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Abstract. We propose a method to extract and integrate fuzzy information granules from a pop-
ulated OWL ontology. The purpose of this approach is to represent imprecise knowledge within
an OWL ontology, as motivated by the fact that the Semantic Web is full of imprecise and uncer-
tain information coming from perceptual data, incomplete data, data with errors, etc. In particular,
we focus on Fuzzy Set Theory as a means for representing and processing information granules
corresponding to imprecise concepts usually expressed by linguistic terms. The method applies to
numerical data properties. The values of a property are first clustered to form a collection of fuzzy
sets. Then, for each fuzzy set, the relative o-count is computed and compared with a number of
predefined fuzzy quantifiers, which are therefore used to define new assertions that are added to the
original ontology. In this way, the extended ontology provides both a punctual view and a granular
view of individuals w.r.t. the selected property. We use a real-world ontology concerning hotels and
populated with data of the Italian city of Pisa, to illustrate the method and to test its implementation.
We show that it is possible to extract granular properties that can be described in natural language
and smoothly integrated in the original ontology by means of annotated assertions.
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1. Introduction

The World Wide Web, originally designed as a universal container of information, has witnessed a tech-
nological revolution aimed at opening the interchange of knowledge among agents, being them either
humans or machines. This revolution is referred as the Semantic Web, and its realization, still in progress,
is possible through a rich equipment of standards, languages and technologies. Among them, formal on-
tologies play a prominent role, and the Web Ontology Language (OWL)' is the W3C standard language
for representing and processing ontologies for the Semantic Web. An OWL ontology is mainly defined
by classes, related among them through properties, and embracing individuals. Classes enable a struc-
tured representation of knowledge, both at intensional level — through the use of set-theoretic operators
and restrictions — and at extensional level, by associating individuals to classes. The logical foundations
of OWL come from the knowledge representation formalisms collectively known as Description Logics
(DLs) [1]. In particular, the very expressive DL SROZQ [2] is the logical counterpart of OWL 2. 2

Endowing OWL ontologies with capabilities of representing and processing imprecise knowledge is
a highly desirable feature, since the Semantic Web is full of imprecise and uncertain information coming
from perceptual data (i.e., data coming from subjective judgments), incomplete data, data with errors,
etc. [3]. Moreover, even in the case that precise information is available, imprecise knowledge could
be advantageous: tolerance to imprecision may lead to concrete benefits such as compact knowledge
representation, efficient and robust reasoning, etc. [4]. Additionally, humans continually acquire, manip-
ulate and communicate imprecise knowledge: therefore any ontology capable of expressing imprecise
knowledge, when a precise alternative leads to an exceedingly complex representation, could be more
interpretable by human users, i.e. easier to read and understand [5].

A number of mathematical theories are available to deal with imprecision and uncertainty in knowl-
edge representation. The choice of the right theory depends on the type of imprecision. In particular,
imprecision due to the lack of boundaries in concepts (usually of perceptual nature, such as “coldness”
in the domain of indoor temperatures, “interestingness” of movies, etc.) are well modeled through fuzzy
set theory [6]. In essence, fuzzy sets define collections of objects whose membership can be partial,
thus quantifying how much the concept is applicable to the object. Fuzziness pervades human reason-
ing and allows humans to intelligently act in complex environments: since fuzzy sets make possible a
computational representation of concepts with no sharp boundaries, they enable machines to carry out
human-centered information processing and reasoning [7].

The integration of fuzzy sets in ontologies for the Semantic Web can be achieved in different ways
and for different pursuits, such as information retrieval, matchmaking, ontologies alignment, etc. [8]. In
most cases, existing ontologies are equipped with fuzzy sets representing expert knowledge in order to
enrich the knowledge base with additional perceptual knowledge. However, the definition of such fuzzy
sets could be hard if they must represent some hidden properties of individuals. In this paper, we take
a data-driven approach, where fuzzy sets are automatically derived from the available individuals in the
ontology through a fuzzy clustering process. The derived fuzzy sets are more compliant to represent
similarities among individuals w.r.t. a manual definition by experts.

This approach promotes a granular view of individuals that can be exploited to further enrich the
knowledge base of an ontology by applying the Granular Computing (GC) paradigm. According to GC,
information granules (such as fuzzy sets) are elementary units of information [9]. In this capacity, infor-

"https://www.u3.org/TR/owl-overview/
*http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
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mation granules can be represented as individuals in an ontology, eventually belonging to a generic class
(e.g. the “Granule” class), and thus endowed with properties that are specific to information granules
and do not pertain to the original individuals from which the granules have been derived.

An example of granule-specific properties is the granularity of an information granule [9], which
can be numerically quantified and then related to fuzzy sets representing linguistic quantifiers, usually
expressed with terms such as “most”, “few”, etc. [10, 11]. Thence, a new level of knowledge emerges
from information granules, which can be profitably included in the original ontology to express knowl-
edge not pertaining single individuals, but on (fuzzy) collections of them, being each collection defined
by individuals kept together by their similarity.

The paper is structured as follows. After some preliminaries on GC and DLs (Sect. 2), we describe
the proposed granulation approach in some basic cases in Sect. 3, starting from the simplest case of
individuals belonging to a class with a numerical data property, then moving to hierarchical class struc-
tures and to ontology design patterns corresponding to a ternary relation. Some experimental results are
reported in Sect. 4. We report some final considerations and perspectives of future work in Sect. 5.

