
28 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Extending Logic Programming with Labelled Variables: Model and Semantics

Published:
DOI: http://doi.org/10.3233/FI-2018-1695

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/636935 since: 2018-07-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.3233/FI-2018-1695
https://hdl.handle.net/11585/636935

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Calegari, Roberta et al. ‘Extending Logic Programming with Labelled Variables:
Model and Semantics’. 1 Jan. 2018 : 53 – 74.

The final published version is available online at: http://dx.doi.org/10.3233/FI-2018-1695

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.3233%2FFI-2018-1695

Extending Logic Programming with Labelled Variables:
Model and Semantics

Roberta Calegari
ALMA MATER STUDIORUM–Università di Bologna
viale Risorgimento 2, 40136, Bologna, Italy
roberta.calegari@unibo.it

Enrico Denti
ALMA MATER STUDIORUM–Università di Bologna
viale Risorgimento 2, 40136, Bologna, Italy
enrico.denti@unibo.it

Agostino Dovier*

Università degli Studi di Udine
via delle Scienze 206, 33100, Udine, Italy
agostino.dovier@uniud.it

Andrea Omicini
ALMA MATER STUDIORUM–Università di Bologna
via Sacchi 3, 47521, Cesena, Italy
andrea.omicini@unibo.it

Abstract. In order to enable logic programming to deal with the diversity of pervasive systems,
where many heterogeneous, domain-specific computational models could benefit from the power
of symbolic computation, we explore the expressive power of labelled systems. To this end, we
define a new notion of truth for logic programs extended with labelled variables interpreted in
non-Herbrand domains—where, however, terms maintain their usual Herbrand interpretations.

First, a model for labelled variables in logic programming is defined. Then, the fixpoint and the
operational semantics are presented and their equivalence is formally proved. A meta-interpreter
implementing the operational semantics is also introduced, followed by some case studies aimed
at showing the effectiveness of our approach in selected scenarios.

Keywords: logic programming, labelled systems, labelled variables, formal semantics, meta-
interpretation, situated intelligence

1. Introduction

In order to face the challenges of today’s pervasive systems – which are inherently complex, dis-
tributed, situated, and intelligent [1] – suitable models and technologies are required for the support
of distributed situated intelligence.

In principle, logic programming (LP henceforth) has the potential to power the core of such models
and technologies, thanks to its declarative interpretation and inferential capabilities: however, doing
so effectively requires that LP is suitably extended to capture the many different domains calling for
situated intelligence [2]. In fact, while logic-based approaches are natural candidates for intelligent
systems, a pure LP approach does not straightforwardly fit the needs of situated systems: hence the
value added of a hybrid approach, which makes it possible to exploit LP for what it is most suited for
– such as symbolic computation – while delegating other aspects – such as situated computations – to
other languages, or, to other levels of computation.

Along this line, in this paper we present a LP extension based on labelled variables [3, 4], called
Labelled Variables in Logic Programming (LVLP), whose purpose is to enable diverse computational
models, each one tailored to the specific needs of situated components, to coherently and fruitfully
coexist and interact within a logic-based framework. In particular, we extend our previous work
presented in [5] by defining the formal model of LVLP in a more concise way, providing complete
proofs of its formal properties, extending the range of admissible labels, exposing the meta-interpreter,
and adding some examples along with their implementation upon the current LVLP prototype.

Unlike most other works in this area – such as [6, 7, 8, 9] –, which primarily focus on specific sce-
narios and systems (modal logic, deductive systems, fuzzy systems, etc.), LVLP aims at providing a
general-purpose logic framework along with the mechanisms needed to fit, potentially, whatever spe-
cific application scenarios. From another perspective, Hofstedt [10] focuses on combining specialised
constraint solvers into a single solver, to handle mixed-domain constraints: while its goal is somehow
similar, LVLP is geared instead towards a multiplicity of distributed logic engines, situated and spe-
cialised, with limited computational requirements, addressing the needs of distributed intelligence for
pervasive systems.

Some approaches dealing with inconsistencies emerging in large databases exploit the notion of
annotation—e.g., [11]: there, atoms can be annotated by labels chosen in upper semilattices. However,
upper semilattices represent a too-rigid constraint for LVLP, where labels aim instead at modelling
even weakly-structured domains—such as, say, food, or colours; even more, allowing terms to be
directly labelled in LVLP would result in a too-strict coupling between LP and the label domain,
which instead LVLP aims at keeping well-separate, by limiting labelling to variables.

So, in the following we introduce the LVLP framework, moving from the definition of the theoret-
ical model (Section 2) to the fixpoint and operational semantics (Section 3): we discuss correctness,
completeness, and their equivalence is formally proved. Then, we present a meta-interpreter imple-
menting the operational semantics (Section 4), which is exploited to illustrate LVLP through some
case studies in different domains (Section 5). Finally, related works are discussed (Section 6).

2. Labelled Variables in Logic Programming (LVLP)

2.1. The model

Let C be the set of constants, with c1, c2 ∈ C being two generic constants. Let V be the set of
variables, with v1, v2 ∈ V being two generic variables. Let F be the set of function symbols, with
f1, f2 ∈ F being two generic function symbols; each f ∈ F is associated to an arity ar(f) > 0,
stating the number of function arguments. Let T be the set of terms, with t1, t2 ∈ T being two
generic terms. Terms can be either simple – a constant (e.g., c1) and a variable (e.g., v2) are both
simple terms – or compound—a functor of arity n applied to n terms (e.g., f1(c2, v1)) is a compound

term. A term is said ground if it does not contain variables. Let H denote the set of ground terms,
also known as the Herbrand universe.

A model for Labelled Variables in Logic Programming (LVLP) is defined as a triple ⟨B, fL, fC⟩,
where

• B = {β1, . . . , βn} is the set of basic labels, the basic entities of the domain of labels

• L ⊆ ℘(B) is the set of labels, where each label ℓ ∈ L is a subset of B

• fL : L ×L −→ L is the (label-)combining function computing a new label from two given
ones

• fC : H × L −→ {true, false} is the compatibility function, assessing the compatibility be-
tween a ground term and a label when interpreted in the domain of labels

• a labelled variable is a pair ⟨v, ℓ⟩ associating label ℓ ∈ L to variable v ∈ V

• a labelling is a set of labelled variables

B can be either finite or infinite—in the latter case, with the two extra requirements that (i) each label
ℓ can be represented finitely, including the new labels generated by the combining function fL, and
(ii) the compatibility function fC can argue over the representation. Also, for the sake of simplicity, a
“singleton” label {β} where β ∈ B will be written just as β henceforth, and a “singleton” labelling
{⟨v, ℓ⟩} will be written as ⟨v, ℓ⟩, and as v∧ℓ in the examples.

