalisms to describe the goals of the agents whose preferences are

modelled as propositional formulae. This allows for a manageable and purely qualitative representation

of preferences. Very recently, a new proposal in this perspective has been advanced [6], which presents

a modal logic where a binary operator is meant to syntactically express preference orderings between

formulae: Each formula of this logic determines a preference ordering over alternatives based on the

priorities over properties that the formula express. Accordingly, such types of formalisms are in fact

capable of representing not just orderings over alternatives but the reasons that lead to the preferences

[7]. The formalism is then interestingly used in [6] to originally treat the problem of collective choice in

MAS as aggregation of logical formulae. The logic in [6] is clearly inspired by the work in [8], which

in turn has a number of similarities with a system that was independently developed in [9] and where a

Gentzen system was proposed in a different but related area—deontic logic—to reason about orderings

on obligations. The idea that reasoning about preferences is crucial in deontic logic was introduced in

semantic settings long time ago [10] (for recent discussions see [11, 12]). However, [9] is based on the

syntactic introduction of the new non-classical operator ⊗: The reading of an expression like a⊗ b⊗ c is

that a is the primary obligation, but if this obligation is violated, the secondary obligation is b, and, if the

secondary (contrary-to-duty) obligation b is violated as well, then c is obligatory. These constructions can

be used as well to reason about preferences. Thus, following the approach in [9], an expression like

Resident → ¬Pay Taxes ⊗ ¬Pay Interest ⊗ Pay Minimum (1)

can be intuitively viewed as a conditional preference statement meaning the following:

1. if I’m resident in Italy, i.e., if Resident is the case, then not paying taxes is my actual preference,

but,

2. if it happens that I pay taxes, then my actual preference is rather not to pay any interest, but

3. if I pay any interest, then my actual preference is pay a minimum.

The advantage of this formalism is that we can offer a compact representation of reasons explaining

preferences, and thus we can also develop intuitive logical tools for reasoning about individual choices.

As it was proposed in the tradition of deontic logic (see [11, 12]) and as it has been recently recalled by

[6] in the context choice theory, modal logics are a natural way of modelling reason-based preferences.

Indeed, preferences among propositional formulae correspond semantically to ideality or orderings on

possible worlds. Very recently, we have devised a new semantics for ⊗ deontic logics, which extends

neighbourhood models with sequences of truth sets [13, 14]. In this paper we extend our previous work

and offer new results for a novel preference logic. More precisely, we address in this paper the following

research questions:
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• What is the minimal axiomatisation for modelling reason-based preferences using ⊗? We will see

that the minimal system E⊗ just extends classical modal systems [15] even though some additional

schemata can be proposed to grasp reasonable properties of preferences.

• How to semantically characterise the idea of reason-based preference? We will argue that the

intuition of [13, 14] can be applied to preference logic: the idea is that an expression like a ⊗ b
is semantically reflected in the sequence 〈‖a‖V , ‖b‖V 〉 of truth sets. Specific soundness and

completeness results will be proved for preference logics.

• How to relate the formalism with well-known properties of preferences studied in rational choice

theory? We will discuss how to express two basic social choice principles (contraction and

expansion) in the ⊗-logic.

The layout of the paper is as follows. After the introduction of the language used (Section 2), Section

3 presents the basic logical system for ⊗ to represent and reason about preferences. The logic recalls

some intuitions from [9, 13, 14]. Section 4 defines a sequence neighbourhood semantics suitable for the

system which adjusts the one proposed in [13, 14]. Sections 5 and 6 provide soundness and completeness

results. In Section 7 we discuss how to apply the logic to the modelling of some social choice principles

(i.e., contraction and expansion). Some conclusions end the paper.

2. Language

The language consists of a countable set of atomic formulae. Well-formed-formulae are then defined using

the usual Boolean connectives and the n-ary connective ⊗, which is intended to syntactically formalise a

preference ordering among reasons. The language also includes the modal operator Pr denoting the actual

preferred reason or state of affairs: in other words, Prp means that p is actually preferred.

The interpretation of an expression a⊗ b is that a is the most preferred reason or state of affairs, but,

if a is not the case then b is preferred.

Let L be a language consisting of a countable set of propositional letters Prop = {p1, p2, . . . }, the

propositional constant ⊥, round brackets, the Boolean connective→, the unary operator Pr, and a set of

n-ary operators ⊗n for n ∈ N, n > 0. We will refer to the ⊗n operators and Pr as preference operators.

The main motivation for having a family of ⊗ operators instead of a single binary operator plus

commutativity, i.e., a ⊗ (b ⊗ c) ≡ (a ⊗ b) ⊗ c, is to prevent nested preference expressions. With this

option one would conflate preferences and “meta-preferences” in the same reading, and it will establish

preferences over formulae representing concepts of different types, e.g., (a⊗ b) and c. Furthermore, as we

have alluded to above, given the expression (or as we will call it ⊗-chain) A⊗ c we form the preference c,

if A does not hold. But, if A = (a⊗ b), what does it mean that it does not hold. Is it that a is not preferred

to b or there is no preference between a and b, or a is preferred to ¬b. While there are no particular

technical problems to adapt the development to a binary operator, we refrain to do that until we have a

clear conceptual reading of nested ⊗-chain expressions.

Definition 2.1. (Well Formed Formulae)

Well formed formulae (wffs) are defined as follows:

• Any propositional letter p ∈ Prop and ⊥ are wffs;
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• If a and b are wffs, then a→ b is a wff;

• If a is a wff and no preference operator occurs in a, then Pra is a wff;

• If a1, . . . , an are wffs and no preference operator occurs in any of the ai, 1 ≤ i ≤ n, then

a1 ⊗
n · · · ⊗n an is a wff, where 1 ≤ n;1

• Nothing else is a wff.

We use WFF to denote the set of well formed formulae.

Other Boolean operators are defined in the standard way, in particular ¬a =def a→ ⊥ and ⊤ =def

⊥ → ⊥.

We say that any formula a1 ⊗
n · · · ⊗n an is an ⊗-chain of length n; also the negation of an ⊗-chain

is an ⊗-chain. The formation rules allow us to have ⊗-chain of any (finite) length, and the arity of

the operator is equal to number of elements in the chain; accordingly, we drop the index m from ⊗m.