2. Preliminaries

2.1. Granular Computing
2.1.1. Fuzzy Set Theory

Fuzzy Set Theory (FST) is a mathematical theory enabling the representation and processing of sets
without sharp boundaries [6, 12]. FST is based on the notion of fuzzy set, which is mathematically
characterized® by a membership function on a domain or Universe of Discourse X:

F: X+ [0,1]

This definition generalizes the usual characteristic function of classical (“crisp”) sets. Consequently, the
classical set operations are generalized in order to comply with partial membership. The standard fuzzy
set operations are

(AN B)(x) = min(A(z), B(x)),

(AU B)(z) = max(A(x), B(x))

and
A(z) =1— A(x),

while crisp inclusion is defined by the relation
ACB&Vr: A(x) < B(x)

In fuzzy modeling, membership functions are usually defined as belonging to a specific family that shows
some useful properties. In particular, in this study we adopt fuzzy sets with trapezoidal membership
functions, which are characterized by four parameters and defined as

3More general definitions are possible; however, we stick on a more widespread definition that is enough for the present study.
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Figure 1. Four notable shapes of membership functions: (a) trapezoidal, (b) triangular, (c) left-shoulder, and (d)
singleton.

0 ifx<a
(x —a)/(b—a) ifzx € [a,b)
trzla,b,c,d](x) = ¢ 1 ifzelb (1)
(d—2z)/(d—c) ifzx e (cd]
0 ife>d.

Trapezoidal fuzzy sets have several attractive properties, which make them widely used in fuzzy
modeling. Furthermore, they generalize other families of fuzzy sets, including the triangular fuzzy sets
(when b = c), left/right shoulders (when a = b or ¢ = d) and singletons (when a = b = ¢ = d) (see fig.
1 for some examples).

2.1.2. Fuzzy sets as information granules

From the modeling viewpoint, FST is very useful to represent concepts characterized by both granu-
larity (i.e. concepts that refer to a multiplicity of objects) and graduality (i.e. the reference of concepts
to objects is a matter of degree). This makes FST a valid candidate to represent perceptive concepts,
i.e. concepts that are formed by an act of perception and are usually designated by terms drawn from
natural language [13, 14, 15]. Fuzzy sets can be used to represent information granules, i.e. collections
of objects kept together due to their similarity, proximity, etc. [9]. They are the building blocks of Gran-
ular Computing (GC), a paradigm for information processing where information granules are treated as
elementary carriers of information [16]. Differently from classical symbolic processing systems, GC
systems take into account the contents of information granules for processing; in other words, GC relies
on the semantics of information granules.

The content of an information granule is therefore crucial for a meaningful definition. In the case of
fuzzy information granules (i.e. information granules defined in terms of fuzzy sets), when they are used
to represent perceptual concepts, usually identified by linguistic terms, some additional constraints must
be ensured in order to label them with linguistic terms [5]. A simple yet effective way to define such
fuzzy information granules, when the domain is an interval on the real line, i.e. X = [mx, Mx] C R, is
through a so-called Strong Fuzzy Partition (SFP) [17]. A SFP is a finite collection F = {F}, F, ..., F,,}
of fuzzy sets on a numerical domain such that:

1. each fuzzy set F' € F is normal, i.e. at least on element of the domain has full membership:

Jre Xst. F(x)=1
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2. each fuzzy set is convex:

Ve,y,z€ Xtz <y <z— F(y) >min{F(z), F(2)}

3. each fuzzy set is continuous;

4. the sum of membership degrees of each element of the domain, over all the fuzzy sets of the
partition, is one, i.e.:
VoeX: ) F(z)=1
FeF

Moreover, the number of fuzzy sets in a SFP is usually small, often in the range 5 4 2 because this
is the typical range of information chunks a human being is capable to keep in her short-term memory
[18].

It is not difficult to build a SFP made of trapezoidal fuzzy sets: if [a;, b;, ¢;, d;] is the quadruple of
parameters defining the ¢-th fuzzy set in the SFP as in (1), it is enough to ensure that a; = ¢;—; and
b; =d;_1fori =2,3,...,n(also,a; = by = mx and ¢, = d,, = M) . Furthermore, it is immediate
to form a uniform SFP made of triangular fuzzy sets with the additional constraint:

Mx—mx

b =c¢; = p— 1
i = ¢ =mx + (i ) —

However, a uniform SFP does not take into account data, when available. In this case, a uniform SFP
fails to express a meaningful granular representation of a domain. When numerical data are available,
clustering is an effective way to define meaningful information granules.

A widespread algorithm for fuzzy clustering is Fuzzy C-Means (FCM) [19], an extension of the
well-known K-Means that accommodates partial memberships of data to clusters. FCM requires the
specification of the number ¢ > 1 of clusters and a “fuzzification parameter” m > 1 (usually, m = 2),
as well as a set of IV d-dimensional numerical data x1,Xo,...,Xy € R?, and returns a sequence of ¢
prototype vectors p1, P2, .. .,Pe € RY representing cluster centers, as well as a partition matrix U =
[ujj] fori =1,2,...,N and j = 1,2,...,c such that u;; represents the degree of membership of the
1-th data sample to the j-th cluster. The prototypes and the partition matrix are computed by minimizing

the functional
N ¢
T =Y ufllxi — I
i=1 j=1

constrained to

and
Vi=1,2...,¢:0<) uj; <N
i=1
The functional is usually minimized by alternate optimization on the set of prototypes and on the partition

matrix. We adopted the Euclidean norm to define the distance between samples and prototypes; however,
other metrics are possible.
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Figure 2. Example of SFP consisting of five fuzzy sets with variable granularity.