Finally, we require that fL is associative, commutative, and idempotent, with the empty set as its
neutral element—namely:

fL(ℓ1, fL(ℓ2, ℓ3)) = fL(fL(ℓ1, ℓ2), ℓ3), fL(ℓ1, ℓ2) = fL(ℓ2, ℓ1), fL(ℓ, ℓ) = ℓ

Accordingly, in order to simplify notation, in the following we will simply write fL(ℓ1, . . . , ℓn−1, ℓn)
instead of fL(ℓ1, fL(. . . , fL(ℓn−1, ℓn) . . .)).

Details on fC and fL are provided in the remainder of the paper, in particular in Subsection 2.3.

2.2. Programs, clauses, unification

An LVLP program is a collection of LVLP rules of the form

Head ← Labelling ,Body .

to be read as “Head if Body given Labelling”. There, Head is an atomic formula, Labelling is the
list of labelled variables in the clause, and Body is a list of atomic formulas.

As in standard LP [12, 13], an atomic formula (or atom) has the form p(t1, . . . , tm), where p is a
predicate symbol and ti are terms. Atom p(t1, . . . , tm) is said ground if t1, . . . , tn are ground. Predi-
cate symbols represent relations defined by a logic program, whereas terms represent the elements of
the domain. HB is the Herbrand base, namely the set of all ground atoms of whose argument terms
are in H . Every variable occurring in a clause is universally quantified, and its scope is the clause in
which the variable occurs.

An essential LP mechanism is represented by unification, involving two different terms that are
supposed to refer to the same domain element. While discussing LP unification is out of the scope of
this paper (we refer the reader to [12, 13] for the basics of LP), any extension to LP needs to define its
own unification rules.

co
ns

ta
nt

c 2
va

ri
ab

le
v 2

la
be

lle
d

va
ri

ab
le
⟨v

2
,ℓ

2
⟩

co
m

po
un

d
te

rm
s 2

co
ns

ta
nt

if
c 1

=
c 2

tr
u
e,
{v

2
/
c 1
}

if
f
C
(c

1
,ℓ

2
)
=

tr
u
e

fa
ls
e

c 1
th

en
tr
u
e

th
en

tr
u
e,
{v

2
/
c 1
},

ℓ 2
el

se
fa
ls
e

el
se

fa
ls
e

va
ri

ab
le

tr
u
e,
{v

1
/
c 2
}

tr
u
e,
{v

1
/
v
2
}

tr
u
e,
{v

1
/
v
2
},

ℓ 2
if
v
1

do
es

no
to

cc
ur

in
s 2

v 1
th

en
tr
u
e,
{v

1
/
s 2

}
el

se
fa
ls
e

la
be

lle
d

if
f
C
(c

2
,ℓ

1
)
=

tr
u
e

tr
u
e,
{v

1
/
v
2
},

ℓ 1
if
f
L
(ℓ

1
,ℓ

2
)
̸=

∅
if
v
1

do
es

no
to

cc
ur

in
s 2

,a
nd

va
ri

ab
le

th
en

tr
u
e,
{v

1
/
c 2
},

ℓ 1
th

en
tr
u
e,
{v

1
/
v
2
},

f
L
(ℓ

1
,ℓ

2
)

f
L
(ℓ

1
,ℓ

′ 1
,.
..
,ℓ

′ n
)
̸=

∅
⟨v

1
,ℓ

1
⟩

el
se

fa
ls
e

el
se

fa
ls
e

w
he

re
ℓ′ 1
,.
..
ℓ′ n

ar
e

th
e

la
be

ls
in

s 2
th

en
tr
u
e,
{v

1
/
s 2

},
f
L
(ℓ

1
,ℓ

′ 1
,.
..
,ℓ

′ n
)

el
se

fa
ls
e

co
m

po
un

d
fa
ls
e

if
v
2

do
es

no
to

cc
ur

in
s 1

if
v
2

do
es

no
to

cc
ur

in
s 1

,a
nd

if
s 1

,s
2

ha
ve

sa
m

e
fu

nc
to

r/
ar

ity
,a

nd
te

rm
th

en
tr
u
e,
{v

2
/
s 1

}
f
L
(ℓ

2
,ℓ

′ 1
,.
..
,,
ℓ′ n

)
̸=

∅
th

ei
ra

rg
um

en
ts

(r
ec

ur
si

ve
ly

)u
ni

fy
s 1

el
se

fa
ls
e

w
he

re
ℓ′ 1
,.
..
ℓ′ n

ar
e

th
e

la
be

ls
in

s 1
th

en
tr
u
e

th
en

tr
u
e,
{v

2
/
s 1

},
f
L
(ℓ

2
,ℓ

′ 1
,.
..
,,
ℓ′ n

),
el

se
fa
ls
e

el
se

fa
ls
e

Ta
bl

e
1.

U
ni

fic
at

io
n

ru
le

s
in

LV
L

P,
ad

op
tin

g
st

an
da

rd
L

P
un

ifi
ca

tio
n

ru
le

s
an

d
re

pr
es

en
ta

tio
n

Thus, Table 1 reports the unification rules for LVLP. Since, by design, only variables can be
labelled, the only case to be added to the standard unification table is represented by labelled variables.
There, given two generic LVLP terms, the unification result is represented by the extended tuple

(true/false, θ, ℓ)

where true/false represents the existence of an answer, θ is the most general unifier (mgu), and ℓ is
the new label associated to the unified variables defined by the (label-)combining function fL. In order
to lighten the notation, undefined elements in the tuple (i.e., labels or substitutions that make no sense
in a given case) are omitted in Table 1.

Taking into account all the variables of a goal, a solution for a LVLP computation is represented
by the extended tuple

(true/false,Θ, A)

where Θ represents the mgu for all the variables, and A represents the corresponding labelling.

2.3. Compatibility

Expressing the solution of the labelled variables program as a tuple (true/false, Θ, A) implicitly as-
sumes that the LP computation, whose answer is given by Θ, and the label computation, whose answer
is given by A, can be read somehow independently from each other. So, whereas any computed label-
variable association could be acceptable as far as LP is concerned (where symbols are uninterpreted),
some label-variable association could be actually unacceptable when interpreted in the domain of
labels.

To formalise such a notion of acceptability, the compatibility function fC is defined as follows:

fC : H ×L −→ {true, false}

In particular, given a a ground term t ∈H and label ℓ ∈ L :

fC(t, ℓ) =

true if there exists at least one element of the domain of

labels which the interpretations of t and ℓ both refer to

false otherwise

Example 2.1 illustrates an application scenario where variables are labelled with their admissible nu-
meric interval, formalising the fL and fC functions accordingly.

Example 2.1. (LVLP with numeric intervals)

As a simple LVLP example, let us suppose that logic variables span over integer domains, and are labelled with
their admissible numeric intervals. The combining function fL, which embeds the scenario-specific label
semantics, is supposed to intersects intervals—that is, given two labels ℓ1 = {β11, . . . , β1n} and
ℓ2 = {β21, . . . , β2m}, the resulting label ℓ3 is the intersection of ℓ1 and ℓ2:

ℓ3 = fL(ℓ1, ℓ2) = fL({β11, . . . β1n}, {β21, . . . β2m}) =
{(β11 ∩ β21), · · · , (β11 ∩ β2m), . . . , (β1n ∩ β21), · · · , (β1n ∩ β2m)}

Here the LP computation aims at computing numeric values, while the label computation aims at computing
admissible numeric intervals for logic variables.

