
27 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Commitment-based Agent Interaction in JaCaMo+

Published version:

DOI:10.3233/FI-2018-1656

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1640078 since 2019-01-04T22:21:51Z

Fundamenta Informaticae XXI (2001) 1001–1030 1001

DOI 10.3233/FI-2015-0000

IOS Press

Commitment-based Agent Interaction in JaCaMo+

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Roberto Micalizio
Università degli Studi di Torino, Dipartimento di Informatica

c.so Svizzera 185, I-10149 Torino (Italy)

firstname.lastname@unito.it

Abstract. We present the JaCaMo+ framework for programming multiagent systems (MAS), where
agents interact thanks to commitment-based interaction protocols. Commitment protocols are real-
ized as artifacts that maintain a social state and notify to the participating agents those events that are
relevant to the interaction. We discuss the advantages, like increased modularity and flexibility, that
are brought by commitment-ruled interactions with respect to other proposals. We trace back such
advantages to the possibility of relying on a standardized commitment lifecycle. We explain how to
use the framework to program interacting agents by using the Netbill protocol as running example,
and the Gold Miners scenario as a more complex programming example.

Keywords: Interaction-Oriented Programming, Commitment-based protocols, JaCaMo

1. Introduction

Many researchers claim that an effective way to approach the design and development of a MAS con-
sists in conceiving it as a structure composed of four main entities: Agents, Environment, Interactions,
and Organization (AEIO) [70, 28, 38]. Such a separation of concerns enjoys many advantages from a
software engineering point of view, since it enables a modular development of code that eases code reuse
and maintainability. For what concerns interaction, since the late ’80s, studies on distributed artificial
intelligence, studies on formal theories of collective activity, team, or group work, and studies on cooper-
ation implicitly identified in commitment the glue of group activity: commitments link the actions of the
group members and the group members with each other [17, 55, 46]. In particular, social commitments
[56] are a kind of social relationship with a normative value, that makes it possible for the agents to have

Address for correspondence: Matteo Baldoni, Università degli Studi di Torino, Dipartimento di Informatica, c.so Svizzera 185,
I-10149 Torino (Italy)

1002 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

expectations on one another and coordinate their activities. A social commitment models the directed re-
lation between two agents, a debtor and a creditor; it is created by the debtor, it is explicitly manipulated
by the agents, and progresses according to a well-defined lifecycle along with the agents’ activities [61].
Commitment-based interaction protocols [67, 68, 69] have a declarative nature which allows to capture
the contractual relationships among the concerned partners in a natural way, avoiding to encode some
strict order in which messages should be exchanged — although orders can be expressed if necessary
[42, 9]. This kind of protocols allows flexibility in agents’ enactments; this, in turn, enables agents to
profit of unforeseen opportunities and to better face unpredictable situations. These characteristics make
commitment protocols particularly fit to cross-organizational application domains, where only a mini-
mal set of constraints can often be specified to make parties interact. In such contexts, in fact, there is
typically no authority that can prescribe specific ways for executing activities [29, 9].

Currently, there are many frameworks that support designers and programmers in realizing one of
the AEIO components (e.g., [11, 14, 49, 15, 62, 12]). JaCaMo [12] is, to the best of our knowledge, the
most complete among the well-established programming frameworks, providing a thorough integration
of agents, environments, and organizations into a single platform. JaCaMo, however, lacks integration
of interaction as a first-class component, being current solutions mostly ad hoc. We discuss them, and
in particular [70], in the next section. This paper fills the gap by presenting the JaCaMo+ platform.
JaCaMo+ agents engage commitment-based interactions which are reified as JaCaMo+ artifacts. Such
artifacts represent the interaction social state and provide the roles JaCaMo+ agents enact. They can also
be used to implement monitoring functionalities, for verifying that the on-going interactions respect the
commitments and for detecting violations and violators.

Contributions. The main contributions of this work are: (i) the proposal and motivation of a commitm-
ent-based interaction component; (ii) the conceptual model of the JaCaMo+ framework, as a realization
of the MERCURIO proposal [10, 2]; (iii) the description and explanation of the JaCaMo+ implementa-
tion and how is it used for realizing multiagent systems; (iv) a description of the Gold Miners as realized
in JaCaMo+ by exploiting commitment-based interaction components.

Organization. The paper is organized as follows. Section 2 introduces commitment-based interaction
components, providing motivations to their development and the conceptual model of our proposal. A
commitment-based representation of the Netbill interaction protocol is introduced and used as running
example. Section 3 explains JaCaMo+ and its main characteristics. Section 4 describes, as a more consis-
tent application, a JaCaMo+ realization of Gold Miners, used as programming challenge at CLIMA VII.
Section 5 compares interaction as realized in JaCaMo+ with other solutions and discusses the advantages
of the proposal. Conclusions end the paper.

2. A Commitment-based Interaction Component

JaCaMo [12] is a platform integrating Jason as an agent programming language, CArtAgO as a realiza-
tion of the A&A meta-model [65], and Moise+ as a support to the realization of organizations [41]. In
this section we motivate the choice of relying on JaCaMo, and we describe how JaCaMo+ is obtained
by integrating a first-class component for commitment-based interaction protocols inside JaCaMo. The
JaCaMo platform stems from other proposals, like [26, 64], as it allows realizing multiagent systems that

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1003

not only involve many autonomous entities, but where such entities interact in complex ways by way
of social structures and norms that regulate the overall social behavior, and where a shared environment
is an important coordination means for the agents. Indeed, JaCaMo is currently the only platform that
integrates three fundamental aspects of multiagent system programming, namely agent programming,
environment programming, and organization programming, thus realizing the AIEO model [28] almost
completely. Synergies between the three dimensions bring about many benefits among which:

• the repertoire of the agents actions is dynamic because it depends on the available artifacts;

• actions gain a process-based semantics, which makes it possible to define long-term actions as
well as coordinating actions;

• an explicit and well-defined notion of success/failure for actions is provided;

• the interaction between agents and organizations is uniformly obtained using the same mechanisms
that enable agent-artifact interaction;

• organizations can be reshaped dynamically by acting on artifacts;

• the delegation of organizational goals to agents is facilitated.

Works like [50, 37, 43], that apply the platform in various contexts, and works like [54, 70] that
extend its functionalities, prove the interest it raises and its success.

2.1. Interaction and Commitment-based Protocols

Leaving aside the recent proposal in [70], that we discuss below, JaCaMo still lacks a synergistic integra-
tion of the fourth main dimension envisaged in [28], i.e., interaction. Traditionally, in JaCaMo interaction
is realized either by way of ad hoc direct communication between agents, based on Jason speech acts
[14, Chapter 6], or by relying on communication and coordination artifacts [53, 12]. The advantages of
the integration of interaction as a first-class component of JaCaMo would be many [70]. For instance,
it would allow decoupling the interaction code from the agent code, and this would in turn increase the
maintainability of the software with respect to solutions where the interaction code is distributed and
immersed in the agent programs [31]. It would facilitate the re-use of the interaction code, the design
and composition of interaction protocols, and their validation [44, 60]. It would foster the openness of
multiagent systems because it would facilitate agents in joining/leaving systems of interacting agents at
run-time [35]. The proposal in [70] is the first that is aimed at integrating interaction in JaCaMo as a
first-class component of the system. The described interaction component enables both agent-to-agent
and agent-to-environment interaction, providing guidelines of how a given organizational goal should
be achieved, with a mapping from organizational roles to interaction roles. Guidelines are encoded in
an automaton-like shape, where states represent protocol steps, and transitions between states are asso-
ciated with (undirected) obligations: the execution of such steps creates obligations on some agents in
the system, which can concern actions performed by the agents in the environment, messages that an
agent sends to another agent, and events that an agent can perceive (i.e., events emitted from objects
in the environment). The choice of relying on automata is well-supported in the literature (see, e.g.,
[47, 16, 32]) but, as [69, 66] point out, such protocol specifications show a rigidity that prevents agents

1004 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

from taking advantage from opportunities and from handling exceptions in dynamic and uncertain mul-
tiagent environments, as JaCaMo MASs could likely be. Agents are, in fact, confined to the execution
sequences provided by the automaton. In contrast to this approach, since the seminal papers by Yolum
and Singh [67, 68, 69], commitment-based protocols have been raising a lot of attention, see for instance
[35, 20, 63, 33, 9]. Protocol actions affect the state of the system, which consists both of the state of the
world and also of the commitments that agents have made to each other. Commitments motivate agents
to perform their next actions. This happens because agents want to comply with the protocol and provide
what promised to the other parties. Another key feature of commitment protocols is their declarative
nature, which allows to naturally capture the contractual relationships among the partners rather than
strictly encoding the order in which messages should be exchanged. Whatever action an agent decides
to perform is fine if they accomplish their commitments, satisfying the expectations they have on one
another. The proposal in [70], though well-integrated with the agent, environment, and organization
dimensions of JaCaMo, does not show this same flexibility. Agents are solicited to act by obligations
created externally to the agents, in a way that resembles the call-back mechanism. Agents can comply
their obligations along with the execution of other activities of their own, as well as they may decide
to not satisfy some obligation that was put on them. However, they would not be free to execute the
protocol steps in a different order, as it may, for instance, be necessary in order to adapt to exceptional
conditions in the environment or to involve new agents who just entered the system. Another issue is that
the rationale by which obligations are created is not available to the agents in a form that can be reasoned
about: the social meaning of the protocol steps and of the obligations is only implicitly encoded inside
the protocol. Also this aspect has an impact on flexibility because it reduces the capacity of the agents to
deliberate about their own behavior. In fact, works such as [24, 27] show the importance, for the agents
to have full control of their conduct, to enable reasoning about the social consequences of their actions
by exploiting constitutive norms that link the agents’ actions to their respective social meanings. The last
aspect to consider is that interaction is not bound to be a procedure inside some organization. In some
cases interaction is among agents and each agent decides what is best for itself; in other cases guidelines
amount to declarative, underspecified constraints that leave agents the freedom to take strategic decisions
about their behavior.

We realize interaction based on social commitments, intended as first-class objects that can be used
for agent programming. A social commitment [56, 59]C(x, y, s, u) models the directed relation between
two agents: a debtor x and a creditor y. The debtor commits to its creditor to bring about the consequent
condition u when the antecedent condition s holds. Both conditions are conjunctions or disjunctions
of events and commitments and concern the observable behavior of the agents, as advocated in [26]
for social relationships among autonomous parties. Unlike obligations, commitments are manipulated
by agents through the standard operations create, cancel, release, detach, satisfy, discharge, expire,
violate, assign, delegate. Part of these are implicit and occur simultaneously with the events by which
the antecedent becomes true (detach), the antecedent becomes false (expire), the consequent becomes
true (satisfy), or the consequent becomes false (violate). The other operations are explicitly executed
either by the creditor (release, by which a commitment is removed, and assign, by which the creditor is
changed) or by the debtor (create, by which the commitment is created, cancel, by which it is removed,
and delegate, by which the debtor is changed). Commitment evolution follows the lifecycle formalized
in [61], which is reported in Figure 1. A commitment is Violated either when its antecedent is true but
its consequent will forever be false, or when it is canceled when Detached. It is Satisfied, when the
engagement is accomplished. It is Expired, when it is no longer in effect and therefore the debtor would

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1005

Conditional Detached

Expired Satisfied Violated

Active

antecedent fail

antecedent

consequent failconsequent

Figure 1. Commitment life cycle[61].

not fail to comply even if does not accomplish the consequent. A commitment should be Active when it
is initially created. Active has two substates: Conditional as long as the antecedent does not occur, and
Detached when the antecedent has occurred. Commitments have a normative value because the debtor
of a Detached commitment is expected to bring about, sooner or later, the consequent condition of that
commitment otherwise it will be liable for a violation.