Moreover, we will often use the prefix notation
⊗n

i=j ai for aj ⊗ · · · ⊗ an; however, since the arity of the

operator can be deduced by the number of arguments, we shall henceforth drop the index. In addition we

use the following notation:
⊗n

i=j ai ⊗ b⊗
⊗m

k=l ck, where j, l ∈ {0, 1}. The “a” part and “c” part are

optional, i.e., they are empty when i = 0 or k = 0, respectively. Otherwise the expression stands for the

following chain of n+ 1 +m elements: a1 ⊗ · · · ⊗ an ⊗ b⊗ c1 ⊗ · · · ⊗ cm.

3. Axioms

In this section we are going to examine which basic axioms can be chosen for a logic intended to model

ordered preferences. We assume that any such logic is based on a suitable axiomatisation of classical

propositional logic.

3.1. Minimal System E
⊗

The first axiom we consider is the following:

n
⊗

i=1

ai ≡

(

k−1
⊗

i=1

ai

)

⊗

(

n
⊗

i=k+1

ai

)

(where aj ≡ ak, for some j < k) (⊗-shortening)

This axiom allows us to remove (introduce) duplicate formulae (or equivalent formulae) from the left.

Thus, given the ⊗-chain

a⊗ b⊗ a⊗ c (2)

we can derive the equivalent formula

a⊗ b⊗ c (3)

The intuition is as follows: As we have seen in Section 1 the meaning of ⊗-chain in (2) is that a is the

most preferred option, but if that is not possible, then the formula following it, in this case b, is the next

preferred option, and so on. Specifically, if b does not hold, then a is the new preferred option, but we

1We will use the prefix form ⊗
1
a for the case of n = 1.
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already know that a does not hold, and then we can move to the successive option, i.e., c. Intuitively, if I

prefer not to get any damage, but if this happens I prefer to be compensated, and, if the damage is not

compensated, then I prefer not to get any damage, this just means that my primary preference is not to get

any damage and my secondary preference is to be compensated.

Notice that Axiom ⊗-shortening gives us a method to define a normal form for preferences: Given

any ⊗-chain expression, we can create the shortest ⊗-chain where all the elements in it are disjoint.

We are going to use this property for the development of the semantics for the logic of ⊗-chains (see

Definitions 4.2, 4.3 and 4.5 below).

The next axiom allows us to derive actual preferences (i.e., formualae in the scope of the modal

preference operator Pr from ⊗-chains). Thus it provides a form of detachment for deriving actual

preferences from ⊗-chains, i.e., those preferences that hold in a given context. They reflect the intuitive

reading of the ⊗ operator. Indeed, if a⊗ b, the primary preference should hold, and, if a is factually false

(¬a), then b must be preferred, i.e., Prb:2









(

n
⊗

i=0

bi

)

⊗ c⊗

(

m
⊗

j=0

dj

)



 ∧

(

n
∧

i=0

¬bi

)



→ Prc (Pr-detachment)

Notice that when the initial optional prefix is absent, Axiom Pr-detachment can be rewritten as

n
⊗

i=1

ai → Pra1 (Pr-detachment-1)

Thus, the first element of an ⊗-chain is one of our actual preferences.

Let us illustrate how the axiom works with the help on an example. Consider the formula (1) where I

reside in Italy and I have paid my taxes. This means that Resident holds, from which, by modus ponens,

we obtain

¬Pay Taxes ⊗ ¬Pay Interest ⊗ Pay Minimum

and then by Pr-detachment (or Pr-detachment-1) we can conclude Pr¬Pay Taxes . If I am a good citizen,

and I pay my taxes (against my preference), i.e., Pay Taxes holds, then Pr-detachment allows me to

infer the not paying interest is now one of my preferences, that is we derive Pr¬Pay Interest . Finally,

the minimal system E⊗ is equipped with the following two inference rules, that permit replacement of

equivalent formulae in the context of ⊗ and Pr.

∧n
i=1(ai ≡ bi)

(
⊗n

i=1 ai) ≡ (
⊗n

i=1 bi)
(⊗-RE)

a ≡ b

Pra ≡ Prb
(Pr-RE)

3.2. Additional Axioms

In Section 4 we are going to introduce a novel possible world sequence semantics for ⊗ and Pr, and in

Section 5 we are going to show that the logic E⊗ is the minimal system for the semantics. The minimal

2Please, remember the convention that if the subscript starts with 0, then that part of the sequence is optional.
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logic does not allow us to determine whether the preferences of an agent are consistent, and it does not

provide mechanisms to derive (new) preferences from existing ones. In this section we present some

additional axioms establishing consistency principles for preferences, and a mechanism to generate new

preferences from existing ones. These axioms can be used to extend the minimal logic E⊗. In Section 7

we are going to examine what axioms are needed to represent some social choice principles.

We begin with an axiom (⊗-I) that allows us to derive new preference orderings by combining existing

preference orderings (thus it corresponds to a peculiar introduction rule for ⊗).




(

p
⊗

k=0

ak ⊗
n
⊗

i=1

bi ⊗

q
⊗

l=0

cl

)

∧

(

n
∧

i=1

¬bi →

m
⊗

j=1

dj

)



→

p
⊗

k=0

ak ⊗

n
⊗

i=1

bi ⊗

m
⊗

j=1

dj (⊗-I)

Let us illustrate (⊗-I) by considering a simple instance of it as applied to a concrete example:

¬Pay Taxes ⊗ ¬Pay Interest (4)

Pay Taxes ∧ Pay Interest → ⊗1Pay Minimum (5)

The formula in (4) states that my primary preference is not to pay taxes, but if this happens then my

preference is not pay any interest (for example, by paying them in due time without delay). The expression

in (5) specifies that, if I pay taxes and pay with interest (e.g., because I was late), then my preference is to

pay the minimum amount. Hence, (⊗-I) states that there is a chain of preferences dealing iteratively with

the fact that my primary preference (not to pay any taxes) is not satisfied.

The next two axioms can be use to guarantee that preferences are consistent.