In principle, since the LP computation and the label computation proceed independently, the solution tuple
(true/false, Θ, A) could also describe situations such as (true, X/3, ⟨X, [4, 5]⟩), where logic variable X would
be associated to both value 3 and label [4, 5]. However, if the numeric intervals are to be interpreted as the
boundaries for acceptable values of LP variables, such labelling would be inconsistent, and the system should
reject such a solution as incompatible.
This is what the compatibility function fC is for: fC(t, ℓ) connects the LP and the label universes by checking
whether ground term t ∈H is compatible with label ℓ ∈ L . In particular, in our example fC(t, ℓ) is supposed
to be true only if t belongs to the interval represented by ℓ: in this case, fC(3, [4, 5]) should reasonably return
false, rejecting labelling ⟨X, [4, 5]⟩, with X = 3, as incompatible.

Summing up, the result of a LVLP program can be written as

((true/false) ∧ fC(Θ, A),Θ, A)

meaning that the truth value potentially computed by the LP computation can be restricted – i.e.,
forced to false – by fC(Θ, A); in turn, this is just a convenient shortcut for the conjunction of all
fC(t, ℓ) ∀(t, ℓ) pairs, where ℓ and t are such that ⟨v, ℓ⟩ ∈ A and v/t ∈ Θ. Of course, in case of
independent domains, fC(t, ℓ) is merely true ∀t and ∀ℓ.

2.4. The LVLP vision: Enabling distributed situated intelligence

The requirement for intelligence in pervasive systems is ubiquitous: computation surrounds us, de-
vices and software components are required to behave intelligently, by understanding their own goals
as well as the context where they work; integration of software components is supposed to add further
(social) intelligence, possibly through coordination [14]. This is the case, for instance, of the Internet
of Things (IoT) [15, 16, 17], where physical objects are networked, and are required to understand
each other, learn, understand situations, and understand us [18]—in short, our everyday objects are
expected to be(come) intelligent in the Internet of Intelligent Things (IoIT) [19].

In the overall, IoIT scenarios mandate for distributed and situated micro-intelligence, where huge
numbers of small units of computation, situated within a spatially-distributed environment, are re-
quired to behave in a smart way, and need to cooperate in order to achieve a coherent and intelligent
social behaviour. However, engineering effective distributed situated intelligence is far from triv-
ial, mostly due to (i) the huge amount of data, information, and knowledge to handle, (ii) the need
for adaptation and self-management, (iii) the requirements of resource constrained devices, (iv) the
heterogeneity of models and technologies against interoperability, and (v) the many diverse specific
domains to be integrated.

Along that line, the goal of the LVLP model is to exploit the potential of LP and its extensions as
sources of micro-intelligence for IoIT scenarios, in particular to deal with the domain-specific aspects.
The LVLP domain-specific perspective further emphasises the role of situatedness, already brought
along by spatial distribution of components in pervasive systems.

Accordingly, lightweight and interoperable LVLP Prolog engines could be distributed even on
resource-constrained devices [20]: multiple logic theories would then be scattered around, encapsu-
lated in each engine, and associated to individual computational devices and things in the IoT. As a
result, each logic theory is conceived as situated, and represents what is locally true, according to a
simple paraconsistent overall interpretation. The LP resolution process is then local to each theory /
engine, so it is both standard and consistent [21]. Thus, LVLP allows in principle logic-based micro-
intelligence to be encapsulated within devices of any sort, and make them work together in groups,

aggregates, and societies, by promoting features such as observability, malleability, understandability,
and formalisability via LP.

3. Semantics

In order to maintain the basic theoretical results of LP, such as the equivalence of denotational and
operational semantics, labels domains must support tests and operations on labels.

To this end, Subsection 3.1 defines the denotational (fixpoint) semantics in the context of labels
domain (under reasonable requirements for fL), while Subsection 3.2 discusses the operational se-
mantics of the model through an abstract state machine.

3.1. Fixpoint semantics

Let us call X = (H ,L) a LVLP domain, and define the notion of X -interpretation I as a set of pairs
of the form 〈

p(t1, . . . , tn), [ℓ1, . . . , ℓn]
〉

where p(t1, . . . , tn) is a ground atom, and ℓ1, . . . , ℓn are labels s.t. for i = 1, . . . , n the term ti is
compatible with the label ℓi, i.e., fC(ti, ℓi) = true. Truthness of fC is based on the LVLP domain X .
With a slight abuse of notation, we write X |= [⟨t1, ℓ1⟩, . . . , ⟨tn, ℓn⟩] iff

∧n
i=1 fC(ti, ℓi) = true. We

also write X |= ⟨p(t1, . . . , tn), [ℓ1, . . . , ℓn]⟩ if p is a predicate symbol and
∧n

i=1 fC(ti, ℓi) = true.
We denote as Λ the part of clause body that stores labelling. Without loss of generality we assume

that there is exactly one labelling for each variable in the head. We define the function f̃L that extends
fL and takes as arguments, orderly, a rule

r = h← Λ, b1, . . . , bn

a labelling, and n lists of labels. The rule r is used here to identify multiple occurrences of the
variables. Let us assume the variables in h are x1, . . . , xm, and consider one of them, say xi. If xi
occurs in h (and hence in Λ) and in (some of) b1, . . . , bn then the corresponding labels ℓ, ℓ1,i, . . . , ℓn,i
for xi are retrieved from Λ (if xi does not occur in bj we simply do not consider such contribution).
Then ℓ′i = fL(ℓ, fL(ℓ1,i, . . . , fL(ℓn−1,i, ℓn,i))) is computed, and the pair ⟨xi, ℓ′i⟩ is returned. This is
done for all variables x1, . . . , xm occurring in the head h, and the list [ℓ′1, . . . , ℓ

′
m] is returned.

The denotational semantics is based on the one-step consequence functions TP defined as:

TP (I) =

{
⟨ p(t̃), ℓ̃ ⟩ :

r = p(x̃)← Λx̃ , b1, . . . , bn (1)

where r is a fresh renaming of a rule of P,
v is a valuation on H such that v(x̃) = t̃, (2)∧n

i=1 ∃ ℓ̃i s.t. ⟨v(bi), ℓ̃i⟩ ∈ I, (3)

X |= Λt̃ ∧
∧n

i=1 fC
(
v(bi), ℓ̃i

)
, (4)

ℓ̃ = f̃L
(
r,Λt̃, ℓ̃1, · · · , ℓ̃n

)
(5)

}

where Λt̃ = v(Λx̃) = [⟨t1, ℓ1⟩, . . . , ⟨tn, ℓm⟩] if Λx̃ = [⟨x1, ℓ1⟩, . . . , ⟨xm, ℓm⟩]. Notice that the condi-
tion X |=

∧n
i=1 fC

(
v(bi), ℓ̃i

)
in line 4 is always satisfied when TP is used bottom-up, starting from

I = ∅.
For the sake of convenience, unspecified labels are assumed to be read as the any label, defined

as the neutral element of fL: in this way, any standard (i.e. non labelled) LP variable can be read as
implicitly labelled with such any label—represented as ⋄ henceforth.