The normative value of commitments, i.e. the fact that debtors should satisfy them, creates social
expectations on the agents’ behavior. Agents, however, are norm-autonomous [22]: indeed, not only they
decide whether satisfying the obligation entailed by the commitment, once detached, they also become
debtors by their own decision. In other words, a commitment is taken by a debtor towards a creditor
on its own initiative. An agent creates commitments towards other agents while it is trying to achieve
its goals (or precisely to the aim of achieving its goals) [61]. The creation of a commitment starts an
interaction of the debtor with its creditor that coordinates, to some extent, the activities of the two, thus
supporting the achievement of goals that an agent alone could not achieve. Considering interaction, the
difference between obligations and commitments, as norms, is that an obligation is a system level norm
while a commitment is an agent level norm. At system level, something happens and an obligation is
created on some agent. At the agent level, an agent creates a conditional social commitment towards
some other agent, based on its own beliefs and goals [61]. The creditor agent will detach the conditional
commitment if and when it deems it useful to its own purposes, thus activating the obligation of the
debtor agent. So, conditional commitments play a fundamental role in the realization of interactivity,
intended as the fact that a message relates to previous messages and to the way previous messages
related to those preceding them [51]. In other words “there is a causal path from the establishment of
a commitment to prior communications by the debtor of that commitment. Obligations by contrast can
be designed in or inserted by fiat” [59, Sect. 4.4]. On this foundation, we use commitments to realize
a relational representation of interaction, where agents, by their own action, directly create normative
binds (represented by social commitments) with one another, and use them to coordinate their activities.

Commitment-based interaction protocols [57, 68, 67] are interaction patterns given in terms of com-
mitments, involving a set of predefined roles. They assume that a (notional) social state is available
and inspectable by all the involved agents. The social state traces which commitments currently exist be-
tween any two agents, and the states of these commitments according to the lifecycle, together with other
literals that are relevant to their interaction [66]. Agents modify the social state by executing protocol
actions that are defined in terms of updates to the social state (e.g. add a new commitment, release an-
other agent from some commitment, satisfy a commitment). A commitment protocol is a set of actions,
involving the foreseen roles, and whose semantics is agreed upon by all of the participants [68, 67, 20].

1006 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

Let B be a nonempty set of events. Let E be the set of event temporal expressions in precedence
logic [58], generated from B. Let ρ be a set of role names. Let C be the set of possible commitments
C(x, y, q, p), where q, p ∈ E and where x, y ∈ ρ . Let Q be the set of possible operations on commit-
ments.

Definition 2.1. A commitment protocol is a tuple 〈A, ρ, pow, I〉, where A is the set of protocol actions,
ρ is a set of role names, pow : ρ → 2A is a mapping that associates each role with the set of actions
empowered to that role, and I is a set of commitments that hold at the beginning of the interaction. Each
action a ∈ A is a triple 〈n,E,C〉 where n is the action name, E = {e | e ∈ Q} is the social meaning
of the action, and C is a condition to be verified on the social state, specifying the context in which
the action yields the social meaning. For each role name x ∈ ρ, pow(x) denotes the subset of protocol
actions in A that any player of the role with name x can perform in P . So, pow(x) is the set of powers
that are endowed to any agent enacting x.

So, protocols define name spaces that are assumed to be known and shared by the interacting agents, in
particular, they define role names and action names. Contexts can be used to sequentialize actions, when
needed.

Given a finite set of agents A and a commitment protocol P , an enactment of the protocol is given
by 〈P,A, play〉 where the function play : P.ρ→ 2A associates to each role of the commitment protocol
the set of agents playing that role. Such agents will be empowered with the actions associated to the role.
An interaction artifact amounts to a commitment protocol enactment together with the social state of the
interaction.

Example 2.2. (Netbill Protocol)
The Netbill protocol allows a customer to buy a product from a merchant. We rely on the description in
[69, 66]. The protocol involves two roles, customer and merchant. When an agent, playing customer,
requests a quote from an agent playing merchant, the merchant sends the quote. If the customer accepts
the quote, the merchant sends the goods, then waits for the payment in the form of an electronic payment
order. It is assumed that the goods cannot be used until the merchant has sent the decryption key. Once
a customer has sent payment, the merchant will send the decryption key along with a receipt. Table 1
shows the Netbill protocol as a commitment-based protocol. For each of the two roles, the table reports
the actions it can perform. Each action affects the social state in the way reported next to the action.
For instance, when the merchant executes sendQuote, the social state is modified by the creation of two
commitments, namely C(merchant, customer, acceptedQuotation(Item, Price), goods) and C(merchant,
customer, paid, receipt). The fact quotation(Item, Price) is also recorded in the social state. On the
other hand, sending a receipt makes sense only in a context in which payment already occurred. It is
worth noting that the social meaning of an action may comprise expressions like quotation(Item, Price)
or acceptedQuotation(Item, Price). Here, Item and Price are not variables, i.e. they are not asserted as
variables in the social state depending on some state of condition, they are formal parameters, and will
be substituted by actual parameters (ground terms) when the action is executed. Therefore, Item and
Price will be bound at runtime to particular values, for example ”Good-1” and 1000. In other words, the
agent will execute the action sendQuote(”Good-1”, 1000). The scope of formal parameters is always
and only the definition of the social effect of the action. At runtime, social effects will always have their
parameters replaced by actual values.

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1007

Action Role Meaning Context

sendRequest(Item) customer “add requestedQuote(Item)” true

sendQuote(Item, Price) merchant

create(C(merchant, customer,
acceptedQuotation(Item, Price),
goods)),
create(C(merchant, customer, paid,
receipt)),
“add quotation(Item, Price)”

true

sendAccept(Item, Price) customer

create(C(customer, merchant,
goods, paid),
“add acceptedQuotation(Item,
Price)”

quotation(Item,
Price)

sendReject(Item, Price) customer

release(C(merchant, customer,
acceptedQuotation(Item, Price),
goods)),
release(C(merchant, customer,
paid, receipt)),
“add rejectedQuotation(Item,
Price)”

quotation(Item,
Price)

sendGoods merchant
create(C(merchant, customer, paid,
receipt)),
“add goods”

true

sendEPO customer “add paid” true

sendReceipt merchant “add receipt” paid

Table 1. The Netbill protocol: actions, roles that can execute them, the social meaning of actions, and the contexts
in which action execution yields its social meaning.

2.2. Conceptual Model

Figure 2 shows how in our proposal the interaction dimension relates to the other three dimensions of
JaCaMo. The agent, the organization, and the environment dimensions are reported as they are presented
in [12]. The main element is the Interaction Artifact. It extends the environmental notion of Artifact,
thus an agent can create, dispose and manipulate an interaction artifact in the same way it can do with
any artifact. An Interaction Artifact results as the composition of a Commitment Protocol and a Social
State. Agents can use the Actions provided by a Commitment Protocol to interact. Data exchanged along
the interaction, and that are relevant to the interaction itself, are stored as observable properties, thus
realizing a kind of mediated communication [10].

The protocol actions are partitioned based on Roles. A Role represents the interface between a
Commitment Protocol and an agent who decides to participate in an enactment of such a protocol. In
other words, an agent can join (or create) a Commitment Protocol enactment only by playing a Role
that the protocol defines. A Commitment Protocol is composed of, at least, one role; depending on
the role cardinality, multiple agents may play a same role. An action can only be executed by agents

1008 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

Workspace Artifact

Manual

WorkEnvironment Operation

Role

External
Action

Internal
Action

Action

Plan

Belief

Goal

Observable Property Observable Event

Agent

Social
State

Interaction
Artifact

Commitment
Protocol

Action

Operation

Commitment

Fact

update generate

has

dispose /
create /
link

use

Trigger
Event

played by

Social
Scheme

Goal

MissionNormRole

Group

ENVIRONMENT

AGENT

INTERACTION

ORGANISATION

Figure 2. An overview of the integration among interaction artifacts and JaCaMo components[12].

which are playing the role associated with that action. The execution of an action modifies the state
of the interaction. In particular, it may create new commitments or make existing commitments evolve
according to the commitment lifecycle. The concept of Action is mapped on the Operation element
of the environment dimension. The execution of a protocol action is analogous to the execution of an
Operation. The difference stands in the particular type of artifact, that in our case will be an Interaction
Artifact, whose operations implement the actions, that are provided by a Commitment Protocol. An
Action is defined in terms of the consequences its execution causes, i.e. one or more basic operations on
Commitments and/or Facts, like the assertion of a fact, the detachment of a commitment, the satisfaction
of a commitment. Both Commitments and Facts can be seen as observable properties in the environment
dimension. Thus, in general, the execution of a commitment protocol action will cause either the update
of some observable properties, or the generation of some observable events (for instance, a commitment
becomes Satisfied, or Violated), or the assertion of a fact. Events can trigger Agent’s plans.

The set of current commitments and facts, belonging to an ongoing interaction, is stored in and
maintained by the Social State. This is not directly accessible to the agents, who will use the Interaction
Artifact only by means of the provided role Actions. Notice that, the JaCaMo integration of Agents and
Artifacts supports the direct mapping of observable properties into the agents’ belief bases. This means
that an agent, participating into a commitment-based interaction, enjoys the extension of its belief base
with facts and commitments provided by the Interaction Artifact. Modifications to the Social State are
notified as Observable Events.

The organisational dimension of JaCaMo prescribes global goals that agents, participating into the

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1009

organisation, must achieve by enacting organisational roles. Their tasks, i.e. organisational goals, are
structured in missions, and become private goals in the agent dimension. Each mission is composed of, at
least, one organizational goal. Norms define obligations and permissions for roles, i.e. an agent playing
a role is obliged or permitted to commit to a mission [12]. The interaction dimension has an intrinsic
organisational nature: similarly to norms, commitments express a kind of normative regulation, while
commitment protocols are, actually, sets of constitutive norms by which protocol actions are given their
social meaning. This proximity is depicted in Figure 2 by connecting the two concepts with a bidirec-
tional conceptual link. Likewise, interaction roles and organisational roles share the same nature: they
represent normative outfits, adopted by the agents which respectively act in the context of an Interaction
Protocol or of an Organisation. In JaCaMo, however, it is not possible to express direct agent-to-agent
normative relationships: norms are always related to missions, and, therefore, they are not under the
control of the obliged agent. The interaction dimension of JaCaMo+ provides suitable means for adopt-
ing commitments as the abstraction of such relationships. Commitment protocols are directly used by
agents to coordinate their activities, for achieving their (private or organisational) goals when they are
unable to fulfill them autonomously. In other words, the organisational dimension concerns global goals
assigned to agents, while the interaction dimension provides normative interaction patterns that agents
can leverage to achieve goals.

3. JaCaMo+

This section explains how the interaction component is provided by JaCaMo+, how it works, and how
it is integrated with Jason agents. Briefly, interaction artifacts reify the execution of commitment-based
protocols, they include the social state of the interaction, and they enable Jason agents to be notified
about the relevant events that occur in the social state. Since an artifact is a programmable, active entity,
it can act as a monitor of the interaction. The artifact can therefore detect violations that it can ascribe to
the violator without any need of agent introspection.

3.1. Interaction Component

A JaCaMo+ interaction artifact encodes a commitment protocol, that is structured into a set of roles,
agents can enact. By enacting a role, an agent gains the rights to perform social actions, whose execution
has public social consequences, expressed in terms of commitments. If an agent tries to execute an action
which is not associated with the role it is enacting, the artifact raises an exception that is notified to the
violator. On the other hand, when an agent performs a protocol action that pertains to its role, the social
state is updated accordingly, for example, by adding new commitments, or by modifying the state of
existing commitments. Interaction artifacts are implemented by the class ProtocolArtifact, which
extends CArtAgO artifacts. Such a class provides basic manipulation methods for managing the social
state: commitment creation and update, creation of facts, notification of events to agents that focused on
the artifact. An interaction artifact provides the roles of the protocol and the actions that are associated
to each role. As an example, the following code defines the roles of the Netbill protocol (Example 2.2).

1 p u b l i c c l a s s N e t b i l l P r o t o c o l ex tends P r o t o c o l A r t i f a c t {
2 p u b l i c s t a t i c S t r i n g ARTIFACT TYPE = "Netbill" ;
3 p u b l i c s t a t i c S t r i n g MERCHANT ROLE = "merchant" ;
4 p u b l i c s t a t i c S t r i n g CUSTOMER ROLE = "customer" ;
5 s t a t i c {

1010 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

6 addEnab ledRole (MERCHANT ROLE, Merchant . c l a s s) ;
7 addEnab ledRole (CUSTOMER ROLE, Customer . c l a s s) ;
8 }
9 . . .