FCM, applied to one-dimensional numerical data (i.e. when d = 1), can be used to derive a set of ¢
clusters characterized by prototypes p1,p2, ..., pe, With p; € R and p; < p;41. These prototypes, along
with the range of data, provide enough information to define a SFP with two trapezoidal fuzzy sets and
c — 2 triangular fuzzy sets according to the following rules:

tTZ[mXumX7p17p2] lfj:]-
Fyj =9 trzlpj-1,pj,pj,pj+1] ifl<j<c 2)
trz [pe—1,pe, Mx, Mx] ifj=c.

where [mx, Mx] is the range of data. In fig. 2 an example of SFP, consisting of five fuzzy sets with
variable granularity obtainable from FCM prototypes, is depicted; the fuzzy sets are well-distinguished
so they can be easily tagged by linguistic terms drawn from natural language.

2.1.3. Fuzzy quantifiers

Information granules are first-class citizens in GC, therefore a number of properties and relations can
be defined by considering information granules as elementary units. In the case of fuzzy information
granules, these properties can be directly derived from functions defined on fuzzy sets.

Fuzzy sets, like crisp sets, can be quantified in terms of their cardinality. Several definitions of
cardinality of fuzzy sets have been proposed [20], although in this paper we consider only a relative
scalar cardinality, the relative o-count, defined for a finite set D in the Universe of Discourse as

Yep Fla) _

7)== D]

[0,1] 3)
where, obviously, o () = 0 and o (D) = 1.

Since the range of o is always the unitary interval, a number of fuzzy sets can be defined to represent
granular concepts about cardinalities, such as MANY, MOST, etc. These concepts are called fuzzy quan-
tifiers [11, 21, 22]. As usual, they can be defined so as to form a SFP; in this way linguistic labels can be
easily attached, as depicted in the example in fig. 3. It is interesting to observe that the usual existential

quantifier (3) and universal quantifier (V) can be represented as special cases of fuzzy quantifiers (see
Fig. 4): Q3(x) = 1iff z > 0, 0 otherwise; Qv (z) = 1 iff x = 1, 0 otherwise.
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Figure 3. Examples of fuzzy quantifiers.
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Figure 4. Granular representation of the existential and universal quantifiers.

Fuzzy quantifiers can be used to express imprecise properties on fuzzy information granules. More
specifically, given a quantifier () labeled with Q and a fuzzy set F' labeled with F, the membership degree
Q (o (F')) quantifies the truth degree of the proposition

QxareF
For example, if Q = Many and F = Low, the fuzzy proposition
Many x are Low
asserts that many data points have a low value; the truth degree of this proposition is quantified by

QMany (U (FLow))

By a proper formal representation, these fuzzy propositions can be embodied within an ontology by
introducing new individuals corresponding to the information granules.

2.2. Description Logics

Description Logics (DLs) are a family of decidable First Order Logic (FOL) fragments that allow for
the specification of structured knowledge in terms of classes (concepts), instances (individuals), and
binary relations between instances (roles) [1]. Complex concepts (denoted with C') can be defined from
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Table 1. Syntax and semantics of constructs for ALC(D).

bottom (resp. top) concept L (resp. T) @ (resp. AT)

atomic concept A AT C AT
abstract role R RI C AT x AT
concrete role T T C AT x AD

individual a at e AT

concrete value v vl € AP

concept intersection C M D CTnDT
conceptunion CUD CTuD?T
concept negation -C AT\ CT
universal abstract role restriction ~ VR.C' {x € AT |Vy (z,y) € RT -y € C?}
existential abstract role restriction ~ IR.C {x € AT | Iy (z,y) € R* Ay € CT}
universal concrete role restriction ~ VT.d  {z € AT | Vz (z,2) € TT — 2 € dP}
existential concrete role restriction ~ 37.d {2z € AT | 3z (2,2) € TZ Az € dP}

general concept inclusion CC D CT C DT

concept assertion a:C  af € CT
abstract role assertion (a,b) : R (aZ,b%) € RZ
concrete role assertion (a,v) : T (at,vT) € TZ

atomic concepts (A) and roles (R) by means of the constructors available for the DL in hand. The
members of the DL family differ from each other as for the set of constructors, thus for the complexity
of concept expressions they can generate. For the sake of illustrative purposes, we present here a salient
representative of the DL family, namely ALC [23], which is often considered to illustrate some new
notions related to DLs. A DL Knowledge Base (KB) K = (7T ,.A) is a pair where 7 is the so-called
Terminological Box (TBox) and A is the so-called Assertional Box (ABox). The TBox is a finite set of
General Concept Inclusion (GCI) axioms which represent is-a relations between concepts, whereas the
ABox is a finite set of assertions (or facts) that represent instance-of relations between individuals (resp.
couples of individuals) and concepts (resp. roles).

The semantics of DLs can be defined directly with set-theoretic formalizations or through a mapping
to FOL (as shown in [24]). Specifically, an interpretation T = (AI , T ) for a DL KB consists of a domain
AT and a mapping function -Z. For instance, Z maps a concept C' into a set of individuals C C AZ,
i.e. T maps C into a function CZ : AT — {0,1} (either an individual belongs to the extension of C
or does not belong to it). Under the Unique Names Assumption (UNA) [25], individuals are mapped
to elements of AT such that aZ # b” if a # b. However UNA does not hold by default in DLs. An
interpretation Z is a model of a KB K iff it satisfies all axioms and assertions in 7 and .A . In DLs a
KB represents many different interpretations, i.e. all its models. This is coherent with the Open World
Assumption (OWA) that holds in FOL semantics. A DL KB is satisfiable if it has at least one model. We
also write C' Cx D if in any model Z of IC, C* C D” (concept C is subsumed by concept D). Moreover
we write C' Cx Dif C Cx D and D [Zx C. The consistency check, which tries to prove the satisfiability
of a DL KB IC, is the main reasoning task in DLs. It is performed by applying decision procedures mostly
based on tableau calculus. All other reasoning tasks can be reformulated as consistency checks.