Pra→ ¬Pr¬a (Pr-D)

Axiom Pr-D is the standard D axiom of modal logic [15] and it represents the principle of internal

consistency of actual preferences. Thus, when the axiom is assumed, it is not possible to have that an

agent prefers at the same time a and its opposite ¬a. “External consistency” of preferences is given

n
⊗

i=1

ai →
n−1
⊗

i=1

ai (⊗-⊥)

Clearly, given that we use classical propositional logic as the underlying logic, it is not possible that an

⊗-chain and its negation hold at the same time. However, without axiom ⊗-⊥, it is possible to have

that ⊗-chains like a⊗ b⊗ c and ¬(a⊗ b) hold. The first ⊗-chain states that a is preferred, the second

best preference is b, and the third best preferred one is c. But ¬(a ⊗ b) assert that b is not the second

best preference with respect to a. This case is subsumed by a⊗ b⊗ c, thus a⊗ b⊗ c and ¬(a⊗ b) (or

¬ ⊗1 a) should result in a contradiction. Thus axiom ⊗-⊥ ensures this effect by establishing that if an

agent subscribes to a particular preference ordering, then the agent subscribes to (derives) all the initial

(starting from the leftmost element) sub-orderings (sub-chains) of an existing ⊗-chain. For example, if

¬Pay Taxes ⊗ ¬Pay Interest ⊗ Pay Minimum

holds, then we can conclude that the following hold, too:

¬Pay Taxes ⊗ ¬Pay Interest

⊗1¬Pay Taxes .
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4. Sequence Semantics

In this section we are going to introduce a novel semantics, called sequence semantics, for the logic of

⊗-chains. The motivation for the development of such a semantics is twofolds. First, the semantics is

a generalisation of standard possible worlds neighbourhood semantics for modal logic. Thus, this new

setting can incorporate existing work where preferences are modelled using modal operators. Second,

the semantics allows us to capture the behaviour of ⊗-chains. Sequence semantics was first proposed in

the context of deontic logic to obviate the problem that, in some cases, what constitutes the violation of

a compensated obligation can be evaluated as permitted [16]. Consider the ⊗-chain a⊗ b: in terms of

possible worlds this expression means that we prefer a possible world where a holds to a world where a
does not hold; furthermore, we prefer a world where both ¬a and b holds to one where ¬a holds but b
does not; and the world where ¬a ∧ b holds still respects the preference given by a⊗ b. Thus, an ⊗-chain

induces an order on possible worlds. Accordingly, the induced order can be use as the accessibility

relation for Pr. Suppose that for some reasons ¬a holds everywhere in the model, thus the first element of

the order over the possible world is where ¬a ∧ b holds. Using now the standard evaluation clause for

modalities in Kripke models, we get Pr¬a, but this does not correspond to the preference encoded by

a⊗ b.

Let us introduce the semantic structures that we use to interpret ⊗-formulae. In fact, they are just an

extension of neighbourhood frames for classical modal logics.

Definition 4.1. A sequence frame is a tuple F = 〈W, C〉 where:

• W is a non empty set of worlds;

• C is a neighbourhood function with the following signature3

C : W → 2((2
W )n) for n ∈ N.

In general, a sequence frame is nothing but a structure where the standard neighbourhood function

is replaced by a function that establishes an order between elements (i.e., sets of worlds) of each

neighbourhood associated to every world. Notice that in case of n = 1 the structure is isomorphic to a

standard neighbourhood frame. Figure 1 offers a pictorial representation of the intuition.

The following definitions introduce the notion of redundancy and the operations of zipping and

s-zipping, i.e., operations that, respectively, remove repetitions or redundancies occurring in ⊗-chains and

in sequences of sets of worlds. Intuitively, these operations are necessary because, despite the fact the

language allows for building expressions like a⊗ b⊗ a, these must be semantically evaluated using the

sequence of sets of worlds 〈‖a‖V , ‖b‖V 〉 (see rule (⊗-shortening)).

Definition 4.2. A formula A is redundant iff A =
⊗n

i=1 ai, n > 1 and ∃aj , ak, 1 ≤ j, k ≤ n, j 6= k,

such that aj ≡ ak.

Definition 4.3. Let A =
⊗n

i=1 ai be any redundant formula. We say that the non-redundant B is zipped

from A iff B is obtained from A by applying recursively the operations below:

3As done sometimes with the standard neighbourhood function, we use the notation Cw to denote C(w).
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Figure 1: Basic sequence structure: X1, X2, X3, · · · ⊆W and Y1, Y2, Y3, · · · ⊆W

1. If n = 2, i.e., A = a1 ⊗ a2, and a1 ≡ a2, then B, its zipped form, is Pra1;

2. Otherwise, if n > 2, then for 1 ≤ k ≤ n, if aj ≡ ak, for j < k, delete ⊗ak from the sequence.

Let X = 〈X1, . . . , Xn〉 be such that Xi ∈ 2W (1 ≤ i ≤ n). We analogously say that Y is s-zipped

from X iff Y is obtained from X by applying the operations below:

1. If n = 2 and X1 = X2, then its s-zipped from Y is 〈X1〉;

2. Otherwise, if n > 2, then for 1 ≤ k ≤ n, if Xj = Xk, for j < k, delete Xk from the sequence.

Proposition 4.4. Let A and B be two formulae such as B is zipped from A, then A ≡ B.

Proof:

The proof trivially follows from the definition of zipped from and axiom ⊗-shortening. ⊓⊔

Given two formulas A and B where A is not redundant and A is zipped from B we will also say that A is

the zipped form of B.

Definition 4.5. (Models with sequences and truth of formulae)

A modelM is a pair 〈F , V 〉 where F is a sequence frame and V is a valuation such that:

• for any non-redundant formula
⊗n

i=1 ai, |=
V
w

⊗n
i=1 ai iff there is a cj ∈ Cw such that cj =

〈‖a1‖V , . . . , ‖an‖V 〉;

• for any redundant formula
⊗n

i=1 ai, |=
V
w

⊗n
i=1 ai iff

–
⊗k

f=1 af is zipped from
⊗n

i=1 ai, and

– |=V
w

⊗k
f=1 af .

• |=V
w Pra iff there is a cl ∈ Cw such that:

– cl = 〈‖a1‖V , . . . , ‖an‖V 〉;
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– for some k ≤ n, ‖ak‖V = ‖a‖V ;

– for 1 ≤ j < k, w 6∈ ‖aj‖V .

Figure 2 pictorially illustrates the type of models used for evaluating ⊗-chains. In fact, we use only finite

sequences of sets of worlds, closed under s-zipping. A formula
⊗n

i=1 ai is true iff the corresponding

appropriate finite sequence of sets of worlds (without redundancies) is in Cw. Notice that the evaluation

clause for Pra works using sequences of length 1 or with longer sequences whenever a is the k’s element

of the ⊗-chain and the previous aj are such that w 6∈ ‖aj‖V , i.e., the previous preferences have not been

satisfied in w.