10 }

A protocol role is implemented by extending the class PARole, provided by the class ProtocolArtifact.
PARole can also be directly enacted by agents willing to inspect the social state of the interaction, i.e. to
retrieve facts and commitments currently holding in the social state. It is implemented as an inner class
of ProtocolArtifact. Protocol designers should define roles as subclasses of PARole and as inner
classes of the protocol class:

1 p u b l i c c l a s s N e t b i l l P r o t o c o l ex tends P r o t o c o l A r t i f a c t {
2 . . .
3 p u b l i c c l a s s Merchant ex tends PARole {
4 p u b l i c Merchant (S t r i n g playerName , I P l a y e r p l a y e r) {
5 super (MERCHANT ROLE, p l a y e r) ;
6 }
7 . . . a c t i o n s . . .
8 }
9 p u b l i c c l a s s Customer ex tends PARole {

10 p u b l i c Customer (S t r i n g playerName , I P l a y e r p l a y e r) {
11 super (CUSTOMER ROLE, p l a y e r) ;
12 }
13 . . . a c t i o n s . . .
14 }
15 }

In CArtAgO, the Java annotation1 @OPERATION marks a public operation that agents can invoke
on the artifact. In JaCaMo+, a method tagged with @OPERATION corresponds to a protocol action.
We introduced the annotation @ROLE to specify, when necessary, which roles are enabled to use that
particular action. For instance, the next listing reports the implementation of the action sendQuote,
whose effects on the social state are defined by means of primitives for commitment manipulation and
social fact addition. After execution, the updates to the social state will be automatically notified to the
focusing agents.

1 @OPERATION
2 @ROLE(roleName=MERCHANT ROLE)
3 p u b l i c vo id sendQuote (S t r i n g i tem , S t r i n g p r i c e) {
4 Ro le Id merchan t = ge tRole IdByPlayerName (getOpUserName ()) ;
5 Ro le Id c u s t o m e r = ge tRole IdByGener icRoleName (CUSTOMER ROLE) . g e t (0) ;
6 t r y {
7 crea teCommitment (new Commitment (merchant , cus tomer ,
8 new F a c t ("acceptedQuotation" , i tem , p r i c e) , "goods")) ;
9 crea teCommitment (new Commitment (merchant , cus tomer , "paid" , "receipt")) ;

10 a s s e r t F a c t (new F a c t ("sendQuote" , i tem , p r i c e , merchan t . t o S t r i n g ())) ;
11 a s s e r t F a c t (new F a c t ("quotation" , i tem , p r i c e , merchan t . t o S t r i n g ())) ;
12 } catch (M i s s i n g O p e r a n d E x c e p t i o n e) { . . . h a n d l e e x c e p t i o n . . . }
13 }

Listing 1. Excerpt of the sendQuote protocol action.

Indeed, the interaction artifact maintains an explicit representation of the social state. By focusing on
an artifact, an agent registers to be notified of events that are generated inside the artifact. Note that
all events that amount to the execution of protocol actions/messages are recorded as facts in the social
1Annotations, a form of meta-data, provide data about a program that is not part of the program itself. See https://docs.

oracle.com/javase/tutorial/java/annotations/

https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1011

state. In particular, when the social state is updated, the JaCaMo+ artifact provides such information to
the focusing JaCaMo+ agents by exploiting proper observable properties. Agents are, thus, constantly
aligned with the social state.

In JaCaMo+, protocol designers can adopt two different modalities for determining how commit-
ments evolve in their lifecycle: manual or automated. In manual mode, any change in the social state
must be explicitly expressed; the social state represents the repository of commitments currently hold-
ing, and it changes their status only if a protocol action devises that change. For example, consider the
following code excerpt, concerning the action sendAccept of Netbill protocol:

1 @OPERATION
2 @ROLE(roleName=CUSTOMER ROLE)
3 p u b l i c vo id sendAccep t (S t r i n g i tem , S t r i n g p r i c e) {
4 Ro le Id c u s t o m e r = ge tRole IdByPlayerName (getOpUserName ()) ;
5 Ro le Id merchan t = ge tRole IdByGener icRoleName (MERCHANT ROLE) . g e t (0) ;
6 t r y {
7 a s s e r t F a c t (new F a c t ("acceptedQuotation" , i tem , p r i c e , c u s t o m e r . t o S t r i n g ())) ;
8 crea teCommitment (new Commitment (cus tomer , merchant , "goods" , "paid")) ;
9 A r r a y L i s t<Commitment> arrComm = new A r r a y L i s t<Commitment > () ;

10 f o r (Commitment com : s o c i a l S t a t e . r e t r i e v e C o m m i t m e n t s B y C r e d i t o r R o l e I d (c u s t o m e r))
11 i f (com . g e t C o n s e q u e n t () . e q u a l s (new F a c t ("goods"))
12 && com . g e t D e b t o r () . e q u a l s (merchan t))
13 arrComm . add (com) ;
14 f o r (Commitment com : arrComm) detachCommitment (com) ;
15 } catch (M i s s i n g O p e r a n d E x c e p t i o n e) { . . . h a n d l e e x c e p t i o n . . . }
16 }

Listing 2. Excerpt of the sendAccept protocol action.

Starting from line 10, the execution of the action may imply a state change for one or more commitments,
whose antecedent matches with the asserted fact: those commitments become detached (line 14). This
update is not needed in the automated mode: when a fact is asserted, the social state is checked and
updated according to the commitment lifecyle, so, for example, a commitment becomes satisfied if its
consequent is added. Listing 3 reports the automated version of sendAccept. The asserted fact (line 7)
will trigger the detachment of those commitments whose antecedent matches with it.

1 @OPERATION
2 @ROLE(roleName=CUSTOMER ROLE)
3 p u b l i c vo id sendAccep t (S t r i n g i tem , S t r i n g p r i c e) {
4 Ro le Id c u s t o m e r = ge tRole IdByPlayerName (getOpUserName ()) ;
5 Ro le Id merchan t = ge tRole IdByGener icRoleName (MERCHANT ROLE) . g e t (0) ;
6 t r y {
7 a s s e r t F a c t (new F a c t ("acceptedQuotation" , i tem , p r i c e , c u s t o m e r . t o S t r i n g ())) ;
8 crea teCommitment (new Commitment (cus tomer , merchant , "goods" , "paid")) ;
9 } catch (M i s s i n g O p e r a n d E x c e p t i o n e) { . . . h a n d l e e x c e p t i o n . . . }

10 }

Listing 3. Excerpt of the sendAccept protocol action.

Notice that the choice between manual and automated mode does not impact on how agents will be
implemented: it is a mechanism aimed at helping protocol designers. To choose automated or manual
mode, developers have simply to use the proper constructor of the protocol class, as shown in Listing 4.

1 p u b l i c N e t b i l l P r o t o c o l () {
2 super () ;
3 s o c i a l S t a t e = new A u t o m a t e d S o c i a l S t a t e (t h i s) ;
4 }

Listing 4. Automated Social State.

1012 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

3.2. Integration of the Interaction Component in Jason

Jason [14] implements in Java, and extends, the agent programming language AgentSpeak(L). Jason
agents have a BDI architecture. Each has a belief base, and a plan library. It is possible to specify
achievement (operator ‘!’) and test (operator ‘?’) goals. Each plan has a triggering event (causing
its activation), which can be either the addition or the deletion of some belief or goal. The syntax is
declarative. In JaCaMo, the beliefs of Jason agents can also change due to operations performed by other
agents on the CArtAgO environment, whose consequences are automatically propagated.

In JaCaMo+, Jason agents can enact a commitment-based protocol in the same way they create (or
focus on) any other type of artifact. Thus, it is possible to add interaction protocols directly to the MAS
specification, or to use those CArtAgO primitives that allow creating and using artifacts. As an example,
let us consider a simple multiagent system where agents interact by means of the Netbill protocol. The
following .jcm definition file specifies a workspace where the interaction protocol is instantiated when
the system is deployed, and the involved agents focus on its instance at the beginning of their lifecycle:

1 mas n e t b i l l {
2 a g e n t c u s t o m e r : c u s t o m e r . a s l {
3 . . .
4 f o c u s : nb . n e t b i l l
5 }
6 a g e n t merchan t : merchan t . a s l {
7 . . .
8 f o c u s : nb . n e t b i l l
9 }

10 . . .
11 workspace nb {
12 . . .
13 a r t i f a c t n e t b i l l : p r o t o c o l . N e t b i l l P r o t o c o l ()
14 }
15 }

Listing 5. The Netbill MAS definition in JaCaMo+.

Here instead an agent plan includes the creation of an interaction artifact and subsequently focuses
on it. The string “netbill-protocol” is the name of the artifact:

1 m a k e A r t i f a c t ("netbill-protocol" ,"protocol.NetbillProtocol" , [] , C) ;
2 f o c u s (C) ;

In case an agent should focus on an artifact that is created by some other agent, focusWhenAvailable
will make the agent wait until the artifact becomes available:

1 focusWhenAva i l ab l e ("netbill-protocol") ;

Notice that the proposed techniques are not different from how a Jason agent creates or focuses on any
CArtAgO artifact. When an observable event is generated inside an interaction artifact, this notifies it
to all agents focusing on it. Observable events amount to the creation or the modification of relevant
information inside the social state, e.g. the satisfaction of a commitment or the addition of a social fact.
Indeed, all information inside the social state is observable. Also commitments are realized as observable
properties. They are represented as terms of the form: cc(debtor, creditor, antecedent, consequent,
status), where debtor and creditor identify the involved agents (or agent roles), while antecedent and
consequent are the commitment conditions. Status is the state of the commitment according to the
commitment lifecycle. Following the integration of Jason and CArtAgO, observable properties become
beliefs for the agent focusing on the artifact. Since social facts are modeled as observable properties, it is

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1013

straightforward to program Jason agents that tackle them. To this aim, we extended Jason so as to allow
the specification of plans, whose triggering events involve commitments. A Jason plan is specified as:

triggering event : 〈context〉 ← 〈body〉

where triggering event denotes the event the plan handles, the context specifies the circumstances when
the plan could be used, the body is the course of action that should be taken. The triggering event and the
body can be true or omitted when necessary. In a Jason plan specification, commitments can be used
wherever beliefs can be used. Otherwise than beliefs, their assertion/deletion can only occur through the
artifact, in consequence to a social state change.

The following template shows a Jason plan triggered when a commitment, that unifies with the one
in the plan head, is notified in the agent belief base because it was created in the social state:

+cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉

The syntax is the standard for Jason plans. Debtor and creditor are to be substituted by the proper
roles. Similar schemas can be used for commitment deletion and for the addition/deletion of social facts.
Particularly relevant is the case when the plan allows a debtor of a commitment to take action, after
the commitment is detached, in order to comply with its obligation. Also specially relevant is the case
when an agent realizes to be creditor of a commitment that was just created and can deliberate whether
detaching it.

Commitments can also be used, in Jason plans, inside contexts, as test goals (?cc(. . .)), or as achieve-
ment goals (!cc(. . .)). Addition or deletion of such goals can, as well, be managed by plans, e.g.:

+!cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉

The plan is triggered when the agent creates an achievement goal concerning a commitment. The agent
will, then, act upon the artifact so as to create the desired social relationship. After a successful execu-
tion of the plan, the commitment cc(debtor, creditor, antecedent, consequent, status) will hold in the
social state, and will be projected onto the belief bases of all agents focusing on the artifact.

We report, as an example, the code of an agent playing the role merchant.
1 ! s t a r t .
2 +! s t a r t <− e n a c t ("merchant") .
3 + e n a c t e d (Id , "merchant" , R o l e I d)
4 <− + e n a c t m e n t i d (R o l e I d) ; . . . ;
5 ! s e l l .
6 +! s e l l <− t rue .
7 + r e q u e s t e d Q u o t e (Item , Merchant)
8 <− . . . ; sendQuote (Item , P r i c e) .
9 +cc (My Role Id , C u s t o m e r R o l e I d , , "goods" ,"DETACHED")

10 : e n a c t m e n t i d (My Role Id)
11 <− sendGoods .
12 +cc (My Role Id , C u s t o m e r R o l e I d , , "receipt" ,"DETACHED")
13 : e n a c t m e n t i d (My Role Id)
14 <− s e n d R e c e i p t .

Listing 6. The Netbill Merchant agent code in JaCaMo+.