Example 3.1 shows the computation of the least fixpoint of TP in a simple case. There, and in the
following examples, =/2 represents the equality operator of LVLP, whose behaviour is described in
Table 1 (unification rules), and can be summarised as:

X = Y : −[< X, ⋄ >,< Y, ⋄ >], X =LP Y

where =LP is the =/2 standard LP unification operator.

Example 3.1. (Computing the least fixpoint of TP in a simple case)

Let us consider the LVLP program P:
r(0). r(1). r(2). r(3). r(4). r(5). r(6). r(7). r(8). r(9).
q(Y,Z) :- Y^[[2,4]], Z^[[3 ,8]], Y=Z, r(Y), r(Z).
p(X,Y,Z) :- X^[[0,3]] , Y^[⋄], Z^[⋄], X=Y, q(Y,Z).

where ⋄ is used as a shortcut for any basic label (any interval).
Let us consider the interpretation I0 = ∅. Then, the next interpretation I1 can be obtained as:

I1 = TP (I0) =
{
⟨r(0), [⋄]⟩, . . . , ⟨r(9)[⋄]⟩

}
Applying TP to I1 leads to I2:

I2 = TP (I1) = I1 ∪
{
⟨q(3, 3), [[3, 4], [3, 4]]⟩, ⟨q(4, 4), [[3, 4], [3, 4]]⟩

}
One further step leads to I3, which is also the least fixpoint of TP :

I3 = TP (I2) = I2 ∪
{
⟨p(3, 3, 3), [[3], [3], [3]]⟩

}

The example above shows how LVLP on a domain X – LVLP(X) – looks like CLP(X): in fact,
[⟨Y, [2, 4]⟩, ⟨Z, [3, 8]⟩] can be interpreted as the constraints Y ∈ [2, 4], Z ∈ [3, 8]. However, this does
not hold for all the label domains, since LVLP aims at covering domains beyond the reach of constraint
logic programming.

This is the case, for instance, of Example 3.2, where labels are words in the WordNet lexical
database [22]. There, the combining function fL is supposed to find and return a WordNet synset
compatible with both the given labels, or fail otherwise: for instance, if ℓ1 = ‘pet’ and ℓ2 =
‘domestic cat’, the new label generated by fL could be [‘cat’, ‘domestic cat’, ‘pet’, ‘mammal’].
The compatibility function fC is always true, since any animal name is considered compatible with
any animal group.

Example 3.2. (TP in the WordNet case)

In this example, labels are words describing the object represented by the variable. The combination of two
different labels (performed by the combining function fL) returns a new label only if the two labels have a

lexical relation, or fails otherwise. The decision is based on the WordNet network [22], a large lexical database
of English where nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets).
Synsets are interlinked by means of conceptual-semantic and lexical relations: the resulting network of
meaningfully related words and concepts can be navigated. WordNet superficially resembles a thesaurus, in
that it groups words together based on their meanings.
In this first example, some WordNet groups are collected and stored in the knowledge base a priori, but a
dynamic consultation to WordNet could be implemented. Let the program P be represented by the following
facts—where wordnet fact is a simulated wordnet synset, while animal(Name) is a predicate computing
the animal’s name:
wordnet_fact ([‘dog’,‘domestic dog’,‘canis’,‘pet’,‘mammal ’]).
wordnet_fact ([‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’]).
wordnet_fact ([‘fish’,‘aquatic vertebrates ’, ‘vertebrate ’]).
wordnet_fact ([‘frog’,‘toad’, ‘anuran ’, ‘batrachian ’]).

pet_name(‘minnie ’).
fish_name(‘nemo’).
animal(X) :- X^[‘pet’], pet_name(X).
animal(X) :- X^[‘fish’], fish_name(X).

The combining function fL is supposed to find and return a WordNet synset compatible with both labels. So, if
ℓ1 = ‘pet’ and ℓ2 = ‘domestic cat’, the new generated label ℓ3 is [‘cat’, ‘domestic cat’, ‘pet’, ‘mammal’].
The compatibility function fC in this scenario is always true, since any animal name is considered compatible
with any animal group.
In order to show the construction of TP , let us consider the interpretation I0 = ∅. Then, the subsequent step I1
can be computed as:

I1 = TP (I0) =
{
⟨pet name(‘minnie’), [⋄]⟩, ⟨fish name(‘nemo’)[⋄]⟩

}
Now, let us apply TP to I1 to compute I2:

I2 = TP (I1) = I1 ∪
{

⟨animal(‘minnie’), [[‘dog’, ‘domestic dog’, ‘canis’, ‘pet’, ‘mammal’]]⟩,
⟨animal(‘minnie’), [[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal’]]⟩,
⟨animal(‘nemo’), [[‘fish’, ‘aquatic vertebrates’, ‘vertebrate’]]⟩

}
which is also the least fixpoint of TP .

We prove that TP , if applied bottom-up starting from the empty interpretation, always leads to a
minimum fixpoint (Corollary 3.5). Such an interpretation is the denotational semantics of the program
P . In order to achieve that result, we need to prove that TP is monotonic and continuous, and use the
Knaster-Tarksi and Kleene’s fixpoint theorems (Proposition 3.4).

In order to be a model, an interpretation should satisfy the meaning of every rule—namely, if for
a given valuation of the variables the body is considered true by the interpretation, then the head must
also be true. We state this property formally:

Definition 3.3. An interpretation I is a model of a program P if, for each rule r = p(x̃)← Λx̃ , b1, . . . , bn
of P and each valuation v of the variables in r on H (let us denote with t̃ = v(x̃)), it holds that if

• for i = 1, . . . , n there are ⟨v(bi), ℓ̃i⟩ ∈ I

• such that X |= fC(v(bi), ℓ̃i) and

• X |= Λt̃

then it holds that
〈
p(t̃), f̃L

(
r,Λt̃, ℓ̃1, · · · , ℓ̃n

)〉
∈ I .

Proposition 3.4. Given a LVLP program P and a LVLP domain X , TP is (1) monotonic and (2)
(upward) continuous, and (3) TP (I) ⊆ I iff I is a model of P .