Figure 2: Sequence models where finite sequences are used to evaluate the formulae
⊗k

i=1 ai, . . . ,
⊗n

i=1 bi

Figure 3: Example of a simple sequence model

The evaluation of ⊗-formulae is exemplified in Figure 3. Let M = 〈W, C, V 〉 be a model where

W = {w, z, t}, Cw = {c1, c2}, c1 = 〈{w, z} , {z, t}〉, c2 = 〈{z} , {z, t} , {w, z}〉, V (a) = {w, z},
V (b) = {z, t}, and V (c) = {z}. Given the valuation V , it holds that c1 = 〈‖a‖V , ‖b‖V 〉 and hence the

formula a⊗ b is true at w, i.e., |=V
w a⊗ b; the same holds for the formula c⊗ b⊗a, due to c2. On the other

hand 6|=V
w a⊗ b⊗ c, since there is no sequence 〈‖a‖V , ‖b‖V , ‖c‖V 〉 associated to the world w. Finally,

the formula Prb is also satisfied; indeed c2 = 〈‖c‖V , ‖b‖V , ‖a‖V 〉 and w 6∈ ‖c‖V .
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5. Soundness Results

We now prove that the rules and axioms of system E⊗, namely rules (⊗-shortening), (Pr-detachment),(⊗-

RE) and (Pr-RE), and schemata (⊗-I), (Pr-D) and (⊗-⊥) are sound.

Lemma 5.1. ⊗-RE, Pr-RE, ⊗-contraction, Pr-detachment are valid in the class of all sequence frames.

Proof:

The result for (⊗-RE) and (Pr-RE) trivially follows from the fact that the valuation clause for any ⊗-chain
⊗n

i=1 ai, at any world w and with any valuation V , requires the existence of a sequence c ∈ Cw of truth

sets 〈‖a1‖V , . . . , ‖an‖V 〉. Then since for any i, ‖ai‖V = ‖bi‖V (ai ≡ bi for any frame and any valuation

by assumption) there is also a sequence 〈‖b1‖V , . . . , ‖bn‖V 〉 ∈ Cw.

The proof for ⊗-contraction follows directly from the valuation clause of redundant formulae, and

from the definitions of redundancy, zipping, and s-zipping.

The proof for Pr-detachment follows from the valuation clause for the operator Pr. ⊓⊔

Definition 5.2. (Extended Frames)

A sequence frame is extended when the following holds. For any world w if there is a sequence

〈A0, . . . , Ai, B1, . . . , Bk, C0, . . . , Cj〉 ∈ Cw such that w /∈ Bl for 1 ≤ l ≤ k implies 〈D1, . . . , Dm〉 ∈
Cw, then 〈A0, . . . , Ai, B1, . . . , Bk, D1, . . . , Dm〉 ∈ Cw

Definition 5.3. (Serial Frames)

A sequence frame is serial if the following holds. Given any world w, if 〈A0, . . . , Ai, C1, . . . , Ck〉 ∈ Cw
and w 6∈ Al for 0 ≤ l ≤ i, then for any sequence 〈D0, . . . , Dm〉 such that for 0 ≤ l ≤ m, w 6∈ Dl, it

holds that 〈D0, . . . , Dm,W − C1〉 6∈ Cw.

Definition 5.4. (⊗-Serial Frames)

A sequence frame is⊗-serial iff for any world w, if 〈A1, . . . , An〉 ∈ Cw and n ≥ 2, then 〈A1, . . . , An−1〉 ∈
Cw.

Lemma 5.5.

1. Schema (⊗-I) is valid in the class of extended frames.

2. Schema (Pr-D), is valid in the class of serial frames.

3. Schema (⊗-⊥) is valid in the class of ⊗-serial frames.

Proof:

The proof for all three cases is easy and straightforward following the syntactic structure of the corre-

sponding axioms. ⊓⊔
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6. Completeness Results

Before introducing the definition of canonical sequence model, some technical definitions are required.

First, it should be explained what it means for two ⊗-chains to be consistent.

Proposition 6.1. Let A and B be two ⊗-chains. A and B are inconsistent (i.e., A ∧B → ⊥) iff

• A =
⊗n

i=1 ai, B = ¬(
⊗m

j=1 bj),

• C =
⊗k

j=1 cj is zipped from A,

• D =
⊗k

j=1 dj is zipped from
⊗m

j=1 bj , and

• for all 1 ≤ l ≤ k, cl ≡ dl.

Proof:

1. c1 ⊗ · · · ⊗ ck ≡ c1 ⊗ · · · ⊗ ck tautology

2. c1 ⊗ · · · ⊗ ck ≡ d1 ⊗ · · · ⊗ dk 1, ⊗-RE

3. c1 ⊗ · · · ⊗ ck ≡ a1 ⊗ · · · ⊗ an ⊗-shortening C is zipped from A

4. a1 ⊗ · · · ⊗ an ≡ d1 ⊗ · · · ⊗ dk 2, 3, PC

5. b1 ⊗ · · · ⊗ bm ≡ d1 ⊗ · · · ⊗ dk ⊗-shortening D is zipped from B

6. a1 ⊗ · · · ⊗ an ≡ b1 ⊗ · · · ⊗ bm 4, 5, PC

7. a1 ⊗ · · · ⊗ an ∧ ¬(b1 ⊗ · · · ⊗ bm)→ ⊥ 6, PC

⊓⊔

Definition 6.2. (⊗-maximality)

A set of formulae w is ⊗-maximal if and only if it is (classically) maximal and for any ⊗-chain
⊗n

i=1 ai,
either

⊗n
i=1 ai ∈ w, or ¬

⊗n
i=1 ai ∈ w.

Given any maximal consistent set w, w can be extended to a ⊗-maximal consistent set w+ by adding, for

any
⊗n

i=1 ai, either it, or its negation (preserving consistency) to w in a standard recursive procedure.

Lemma 6.3. (Lindenbaum’s Lemma)

Let S be any theory extending E⊗. Any consistent set w of formulae in the language L can be extended to

a consistent L-maximal set w+.

Proof:

Let a1, a2, . . . be an enumeration of all the possible formulae in L.

• w0 := w;

• wn+1 := wn ∪ {an} if its closure under the axioms and rules of S is consistent, w ∪ {¬an}
otherwise;

• w+ :=
⋃

n≥0wn.
⊓⊔
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The construction of a sequence canonical model is as follows.

Definition 6.4. (E⊗-Canonical Models)

A sequence modelM := 〈W+, C, V 〉 is a canonical sequence model for E⊗ if and only if:

1. W+ is the set of all the ⊗-maximal consistent sets.

2. For any propositional letter p ∈ Prop, ‖p‖V := |p|E⊗ , where |p|E⊗ := {w ∈W+ | p ∈ w}.

3. Let C :=
⋃

w∈W+ Cw, where for each w ∈W+,

Cw :=
{

〈‖a1‖V , . . . , ‖an‖V 〉 |
⊗n

i=1 ai ∈ w
}

∪
{

〈‖a‖V 〉 | Pra ∈ w
}

,

where each ai is a meta-variable for a Boolean formula.