The agent enacts the merchant protocol role (operation enact, Listing 6, line 2). The parameter of
the action is the name of the role the agent is enacting: if the role does not exist, the action fails. It

1014 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

is required that the agent keeps a mental note of the ID assigned to its enactment (line 4). After this,
the agent activates the goal sell that, having an empty body, causes it to simply wait for a customer
to start an interaction by asking for a quote2. Action enact is part of the definition of the abstract
class InteractionProtocol. After the enactment, the agent is allowed to execute actions that are
part of the enacted role. In the example, the merchant agent has a plan whose trigger is a social fact
(requestedQuote, line 7) representing the fact that a quote request occurred. The agent tackles this sit-
uation by sending the requested quote. This is done by executing the protocol action sendQuote(Item,

Price), line 8, that modifies the social state by adding the quote at issue realized as observable property
(see Listing 1, line 11). In turn, the artifact will notify to the customer the quote by propagating the
new observable property into its belief base. The plans at lines 9 and 12 are typical examples of how
an agent can tackle the progression of commitments along their lifecycle. The first plan handles the
satisfaction of the commitment regarding goods dispatch (cc(Customer Role Id, My Role Id, ,

"goods","DETACHED")), for which the merchant was creditor. Since the commitment is detached, the
merchant is now expected to bring about the consequent condition. The plan simply sends the agreed
item (action sendGoods). The second plan again tackles the detachment of a commitment concerning
the merchant as debtor: the merchant uses the action sendReceipt to fulfill it.

In order to understand the interaction of a customer with a merchant, we report also the Jason program
of a possible customer. The customer asks for a quote right after enacting the role (through buy). The
program includes a plan (see Listing 7, line 7) that is activated when the commitment cc(My Role Id,

Customer Role Id, AcceptedQuotation, "goods","CONDITIONAL") is notified to the customer
by the Netbill interaction artifact. Such a commitment means that the merchant promises to send the
goods in case the customer accepts the quote. It is created by the merchant as a social consequence of
the protocol action sendQuote (see Listing 1, line 7). The customer’s plan in Listing 7 is very sim-
ple: the agent accepts the quote by executing sendAccept3, which creates the conditional commitment
cc(customer, merchant, "goods", "paid"), and detaches the merchant’s commitment tackled at
line 9 of the merchant’s program (Listing 6). This event is notified to the merchant by the artifact, so the
merchant’s plan aimed at sending the goods is activated. Thus, the commitment of the customer to pay
becomes detached and the customer is compelled to pay.

1 ! s t a r t .
2 +! s t a r t <− e n a c t ("customer") .
3 + e n a c t e d (Id , "customer" , My Role Id)
4 <− + e n a c t m e n t i d (My Role Id) ; . . . ;
5 ! buy .
6 +! buy <− s e n d R e q u e s t ("item") .
7 +cc (M e r c h a n t R o l e I d , My Role Id , A c c e p t e d Q u o t a t i o n , "goods" ,"CONDITIONAL")
8 : e n a c t m e n t i d (My Role Id)
9 & sendQuote (Item , P r i c e , M e r c h a n t R o l e I d)

10 & not goods (I tem)
11 <− . . . ; s endAccep t (I tem , P r i c e) .
12 +cc (My Role Id , M e r c h a n t R o l e I d , , "paid" ,"DETACHED")
13 : e n a c t m e n t i d (My Role Id)
14 <− sendEPO .
15 +cc (M e r c h a n t R o l e I d , My Role Id , A c c e p t e d Q u o t a t i o n , "goods" , "SATISFIED")
16 : e n a c t m e n t i d (My Role Id)
17 & sendQuote (Item , P r i c e , M e r c h a n t R o l e I d)
18 & not a c c e p t e d Q u o t a t i o n (,)
19 <− . . . ; s endAccep t (I tem , P r i c e) .

2The reason for relying on the explicit goal sell will become clear in Section 5.
3The code is not reported in the paper but it is available in the code repository.

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1015

20 +goods (I tem)
21 : e n a c t m e n t i d (My Role Id)
22 & not a c c e p t e d Q u o t a t i o n (Item , P r i c e)
23 <− s e n d R e q u e s t (I t em) .

Listing 7. The Netbill Customer agent code in JaCaMo+.

The program accommodates also alternative types of interaction where the customer, instead of taking
the initiative, waits for some interesting offer. We discuss this case in Section 5.

4. The Gold Miners Scenario

The Gold Miners scenario was initially proposed at CLIMA VII 4 to challenge researchers in the multi-
agent community; since then, it has been used as a reference example in many other works [13, 40].
It consists in developing a multi-agent system to solve a cooperative task in a dynamically changing
environment. The environment is a grid-like world where agents can move from one cell to a neighboring
cell if it contains no agent or obstacle. Gold nuggets can appear in the cells at any time. Agents, operating
as a team, are expected to explore the environment, avoid obstacles, and collect as much gold as possible
to be dropped into a depot. Each agent can carry one gold nugget at a time (an agent that is not carrying
gold is free). Agents have only a local view on their environment because they can only see pieces of gold
in the adjacent cells; however, they can communicate with the other agents for sharing their findings.

The solution we present in this section5 exploits the basic infrastructure used in the JaCaMo tutorial6:
in particular, a world simulator is at the basis of the architecture; the simulator keeps a complete state
of all the agents, nuggets, and obstacles. Each agent, however, has just a limited view of the events
occurring inside the simulator; this is due to the fact that the agents’ perceptions are simulated by means
of standard CArtAgO artifacts that, for each agent, capture only a specific subset of the events generated
by the simulator. Upon this underlying architecture we implement our JaCaMo+ solution.

In JaCaMo+, a solution to the Gold Miners consists of two elements: the Mining Protocol (i.e., the
interaction artifact), and the Miner (i.e., the agents). The Mining Protocol is shown in Table 2. The pro-

Table 2. Mining Protocol: actions and their social meaning; m1, . . . , mn are the miners in the team.

volunteer(mi, X, Y,Dist): {create(C(mi,mj ,
∧

mk 6=i
agree(mk, X, Y), pick(X,Y) · drop(X,Y))) | mj 6=i}

offer(mi, X, Y,Dist): {create(C(mi,mj ,
∧

mk 6=i
agree(mk, X, Y), pick(X,Y) · drop(X,Y))) | mj 6=i}

withdraw(X,Y,mi): {cancel(C(mi,mj , , pick(X,Y) · drop(X,Y))) | mj 6=i}
agree(mi, X, Y): commitment progression

pick(X,Y): commitment progression
drop(X,Y): commitment progression

tocol involves only one role, miner, because the scenario assumes a team of homogeneous agents. Action
volunteer allows agent mi to offer to go and pick up a gold nugget, that the agent mi itself perceived at
coordinates X , Y , and whose distance from mi is Dist, and then to drop the nugget at the depot. If mi

was the first agent to perceive that piece of gold, a set of commitments is created in the social state as
4http://www.staff.science.uu.nl/~dasta101/publication/CLIMA07contest.pdf
5The code is available at http://di.unito.it/2COMM.
6http://jacamo.sourceforge.net/tutorial/gold-miners/

http://www.staff.science.uu.nl/~dasta101/publication/CLIMA07contest.pdf
http://di.unito.it/2COMM
http://jacamo.sourceforge.net/tutorial/gold-miners/

1016 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

an effect. Each of these commitments has the form C(mi,mj ,
∧

mk 6=i
agree(mk, X, Y), pick(X,Y) ·

drop(X,Y)). It is directed towards one of the other agents mj , and binds mi to the temporal expres-
sion pick(X,Y) · drop(X,Y) in case all other agents agree that mi performs the task. Action offer is
executed when an agent becomes aware that a new piece of gold was found through the commitments
created by the miner that found the gold. The action aims at creating a counter-offer and achieves this
purpose by creating the same kind of commitments created by volunteer. By executing action withdraw,
the debtor agent cancels a commitment previously created. Actions agree, pick, drop cause commitment
progression.

In principle, each agent enacting the miner role could implement an internal strategy which is inde-
pendent of the strategies used by its teammates; the only constraint is that all the miners use the actions
made available by the Mining Protocol to interact. The goal of this example is to show how the strategy
proposed in [13, 40] for Jason agents can be realized in JaCaMo+. For this reason, we assume that all
the mining agents adopt the same strategy. Each miner has two mutually exclusive goals: “look for gold”
and “drop gold”. At the beginning of the simulation, all the miners focus on the same instance of the
Mining Protocol, previously created by the system. Moreover, they are randomly placed on the map,
which is managed by an instance of the artifact MiningPlanet. All the interacting agents will be notified
of changes occurred to the observable properties of such artifacts. Each agent initially has the active
goal “look for gold”. The search for gold is carried out by moving towards a randomly selected target
position. The hope is that, while moving, the miner will walk by a piece of gold, or it will be notified
by another agent that gold has been found in a place nearby. In particular, when an agent gets close to a
location that contains a piece of gold, an event +cell(X,Y, gold) occurs in the artifact MiningPlanet.
The event represents that the agent perceived the presence of gold in the cell of coordinates X and Y .

When a new piece of gold is identified by a miner, three alternative behaviors are possible:

• (R1) The miner is not carrying gold, nor it is committed to pick up gold: the miner volunteers to
pick it up and drop it at the depot (Listing 8, lines 2–6).

• (R2) The miner is not carrying gold, but it is already committed to pickup some more distant
nugget: it withdraws, canceling the previous commitment to pick and drop the old nugget, and
volunteers to pick up the new one and drop it at the depot (lines 8–18). (R2’) When a miner cancels
a detached commitment, all the others are made aware of this by the social event represented by
the violation of that commitment. In this cooperative environment, however, the violation of a
commitment does not entail a sanction to the responsible miner but, rather, the violation denotes
that a gold nugget is now available to be picked up. Hence, this cancellation will cause other miners
to offer to manage the piece of gold, that was left unassigned after withdrawal (lines 54–62).

• (R3) The miner is already carrying a gold to the depot, it cannot handle another gold, so it volun-
teers using as Dist a conventional high value, in order to stimulate the other miners to make their
offers, without possibly being chosen (lines 20–26). (R3’) In the special case in which no other
miner makes a counter-offer (all are busy), and instead they agree to leave the new piece of gold
to the agent that found it, this agent executes withdraw of the, now detached, commitment to pick
and drop the new nugget (lines 64–69).

When a miner volunteers or makes an offer, commitments are created in the social state. All the other
miners will tackle this eventuality in the following way:

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1017

• (R4) if the miner is already committed to take another piece of gold, it executes agree (lines 28–33).

• (R5) if the miner offered to take the same piece of gold but its distance from gold is greater than
that of its teammate, the miner, which has a cooperative behavior, withdraws and performs agree
(Listing 8, lines 35–41).

• (R6) if the miner is not carrying gold, nor it is committed to pick up gold: it decides whether to
offer or not (in the latter case it will execute agree). A miner offers to take gold only if its distance
to the gold location is less than the distance of the agent that has found the gold (lines 43–52).

The conditional commitment, that is created by volunteering (offering), is the one that, once de-
tached, will activate the plan by which the agent will handle the gold nugget. So, finally, when a miner
volunteered or offered to pick and drop a piece of gold, and all the others agreed to this (meaning that the
corresponding commitment is detached), the miner starts the plan to handle that piece of gold ((R7), line
71–76 and (R7’), 78–80). Indeed, when an agents creates a conditional commitment, it must be ready to
bring about the consequent of such a commitment whenever the antecedent will become true.