In many applications, it is important to equip DLs with expressive means that allow to describe
“concrete qualities” of real-world objects such as the length of a car. The standard approach is to augment
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DLs with a so-called concrete domain (or datatype theory) D = (AP - D) which consists of a datatype
domain AP (e.g., the set of real numbers in double precision) and a mapping - that assigns to each
data value an element of AP, and to every n-ary datatype predicate d an n-ary (typically, n = 1) relation
over AP [26]. In DLs extended with concrete domains, each role is therefore either abstract (denoted
with R) or concrete (denoted with T"). The set of constructors for ALC (D) is reported in Table 1.

2.2.1. Relationship to OWL

The main building blocks of OWL are very similar to those of DLs, with the main difference that concepts
are called classes and roles are called properties. It is therefore not surprising that DLs have had a
major influence on the development of OWL and the expressive features that it provides. Historically,
however, OWL has also been conceived as an extension to RDF, a Web data modelling language whose
expressivity is comparable to DL. ABoxes [27]. Therefore, it has been decided to specify both styles
of formal semantics for OWL: the Direct Semantics based on DLs and the RDF-based Semantics. Of
course, here we are mainly interested in the Direct Semantics of OWL. This semantics is only defined
for OWL ontologies under the restriction that the OWL axioms can be read as SROZQ axioms. This
syntactic fragment of OWL is called OWL DL. Under the Direct Semantics, large parts of OWL DL can
indeed be considered as a syntactic variant of SROZQ. For example, the axiom

Hotel_3_Stars = Hotel I JhasRank.3_stars
would be written as follows in OWL:

EquivalentClasses
( Hotel 3_Stars ObjectIntersection0f( Hotel ObjectHasValue(hasRank 3_stars)) )

where the symbols Hotel_3_Stars, Hotel, hasRank and 3_stars would be identifier strings that con-
form to the OWL specification. The above example illustrates the close relationship between the syntax
of SROZQ and that of OWL in the so-called Functional-Style Syntax. However, the most prominent
among the syntactic forms provided by the OWL standard is the RDF/XML serialisation since it is the
only format that all conforming OWL tools need to understand.

It is interesting to note that there are still a few differences between OWL DL under the Direct Se-
mantics and SROZQ. On a syntactic level, OWL provides a lot more operators that, though logically
redundant, can be convenient as shortcuts for compound DL axioms. For example, OWL has special
constructs for specifying domain and range of a property, even though these could equally well be ex-
pressed in SROZQ. Most notably, this includes support for datatypes and datatype literals. Both DLs
and OWL in this case strictly distinguish roles/properties that relate to abstract individuals from those
that relate to values from some datatype. In OWL, the constructs that relate to datatypes include Data
in their name while constructs that relate to abstract individuals include Object. For example, OWL
distinguishes ObjectIntersection0f (used above) from DataIntersectionOf (the intersection of
datatypes). The only other logical feature that is missing in DLs are so-called Keys which are inspired
to key constraints in databases and can be used for data integration. Besides the logical features, OWL
also includes a number of other aspects that are not considered in DLs at all. For example, it includes
means of naming an ontology and of importing ontological axioms from one ontology into another. Fur-
ther extra-logical features include a simple form of meta-modelling called punning, non-logical axioms
to declare identifiers, and the possibility to add annotations to arbitrary axioms and entities similar to
comments in a programming language.
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2.2.2. Fuzzy extensions of DLs and OWL

Several fuzzy extensions of DLs can be found in the literature (see the survey in [8]). In fuzzy DLs, an
interpretation T = (AT, -T) consist of a nonempty (crisp) set A” (the domain) and of a fuzzy interpre-
tation function - that, e.g., maps a concept C into a function C* : AT — [0, 1] and, thus, an individual
belongs to the extension of C' to some degree in [0, 1], i.e. C7 is a fuzzy set. The definition of - for
ALC(D) with fuzzy concrete domains is reported in [28]. In particular, - P maps each concrete role into
a function from AP to [0, 1]. Typical examples of datatype predicates are

d = lIs(a,b)|rs(a,b)|tri(a,b,c) | trz(a,b,e,d) | >y | <o | =v, O]
where e.g. >, corresponds to the crisp set of data values that are greater or equal than the value v.

Axioms in a fuzzy ALC(D) KB K = (T, A) are graded, e.g. a GCl is of the form (C; C Cs, o) (i.e.
(] is a sub-concept of C5 to degree at least ). We may omit the truth degree o of an axiom; in this case
o = 1 is assumed. An interpretation Z satisfies an axiom (7, &) if (1) > . T is a model of K iff T
satisfies each axiom in /C. We say that K entails an axiom (7, a), denoted K = (7, cv), if any model of
K satisfies (7, o). Further details of the reasoning procedures for fuzzy DLs can be found in [29].

Fuzzy quantifiers have been also studied in fuzzy DLs. In particular, Sanchez and Tettamanzi [30]
define an extension of fuzzy ALC(D) involving fuzzy quantifiers of the absolute and relative kind, and
using qualifiers. They also provide algorithms for performing two important reasoning tasks with their
DL: reasoning about instances, and calculating the fuzzy satisfiability of a fuzzy concept.