Proof:
(1) Let I and J be two interpretations such that I ⊆ J . We need to prove that TP (I) ⊆ TP (J). If
a = ⟨ p(t̃), ℓ̃ ⟩ ∈ TP (I), there are a clause r ∈ P , a valuation v on H for the variables in r and n
elements ⟨v(bi), ℓ̃i⟩ ∈ I satisfying the remaining conditions. Since I ⊆ J , they belong to J as well:
so, a ∈ TP (J).

(2) Let us consider a chain of interpretations I0 ⊆ I1 ⊆ . . . : we need to prove that TP

(⋃∞
k=0 Ik

)
=⋃∞

k=0 TP (Ik).
(⊆) Let a = ⟨ p(t̃), ℓ̃ ⟩ ∈ TP

(⋃∞
i=0 Ik

)
. Thus, there are a clause r ∈ P , a valuation v on H for the

variables in r, and n elements ⟨v(bi), ℓ̃i⟩ ∈
⋃∞

k=0 Ik satisfying the remaining conditions. This means
that there are j1, . . . , jn such that for i = 1, . . . , n ⟨v(bi), ℓ̃i⟩ ∈ Iji . Now let j = max{j1, . . . , jn}:
since I0 ⊆ I1 ⊆ · · · ⊆ Ij , all ⟨v(bi), ℓ̃i⟩ ∈ Ij . Thus a ∈ TP (Ij+1) and henceforth a ∈

⋃∞
k=0 TP (Ik).

(⊇) Let a = ⟨ p(t̃), ℓ̃ ⟩ ∈
⋃∞

k=0 TP (Ik). This means that there is j such that a ∈ TP (Ij). Then, due to
monotonicity, a ∈ TP

(⋃∞
k=0 Ik

)
.

(3) Let TP (I) ⊆ I and let r = p(x̃) ← Λx̃ , b1, . . . , bn be a generic clause of P , and v be a generic
valuation on H of all the variables of r. If we assume that ⟨v(bi), ℓ̃i⟩ ∈ I for i = 1, . . . , n, and that
X |= fC(v(bi), ℓ̃i) and X |= Λt̃, then the pair h = v(p(x̃), ℓ̃) ∈ TP (I) by definition of TP—and ℓ̃ is
the same of the definition of model. Since TP (I) ⊆ I then h ∈ I , therefore (since r and v are chosen
in general) I is a model of P .

On the other hand, if I is a model of P we prove that TP (I) ⊆ I . Let a = ⟨ p(t̃), ℓ̃ ⟩ ∈ TP (I).
This means that there is a rule r = p(x̃)← Λx̃ , b1, . . . , bn of P and a valuation v of the variables in r
on H such that for i = 1, . . . , n there are

(
v(bi), ℓ̃i

)
∈ I and X |= Λt̃ and ℓ̃ = f̃L

(
r,Λt̃, ℓ̃1, · · · , ℓ̃n

)
),

such that X |= fC(v(bi), ℓ̃i). Since I is a model and X |= fC(v(bi), ℓ̃i) then a ∈ I . ⊓⊔

Let TP ↑ ω be defined as usual: TP ↑ ω =
⋃
{TP ↑ k : k ≥ 0}, where TP ↑ 0 = ∅ and

TP ↑ (n+ 1) = TP (TP ↑ n). Then

Corollary 3.5. TP has a least fixpoint.

Proof:
Being TP monotonic, the Knaster-Tarksi theorem ensures that it admits a least (and a greatest) fixpoint.
Being (upward) continuous, Kleene’s fixpoint Theorem states that TP ↑ ω is the least fixpoint. ⊓⊔

3.2. Operational semantics

In this section we define the operational interpretation of labels. Our approach is inspired by the
methodology introduced for constraint logic programming (CLP) [23, 24, 25]: accordingly, we define
the LVLP abstract state machine based on that suggested by Colmerauer for Prolog III [26]. We define
a labelled-machine state σ as the triplet:

σ = ⟨t0 t1...tn,W,Λ⟩

in which t0 t1...tn is the list of terms (goals), W is the current list of variable bindings, Λ is the current
labelling on W .

An inference step for the machine consists of making a transition from the state σ to a state σ′ by
applying a program rule. If m ≥ 0 and Λ′ is a set of labelled variables, a program rule

s0 ← Λ′, s1, s2, . . . , sm

is applicable if the following conditions hold:

• ∃mgu θ such that θ(t0) = θ(s0), and

• f̃θL(Λ, θ(Λ
′)) ̸= ∅

Function f̃θL is a generalisation of fL taking as arguments two labellings. If xi occurs in both Λ
and θ(Λ′) with labels ℓ and ℓ′, ℓ′′ = fL(ℓ, ℓ

′) is first calculated, then the labelled variable ⟨xi, ℓ′′⟩ is
returned, provided that fC(θ(xi), ℓ′′) = true; otherwise, false is returned. Thus the new state becomes:

σ′ = ⟨θ(s1, . . . , sm, t1, . . . , tn),W
′ = W ◦ θ,Λ′′ = f̃θL(Λ, θ(Λ

′))⟩

where ◦ applies the classical composition of substitutions.
A solution is found when a final state is reached. The final state has the form:

σf = (ϵ,Wf ,Λf)

where ϵ is the empty sequence, Wf is the final list of variables and bindings, and Λf is the correspond-
ing labelling. A sequence of applications of inference steps is said to be a derivation. A derivation is
successful if it ends in a final state, or failing if it ends in a non-final state where no further inference
step is possible.

Proposition 3.6. Let p(x̃) be an atom, v a valuation on H such that v(x̃) = t̃ where t̃ are ground
terms, and ℓ̃ a list of labels. Then there is a successful derivation for ⟨p(t̃), v, ⟨v(x̃), ℓ̃⟩⟩ iff ⟨p(t̃), ℓ̃⟩ ∈
TP ↑ ω.

Proof:
In the following we omit some standard details for the sake of brevity, please refer to, e.g., [25]

(→). We prove the proposition by induction on the length k of the derivation. If k = 0 the result holds
trivially.

For the inductive case, let us suppose that there is a successful derivation for ⟨p(t̃), v, ⟨v(x̃), ℓ̃⟩⟩
of k + 1 steps. Let us focus on the first step: there is a rule r: s0 ← Λ′, s1, s2, . . . , sm such that
θ(p(t̃)) = θ(s0) leading to the new state σ = ⟨θ(s1, s2, . . . , sm), v ◦ θ,Λ′′ = f̃θL(Λ, θ(Λ

′)⟩, where
fC(Λ

′′) = true, that admits a successful derivation of k steps.
Consider now the states σ1, . . . , σm defined as σi = ⟨θ(si), v ◦ θ,Λ′′

i ⟩ where Λ′′
i is the restriction

of Λ′′ to the variables in si. Since σ admits a successful derivation of k+1 steps, each σi should admit
a successful derivation of at most k steps.