1 / / P l an i m p l e m e n t i n g (R1)
2 + c e l l (X, Y, go ld) : e n a c t m e n t i d (My Role Id) & pos (MyX, MyY)
3 & not cc (My Role Id , , , , "CONDITIONAL") &
4 & not cc (My Role Id , , , , "DETACHED")
5 <− j i a . d i s t (X, Y, MyX, MyY, D i s t) ;
6 v o l u n t e e r (X, Y, D i s t) .
7 / / P l an i m p l e m e n t i n g (R2)
8 + c e l l (X, Y, go ld) : e n a c t m e n t i d (My Role Id) & pos (MyX, MyY)
9 & cc (My Role Id , , Agree , PickThenDrop , STATUS)

10 & (STATUS == "CONDITIONAL" | STATUS == "DETACHED")
11 & not c a r r y i n g (OldX , OldY)
12 & . t e r m 2 s t r i n g (PickThenDrop , T) &
13 & j i a . ge tCoord1 (T , OldX) & j i a . ge tCoord2 (T , OldY) & X \== OldX & Y \== OldY
14 <− . d r o p i n t e n t i o n (h a n d l e (go ld (OldX , OldY))) ; −h a n d l i n g g o l d (OldX , OldY) ;
15 j i a . d i s t (X, Y, MyX, MyY, D i s t) ;
16 withdraw (OldX , OldY) ;
17 −d e t a c h ;
18 v o l u n t e e r (X, Y, D i s t) .
19 / / P l an i m p l e m e n t i n g (R3)
20 + c e l l (X, Y, go ld) : e n a c t m e n t i d (My Role Id)
21 & cc (My Role Id , , , Drop , "DETACHED")
22 & . t e r m 2 s t r i n g (Drop , T)
23 & j i a . ge tCoord1 (T , OldX) & j i a . ge tCoord2 (T , OldY)
24 & not o f f e r (X, Y, , My Role Id)
25 & p i c k (OldX , OldY)
26 <− v o l u n t e e r (X, Y, 1 0 0 0) .
27 / / P l an i m p l e m e n t i n g (R4)
28 +cc (O t h e r R o l e I d , My Role Id , , PickThenDrop , "CONDITIONAL") : e n a c t m e n t i d (My Role Id)
29 & . t e r m 2 s t r i n g (PickThenDrop , T)
30 & j i a . ge tCoord1 (T , X) & j i a . ge tCoord2 (T , Y)
31 & cc (My Role Id , , , , STATUS)
32 & (STATUS == "CONDITIONAL" | STATUS == "DETACHED")
33 <− a g r e e (X, Y) .
34 / / P l an i m p l e m e n t i n g (R5)
35 +cc (O t h e r R o l e I d , My Role Id , , PickThenDrop , "CONDITIONAL") : e n a c t m e n t i d (My Role Id)
36 & . t e r m 2 s t r i n g (PickThenDrop , T)
37 & j i a . ge tCoord1 (T , X) & j i a . ge tCoord2 (T , Y)
38 & o f f e r (X, Y, Di s t , My Role Id) & o f f e r (X, Y, O t h e r D i s t , O t h e r R o l e I d)
39 & (D i s t > O t h e r D i s t)
40 <− a g r e e (X, Y) ;
41 withdraw (X, Y) .

1018 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

42 / / P l an i m p l e m e n t i n g (R6)
43 +cc (O t h e r R o l e I d , My Role Id , , PickThenDrop , "CONDITIONAL") : e n a c t m e n t i d (My Role Id)
44 & pos (MyX, MyY)
45 & . t e r m 2 s t r i n g (PickThenDrop , T)
46 & j i a . ge tCoord1 (T , X) & j i a . ge tCoord2 (T , Y)
47 & not cc (My Role Id , , , , "DETACHED")
48 & not cc (My Role Id , , , , "CONDITIONAL")
49 & o f f e r (X, Y, O t h e r D i s t , O t h e r R o l e I d)
50 <− j i a . d i s t (X, Y, MyX, MyY, D i s t) ;
51 i f (D i s t < O t h e r D i s t) { o f f e r (X, Y, D i s t) ; }
52 e l s e { a g r e e (X, Y) ; } .
53 / / P l an i m p l e m e n t i n g (R2’)
54 +cc(Other_Role_Id, My_Role_Id, _, PickThenDrop, STATUS) : enactment_id(My_Role_Id)

55 & pos(MyX, MyY)

56 & (STATUS == "TERMINATED" | STATUS == "VIOLATED")

57 & not cc(My_Role_Id, _, _, _, "DETACHED")

58 & not cc(My_Role_Id, _, _, _, "CONDITIONAL")

59 & offer(X, Y, Other_Dist, Other_Role_Id)

60 & not offer(X, Y, _, My_Role_Id)

61 <- jia.dist(MyX, MyY, X, Y, Dist);

62 offer(X, Y, Dist).

63 // Plan implementing (R3’)
64 +cc (My Role Id , O t h e r R o l e I d , , PickThenDrop , "DETACHED") : e n a c t m e n t i d (My Role Id)
65 & . t e r m 2 s t r i n g (PickDotDrop , T)
66 & j i a . ge tCoord1 (T , X) & j i a . ge tCoord2 (T , Y)
67 & cc (My Role Id , , , Other P ickThenDrop , "DETACHED")
68 & PickThenDrop \== Othe r P ickThenDrop
69 <− withdraw (X, Y) .
70 / / P l an i m p l e m e n t i n g (R7)
71 +cc (My Role Id , , , , "DETACHED") : e n a c t m e n t i d (My Role Id)
72 & . t e r m 2 s t r i n g (PickDotDrop , T)
73 & j i a . ge tCoord1 (T , X) & j i a . ge tCoord2 (T , Y)
74 & not d e t a c h
75 <− −f r e e ; + d e t a c h ;
76 ! i n i t h a n d l e (go ld (X,Y)) .
77 / / P l an i m p l e m e n t i n g (R7’)
78 +!init_handle(gold(X,Y)) : ...

79 <- ... pick(X, Y); ...

80 ... drop(X, Y);

Listing 8. The Gold Miner agent code in JaCaMo+.

Listing 9 outlines the JaCaMo+ Mining Protocol implemented as an interaction artifact.
1 p u b l i c c l a s s M i n i n g P r o t o c o l ex tends P r o t o c o l A r t i f a c t {
2 p u b l i c s t a t i c S t r i n g ARTIFACT TYPE = "MiningProtocol" ;
3 p u b l i c s t a t i c S t r i n g MINER ROLE = "miner" ;
4 p r i v a t e i n t numberOfMiners = MINER NUMBER;
5 s t a t i c { addEnab ledRole (MINER ROLE , Miner . c l a s s) ; }
6 . . .
7 p u b l i c M i n i n g P r o t o c o l () {
8 super () ;
9 s o c i a l S t a t e = new A u t o m a t e d S o c i a l S t a t e (t h i s) ;

10 }
11 @OPERATION p u b l i c vo id v o l u n t e e r (i n t x , i n t y , i n t d i s t) { . . . }
12 @OPERATION p u b l i c vo id o f f e r (i n t x , i n t y , i n t d i s t) {
13 t r y {
14 C o m p o s i t e E x p r e s s i o n cons = n u l l ;
15 Ro le Id o f f e r i n g M i n e r = ge tRole IdByPlayerName (getOpUserName ()) ;
16 Ro le Id groupMiner = new Ro le Id (MINER ROLE) ;
17 A r r a y L i s t<RoleId> e n a c t e d M i n e r s = ge tRole IdByGener icRoleName (MINER ROLE) ;
18 L o g i c a l E x p r e s s i o n a n t e c = new F a c t ("true") ;
19 f o r (i n t i = 0 ; i<numberOfMiners−TEMP LIMIT ; i ++) {

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1019

20 i f (! (e n a c t e d M i n e r s . g e t (i) . e q u a l s (o f f e r i n g M i n e r))) {
21 C o m p o s i t e E x p r e s s i o n acc =
22 new C o m p o s i t e E x p r e s s i o n (L o g i c a l O p e r a t o r T y p e .AND,
23 new F a c t ("agree" , x , y , e n a c t e d M i n e r s . g e t (i) . t o S t r i n g ()) , a n t e c) ;
24 a n t e c = acc ;
25 }
26 }
27 cons = new C o m p o s i t e E x p r e s s i o n (L o g i c a l O p e r a t o r T y p e . THEN,
28 new F a c t ("pick" , x , y) , new F a c t ("drop" , x , y)) ;
29 Commitment groupCommit =
30 new Commitment (o f f e r i n g M i n e r , groupMiner , a n t e c , cons) ;
31 c r e a t e A l l C o m m i t m e n t s (groupCommit) ;
32 a s s e r t F a c t (new F a c t ("offer" , x , y , d i s t , o f f e r i n g M i n e r . t o S t r i n g ())) ;
33 } catch (M i s s i n g O p e r a n d E x c e p t i o n e) { . . . h a n d l e e x c e p t i o n . . . }
34 }
35 @OPERATION p u b l i c vo id withdraw (i n t x , i n t y) {
36 t r y {
37 Ro le Id a s k i n g M i n e r = ge tRole IdByPlayerName (getOpUserName ()) ;
38 C o m p o s i t e E x p r e s s i o n cons ;
39 F a c t f ;
40 L i s t<Commitment> comms =
41 s o c i a l S t a t e . r e t r i e v e C o m m i t m e n t s B y D e b t o r R o l e I d (a s k i n g M i n e r) ;
42 i f (comms != n u l l) {
43 f o r (Commitment c : comms) {
44 cons = (C o m p o s i t e E x p r e s s i o n) (c . g e t C o n s e q u e n t ()) ;
45 f = (F a c t) (cons . g e t L e f t ()) ;
46 i f ((i n t) (f . ge tArguments () [0]) == x &&
47 (i n t) (f . ge tArguments () [1]) == y)
48 cancelCommitment (c) ;
49 }
50 }
51 } catch (M i s s i n g O p e r a n d E x c e p t i o n e) { . . . h a n d l e e x c e p t i o n . . . }
52 }
53 @OPERATION p u b l i c vo id a g r e e (i n t x , i n t y) { . . . }
54 @OPERATION p u b l i c vo id p i c k (i n t x , i n t y) {
55 t r y {
56 Ro le Id p i c k i n g M i n e r = ge tRole IdByPlayerName (getOpUserName ()) ;
57 F a c t f = new F a c t ("pick" , x , y) ;
58 a s s e r t F a c t (f) ;
59 } catch (M i s s i n g O p e r a n d E x c e p t i o n e) { . . . h a n d l e e x c e p t i o n . . . }
60 }
61 @OPERATION p u b l i c vo id drop (i n t x , i n t y) { . . . }
62 p u b l i c c l a s s Miner ex tends PARole {
63 p u b l i c Miner (S t r i n g playerName , I P l a y e r p l a y e r) {
64 super (MINER ROLE , p l a y e r) ;
65 }
66 }
67 }

Listing 9. The Gold Miner artifact in JaCaMo+.

The MiningProtocol class extends the ProtocolArtifact class of JaCaMo+. It includes three class
variables, among which numberOfMiners stores the number of miners cooperating in the team. Ac-
cording to the original GoldMiners competition, such a number is predetermined and does not change at
runtime. In our implementation the number of miners is set by the configuration constant MINER NUMBER.
The class constructor sets the field socialState, which is inherited from ProtocolArtifact, to a new
instance of AutomatedSocialState(). This means that commitment states progress automatically ac-
cording to the events (i.e., operations) occurring inside the artifact, relieving the programmer to explicitly
program this part. The rest of the class specifies all the protocol operations. Each protocol action is re-

1020 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

alized as a method tagged with the @OPERATION annotation. For the sake of simplicity, the excerpt
reported in the Listing details only part of such operations. Operation offer is executed by a miner,
after it became aware that a new piece of gold was found through the commitments created by the miner
that found it, and after it decided to create a counter-offer because it is closer to that gold nugget. The
execution of offer creates a set of commitments, towards all other miners (lines 29–31). When a miner
decides to cancel a set of commitments, it executes withdraw. Commitment cancellation is performed
at line 48. Finally, when a miner executes pick, a fact is created in the social state to record the event
(line 58).

5. Discussion

To show the added value of the interaction artifacts of JaCaMo+, we compare them with two alternative
approaches to interactions: message-based protocols, as the one used in [13] for solving the Gold Miners
in JaCaMo, and the interaction components in [70].