Some fuzzy DL reasoners have been implemented, such as fuzzyDL [31, 32]. Not surprisingly, each
reasoner uses its own fuzzy DL language for representing fuzzy ontologies and, thus, there is a need for
a standard way to represent such information. In [33, 34], Bobillo and Straccia propose to use OWL 2
itself to represent fuzzy ontologies. More precisely, they use OWL 2 annotation properties to encode
fuzzy SROZQ(D) ontologies. The use of annotation properties makes possible (i) to use current OWL
2 editors for fuzzy ontology representation, and (ii) that OWL 2 reasoners discard the fuzzy part of a
fuzzy ontology, producing the same results as if would not exist. Additionally, we identify the syntactic
differences that a fuzzy ontology language has to cope with, and show how to address them using OWL
2 annotation properties.

3. Fuzzy Granulation of OWL Schemas

In this Section we show our proposal of introducing a granular view of individuals within an OWL
ontology. We shall proceed incrementally starting from the simplest case. For the sake of simplicity,
we shall use the OWL terminology henceforth instead of the DL terminology (we remind the reader that
class stands for concept, and property stands for role).

3.1. Casel

Let C be a class and 7" a functional datatype property connecting instances of C' to values in a numerical
range d. (See fig. 5 for a graphical representation of this construct.) This schema can be directly trans-
lated into a table (see table 2) with two columns and as many rows as the number n of individuals of C'
for which 7" holds.

The dataset in table 2 can be easily granulated in a set of ¢ > 1 fuzzy sets Fy, F», ..., F, by applying,
e.g., the fuzzy clustering method mentioned in Sec. 2.1.1. In essence, the granulation process puts
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c T .E]

Figure 5. Graphical representation of a functional datatype property 7" with domain C' and range over a numerical
datatype d.

Table 2. Tabular representation of the OWL schema depicted in fig. 5.

C T
ai U1
a2 V2
Qn Un

individuals in the same information granule if their respective values are similar. The use of fuzzy
sets to define granules ensures a gradual membership degree of individuals to such granules, where the
maximal membership is assigned to individuals detected as “prototypes” of each granule. Each fuzzy set
represents a fuzzy concept, and can be tagged by a linguistic term, e.g. Low.

The result of granulation can be represented in a new table (see table 3), where each individual a; is
associated to a row of membership values 15, being

pij = Fj(vi) (5)

For each granule F, the relative cardinality o (F}) can be computed by means of the formula in Eq. (3).
Given a fuzzy quantifier (), the membership degree

4k = Qr(o(F})) (6)
identifies the degree of truth of the fuzzy proposition ”Q)x are F;”. In this way, a new table can be
constructed from a collection Q1, Qo, . . . , @, of m > 1 fuzzy quantifiers, as shown in table 4.

Table 3. Granulated individuals obtained from table 2.

C Fy Fy e F.
a M1t H12 te Hic
a2 H21 22 ce H2c

an Hnl HUn2 te Hne
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Table 4. Quantified cardinalities for the granules reported in table 3.

Q1 | Q | - | Qnm
Fy qi1 qi2 | - qim
Fy g21 | g2 | - q2m
Z:E gcl qc2 e dem

If em < n, a sensible reduction of data can be achieved to represent the original property through
a granulated view. (To further reduce data, a threshold 7 can be set, so that all g, less than 7 are set to
zero.) The new granulated view can be integrated in the ontology as follows. The fuzzy sets F; are the
starting point for the definition of new subclasses of C' defined as

I% EEC?F]HJi}Q

Also, anew class G is defined, with individuals g1, go, . . . , gc, where each individual g; is an information
granule corresponding to F;. Each individual in D; is then mapped to g; by means of an object property
mapsTo. Moreover, for each fuzzy quantifier (Jx, a new class is introduced, which models one of the
fuzzy sets over the cardinality of (G. The connection between the class GG and each class (), is established
through an object property with a conventional name like hasCardinality, with degrees identified as
in table 4.

Example 3.1. For illustrative purposes, we refer to an OWL ontology in the tourism domain, Hotel,*
which encompasses the datatype property hasPrice with the class Hotel as domain and range in the
datatype domain xsd:double. Let us suppose that the room price for Hotel Verdi (instance verdi of
Hotel) is 105, i.e. the ontology contains the assertion (verdi, 105):hasPrice. By applying fuzzy
clustering to hasPrice, we might obtain three fuzzy sets (with labels Low, Medium, High) from which
the following classes are derived:

LowPriceHotel = Hotel N JhasPrice.Low
MidPriceHotel = Hotel M JhasPrice.Medium
HighPriceHotel = Hotel Il JhasPrice.High,

With respect to these classes, verdi shows different degrees of membership; e.g. verdi is a low-price
hotel at degree 0.8 and a mid-price hotel at degree 0.2 (see fig. 6 for a graphical representation).

Subsequently, we might be interested in obtaining aggregated information about hotels. Quantified
cardinalities allow us, for instance, to represent the fact that “Many hotels are low-priced” with the fuzzy
assertion

lph : JdhasCardinality.Many

with truth degree 0.8, where 1ph is an instance of the class Granule corresponding to LowPriceHotel
and Many is one of the fuzzy sets representing a fuzzy quantifier.

*http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner/download/FOIL-DL/examples/Hotel/
Hotel.owl
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Figure 6. Graphical representation of the output of the fuzzy granulation process on the OWL schema described
in fig. 5 and instantiated with concepts reported in Example 3.1. Fuzzy classes are depicted in gray.