If for all i ∈ {1, . . . ,m}, θ(si) is ground, then, by inductive hypothesis we have that ⟨θ(si), ℓi⟩ ∈
TP ↑ ω where ℓi = π2(Λ

′′
i), and hence that there are his such that ⟨θ(si), ℓi⟩ ∈ TP ↑ hi. Since

Tp is monotonic, all of them belong to TP ↑ h where h = maxi=1,...,m hi. Then, by applying TP

considering the rule r, since we already know that Λ′′ = f̃θL(Λ, θ(Λ
′)), and fC(Λ

′′) = true, we have
that ⟨p(t̃), ℓ̃⟩ ∈ TP ↑ h+ 1, hence to TP ↑ ω.

If for some i, θ(si) is not ground, the above property holds for any ground instantiation of the
remaining variables and again the results follows.

(←). Now, let us analyse the converse direction. If ⟨p(t̃), ℓ̃⟩ ∈ TP ↑ ω this means that there is a k ≥ 0
such that ⟨p(t̃), ℓ̃⟩ ∈ TP ↑ k.

Let us prove by induction on k. Again, if k = 0 the result holds trivially. Let us suppose now that
⟨p(t̃), ℓ̃⟩ ∈ TP ↑ k+1. This means (by definition of TP) that there is a rule r: s0 ← Λ′, s1, s2, . . . , sm
such that s0 = p(x̃) and there is a valuation u on H such that u(s0) = p(t̃) and that, in particular,
⟨s1, ℓ1⟩, . . . , ⟨sm, ℓm⟩ ∈ TP ↑ k (and fL can be computed and fC is true on these arguments). By
inductive hypothesis, for i ∈ {1, . . . ,m} there is a derivation, say, of hi steps for σi = ⟨u(si), v ◦
u, ⟨u(si), ℓi⟩⟩

Since fC is true on such arguments and fL can be computed, the same holds for TP : so, we have
a derivation of

∑m
i=1 hi + 1 steps for ⟨p(t̃), v ◦ u ◦ θ, ⟨t̃, ℓ̃⟩⟩.

This completes the proof of the inductive step. ⊓⊔

4. Meta-interpreter

Listing 1. The LVLP meta-interpreter: the solve/3 predicate.
%%%% solve(+Goals , +LVarsIn , -LVarsOut)
%% Goals is the list of goals to solve
%% LVarsIn is the labelling on goals variables
%% LVarsOut is the final labelling on output variables
% termination condition
solve([], LVars , LVars) :- !. % for efficiency
% goal iterator
solve([Goal|Goals], LVarsIn , LVarsOut):- !,

solve(Goal , LVarsIn , LVarsTempOut),
solve(Goals , LVarsTempOut , LVarsOut).

% solve core
solve(Goal , LVarsIn , LVarsOut):-

clause(Goal , LVars , Body),
mergeLabels(LVarsIn , LVars , LVarsTempOut),
solve(Body , LVarsTempOut , LVarsOut).

Listing 2. The LVLP meta-interpreter: the mergeLabels/3 predicate.
%%%% mergeLabels (+LVars1 , +LVars2 , -LVars3)
%% LVars1 , LVars2 , LVars3 are lists of labelled variables
%% LVars3 is obtained merging the labelled variables in LVars1 and LVars2
%% LVars1 and LVars2 are sorted according to the same criterion--e.g., alphabetically
%% For all the variables that appear both in LVars1 and LVars2 , the resulting label
%% is obtained using the combining function embedded in label_generate /3
% termination conditions
mergeLabels(LVars , [], LVars) :- !.
mergeLabels ([], LVars , LVars) :- !.
% variable Var1 propagation in LVars3 if it is contained only in LVars1
mergeLabels ([Var1^L1|LVars1], LVars2 , [Var1^L1|LVars3]):-

not_in(Var1 ,LVars2), !,
mergeLabels(LVars1 , LVars2 , LVars3).

% variable Var2 propagation in LVars3 if it is contained only in LVars2
mergeLabels(LVars1 , [Var2^L2|LVars2], [Var2^L2|LVars3]):-

not_in(Var2 ,LVars1), !,
mergeLabels(LVars1 , LVars2 , LVars3).

% generation of a new label if variable Var is contained both in LVars1 and LVars2
mergeLabels ([Var^L1|LVars1], [Var^L2|LVars2], [Var^L3|LVars3]):-

label_generate(L1 , L2, L3),
mergeLabels(LVars1 , LVars2 , LVars3).

% utility func not_in (+Var , +LVars) checks if the list LVars does not contain Var

not_in(_,[]).
not_in(X,[Y^_|_]) :- !, fail.
not_in(X,[_|T]) :- not_in(X,T).

The operational semantics of LVLP is captured by the meta-interpreter shown in Listing 1: the
code is developed in tuProlog [27], a light-weight Prolog system whose (Java-based) design inherently
enables the injection of Prolog programs within pervasive systems, as well as their integration with
diverse programming languages and paradigms, over computing platforms of any sort [20].

The solve/3 predicate1 has three arguments (Listing 1), namely:

• the list of the goals to be processed

• the current labelling

• the new labelling updated by the goal resolution process

The solve/3 predicate recursively calls itself to process the goal list, and exploits clause/3 and
mergeLabels/3 to, respectively, handle single goals and combine labels: in particular, clause/3
finds a clause in the database whose head matches with Goal and returns both the Body of the clause
and the labelling in the selected clause, LVars.

The core of the meta-interpreter is embedded in the mergeLabels/3 predicate (detailed in Listing
2), which combines two sets of labels – the previous labelling, LVarsIn, and the labelling introduced
by the current clause, LVars – into the new LVarsTempOut, or fails if no solution can be found. The
generation of the new label is performed via the label generate/3 predicate, which embeds the
combining function fL, and is provided by the user according to the domain-specific features of the
application scenario.

5. Case studies

In the following we discuss some LVLP computations based on our prototype rooted in Labelled
tuProlog [29], which exploits the meta-interpreter presented in Section 4—available on Bitbucket
[30].

5.1. WordNet network

This example extends and implements the case study of Example 3.2. A label is a network of re-
lated words describing the semantic net of the object represented by the associated variable according
to the WordNet lexical database [22]. The listing in Figure 1 shows the tuProlog implementation of
the label generate/3 predicate embedding the combining function fL. Here, the label generate

predicate checks if ℓ1 and ℓ2 are contained in a common wordnet fact.
Following our prototype syntax, X^label is a labelled variable denoting a logic variable X labelled

with label—where label is a term in the set of admissible labels defined by the user. In an LVLP
clause, the list of the labelled variables precedes the remaining part of the body. So, given the program:

wordnet_fact ([‘dog’,‘domestic dog’,‘canis’,‘pet’,‘mammal ’,‘vertebrate ’]).
wordnet_fact ([‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’]).
wordnet_fact ([‘fish’, ‘aquatic vertebrates ’, ‘vertebrate ’]).
wordnet_fact ([‘frog’, ‘toad’, ‘anuran ’, ‘batrachian ’]).
animal(X) :- X^[‘pet’], X = ‘minnie ’.