The first observation is that interaction artifacts enable a form of flexibility that neither message-
based protocols, nor interaction components can obtain. These two approaches are basically prescrip-
tive: they describe a specific sequence of steps through which an interaction can correctly evolve. In
real world cases, however, there exist alternative paths that bring about the same result. Prescriptive
approaches either ignore these alternatives, or encode them by making the resulting protocol (or com-
ponent) awkward to deal with. Interaction artifacts, on the contrary, define protocols based on commit-
ments, without imposing any strict ordering of the messages (or of the actions) besides those imposed
by the commitment conditions. It follows that agents generally have greater flexibility in deciding which
protocol action to execute. For instance, let us consider the Netbill protocol in Table 1. The most natural
way to interpret the interaction is that the customer starts it by asking a merchant the price of a given item
(sendQuote(Item, Price)). Let us consider Listing 6, in Section 3, reporting the code of the merchant.
In this code, at line 6, the plan +!sell <- true realizes this reactive behavior: the merchant waits for
quote requests. However, this is just one of the possible evolutions of the interaction between a merchant
and a customer. Even a merchant can take initiative and start an interaction: it can make an offer to the
customer by sending a quotation for an item, despite the customer did not request it. In the real world,
this is, for instance, the case of special discounts that sometimes are advertised by vendors. It is easily
possible to add also this behavior to the merchant agent, without disrupting its possibility to interact with
other agents through the same protocol. In order to realize this behavior, it is sufficient to substitute
the plan at line 6 with the plan +!sell <- sendQuote("item", "price"). The merchant starts by
sending a quote. The customer autonomously assesses whether such an unexpected offer is valuable,
and in the positive case takes advantage of it. The merchant can also start an interaction by sending
goods directly to the customer. The rest of the program is the same as the one reported in Listing 6
and also the artifact that allows the interaction does not change. This is the case of an agent offering
products directly at the customer’s place. This behavior is obtained by using, instead, the plan +!sell

<- sendGoods("item"). Again, the customer assesses whether the goods are of any interest; if so, it
will ask a quotation by performing sendRequest(Item) with Item unifying goods, and then decide
whether completing the purchase or not. For what concerns the customer, in order to be able to interact
with the two just described kinds of merchant, it is sufficient to substitute the plan at line 6, in Listing 7
with +!buy <- true so that the customer leaves the initiative to the merchant. It is evident that all these

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1021

scenarios (and programs) bring to a situation where both merchant and customer have satisfied their own
goals. They amount to alternative interactions that can be legally (according to the protocol) undertaken
by the two interacting agents, alternative interactions that the use of commitments allows. This is due to
the fact that commitments, which avoid imposing orderings over the agents’ actions, respect the principle
of Minimal Critical Specification [18]. Quote: “..., it is a mistake to specify more than is needed because
by doing so options are closed that could be kept open. This premature closing of options is a pervasive
fault in design.”. This is an important difference with respect to automata-based approaches, which are
usually overly prescriptive. Also in the Gold Miners scenario it is possible to implement miner agents,
that encode alternative strategies, without modifying the protocol (hence the interaction artifact). For
instance, it would be possible to realize selfish agents which do not share the position of newly found
pieces of gold when they are already carrying one to the depot, and keep the finding for themselves, for
later use. It would be enough to remove rule (R3) and the plan which implements it.

The JaCaMo+ proposal, thus, enjoys a form of decoupling between the design of the agents and
the design of the interaction that the other approaches lack of. Let us briefly compare the JaCaMo
implementation of Dijkstra’s Dining Philosophers [52] with an implementation in JaCaMo+ (see [6] for
details). The JaCaMo solution involves two roles: waiter and philosopher. The former is played by an
agent initializing the artifact (i.e., the table) used for the coordination; the latter is the role played by the
agents to be coordinated. An agent philosopher follows the general loop of thinking and eating. To eat,
however, the philosopher has to acquire two resources (i.e., the forks), shared with others. The acquisition
of the forks could lead the philosophers into a deadlock condition; therefore, this step is coordinated by
the artifact. The following two Jason plans give an intuition of how the deadlock is avoided.

1 +! a c q u i r e R e s : m y l e f t f o r k (L e f t) & m y r i g h t f o r k (R i g h t)
2 <− i n ("ticket") ;
3 i n ("fork" , L e f t) ; i n ("fork" , R i g h t) .
4 +! r e l e a s e R e s : m y l e f t f o r k (L e f t) & m y r i g h t f o r k (R i g h t)
5 <− o u t ("fork" , L e f t) ; o u t ("fork" , R i g h t) ;
6 o u t ("ticket") .

Listing 10. An excerpt of the philosopher in JaCaMo [52].

The plan starting at line 1, Listing 10, handles the request of the forks from a philosopher. Notice that
before obtaining the forks, a philosopher needs to get a ticket (line 2) by means of the (tuple space) in
operation; this operation guarantees that the agent asks for two forks in mutual exclusion. Once obtained
the ticket the agent can acquire the two forks without the risk of getting stuck in a deadlock condition.
The plan starting in line 4, on the other hand, handles the release of the two forks. Also this step involves
an operation of the underlying artifact, out, which corresponds to the return of the resources to the
artifact. Notably, the agent has to release the ticket, too; see line 6. This is essential for enabling other
philosophers waiting for the forks. These two plans show a potential vulnerability of the solution: the
programmer is in charge of using the two primitives in and out correctly (i.e., in the proper order); but
she is not supported in her job since the meaning of the two primitives is hidden inside the artifact.

In JaCaMo+, instead, a philosopher who decides to eat executes an operation (provided by the Dining
Philosophers protocol artifact), which creates a commitment cc(phil, philosopher, available(Left,
Right), return(Left, Right)). The intuitive meaning is that phil commits with all the other philoso-
phers that in case it gets the forks, it will then return them. The JaCaMo+ philosopher agent program
must, then, contain a plan to handle the situation in which the above commitment becomes detached
because phil obtained the forks. The plan will try to achieve the consequent condition, i.e. to return the
forks. A possible plan is the following one:

1022 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

1 +cc (My Role Id , "philosopher" , a v a i l a b l e (Le f t , R i g h t) , r e t u r n F o r k s (Le f t , R i g h t) , "DETACHED")
2 : e n a c t m e n t i d (My Role Id) & m y l e f t f o r k (L e f t) &
3 m y r i g h t f o r k (R i g h t)
4 <− ! e a t (Le f t , R i g h t) ;
5 r e t u r n F o r k s (Le f t , R i g h t) .

Listing 11. A plan in JaCaMo+ to accomplish a philosopher’s goal and commitment.

Observe that the triggering event (Listing 11, line 1) is the change of state of the commitment in
which the current agent appears as debtor. Since the commitment is now detached, the agent has to
satisfy it by returning the forks. Indeed, the context (lines 2-3), makes clear that the agent now holds two
forks (Left and Right). More interestingly, the body of the plan (lines 4-5) has two steps: first, the agent
accomplishes its individual goal of eating by !eat(Left, Right), and, then, the agent will satisfy
the commitment by returning the two forks, and thus accomplishing the necessary coordination. The
advantage of using JaCaMo+ protocol artifacts should now be evident. The programmer does not need
to know the internal logic with which the artifact resolves conflicts, nor she/he needs to know and use
structures that are internal to the artifact as, instead, happens in the solution proposed by Ricci et al. [52],
where the programmer has to use a ticket to guarantee the mutual exclusive access to the forks. The
proper usage of the ticket, however, is left to the ability of the programmer, who could forget to return
the ticket after using the forks. In JaCaMo+, instead, the programmer is driven by the commitments in
which the agent under development will be involved. The act of returning the forks, for example, is not
a procedure that the programmer has to remember to do, but becomes a new goal that the programmer
has to fulfill in order to satisfy the agent’s commitments, and hence to satisfy the agent’s interactions.
In other words, JaCaMo+ shifts the focus from programming reactions to signals, to programming plans
for achieving conditions that satisfy both the agent’s goals and the agent’s commitments.

More generally, JaCaMo+ implicitly suggests an approach to agent programming driven by goals
and commitments. Telang et al. [61] have shown how goals and commitments are profoundly related
with one another. Leveraging on this relation, it is possible to devise code templates as basic building
blocks for the agent body. JaCaMo+ supports this approach. To make this point clearer, let us consider
now the Gold Miners solution in JaCaMo+ (Section 4), and compare it with the one proposed in [13,
40]7. JaCaMo+ commitment-based protocols exploit an explicit causal relation between two events: the
creation of a conditional commitment, and the detachment of that very commitment. For instance, action
volunteer creates conditional commitments of form C(mi,mj ,

∧
mk 6=i

agree(X,Y,mk), pick(X,Y) ·
drop(X,Y)). Such commitments can be seen as a sort of norms that, once asserted in the social state,
bind the debtor to bring about their consequent in case the antecedent occurs. The same commitment,
however, can be seen as a piece of data existing in the social state that, differently from other forms
of data, has a state and such a state evolves in a precise manner, that is specified by the commitment
lifecycle. Relying on these two observations, a programmer has just to focus on the set of commitments
in which the agent will be involved and, in particular, the programmer will pay particular attention to
the state changes occurring in these commitments. For instance, since the action volunteer is invoked in
the miner’s program (Listing 9), and since the programmer knows that such action yields the creation of
commitments, the programmer will also know that it is necessary to include plans for tackling the state
changes of such commitments that are relevant for the agent itself. It will, then, include a plan whose

7For the sake of completeness, at http://jacamo.sourceforge.net/tutorial/gold-miners/ it is possible to find a
JaCaMo implementation of the Gold Miners but artifacts are not used for realizing interaction. They are used only to realize
the individual agent views of the environment in which miners search for gold.

http://jacamo.sourceforge.net/tutorial/gold-miners/

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1023

triggering event is the detachment of one such commitment (event after which the miner is expected
to pick up the gold nugget and drop it at the depot), and whose body brings about the commitment
consequent condition (Listing 8, the plans implementing (R3’) and (R7)). It will also include a plan for
tackling the violation of a similar commitment by another agent, in order to enable a reorganization of
task assignments (plan implementing (R2’)), as well as plans for tackling commitment creation, see (R4),
(R5), and (R6). This characteristic is also the reason why it was possible to realize the three variants of
Netbill merchant by just changing one line of code. The action sendQuote creates two commitments,
whose detachments are handled by the remaining part of the code. It does not matter at which stage
of the interaction detachments occur, the agent will tackle them appropriately. First steps towards the
realization of an agent programming methodology, that is based on these premises, are described in [6].

In the proposal in [13, 40], instead, agents interact by message exchange. There are two types of
agents: the miners and a special leader agent that coordinates the miners. Let us consider the gold allo-
cation protocol used in [40], by which a leader assigns the task of picking up a piece of gold to one of the
miners. In such a protocol, all miners bid for a new piece of gold by sending a message bid. The leader,
once it has received all the bids, answers to the winning miner with the message allocatedTo(gold(X,Y)).
The relationship between allocatedTo(gold(X,Y)) and bid, however, is not evident to the programmer,
who, in order to understand that it is necessary to add a plan for tackling such an event, has no other re-
source but analysing the protocol. Similar considerations can be drawn when comparing JaCaMo+ with
the interaction component proposed in [70] that, as already noted, is thought of as an automaton encod-
ing and orchestrating interaction in a prescriptive way. Since the causal relations between what an agent
does and the obligations it generates are hidden inside the interaction component, a programmer cannot
but program the agent so that it reacts to such obligations. This situation is very similar to programming
agents that react to incoming messages.

6. Conclusions

In this paper we have presented the JaCaMo+ framework that integrates commitment-based interaction
inside JaCaMo. As such, JaCaMo+ realizes the vision of MERCURIO framework [10, 2] and comple-
ments the proposal in [4], where an approach to Socio-Technical Systems, based on the Jade framework,
is presented.

The modular nature of the implementation facilitates the development of extensions for tackling
richer contexts. In particular, as [3] puts forward, most studies in the research area on multiagent systems
are focused only on features of agents, while those that support the need of representing the environment
mostly disregard the plurality of data, relying on propositional representations: for going beyond the
propositional case, it is necessary to rely on an information system (data awareness). Although data-
awareness is not yet realized in multiagent systems, the literature contains some independent efforts,
among which [19, 45, 21, 23, 3], that tackle aspects of this direction of research. Among these, [21]
provides an information-centric representation of commitments that distinguishes between schemas and
their instances, and relies on relational database queries. DACMAS [45] concerns commitment-based
MASs in a data-aware context, and shows that when a DACMAS is state-bounded, i.e., the number
of data that are simultaneously present at each moment in time is bounded, verification of rich temporal
properties becomes decidable. Data-awareness is definitely a facet that we mean to introduce in JaCaMo+
in order to enable the realization of systems that are suitable to tackle the complexity of reality.

1024 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

We are also interested in tackling, in the implementation, a more sophisticate notion of social context
and of enactment of a protocol in a social context [8], as well as to introduce a typing system along the
line of [5]. The modularity also enables a fully fledged range of verifications and helps modularizing
the verification of properties inside a multiagent system, thus enhancing the correctness quality. In
particular, it becomes possible to perform the analysis of properties at the level of protocol specification
rather than on the system as a whole. The outcome will hold for any instance of the artifact that will be
created. Of course, for each use it will be necessary to check that the usage of the artifact, done by a
specific agent, conforms to the specification but this is a much simpler kind of verification [7]. Among
the kinds of verification that can be performed, modularity enables lightweight forms of verification like
type checking [54, 25, 5, 4].