3.2. Case2

A natural extension of the proposed granulation method follows when the class C is specialized in
subclasses, as in fig. 7. In this case, there are as many tables with the same structure of table 2 as
the number of subclasses.

Analogously, for each subclass SubC a structure of fuzzy information granules Fj1, Fjo, . .., Fj. is
produced and quantified according to the usual fuzzy quantifiers (J1, @2, ..., @n. (The quantifiers do
not depend on the subclass as their definition is fixed for all information granules.)

Example 3.2. Following Example 3.1, one may think of having a subsumption hierarchy with the class
Accommodation as the root and Hotel and B&B as subclasses (see fig. 8). Hotels are granulated in three
fuzzy subclasses (LowPriceHotel, MidPriceHotel and HighPriceHotel) while B&Bs are granu-
lated in two fuzzy subclasses (CheapB&B and ExpensiveB&B). These fuzzy classes are related to the
classes representing fuzzy quantifiers via Granule analogously to Example 3.1.
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c T- -E]

Figure 7. Variant of the OWL schema shown in Fig. 5 for the case of C' having subclasses.

Table 5. Tabular representation of the OWL schema depicted in fig. 9.

C D T
al bl U1
a; bj Uk
an, bm ]

3.3. Case3

A case of particular interest is given by OWL schemes representing ternary relations. A ternary relation
is a subset of the Cartesian product involving three domains C' x D x N (for our purposes, we will
assume /N a numerical domain). Because of DL restrictions, however, ternary relations are not directly
representable in OWL, yet they can be indirectly represented through an auxiliary class E, two object
properties R and Rs, and one datatype property 7', as depicted in fig. 9.

The structure in fig. 9 corresponds to a tabular representation with three columns, and as many rows
as the number of elements of the relation, as in table 5. By removing one of the two columns in table 5,
the resulting table is in accordance with table 2, which was the starting point of the granulation process.
In particular, as in the previous cases, a number of fuzzy sets F1, Fa, . . ., I, can be derived starting from
the dataset represented in table 5, where one column has been dropped. (We henceforth assume to drop
column C'.)

In order to connect information granules with classes, we proceed as follows. For each information
granule Fj it is possible to compute the o-count

> i1 By (vi)
n

oj = =2

representing the relative cardinality of the fuzzy set F; over all tuples of the relation as inn table 5. Such
cardinality can be quantified according to the fuzzy quantifiers Q1, . .., Qm.
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Figure 8. Graphical representation of the output of the fuzzy granulation process on the OWL schema reported
in Fig. 7 and instantiated with the concepts used in Example 3.2.

The final arrangement of the information granules, connected with the individuals in C, merges
the modeling of ternary relations as in fig. 9 with the granular model illustrated in case 1. The new
classes, representing information granules, are connected to the auxiliary class E in order to express a
granular view of the relation between classes C' and D. Finally, a natural extension of this case allows
the specialization of the class D in subclasses (as in case 2).

Example 3.3. With reference to Hotel ontology, we might also consider the distances between hotels and
attractions. This is clearly a case of a ternary relation that needs to be modeled through an auxiliary class
Distance, which is connected to the classes Hotel and Attraction by means of the object properties
hasDistance and isDistanceFor, respectively, and plays the role of domain for a datatype property
hasValue with range xsd:double. The knowledge that “Hotel Verdi has a distance of 100 meters from
the British Museum” can be therefore modeled as follows:

(verdi,dl) : hasDistance
(d1,british museum) : isDistanceFor
(d1,100) : hasValue

After fuzzy granulation, the imprecise sentence “ Many hotels have a low distance from attractions”
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R2

Figure 9. Graphical representation of the OWL schema modeling a ternary relation.

can be considered as a consequence of the previous and the following axioms and assertions:

LowDistance = Distance Il JisDistanceFor.Attraction ' JhasValue.Low
dl : LowDistance (to some degree)

(d1,1d) : mapsTo

(1d,0.5) : hasCardinality

1d : dhasCardinality.Many (to some degree)

where Many is defined as mentioned in Example 3.1.

4. Experimental results

The method presented in Sect. 3 has been implemented in Python’. It interfaces a Apache Jena® server
by posing SPARQL’ queries to an OWL ontology in order to extract data in the CSV format. The
granulation process can be tuned by means of JSON® configuration files. The resulting granular view is
then integrated in the original OWL ontology by means of additional axioms and assertions according to
the syntax of Fuzzy OWL 2 as shown in the following specification in OWL/XML format:

<ClassAssertion>
<Annotation>
<AnnotationProperty IRI="#fuzzyLabel"/>
<Literal datatypeIRI="&rdf;Plainliteral">
<fuzzyOwl2 fuzzyType="axiom">
<Degree value="{degreel}"/>

Shttps://www.python.org/
https://jena.apache.org/
"https://www.w3.org/TR/sparqlil-overview/
$http://www. json.org/
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Figure 10. Graphical representation of the output of the fuzzy granulation process on the OWL schema reported
in Fig. 9 and instantiated with the concepts used in Example 3.3.

</fuzzy0wl2>
</Literal>
</Annotation>
<0bjectSomeValuesFrom>
<ObjectProperty IRI="#hasCardinality"/>
<Class IRI="#{quantifier}"/>
</0bjectSomeValuesFrom>
<NamedIndividual IRI="#{granule}"/>
</ClassAssertion>

Experiments have been conducted on the OWL ontology Hotel, already mentioned in Example 3.1, and
described in more detail in the following subsection.
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4.1. The OWL ontology

The ontology Hotel consists of 8000 axioms, 74 classes, 4 object properties, 2 data properties, and 1504
individuals. It has the expressivity of the ACCHOJF (D) DL.