1solve/3 is designed according to the standard Prolog meta-interpreter [28]

animal(X) :- X^[‘fish’], X = ‘nemo’.
animal(X) :- X^[‘cat’], X = ‘molly ’.
animal(X) :- X^[‘dog’], X = ‘frida ’.
animal(X) :- X^[‘frog’], X = ‘cra’.

the following query, looking for a pet animal, generates four solutions:
?- X^[‘pet’], animal(X).

yes. X / ‘minnie ’
X^[‘dog’, ‘domestic dog’, ‘canis ’, ‘pet’, ‘mammal ’, ‘vertebrate ’];

yes. X / ‘minnie ’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’];

yes. X / ‘molly’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’];

yes. X / ‘frida’
X^[‘dog’, ‘domestic dog’, ‘canis ’, ‘pet’, ‘mammal ’, ‘vertebrate ’]

Looking instead for a less specific vertebrate produces five solutions:
?- X^[‘ vertebrate ’], animal(X).

yes. X = ‘minnie ’
X^[‘dog’, ‘domestic dog’, ‘canis ’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘minnie ’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘molly’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘frida’

%% label_generate (+L1, +L2, -L3) embedding f_L behaviour for WordNet groups
label_generate(L1 , L2, List):-

wordnet_fact(List), sublist(L1, List), sublist(L2 , List).

Figure 1. label generate/3 example: WordNet case study

X^[‘dog’, ‘domestic dog’, ‘canis ’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘nemo’
X^[‘fish’,‘aquatic vertebrates ’, ‘vertebrate ’]

A relevant aspect of LVLP is that labels are not subject to the single-assignment assumption: each
time two labelled variables unify, their labels are processed and combined according to the user-
defined function that embeds the desired computational model, and the resulting label is associated to
the unified variable. Thus, while the LP model per se is left untouched, diverse computational models
can be associated to it, possibly influencing the result of a logic computation by restricting the set of
admissible solutions according to each specific domain.

5.2. Dress selection

In the following example the application scenario is the selection from a wardrobe of a dress that is
“similar enough” to a given colour. A fact shirt(Description, Colour) represents a shirt of
colour Colour , expressed as a triple of the form rgb(Red,Green,Blue) in Description .

For instance, shirts in a wardrobe could be:
shirt(rgb (255 ,240 ,245) , my_pink_blouse).

shirt(rgb (255 ,222 ,173) , old_yellow_tshirt).

shirt(rgb (119 ,136 ,153) , army_tshirt).

shirt(rgb (188 ,143 ,143) , periwinkle_blouse).

shirt(rgb (255 ,245 ,238) , fashion_cream_blouse).

Without any colour constraints, the following query would return all the shirts in the wardrobe:
?- [], shirt(Description , Colour).

Instead, by defining a target colour in the goal via labelled variables, the query can be refined in
order to get only those dresses whose dress colour is “similar enough” to the target—with similarity
embedded through a suitably-defined combining function fL.

In our example, two colours are considered as similar if their distance is below a given threshold.
Thus, during the unification of labelled variables, if the dress colour is similar to the target colour,
the returned label is dress colour (that is, the colour of the selected shirt); otherwise, the empty label
is returned, so unification fails.

As a first step, we assume that a colour c is represented as RGB (c = rgb(r, g, b)), the threshold
is ≤ 30, and the colour distance is normalised and computed as a distance in a 3D Euclidean space.
For instance, let us look for all the shirts similar to the papaya colour through the following query,
where Colour is labelled according to the papaya RGB triple (255, 239, 213):

?- Colour ^[rgb (255 ,239 ,213)] , shirt(Description , Colour).

yes. Description / my_pink_blouse , Colour / rgb (255 ,240 ,245)
Colour ^[rgb (255 ,239 ,213)];

yes. Description / old_yellow_tshirt , Colour / rgb (255 ,222 ,173)
Colour ^[rgb (255 ,239 ,213)];

yes. Description / fashion_cream_blouse , Colour / rgb (255 ,245 ,238)
Colour ^[rgb (255 ,239 ,213)]

since the normalised distances dN are:
dN (papaya = rgb(255, 239, 213), lightpink = rgb(255, 240, 245)) = 7.25

dN (papaya = rgb(255, 239, 213), lightyellow = rgb(255, 222, 173)) = 9.84

dN (papaya = rgb(255, 239, 213), armyblue = rgb(119, 136, 153)) = 40.95

dN (papaya = rgb(255, 239, 213), periwinkle = rgb(188, 143, 143)) = 30.88

dN (papaya = rgb(255, 239, 213), creamwhite = rgb(255, 245, 238)) = 5.82

%% label_generate (+L1, +L2, -L3) embedding f_L behaviour for integer intervals
label_generate ([H1|([T1|T11])], [H2|([T2|T22])], [H3|T3]):-

((H1>H2) -> H3=H1; H3=H2), ((T1<T2) -> T3=T1; T3=T2), H3<T3.

Figure 2. label generate/3 example: numeric interval intersection

Going one step further, the label can be enriched with the neighbourhood information (i.e., the admis-
sible threshold), thus allowing the user to dynamically change the similarity criterion. For instance,
the same query as the one in Listing 5.2 could be expressed as:

?- Colour ^[rgb (255 ,239 ,213) , d = 30], shirt(Description , Colour).

whereas a stricter constraint could be imposed by the following query:
?- Colour ^[rgb (255 ,239 ,213) , d = 6], shirt(Description , Colour).

yes. Description / fashion_cream_blouse , Colour / rgb (255 ,245 ,238)
Colour ^[rgb (255 ,239 ,213) , d = 6]

Once again, while LP is left untouched, LVLP captures a parallel computation on the domain of
interest, which affects the final result.

5.3. Integer intervals

Standard domains for logic languages – including the CLP ones [23] – are also supported. For
instance, labels could be used to represent the integer interval over which the logic variable values
span: accordingly, the label syntax could take the form X^[min,max], and a simple interval program
could look like:

interval(X):- X^[-1 ,4].
interval(X):- X^[6 ,10].

The unification of two variables labelled with an interval would then result in a variable labelled with
the intersection of the intervals. Accordingly, the following simple query generates two solutions:

?- X^[2,7], interval(X).

yes.
X^[2,4] ;

yes.
X^[6,7]

However, the expressiveness of LVLP makes it possible to easily move from the domain of integer
intervals to more articulated domains, thus going beyond the reach of constraint logic languages.

For instance, the above example could be easily extended to the domain of integers with a neigh-
bourhood, as in the following program:

neighbourhood(X):- X^[-1 ,4], X=3.
neighbourhood(X):- X^[6,10], X=8.

There, constant values unify with labelled variables if they belong to the interval in the label. Accord-
ingly, the following query would result in just one solution:

?- X^[2,7], neighbourhood(X).

yes. X / 3
X^[2,4]

because the second clause would set X out of the interval specified in the query.