The specification and control of interaction is relevant for areas like the organizational theory and
electronic institutions where the focus is generally orthogonal to the one posed on interaction protocols,
as it concerns the modeling of the structure rather than of the interaction [2]. Intuitively, an organization
establishes a society of agents, that is characterized by a set of organizational goals and a set of norms.
Agents, playing one or more roles, should accomplish the societal goals respecting the norms. Electronic
institutions [30, 24], similarly to organizations, use norms for regulating the agents’ interactions. Differ-
ently from them, however, they have no goals of their own, and can be considered as a sort of monitors
controlling the agents’ behaviors. For example, the abstract architecture of e-institutions envisioned by
Ameli [34, 1] places a middleware, made of governors and staff agents, between participating agents
and an agent communication infrastructure. The environment is nothing agents can sense and act upon
but rather it is a conceptual one. Agents communicate with each other by means of speech acts and,
behind the scene, the middleware mediates such communication thanks to a body of norms and laws.
Organizations add to the picture the notion of organizational goal, distributing it through the roles that
make up the organization [41]. Among the current proposals, the organizational infrastructure in [39] as
well as JaCaMo is based on Moise+, which allows both for the enforcement and the regimentation of
the rules of the organization. This is done by defining a set of conditions to be achieved and the roles
that are permitted or obliged to perform them.

In the solution we proposed, interaction artifacts are orthogonal to the organizational dimension of
JaCaMo provided by Moise+, in agreement with the MERCURIO vision. Nevertheless, a JaCaMo+ in-
teraction protocol can itself be seen as a kind of organization as it gives structure to a multiagent system.
The implementation sees to create a concrete environment around a protocol in use, that agents manipu-
late by means of the actions provided by the protocol itself. In doing so agents create commitments, that
put them in relationship, that start interactions, that have a normative value, and that progress along with
the agent actions. As future work, it would be interesting to harmonize the commitment-based approach
to interaction with the obligation-based approach to interaction on a uniform basis, in order to make the
framework suitable to tackle a wider range of possible applications. From an organizational perspective,
the advantages would be numerous. The multiagent system would be more flexible and, as such, capable
to take advantage from unexpected opportunities, to adapt to exceptional conditions in the environment,
and to support applications where a number of partners need to interact and coordinate their activities
even though they are not members of a recognized organization. This is the standard, for instance, in the
constructions area and in cross-organizational settings.

Commitment violations are a kind of commitment state change that a JaCaMo+ interaction artifact
can detect and notify to all the agents focusing on it. The decision of how to use such information is
currently left to the agent programmers, who will decide whether and how managing the possible viola-

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1025

tions. An interesting future development would be to provide the means for harmonizing the reactions
produced by the single agents in the MAS, letting them be driven by the norms of the system, when this
is appropriate for the application at issue. The idea is to combine JaCaMo+ with proposals from the area
of e-institutions. In this area, usually agents are indirectly controlled via a set of norms, regulating the
ways in which agents can or cannot behave in the system. All agents have to respect the norms lest being
sanctioned by the institution. We would like to come to a vision that integrates violation management
inside commitment-based interactions in a manner that makes the involved agents answer to violations
in ways that comply with the norms of the system. We deem as particularly interesting, in this respect,
the OCeAN meta-model for artificial institutions [36], because it includes a notion of commitment. A
possible architecture for OCeAN is discussed in [48].

Our proposal is also backed up by the practical rules discussed in [61], which highlight how goals
and commitments are each other related. A first implication is that it is possible to devise methodolo-
gies for programming the Jason agents. A second implication concerns self-* applications. Since the
agent’s autonomy is not constrained, agents maintain the ability of autonomously taking advantage from
opportunities and of properly reacting to unexpected events (self-adaptation). For instance, by finding a
way for accomplishing an organizational goal taking into account the current state of the MAS, which
is hardly foreseeable at design time. Moreover, the interplay between goals and commitments opens the
way to the integration of self-governance mechanisms into organizational contexts.

Acknowledgements.

The authors would like to thank the anonymous reviewers for the helpful comments. This work was
developed during the sabbatical year that Matteo Baldoni and Cristina Baroglio spent at the Free Uni-
versity of Bolzano-Bozen. It was partially supported by the Accountable Trustworthy Organizations and
Systems (AThOS) project, funded by Università degli Studi di Torino and Compagnia di San Paolo (CSP
2014).

References

[1] Arcos, J. L., Noriega, P., Rodrı́guez-Aguilar, J. A., Sierra, C.: E4MAS Through Electronic Institutions,
Environments for Multi-Agent Systems III, Third International Workshop, E4MAS 2006, Hakodate, Japan,
May 8, 2006, Selected Revised and Invited Papers (D. Weyns, H. V. D. Parunak, F. Michel, Eds.), number
4389 in Lecture Notes in Computer Science, Springer, 2006.

[2] Baldoni, M., Baroglio, C., Bergenti, F., Boccalatte, A., Marengo, E., Martelli, M., Mascardi, V., Padovani,
L., Patti, V., Ricci, A., Rossi, G., Santi, A.: MERCURIO: An Interaction-oriented Framework for Design-
ing, Verifying and Programming Multi-Agent Systems, Proceedings of The Multi-Agent Logics, Languages,
and Organisations Federated Workshops (MALLOW 2010), Lyon, France, August 30 - September 2, 2010
(O. Boissier, A. E. Fallah-Seghrouchni, S. Hassas, N. Maudet, Eds.), number 627 in CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2010.

[3] Baldoni, M., Baroglio, C., Calvanese, D., Micalizio, R., Montali, M.: Towards Data- and Norm-aware Mul-
tiagent Systems, Post-Proc. of the 4th International Workshop on Engineering Multi-Agent Systems, EMAS
2016, Revised Selected and Invited Papers (M. Baldoni, J. P. Müller, I. Nunes, R. Zalila-Wenkstern, Eds.),
number 10093 in LNAI, Springer, 2016, ISBN 978-3-319-50982-2, ISSN 0302-9743.

1026 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

[4] Baldoni, M., Baroglio, C., Capuzzimati, F.: A Commitment-based Infrastructure for Programming Socio-
Technical Systems, ACM Transactions on Internet Technology, Special Issue on Foundations of Social Com-
puting, 14(4), December 2014, 23:1–23:23, ISSN 1533-5399.

[5] Baldoni, M., Baroglio, C., Capuzzimati, F.: Typing Multi-Agent Systems via Commitments, Post-Proc. of
the 2nd International Workshop on Engineering Multi-Agent Systems, EMAS 2014, Revised Selected and
Invited Papers (F. Dalpiaz, J. Dix, M. B. van Riemsdijk, Eds.), number 8758 in LNAI, Springer, 2014, ISBN
978-3-319-14483-2, ISSN 0302-9743.

[6] Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Empowering Agent Coordination with Social
Engagement, AI*IA 2015: Advances in Artificial Intelligence, XIV International Conference of the Italian
Association for Artificial Intelligence (M. Gavanelli, E. Lamma, F. Riguzzi, Eds.), number 9336 in LNAI,
Springer, Ferrara, Italy, September 2015, ISSN 0302-9743.

[7] Baldoni, M., Baroglio, C., Chopra, A. K., Desai, N., Patti, V., Singh, M. P.: Choice, Interoperability, and
Conformance in Interaction Protocols and Service Choreographies, Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009 (K. Decker, J. Sichman, C. Sierra,
C. Castelfranchi, Eds.), IFAAMAS, Budapest, Hungary, May 2009, ISBN 978-0-9817381-7-8.

[8] Baldoni, M., Baroglio, C., Chopra, A. K., Singh, M. P.: Composing and Verifying Commitment-Based
Multiagent Protocols, Proc. of 24th International Joint Conference on Artificial Intelligence, IJCAI 2015
(M. Wooldridge, Q. Yang, Eds.), Buenos Aires, Argentina, July 25th-31th 2015.

[9] Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Constitutive and Regulative Specifications of Commit-
ment Protocols: a Decoupled Approach, ACM Trans. on Intelligent Sys. and Tech., Special Issue on Agent
Communication, 4(2), March 2013, 22:1–22:25, ISSN 2157-6904.

[10] Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Ricci, A.: Back to the future: An interaction-oriented
framework for social computing, First International Workshop on Requirements Engineering for Social
Computing, RESC 2011, Trento, Italy, August 29, 2011, IEEE, 2011.

[11] Bellifemine, F. L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE, John Wiley &
Sons, 2007, ISBN 0470057475.

[12] Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., Santi, A.: Multi-agent oriented programming with
JaCaMo, Science of Computer Programming, 78(6), 2013, 747 – 761, ISSN 0167-6423, Special section:
The Programming Languages track at the 26th ACM Symposium on Applied Computing (SAC 2011) &
Special section on Agent-oriented Design Methods and Programming Techniques for Distributed Computing
in Dynamic and Complex Environments.

[13] Bordini, R. H., Hübner, J. F., Tralamazza, D. M.: Using Jason to Implement a Team of Gold Miners, Compu-
tational Logic in Multi-Agent Systems, 7th International Workshop, CLIMA VII, Hakodate, Japan, May 8-9,
2006, Revised Selected and Invited Papers (K. Inoue, K. Satoh, F. Toni, Eds.), number 4371 in Lecture Notes
in Computer Science, Springer, 2006.

[14] Bordini, R. H., Hübner, J. F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using
Jason, John Wiley & Sons, 2007, ISBN 0470029005.

[15] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R., Treur, J.: Desire: Modelling Multi-Agent Systems
in a Compositional Formal Framework, Int. J. of Cooperative Information Systems, 06(01), March 1997,
67–94, ISSN 0218-8430.

[16] Cabac, L., Moldt, D., Rölke, H.: A Proposal for Structuring Petri Net-Based Agent Interaction Protocols,
Applications and Theory of Petri Nets 2003, 24th International Conference, ICATPN 2003, Eindhoven, The
Netherlands, June 23-27, 2003, Proceedings (W. M. P. van der Aalst, E. Best, Eds.), number 2679 in Lecture
Notes in Computer Science, Springer, 2003.

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1027

[17] Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Organizations, Proceedings of
the First International Conference on Multiagent Systems (ICMAS) (V. R. Lesser, L. Gasser, Eds.), The MIT
Press, San Francisco, California, USA, June 1995.

[18] Cherns, A.: Principles of Socio-Technical Design, Human Relations, 2, 1976, 783–792.

[19] Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring social commitments using the
event calculus, Autonomous Agents and Multi-Agent Systems, 27(1), 2013, 85–130.

[20] Chopra, A. K.: Commitment Alignment: Semantics, Patterns, and Decision Procedures for Distributed Com-
puting, Ph.D. Thesis, North Carolina State University, 2009.

[21] Chopra, A. K., Singh, M. P.: Cupid: Commitments in Relational Algebra, Proc. of the 29th AAAI Conf,
AAAI Press, 2015.

[22] Conte, R., Castelfranchi, C., Dignum, F.: Autonomous Norm Acceptance, ATAL, number 1555 in LNCS,
Springer, 1998, ISBN 3-540-65713-4.

[23] Costantini, S.: Knowledge Acquisition via Non-monotonic Reasoning in Distributed Heterogeneous Environ-
ments, Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015,
Lexington, KY, USA, September 27-30, 2015. Proceedings (F. Calimeri, G. Ianni, M. Truszczynski, Eds.),
number 9345 in Lecture Notes in Computer Science, Springer, 2015.

[24] Criado, N., Argente, E., Noriega, P., Botti, V.: Reasoning about constitutive norms in BDI agents, Logic
Journal of IGPL, 22(1), 2014, 66–93.

[25] Damiani, F., Giannini, P., Ricci, A., Viroli, M.: Standard Type Soundness for Agents and Artifacts, Scientific
Annals of Computer Science, 22(2), 2012, 267–326.

[26] Dastani, M., Grossi, D., Meyer, J. C., Tinnemeier, N. A. M.: Normative Multi-agent Programs and Their
Logics, Knowledge Representation for Agents and Multi-Agent Systems, First International Workshop, KRA-
MAS 2008, Sydney, Australia, September 17, 2008, Revised Selected Papers (J. C. Meyer, J. M. Broersen,
Eds.), number 5605 in Lecture Notes in Computer Science, Springer, 2008.

[27] de Brito, M., Hübner, J. F., Boissier, O.: Coupling Regulative and Constitutive Dimensions in Situated Arti-
ficial Institutions, Multi-Agent Systems and Agreement Technologies - 13th European Conference, EUMAS
2015, and Third International Conference, AT 2015, Athens, Greece, December 17-18, 2015, Revised Se-
lected Papers (M. Rovatsos, G. A. Vouros, V. Julián, Eds.), number 9571 in Lecture Notes in Computer
Science, Springer, 2015.

[28] Demazeau, Y.: From interactions to collective behaviour in agent-based systems, In: Proceedings of the 1st.
European Conference on Cognitive Science. Saint-Malo, 1995.