The main concepts forming the terminology of Hotel model the sites of interest (class Site), and
the distances between sites (class Distance). Sites include accommodations (class Accommodation)
such as hotels, attractions (class Attraction) such as parks, stations (class Station) such as airports,
and civic facilities (class Civic) such as hospitals. The terminology encompasses also the amenities
(class Amenity) offered by hotels (class Hotel) and the official 5-star classification system for hotel
ranking (class Rank). The object properties hasDistance and isDistanceFor model the relationship
between a site and a distance, and between a distance and the two sites, respectively. The data properties
hasPrice and hasValue represent the average price of a room and the numerical value of a distance,
respectively. Note that the latter would be better modeled as attribute of a ternary relation. However,
since only binary relations can be represented in OWL, one such ternary relation is simulated with the
class Distance and the properties hasDistance, isDistanceFor and hasValue.

The 1504 individuals occurring in Hotel refer to the case of Pisa, Italy. In particular, 59 instances of
the class Hotel have been automatically extracted from the web site of TripAdvisor.” Information about
the rank, the amenities and the average room price has been added in the ontology for each of these
instances. Further 24 instances have been created for the class Site and distributed among the classes
under Attraction, Civic and Station. Finally, 1416 distances (instances of Distance) between the
accommodations and the sites of interest have been measured in km and computed by means of Google
Maps!'© API.

4.2. Tests
4.2.1. Casel

The program parameters are tuned by means of a JSON file which specifies the SPARQL Endpoint to
be queried, the numerical data property to be fuzzified, the linguistic labels to be used for the fuzzy sets
and the linguistic labels for the fuzzy quantifiers together with the prototype values. For instance, the
following JSON file triggers the granular computing method on the data property hasPrice by setting
the number of clusters to n = 3 with Low, Mid, and High as linguistic labels, and the number of fuzzy
quantifiers to 5 with AlmostNone, Few, Some, Many and Most as linguistic labels and the values 0.05,
0.275, 0.5, 0.725 and 0.95 as prototypes.

{
"ontologyName" : "Hotel.owl",
"ontologyPrefix" : "<http://www.semanticweb.org/ontologies/Hotel.owl#>",
"SPARQLEndPoint" : "http://localhost:3030/Hotel/query",
"domainClasses" : ["Hotel"],
"dataPropertyToFuzzify" : "hasPrice",

*http://www.tripadvisor.com/
Yhttp://maps.google. com/
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"fuzzySetLabels" : ["Low", "Mid", "High"],

"quantifierLabels" : ["AlmostNone","Few", "Some", "Many", "Most"],
"quantifierPrototypes" : [0.05, 0.275, 0.5, 0.725, 0.95]

By interpreting the configuration file, the following SPARQL query is automatically generated'!,
which extracts the pairs (hotel, price) that will be used for granulation:

PREFIX : <http://www.semantic.web.org/ontologies/Hotel.owl#>
SELECT 7hotel 7price

WHERE {

7hotel a :Hotel

7hotel :hasPrice 7price . }

The lowest and highest value in the domain of hotel prices are automatically calculated; in this
example they are m = 45 and M = 136, respectively.

Clusters have been automatically built around the centroids 54.821, 77.924 and 102.204. They form
the SFP shown in Figure 11 which consists of a left-shoulder fuzzy set (labeled as Low), a triangular
fuzzy set (labeled as Medium) and a right-shoulder fuzzy set (labeled as High).

Medium High

10

(£33

[£X-)

Fuzry membership

ek

Lo
45,0 H.E21 T4 Loz, 204 136.0
Prololypes

Figure 11. The generated Strong Fuzzy Partition for n = 3.

For each hotel price, the software computes its membership degree to the three fuzzy sets defined by
the SFP. The results returned by the granulation process are graphically reported in Figure 12 (a). Hotel
prices are reported along the x axis, whereas the y axis contains the membership degrees to the fuzzy
sets. (For each price value, at most two membership degrees have non-zero values: these membership
degrees are represented with different colors in the figure.)

Results for n = 5 and n = 7 the results of granulation are reported in Fig. 13(a), and Fig. 14(a)
respectively. As expected, the higher is the number of clusters, the finer is the granulation of prices, with

""We use variables with readable names for the sake of intelligibility.
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Figure 12. Fuzzy granulation of prices according to n = 3 clusters (a) and fuzzy quantification of the resulting
information granules (b).

fuzzy sets more concentrated in the region of the domain where date are more dense. (The number of
information granules depends on the desired level of specificity for linguistically representing prices.)

For each fuzzy set in the partition, a subclass is defined a in Example 3.1. Moreover, for each
individual (hotels in this case), one or two annotated assertions can be added to the ontology in order
to establish the fuzzy membership of the individual to the corresponding information granules. For
example, for individual Hotel_002 the following assertions are included in the ontology:

Hotel_ 002 : MediumPriceHotel (0.709)

Hotel 002 : HighPriceHotel (0.291)
where membership degrees are embodied in the ontology through a Fuzzy OWL 2 annotation (fig. 15).
In principle, the original data property hasPrice could be removed from the ontology and replaced with
the new granular view of prices.

After price granulation, the resulting information granules can be quantified according to the fuzzy
quantifiers specified in the JSON configuration file. The results are shown in figs. 12(b), 13(b) and 14(b).
Each fuzzy information granule is represented by a new individual of the class Granule (e.g. 1ph, mph
and hph for granules depicted in fig. 12). For these individuals, a number of axioms are generated as
follows:

lph : JhasCardinality.Few (0.444)

lph : dhasCardinality.Some (0.556)

mph : ZhasCardinality.Few (0.417)

mph : JhasCardinality.Some (0.583)

hph : JhasCardinality.AlmostNone (0.361)

hph : JhasCardinality.Few (0.639)

All in all, these axioms assert that there are very few hotels with high prices, some hotels with medium
prices and some hotels with low prices.