Lemma 6.5. (Truth Lemma)

Given a canonical sequence model M, for any w ∈ W+ and for any formula A, A ∈ w if and only if

|=V
w A.

Proof:

Given the construction of the canonical model, this proof is easy and can be given by induction on the

length of an expression A. We consider only a few relevant cases.

Assume A has the form a1 ⊗ · · · ⊗ an and is redundant (clearly the case for non redundant formulae

is easier and does not need to be considered here). Suppose ai ⊗ · · · ⊗ an ∈ w. Then, by ⊗-shortening,

we have that the formula b1 ⊗ · · · ⊗ bj , the zipped form of A, is also in w. By definition of canonical

model we have that there is a sequence 〈‖b1‖V , . . . , ‖bj‖V 〉 ∈ Cw. Following from the semantic clauses

given to evaluate ⊗-chains, it holds that |=V
w a1 ⊗ · · · ⊗ an.

Now suppose that |=V
w a1 ⊗ · · · ⊗ an. By definition, there is a zipped formula b1 ⊗ · · · ⊗ bj such

that |=V
w b1 ⊗ · · · ⊗ bj . Thus, Cw contains an ordered j-tuple 〈‖b1‖V , . . . , ‖bj‖V 〉. By definition of Cw it

follows that b1 ⊗ · · · ⊗ bj ∈ w and by ⊗-shortening, all the unzipped forms of b1 ⊗ · · · ⊗ bj are also in w,

including a1 ⊗ · · · ⊗ an.

If A has the form Prb and Prb ∈ w, then 〈‖b‖V 〉 ∈ Cw and, by definition |=V
w Prb. Conversely, if

|=V
w Prb, then there is an s-zipped sequence 〈‖c0‖V , . . . , ‖cn‖V , ‖b‖V , ‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw and for

0 ≤ i ≤ n, w 6∈ ‖ci‖V . Thus, since any ci is Boolean and w is maximal, ¬c0, . . . ,¬cn ∈ w. Moreover
⊗n

i=0 ci ⊗ b⊗
⊗m

j=1 dj ∈ w. Hence by the Pr-detachment rule, Prb ∈ w. ⊓⊔

It is easy to verify that the canonical model exists and it is a sequence semantics model. For the non

vacuity of W+ one can take a maximal consistent set of Boolean formulae and extend it with all non

negated ⊗-formulae.

Consider any formula A 6∈ E⊗; {¬A} is consistent and it can be extended to a maximal set w such

that for some canonical model, w ∈W+. By Lemma 6.5, w 6|=V A.

Corollary 6.6. The system E⊗ is sound and complete with respect to the class of sequence frames.

We shall now present some further results for systems obtained by adding additional schemata to our

basic logic. The major difference with the case of the basic logic is that in the Lindenbaum’s construction

we have to be consistent with the logics obtained from E⊗ extended with the relevant axioms.
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Theorem 6.7.

1. The system E⊗⊕ (⊗-I) is sound and complete w.r.t. the class of extended frames.

2. The system E⊗⊕ (⊗-D) is sound and complete w.r.t. the class of serial frames.

3. The system E⊗⊕ (⊗-⊥) is sound and complete w.r.t. the class of ⊗-serial frames.

Proof:

1. Take a world w ∈W+ and a sequence 〈‖a0|V , . . . , ‖ai‖V , ‖b1‖V , . . . , ‖bk‖V , ‖c1‖V , . . . , ‖cj‖V 〉
∈ Cw such that if w 6∈ ‖bl‖V for 1 ≤ l ≤ k then 〈‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw. By construction it

follows that (a)
⊗i

n=0 an⊗
⊗k

n=1 bn⊗
⊗j

n=0 cn ∈ w, and (b)
∧k

n=1 ¬bn ∈ w implies
⊗m

n=1 dn ∈

w and hence
∧k

n=1 ¬bn →
⊗m

n=1 dn ∈ w. Applying schema (⊗-I) and modus ponens,
⊗i

n=0 an⊗
⊗k

n=1 bn ⊗
⊗m

n=0 dn ∈ w, hence 〈‖a0‖V , . . . , ‖ai‖V , ‖b1‖V , . . . , ‖bk‖V , ‖d1‖V , . . . , ‖dm‖V 〉 ∈
Cw.

2. Take a world w ∈ W+ and a sequence 〈‖a0‖V , . . . , ‖ai‖V , ‖c1‖V , . . . , ‖ck‖V 〉 ∈ Cw such that

w 6∈ ‖al‖V for 0 ≤ l ≤ i. Thus
∧i

n=1 ¬an ∈ w. By Axiom (Pr-detachment) and modus

ponens it follows that Prc1 ∈ w and, by Axiom (Pr-D), ¬Pr¬c1 ∈ w. Assume by reductio that

〈‖d0‖V , . . . , ‖dm‖V ,W
+ − ‖c1‖V 〉 ∈ Cw where w 6∈ ‖dl‖V for 0 ≤ l ≤ m. Then

⊗m
n=0 dn ⊗

¬c1 ∈ w; again, by Axiom (Pr-detachment) and modus ponens, Pr¬c1 ∈ w thus reaching a

contradiction.

3. This is quite straightforward. If for some w in the canonical model 〈‖a1‖V , . . . , ‖an‖V 〉 ∈ Cw and

2 ≤ n, then
⊗n

1 ai ∈ w and, by Axiom (⊗-⊥) and modus ponens,
⊗n−1

1 ai ∈ w, implying that

〈‖a1‖V , . . . , ‖an−1‖V 〉 ∈ Cw.

⊓⊔

Corollary 6.8. The system E⊗⊕ (⊗-I) ⊕ (Pr-D) ⊕ (⊗-⊥) is sound and complete w.r.t. the the class of

extended, serial, and ⊗-serial frames.