[29] Desai, N., Chopra, A. K., Singh, M. P.: Amoeba: A methodology for modeling and evolving cross-
organizational business processes, ACM Trans. Softw. Eng. Methodol., 19(2), 2009.

[30] d’Inverno, M., Luck, M., Noriega, P., Rodrı́guez-Aguilar, J. A., Sierra, C.: Communicating open systems,
Artif. Intell., 186, 2012, 38–94.

[31] Doi, T., Tahara, Y., Honiden, S.: IOM/T: an interaction description language for multi-agent systems, 4th
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29,
2005, Utrecht, The Netherlands (F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, M. Wooldridge,
Eds.), ACM, 2005.

[32] Dunn-Davies, H. R., Cunningham, R. J., Paurobally, S.: Propositional Statecharts for Agent Interaction
Protocols, Electron. Notes Theor. Comput. Sci., 134, June 2005, 55–75, ISSN 1571-0661.

1028 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

[33] El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable Semantic Model for Agent Interactions Using Social
Commitments, Languages, Methodologies, and Development Tools for Multi-Agent Systems, Second Inter-
national Workshop, LADS 2009, Torino, Italy, September 7-9, 2009, Revised Selected Papers (M. Dastani,
A. E. Fallah-Seghrouchni, J. Leite, P. Torroni, Eds.), number 6039 in Lecture Notes in Computer Science,
Springer, 2009.

[34] Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J. A., Arcos, J. L.: AMELI: An Agent-Based Middleware for
Electronic Institutions, 3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), 19-23 August 2004, New York, NY, USA, IEEE Computer Society, 2004.

[35] Fornara, N., Colombetti, M.: Defining Interaction Protocols using a Commitment-based Agent Communi-
cation Language, Proc. of the Second International Joint Conference on Autonomous Agents & Multiagent
Systems (AAMAS 2003), ACM, 2003.

[36] Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a model of institutional reality
for open multiagent systems, Artif. Intell. Law, 16(1), 2008, 89–105.

[37] Franco, M. R., Sichman, J. S.: Improving the LTI-USP Team: A New JaCaMo Based MAS for the MAPC
2013, Engineering Multi-Agent Systems - First International Workshop, EMAS 2013, St. Paul, MN, USA, May
6-7, 2013, Revised Selected Papers (M. Cossentino, A. E. Fallah-Seghrouchni, M. Winikoff, Eds.), number
8245 in Lecture Notes in Computer Science, Springer, 2013.

[38] Hammer, F., Derakhshan, A., Demazeau, Y., Lund, H. H.: A Multi-Agent Approach to Social Human Be-
haviour in Children’s Play, Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent
Technology, IEEE Computer Society, 2006.

[39] Hübner, J. F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with organisational
artifacts and agents: “Giving the organisational power back to the agents”, Autonomous Agents and Multi-
Agent Systems, 20, 2009.

[40] Hübner, J. F., Bordini, R. H.: Developing a Team of Gold Miners Using Jason, Programming Multi-Agent
Systems, 5th International Workshop, ProMAS 2007, Honolulu, HI, USA, May 15, 2007, Revised and Invited
Papers (M. Dastani, A. El Fallah-Seghrouchni, A. Ricci, M. Winikoff, Eds.), number 4908 in Lecture Notes
in Computer Science, Springer, 2007.

[41] Hübner, J. F., Sichman, J. S., Boissier, O.: S-MOISE+: A Middleware for Developing Organised Multi-
agent Systems, Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems, AAMAS 2005
International Workshops on Agents, Norms and Institutions for Regulated Multi-Agent Systems, ANIREM
2005, and Organizations in Multi-Agent Systems, OOOP 2005, Utrecht, The Netherlands, July 25-26, 2005,
Revised Selected Papers (O. Boissier, J. A. Padget, V. Dignum, G. Lindemann, E. T. Matson, S. Ossowski,
J. S. Sichman, J. Vázquez-Salceda, Eds.), number 3913 in Lecture Notes in Computer Science, Springer,
2005.

[42] Marengo, E., Baldoni, M., Baroglio, C., Chopra, A. K., Patti, V., Singh, M. P.: Commitments with Regula-
tions: Reasoning about Safety and Control in REGULA, Proceedings of the 10th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2011, 2, IFAAMAS, Taipei, Taiwan, May 2011,
ISBN 0-9826571-6-1, 978-0-9826571-6-4.

[43] Martins, R., Meneguzzi, F.: A smart home model using JaCaMo framework, 12th IEEE International Con-
ference on Industrial Informatics, INDIN 2014, Porto Alegre, RS, Brazil, July 27-30, 2014, IEEE, 2014.

[44] Miller, T., McGinnis, J.: Amongst First-Class Protocols, Engineering Societies in the Agents World VIII,
8th International Workshop, ESAW 2007, Athens, Greece, October 22-24, 2007, Revised Selected Papers
(A. Artikis, G. M. P. O’Hare, K. Stathis, G. A. Vouros, Eds.), number 4995 in Lecture Notes in Computer
Science, Springer, 2007.

M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+ 1029

[45] Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based multiagent sys-
tem, Proc. of AAMAS, IFAAMAS/ACM, 2014.

[46] Norman, T. J., Carbogim, D. V., Krabbe, E. C. W., Walton, C. D.: Argument and multi-agent systems, in:
Argumentation Machines: New Frontiers in Argument and Computation, volume 9 of Argumentation Library,
2003, 15–54.

[47] Odell, J., Parunak, H. V. D., Bauer, B.: Representing Agent Interaction Protocols in UML, Agent-Oriented
Software Engineering, First International Workshop, AOSE 2000, Limerick, Ireland, June 10, 2000, Revised
Papers (P. Ciancarini, M. Wooldridge, Eds.), number 1957 in Lecture Notes in Computer Science, Springer,
2000.

[48] Okouya, D., Fornara, N., Colombetti, M.: An Infrastructure for the Design and Development of Open Inter-
action Systems, Post-Proc. of the 2nd International Workshop on Engineering Multi-Agent Systems, EMAS
2014, Revised Selected and Invited Papers (M. Cossentino, A. El Fallah Seghrouchni, M. Winikoff, Eds.),
number 8245 in LNAI, Springer, 2013.

[49] Omicini, A., Zambonelli, F.: TuCSoN: a Coordination model for Mobile Information Agents, Proc. of IIIS,
IDI – NTNU, Trondheim (Norway), 8–9 June 1998, ISSN 0802-6394.

[50] Persson, C., Picard, G., Ramparany, F., Boissier, O.: A JaCaMo-Based Governance of Machine-to-Machine
Systems, Advances on Practical Applications of Agents and Multi-Agent Systems - 10th International Confer-
ence on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2012, Salamanca, Spain, 28-30
March, 2012 (Y. Demazeau, J. P. Müller, J. M. C. Rodrı́guez, J. B. Pérez, Eds.), number 155 in Advances in
Intelligent and Soft Computing, Springer, 2012.

[51] Rafaeli, S.: Sage Annual Review of Communication Research: Advancing Communication Science: Merging
Mass and Interpersonal Processes, chapter (Chapter 4) Interactivity: From new media to communication,
Sage, Beverly Hills, 1988, 110–134.

[52] Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an artifact-based per-
spective, Autonomous Agents and Multi-Agent Systems, 23(2), 2011, 158–192.

[53] Ricci, A., Santi, A.: CArtAgO by Example, 2010, http://www.emse.fr/~boissier/enseignement/

maop13/courses/cartagoByExamples.pdf.

[54] Ricci, A., Santi, A.: Typing Multi-agent Programs in simpAL, ProMAS (M. Dastani, J. F. Hübner, B. Logan,
Eds.), number 7837 in Lecture Notes in Computer Science, Springer, 2012, ISBN 978-3-642-38699-2.

[55] Singh, M. P.: Commitments Among Autonomous Agents in Information-Rich Environments, Proceedings
of the 8th European Workshop on Modelling Autonomous Agents in a Multi-Agent World: Multi-Agent Ra-
tionality, Springer-Verlag, London, UK, 1997, ISBN 3-540-63077-5.

[56] Singh, M. P.: An Ontology for Commitments in Multiagent Systems, Artif. Intell. Law, 7(1), 1999, 97–113.

[57] Singh, M. P.: A Social Semantics for Agent Communication Languages, Issues in Agent Communication,
1916, Springer, 2000.

[58] Singh, M. P.: Distributed enactment of multiagent workflows: temporal logic for web service composition,
Proc. AAMAS, ACM, 2003.

[59] Singh, M. P.: Commitments in multiagent systems some controversies, some prospects, in: The Goals of
Cognition. Essays in Honor of Cristiano Castelfranchi (F. Paglieri, L. Tummolini, R. Falcone, M. Miceli,
Eds.), chapter 31, College Publications, London, 2011, 601–626.

http://www.emse.fr/~boissier/enseignement/maop13/courses/cartagoByExamples.pdf
http://www.emse.fr/~boissier/enseignement/maop13/courses/cartagoByExamples.pdf

1030 M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio / Commitment-based Agent Interaction in JaCaMo+

[60] Singh, M. P.: Information-driven interaction-oriented programming: BSPL, the blindingly simple protocol
language, 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011),
Taipei, Taiwan, May 2-6, 2011, Volume 1-3 (L. Sonenberg, P. Stone, K. Tumer, P. Yolum, Eds.), IFAAMAS,
2011.

[61] Telang, P. R., Singh, M. P., Yorke-Smith, N.: Relating Goal and Commitment Semantics, ProMAS, number
7217 in Lecture Notes in Computer Science, Springer, 2011, ISBN 978-3-642-31914-3.

[62] Thiele, A., Konnerth, T., Kaiser, S., Keiser, J., Hirsch, B.: Applying JIAC V to Real World Problems: The
MAMS Case, MATES, number 5774 in LNCS, Springer, 2009, ISBN 978-3-642-04142-6.

[63] Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time: Satisfied or Compensated,
Declarative Agent Languages and Technologies VII, 7th International Workshop (DALT 2009), 5948, 2010.

[64] Urovi, V., Bromuri, S., Stathis, K., Artikis, A.: Initial Steps Towards Run-Time Support for Norm-Governed
Systems, Coordination, Organizations, Institutions, and Norms in Agent Systems VI - COIN 2010 Inter-
national Workshops, COIN@AAMAS 2010, Toronto, Canada, May 2010, COIN@MALLOW 2010, Lyon,
France, August 2010, Revised Selected Papers (M. D. Vos, N. Fornara, J. V. Pitt, G. A. Vouros, Eds.), number
6541 in Lecture Notes in Computer Science, Springer, 2010.

[65] Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems, JAAMAS,
14(1), 2007, 5–30.

[66] Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines, Declarative Agent Languages and
Technologies II, Second International Workshop, DALT 2004, New York, NY, USA, July 19, 2004, Revised
Selected Papers (J. A. Leite, A. Omicini, P. Torroni, P. Yolum, Eds.), number 3476 in Lecture Notes in
Computer Science, Springer, 2004.

[67] Yolum, P., Singh, M. P.: Designing and Executing Protocols Using the Event Calculus, Proceedings of the
Fifth International Conference on Autonomous Agents, AGENTS ’01, ACM, New York, NY, USA, 2001,
ISBN 1-58113-326-X.

[68] Yolum, P., Singh, M. P.: Commitment Machines, Intelligent Agents VIII, 8th Int. WS, ATAL 2001, number
2333 in LNCS, Springer, 2002.

[69] Yolum, P., Singh, M. P.: Flexible protocol specification and execution: applying event calculus planning
using commitments, The First International Joint Conference on Autonomous Agents & Multiagent Systems,
AAMAS 2002, July 15-19, 2002, Bologna, Italy, Proceedings, ACM, 2002.

[70] Zatelli, M. R., Hübner, J. F.: The Interaction as an Integration Component for the JaCaMo Platform, Post-
Proc. of the 2nd International Workshop on Engineering Multi-Agent Systems, EMAS 2014, Revised Selected
and Invited Papers (F. Dalpiaz, J. Dix, M. B. van Riemsdijk, Eds.), number 8758 in LNAI, Springer, 2014.

	Introduction
	A Commitment-based Interaction Component
	Interaction and Commitment-based Protocols
	Conceptual Model

	JaCaMo+
	Interaction Component
	Integration of the Interaction Component in Jason

	The Gold Miners Scenario
	Discussion
	Conclusions