FA. Lisi, C. Mencar/A Granular Computing Method for OWL Ontologies 21

12 12

Almost None Few Some Man Most.
10} o0 o T8 : Y :

4
@

Very Low
Low
Medium
High
Very High

Very Low
Low
Medium
High
Very High

o
)
.
® .0 .o

Fuzzy membership
o
o
o

oo 00 o

Quantifier membership
o
o
© 00 0 o

o
~

.
o
kS

[ 0.2

n . k k3
40 60 80 100 120 140 0.0 0.2 0.4 0.6 0.8 10
Hotel prices Granule cardinality

(a) (b)

Figure 13. Fuzzy granulation of prices according to n = 5 clusters (a) and fuzzy quantification of the resulting
information granules (b).

4.2.2. Case?2

The extension of the granulation process to subclasses is easily accomplished by a proper configuration of
the JSON file. As an example, in order to achieve granulation of both Hotel and Bed_and Breakfast
classes, which are both subclasses of Accommodation, it suffices to change the domainClasses at-
tribute into:

"domainClasses" : ["Hotel", "Bed_and_Breakfast"],
The results of fuzzy granulation are depicted in figs. 16 and 17, which show the difference in distribution
of prices according to three information granules and five fuzzy quantifiers.

4.2.3. Case3

The case 3 concerns ontology design patterns which represent ternary relations by means of binary
relations and auxiliary classes. The JSON configuration file for the granulation of the distances between
accommodations and attractions is reported below.

{
"ontologyName" : "hotel_OWL.owl",
"ontologyPrefix" : "<http://www.semanticweb.org/ontologies/Hotel.owl#>",
"SPARQLEndPoint" : "http://localhost:3030/inf/sparql",
"domainClasses" : ["Accomodation"],
"rangeClasses" : ["Attraction"],
"objectPropertyToAuxiliaryClass" : "hasDistance",
"auxiliaryClass" : "Distance",

"objectPropertyFromAuxiliaryClass" : "isDistanceFor",
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Figure 14. Fuzzy granulation of prices according to n = 7 clusters (a) and fuzzy quantification of the resulting

information granules (b).

"dataPropertyToFuzzify"

"fuzzySetsLabels"

"quantifiersLabels"

"quantifiersPrototypes"

"hasValue",
[IILOWII s IIMidll s "High"] s

["AlmostNone", "Few", "Some", "Many", "Most"],

[0.05, 0.275, 0.5, 0.725, 0.95]

The underlying SPARQL query extracts the quadruples of the kind (hotel, distance, attraction, value)
upon which information granulation is applied.

PREFIX ontology:<http://www.semanticweb.org/ontologies/Hotel.owl#>
SELECT 7hotel 7distance 7attraction 7value

WHERE {

7hotel a ontology:Hotel.

7attraction a ontology:Bridge.

7hotel ontology:hasDistance 7distance.
7?distance ontology:isDistanceFor 7attraction.
7?distance ontology:hasValue 7value

Results are reported in Fig. 18. It is possible to observe a high concentration of distances in a region
of the space where two information granules are mostly representative (“Mid” and “Low”). Correspond-
ingly, the quantification of information granules synthetically represents the distribution of values: many
hotels have low distance from attractions, few of them have medium distance and almost none of the
hotels have high distance from attractions. This granular information can be integrated in the ontology
by following the form depicted in Example 3.3. In principle, the granular view of distances can be used
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Figure 15. Annotation of membership degree of Hotel_002 to MediumPriceHotel as seen in Protégé.

in place of their numerical representation, by removing the hasValue data property from the Distance
class, therefore achieving a significant simplification of the knowledge base.

5. Conclusions

This paper presents a computational method for introducing a granular view of data within an OWL
ontology. According to it, a number of individuals belonging to the ontology can be replaced by infor-
mation granules, represented as fuzzy sets. One such view, obtained by applying Granular Computing
techniques, is a highly desirable feature for many Semantic Web applications pervaded by imprecise
and uncertain information coming from perceptual data, incomplete data, data with errors, etc. The pro-
posed approach, though in an initial stage, paves the way for exploiting tolerance to imprecision in OWL
ontologies, which may lead to concrete benefits such as compact knowledge representation, efficient
reasoning and knowledge comprehensibility.

A preliminary version of the method has been already presented in [35]. However, with respect to
the conference paper, we completely rewrote the sections describing the motivation and the theoretical
framework. We also revised the description of the method and gave detailed experimental results on
medium-size OWL ontology populated with real-world data. Notably, in our implementation of the
method, we have chosen to represent the output of our fuzzy granulation method by using Fuzzy OWL 2
so that it could be easily integrated into the original ontology.

In the future we plan to verify the benefits of information granulation in the context of inductive
learning algorithms, such as FOIL-DL [36], in terms of efficiency and effectiveness of the learning
process, as well as in terms of interpretability of the learning results.
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Figure 16. Fuzzy granulation of (a) hotel and (b) b&b prices, according to n = 3 clusters.
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Figure 17. Fuzzy quantification of (a) hotels and (b) b&b prices, according to price.
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Figure 18. Fuzzy granulation of distances of hotels from bridges according to n = 3 clusters (a) and fuzzy
quantification of the resulting information granules (b).