7. Choice Consistency: Contraction and Expansion

It is almost standard in social choice theory to assume two rationality conditions of choice (which are

related with the fact that a choice function is rationalisable) [1]: contraction consistency and expansion

consistency. The former one “is concerned with keeping a chosen alternative choosable as the set is

expanded by adding alternatives dominated [. . . ] in other choices”, while the latter one “is concerned

with keeping a chosen alternative choosable as the set is contracted by dropping other alternatives” [17,

page 65]. More precisely, contraction consistency states that if an agent chooses some alternative from a

set S of alternatives and such alternative remains available in a subset S′ of S, then the agent chooses it

from S′. Expansion consistency somehow works in the opposite direction and requires that, given two

sets S and S′ of alternatives such that S ⊆ S′, for all pairs of alternatives in S, if one agent chooses two

alternatives from S, then the agent still chooses both of them from S′, or does not choose any of them [1].

Although it has been argued that in order to avoid Arrow’s impossibility one possibility, among others, is
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precisely to relax one of the aforementioned principles [1, 2], these two principles are usually taken as

basic standards of rationality in choice theory.

We believe that there are at least two possible ways to interpret the above social choice principles in

our framework. The first option is to consider the sets of options S and S′ as description of the situations.

In such case contraction consistency can be represented by the classical concatenation:

a→ b b→
⊗n

i=1 ci
a→

⊗n
i=1 ci

The basic idea is that b is a set of conditions under which the preferences expressed by the ⊗-chain
⊗n

i=1 ci can be formed, and a → b means that in every state where a holds b holds as well. Thus, by

monotonicity and transitivity of classical propositional logic, we can infer that we can form the preference
⊗n

i=1 ci given a.

Similarly, expansion consistency can be modelled in classical propositional logic as

a→
⊗n

i=1 bi c→
⊗n

i=1 bi
((a ∨ d)→

⊗n
i=1 bi) ≡ ((c ∨ d)→

⊗n
i=1 bi)

Here, pairs of alternatives (more generally, pairs of sets of alternatives) are selected by assuming the truth

of a and c and we state that a certain choice from
⊗n

i=1 bi is considered in both alternatives. Now, if pick

up larger sets (determined by disjunctively adding any arbitrary propositional formula d), then either the

same choice is preserved, or it is abandoned in both alternatives.

The second alternative, that we are going to examine in details in the remainder of the current

section, is to provide a modal characterisation of the two principles, similarly to what was proposed in

the framework of [6], where a simple semantic formulation is advanced, but no syntactic formalisation

is given. Our logic can satisfy both conditions under some additional frame conditions, and a simple

formalisation is possible.

7.1. Contraction

Let us begin by considering contraction, which is exemplified as follows.

Example 7.1. Let G = {Erica, Serena} be the group of girls in a class T = G ∪ B consisting of boys

and girls, where B = {Guido, Nino}. If I prefer Serena (it is for me the best element) as the fastest runner

over 100m in the whole class, then I prefer Serena as also the fastest runner in G.

Within our formalism, choices are ordered via the ⊗ operator, while a simple way to select arbitrary

sets of alternatives is done by arbitrarily considering propositional formulae. Hence, if we consider

Example 7.1, contraction can be easily represented as follows4:

SerenaFastest-T → SerenaFastest-G

(SerenaFastest-T⊗ EricaFastest-T)→ (SerenaFastest-G⊗ EricaFastest-T)
(6)

Contraction is clearly a generalisation of RM, i.e., the closure of ⊗ under logical implication:

4Indeed, let us state that SerenaFastest-T =def SerenaFastest-B ∧ SerenaFastest-G.
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∧n
i=1(ai → bi)

(
⊗m

i=1 ai)→ (
⊗m

i=1 bi)
(⊗-RM/⊗-expansion)

This inference rule is not valid in general in sequence semantics, but rather in a subclass defined by the

following property.

Definition 7.2. Let F = 〈W, C〉 be a sequence frame. We say that F is ⊗-supplemented iff, for any

w ∈W , if 〈Y1 ∩ Z1, . . . , Ym ∩ Zm〉 ∈ Cw, then 〈Y1, . . . , Ym〉 ∈ Cw and 〈Z1, . . . , Zm〉 ∈ Cw.

This frame property validates schema ⊗-M below, which is the generalisation of the standard axiom

schema M [15]:
(

m
⊗

k=1

(bk ∧ ck)

)

→

((

m
⊗

k=1

bk

)

∧

(

m
⊗

k=1

ck

))

(⊗-M)

Lemma 7.3. (⊗-M) is valid in the class of ⊗-supplemented sequence frames.

Proof:

Suppose by reductio that there is an ⊗-supplemented frame F , a valuation V , and a world v such that

|=V
v

m
⊗

k=1

(bk ∧ ck) (7)

6|=V
v

m
⊗

k=1

bk. (8)

From (7) we obtain that there is a sequence 〈‖b1‖V ∩ ‖c1‖V , . . . , ‖bm‖V ∩ ‖cm‖V 〉 ∈ Cv. From (8) we

have that there is no sequence 〈‖b1‖V , . . . , ‖bm‖V 〉 ∈ Cv; thus, we have that F is not ⊗-supplemented,

contrary to our assumption. ⊓⊔

Notice that ⊗-supplementation is canonical, thus completeness is ensured accordingly.

Theorem 7.4. (Completeness of EM⊗)

EM
⊗ is complete with respect to the class of sequence frames that are ⊗-supplemented.

Proof:

Let us consider a canonical model for (⊗-M). Let us consider any sequence 〈‖b1‖V ∩‖c1‖V , . . . , ‖bm‖V ∩
‖cm‖V 〉 ∈ Cw. Clearly, 〈‖b1∧c1‖V , . . . , ‖bm∧cm‖V 〉 ∈ Cw. Then, (

⊗m
k=1(bk∧ck)) ∈ w. Since (⊗-M)

is valid (Lemma 7.3), then (
⊗m

k=1 bk ∧
⊗m

k=1 ck) ∈ w. Hence, (
⊗m

k=1 bk) ∈ w and (
⊗m

k=1 ck) ∈ w.

By construction, 〈‖b1‖V , . . . , ‖bm‖V 〉 ∈ Cw and 〈‖c1‖V , . . . , ‖cm‖V 〉 ∈ Cw. Therefore, the model is

⊗-supplemented. ⊓⊔

The following result shows that the logic EM⊗ equals to E⊗ plus the rule ⊗-RM, thus ⊗-supplementation

characterises ⊗-RM/contraction.

Lemma 7.5. The logic EM
⊗ equals the logic E⊗ plus the rule ⊗-RM.
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Proof:

The proof follows easily if we can show that ⊗-RM is a derived rule in EM
⊗ and ⊗-M can be derived in

the logic E⊗ plus the rule ⊗-RM.

We first show that ⊗-RM can be derived in EM
⊗ .

1.
∧n

i=1(ai → bi) Assumption

2.
∧n

i=1(ai ≡ ai ∧ bi) 1., PC

3. (
⊗n

i=1 ai) ≡ (
⊗n

i=1 ai ∧ bi) 2., ⊗-RE

4. (
⊗n

i=1 ai ∧ bi))→ ((
⊗n

i=1 ai) ∧ (
⊗n

i=1 bi)) Instance of ⊗-M

5. (
⊗n

i=1 ai)→ ((
⊗n

i=1 ai) ∧ (
⊗n

i=1 bi)) 3., 4., PC

6. (
⊗n

i=1 ai)→ (
⊗n

i=1 bi) 5., PC

Let us now prove that ⊗-M can be derived in E⊗ plus ⊗-RM.

1.
∧n

i=1(ai ∧ bi)→ bi Tautology

2.
⊗n

i=1(ai ∧ bi)→
⊗n

i=1 bi 1., ⊗-RM

3.
∧n

i=1(ai ∧ bi)→ ai Tautology

4.
⊗n

i=1(ai ∧ bi)→
⊗n

i=1 ai 3., ⊗-RM

5.
⊗n

i=1(ai ∧ bi)→ (
⊗n

i=1 ai ∧
⊗n

i=1 bi) 2., 4., PC

⊓⊔

7.2. Expansion

The formulation of expansion is also quite intuitive. Consider the following example.

Example 7.6. Let G = {Erica, Serena, Anna} be the group of girls in a class T = G ∪B consisting of

boys and girls and where B = {Guido}. If I prefer Erica and Serena (they are for me the best elements)

as the fastest runners in the 100m (as part of G), then Erica and Serena are the best elements as they are

among the fastest runners in the whole class, or none of them is among the fastest ones.

Pairs of alternatives (more generally, pairs of sets of alternatives) can be selected by assuming the truth

of pairs of formulae in ⊗-chains. Now, if we pick up larger sets (which are determined by disjunctively

adding any arbitrary propositional formula), then either the same choice is preserved, or it is abandoned in

both alternatives. Formally, we can represent the example as follows:

(SerenaFastest-G⊗ AnnaFastest-G) ∧ (EricaFastest-G⊗ AnnaFastest-G)→

→ (((SerenaFastest-G ∨ SerenaFastest-B)⊗ AnnaFastest-G)) ≡

≡ (((EricaFastest-G ∨ EricaFastest-B)⊗ AnnaFastest-G))

Accordingly, expansion can be in general captured by the following axiom schema:
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(

m
⊗

i=0

ai ⊗ a⊗

n
⊗

j=0

dj ∧

m
⊗

i=0

ai ⊗ b⊗

n
⊗

j=0

dj

)

→









m
⊗

i=0

ai ⊗ (a ∨ c)⊗

n
⊗

j=0

dj



 ≡





m
⊗

i=0

ai ⊗ (b ∨ c)⊗

n
⊗

j=0

dj









(⊗-expansion)

Expansion is characterised by the following frame property.

Definition 7.7. Let F = 〈W, C〉 be a sequence frame. We say that F is ⊗-expanded iff, for any w ∈W ,

if 〈X0, . . . , Xm, Y, Z0, . . . , Zn〉 ∈ Cw and 〈X0, . . . , Xm,W,Z0, . . . , Zn〉 ∈ Cw, then 〈X0, . . . , Xm, Y ∪
P,Z0, . . . , Zn〉 ∈ Cw iff 〈X0, . . . , Xm,W ∪ P,Z0, . . . , Zn〉 ∈ Cw.

Lemma 7.8. (⊗-expansion) is valid in the class of ⊗-expanded sequence frames.

Proof:

Suppose by reductio that there is an ⊗-expanded frame F , a valuation V , and a world v such that

|=V
v





m
⊗

i=0

ai ⊗ a⊗

n
⊗

j=0

dj



 ∧





m
⊗

i=0

ai ⊗ b⊗

n
⊗

j=0

dj



 (9)

6|=V
v









m
⊗

i=0

ai ⊗ (a ∨ c)⊗

n
⊗

j=0

dj



 ≡





m
⊗

i=0

ai ⊗ (b ∨ c)⊗

n
⊗

j=0

dj







 . (10)

From (9) we obtain that there are two sequences 〈‖a0‖V , . . . , ‖am‖V , ‖a‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈
Cv and 〈‖a0‖V , . . . , ‖am‖V , ‖b‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cv. From (10) we have that there is

no sequence 〈‖a0‖V , . . . , ‖am‖V , ‖a‖V ∪ ‖c‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cv while there a sequence

〈‖a0‖V , . . . , ‖am‖V , ‖b‖V ∪ ‖c‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cv; thus, we have that F is not ⊗-expanded,

contrary to our assumption. ⊓⊔

Notice that ⊗-expansion is canonical, thus completeness is guaranteed.

Theorem 7.9. (Completeness of E⊗ plus ⊗-expansion)

E⊗ plus ⊗-expansion is complete with respect to the class of sequence frames that are ⊗-expanded.

Proof:

Let us consider a canonical model for (⊗-expansion) and any two sequences

〈‖a0‖V , . . . , ‖am‖V , ‖a‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cw

〈‖a0‖V , . . . , ‖am‖V , ‖b‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cw.

Clearly, (
⊗m

i=0 ai⊗a⊗
⊗n

j=0 dj) ∈ w and (
⊗m

i=0 ai⊗b⊗
⊗n

j=0 dj) ∈ w, thus (
⊗m

i=0 ai⊗a⊗
⊗n

j=0 dj)∧
(
⊗m

i=0 ai ⊗ b⊗
⊗n

j=0 dj) ∈ w. Since (⊗-expansion) is valid (Lemma 7.8), then ((
⊗m

i=0 ai ⊗ (a ∨ c)⊗
⊗n

j=0 dj) ≡ (
⊗m

i=0 ai⊗(b∨c)⊗
⊗n

j=0 dj) ∈ w. Hence, ((
⊗m

i=0 ai⊗(a∨c)⊗
⊗n

j=0 dj) iff (
⊗m

i=0 ai⊗
(b∨ c)⊗

⊗n
j=0 dj) ∈ w. By construction, 〈‖a0‖V , . . . , ‖am‖V , ‖a‖V ∪ ‖c‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cw

iff 〈‖a0‖V , . . . , ‖am‖V , ‖b‖V ∪ ‖c‖V , ‖d0‖V , . . . , ‖dn‖V 〉 ∈ Cw. Therefore, the model is ⊗-expanded.

⊓⊔
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8. Conclusion and Related Work

This paper offered a semantic study of the ⊗ operator originally introduced in [9] to model deontic

reasoning and contrary-to-duty obligations. We showed that a suitable axiomatisation incorporating ⊗-

expressions can be characterised in a class of structures extending neighbourhood frames with sequences

of sets of worlds. We argued that both the formalism, and the semantics can be employed, with some

adjustments, to grasp various forms of reasoning about reason-based preferences. In this perspective, our

contribution may offer useful insights for establishing connections between the proof-theoretic and model

theoretic approaches to preference reasoning. Also, we presented a logic that validates both Contraction

and Expansion Consistency [1, 6], thus satisfying two basic rationality conditions in social choice theory.

Our system falls within the research on prioritised goals [4, 5], i.e., on formalisms for describing the

goals of the agents whose preferences are modelled as propositional formulae. This allows for a purely

qualitative representation of preferences. Before the recent developments in MAS [2], the most extensive

(and, still the most advanced) work on preferences was done in the context of deontic logic. A first line of

inquiry was mainly semantic-based: deontic sentences are interpreted in settings with ideality orderings

on possible worlds or states [10]. This approach is quite flexible: depending on the properties of the

preference or ideality relation, different deontic logics can be obtained. This semantic approach has been

fruitfully renewed in the ‘90 for example by [18, 19], and most recently by works such as [11, 12], which

have confirmed the vitality of this line of inquiry. The second line was proof-theoretic: in this second area,

the Gentzen system proposed in [9] was definitely seminal for us in developing the current proposal. [9] is

based on the introduction of the non-classical binary operator ⊗: The reading of an expression like a⊗ b
is that a is primarily obligatory, but if the obligation is violated, the secondary obligation is b. Inference

rules introduced by [9]—in particular, (⊗-shortening) and (⊗-I)—are proposed here, too.

In the context of preference logics, several proposals can be mentioned [4, 5, 7]. However, two works

have specifically inspired our effort: [6] and [8]. In the recent [6], the authors present a modal logic

where a binary operator ▽ is meant to syntactically express preference orderings between formulae:

Each formula of this logic determines a preference ordering over alternatives based on the priorities over

properties that the formula express. While the formalism is interesting in that it can represent not just

orderings over alternatives, but also the reasons that lead to such preferences [7], the modal logic for

expressing individual preferences is in fact equivalent to S5; this can be easily illustrated by inspecting

the semantic conditions for evaluating▽-expressions: Given the set W of worlds and w ∈W , |=V
w a▽ b

iff |=V
w a, or |=V

w b and 6|=V
w′ a for all w′ ∈ W . In other words, the logic of [6] amounts to being a

very strong and simple option (indeed, the main concern in this work is preference aggregation): As we

argued, weaker, though very expressive logics can be adopted. The qualitative choice logic (QCL) of

[8] is a propositional logic for representing alternative, ranked options for problem solutions, using a

substructural ordered disjunction ~×. It offers a much richer alternative with respect to [6], showing a

number of similarities with [9] (the two formalisms have been developed independently) and the one

discussed here. For example, the detachment rule from ⊗-chain is exactly the same. The semantics

and proof theory of [8], though based on similar intuitions, are however technically different from ours:

Semantics is based on the degree of satisfaction of a formula in a particular classical model. More

precisely, if an interpretation I is an assignment of the classical truth values true and false to the atoms, the

satisfaction degree k of a1~× . . . ~×an in I is simply the smallest k such that I satisfies ak. If none of the

ordered disjuncts is satisfied, then also the formula is not satisfied. Consequences of QCL theories can be

computed through a compilation to stratified knowledge bases which in turn can be compiled to classical
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propositional theories. The consequence relation of [8] satisfies properties usually considered intended in

nonmonotonic reasoning, such as cautious monotonicity and cumulative transitivity. Our approach is by

contrast monotonic, as it is developed in a modal-logic setting as a direct extension of classical modal

system E [15]. Another difference is that in our approach we can speak about what an agent prefers using

the Pr operator. This allows us to express preferences conditional to what the agent actually prefers in a

specific situation, for example Pra → b ⊗ c, meaning that if a is one of the preferred outcomes of the

agent, then the agent prefers b to c.

A number of open research issues are left for future work. The logic of ⊗ proved to be flexible for

several applied domains. For example [20] shows how different conditions on the operator can be used for

reasoning about different types of defeasible permission. Similarly, [21] investigates how to characterise

different degrees and types of goal-like mental attitudes of agents. These works assume defeasible logic as

the underlying logic and they are restricted to literals. However, they show that the extension of defeasible

logic obtained from adding ⊗ are still computationally feasible. The natural question is to see how to use

the sequence semantics we have presented in this paper to capture the different intuitions of ⊗ discussed

in the above mentioned work. In addition we plan to explore decidability questions using, for example,

the filtration methods. The fact that neighbourhoods contain sequences of sets of worlds instead of sets is

not expected to make the task significantly harder than the one in standard neighbourhood semantics for

modal logics.

Second, we expect to enrich the language and allow for nesting of⊗-expressions, thus having formulae

like a⊗¬(b⊗ c)⊗d. We argued in [9] that the meaning of such formulae is not clear in deontic reasoning.

However, a semantic analysis of them within the sequence semantics can clarify the issue. Indeed, in

the current language we can evaluate in any world w a formula such as ¬(a ⊗ b), which semantically

means that there is no sequence 〈‖a‖V , ‖b‖V 〉 ∈ Cw. Conceptually, expressions of this type may express

meta-preferences, i.e., preferences about preference orderings. However, this reading poses interesting

conceptual as well as technical problems.

Finally, we plan to apply our framework to social choice theory by checking how our analysis impacts

on the collective choice rules proposed in [6]. In particular, since a collective choice rule is a function f
that assigns to each profile of individual choices (i.e., a complete ranking covering all agents) a single

formula expressing non-individual preferences, we expect to preliminarily offer proof- and model-theoretic

characterisations of the following principles [6, p. 982].

Unrestricted domain: The domain of the collective choice rule f includes all profiles of individual

choices.

Anonymity: The ordering among the agents does not affect the collective result and the collective rule

should treat each individual neutrally.

Monotonicity: for any two preference profiles and any alternative if for each individual the ranking of

the alternative in one profile is at least as high as that in the other, then its collective ranking of the

former is at least as high as that of the latter.

Pareto principle: if all individual priorities over reasons are the same, then this condition requires that

the collective priority over reasons is the same as each individual’s one.
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