6. Related Work

Surveying the literature reveals a large number of diverse proposals pushing computational logic
towards distributed situated intelligence [31] in pervasive systems—to exploit domain knowledge,
understand local context, and share information in support of intelligent applications and services
[32, 33]. There, systems are expected to respond intelligently to contextual information about the
physical world acquired via sensors and information about the computational environment.

The declarative approach and the explicit knowledge representation of LP enable knowledge shar-
ing at the most adequate level of abstraction while supporting modularity and separation of concerns
[34], which are especially valuable in open and dynamic distributed systems (serendipitous interop-
erability, [35]). As a further element, LP formal semantics naturally enables logic-based intelligent
agents to reason and infer new information.

Many languages extension have been proposed in order to allow intelligent agents to interact with
the environments and deal with specific situation, highlighting the benefits of LP for reasoning in per-
vasive systems. XLOG [36] is a hybrid programming environment where predicate logic is integrated
into an object-oriented computational model, specially adequate for working with reactive agents to
enable the principles of emergence and situatedness. Along this line, CIFF [37] is a system implement-
ing a novel extension of Fung and Kowalski’s IFF abductive proof procedure [38] aimed at building
intelligent agents that can construct plans and react to changes in the environment. The proposed
solution improves on more conventional abductive theories for planning by adding the possibility to
interact with the environment, by observing environment properties as well as actions executed by
other agents, thus enhancing agent situatedness.

Moreover, many researches exploit LP extensions to model context and situations. In the works
by Ranganathan and Campbell [39] and Katsiri and Mycroft [40], first-order logic (FOL) is used for
representing and reasoning with context, whereas Henricksen [41] exploits FOL to describe and reason
with situations. On the other hand, the above approach do not adopt a modular approach or meta-
reasoning as in [42], where an extension of Prolog (LogicCAP) is presented: the notion of situation

program is introduced, thus highlighting the primacy of the situation issue for building context-aware
pervasive systems.

Orthogonally, Labelled Deductive Systems (LDS) have been proposed for providing logics from
different families with a uniform presentation of their derivability relations and semantic entailments
to deal with domain-specific situations [3]. The main idea there is to provide a new unifying method-
ology, replacing the traditional view of logic, manipulating sets of formulas by the notion of structured
families of labelled formulas. Detailed investigations have been undertaken to explore the benefits of
using the LDS methodology to reformulate intuitionistic modal logics [43] and substructural logics
[44, 45]. Specialised frameworks based on LDS have been also proposed [46, 47, 48]. Among the
others, the Compiled Labelled Deductive Systems (CLDS) approach demonstrated how LDS tech-
niques facilitate the reformulation and generalisation of a large class of modal logics and conditional
logics [48, 49].

Our work builds upon the general notion of label as defined by Gabbay [3], and adopts the tech-
niques introduced by Holzbaur [4] to develop a generalisation of LP where labels are exploited to
define computations in domain-specific contexts. Our characterisation can be viewed as a generalisa-
tion of the aforementioned approaches, blending the benefits of labels and LP so as to enable the very
intrinsic nature of distributed situated intelligence. Indeed, LVLP allows heterogeneous devices in the
IoT to have specific application goals and manage specific sorts of information, enabling reactivity to
environment change while capturing diverse logic and domains.

7. Conclusions & Future Work

The primary results of this paper is the definition of the LVLP theoretical framework, where different
domain-specific computational models can be expressed via labelled variables, capturing suitably-
tailored labelled models. The framework is aimed at extending LP to face the challenges of today per-
vasive systems, by providing the models and technologies required to effectively support distributed
situated intelligence, while preserving the features of declarative programming. We present the fix-
point and operational semantics, discuss correctness, completeness, and equivalence, and test the ef-
fectiveness of our approach through some case studies.

While the first LVLP prototype [29] is currently implemented over tuProlog [27] via the described
meta-interpreter, the full integration of the LVLP model in the tuProlog code is currently in advanced
stage of development.

The next stage is represented by the design and implementation of a full-fledged logic-based mid-
dleware for LVLP, which could be exploited to test the effectiveness of LVLP in real-world pervasive
intelligence scenarios. As far as the formal aspects are concerned, future work will be devoted to
deeper exploration and better understanding of the consequences of applying labels to formulas, as
suggested by Gabbay [3]. Other research lines will possibly include the application of the LVLP
framework to different scenarios and approaches—such as probabilistic LP [9], the many CLP ap-
proaches [23], distributed ASP reasoning [50], and action languages [51].

References

[1] Mariani S, Omicini A. Coordinating activities and change: An event-driven architecture
for situated MAS. Engineering Applications of Artificial Intelligence. 2015 May;41:298–309.
doi:10.1016/j.engappai.2014.10.006.

[2] Maes P. Situated agents can have goals. Robotics and Autonomous Systems. 1990;6(1):49–70.
doi:10.1016/S0921-8890(05)80028-4.

[3] Gabbay DM. Labelled Deductive Systems, Volume 1. vol. 33 of Oxford Logic Guides.
Clarendon Press; 1996. Available from: http://global.oup.com/academic/product/

labelled-deductive-systems-9780198538332.

[4] Holzbaur C. Metastructures vs. attributed variables in the context of extensible unification. In: Bruynooghe
M, Wirsing M, editors. Programming Language Implementation and Logic Programming. vol. 631 of
Lecture Notes in Computer Science. Springer; 1992. p. 260–268. doi:10.1007/3-540-55844-6 141.

[5] Calegari R, Denti E, Dovier A, Omicini A. Labelled Variables in Logic Programming: Foundations. In:
Fiorentini C, Momigliano A, editors. CILC 2016 – Italian Conference on Computational Logic. Proceed-
ings of the 31st Italian Conference on Computational Logic. vol. 1645 of CEUR Workshop Proceedings.
Milano, Italy; 2016. p. 5–20. Available from: http://ceur-ws.org/Vol-1645/paper_7.pdf.

[6] Alsinet T, Chesñevar CI, Godo L, Simari GR. A logic programming framework for possibilistic ar-
gumentation: formalization and logical properties. Fuzzy Sets and Systems. 2008;159(10):1208–1228.
doi:10.1016/j.fss.2007.12.013.

[7] Barany V, ten Cate B, Kimelfeld B, Olteanu D, Vagena Z. Declarative Probabilistic Programming with
Datalog. In: Martens W, Zeume T, editors. 19th International Conference on Database Theory (ICDT
2016). vol. 48 of Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik; 2016. p. 7:1–7:19. doi:10.4230/LIPIcs.ICDT.2016.7.

[8] Russo A. Generalising Propositional Modal Logic Using Labelled Deductive Systems. In: Baader F,
Schulz KU, editors. Frontiers of Combining Systems. vol. 3 of Applied Logic Series. Springer; 1996. p.
57–73. doi:10.1007/978-94-009-0349-4 2.

[9] Skarlatidis A, Artikis A, Filippou J, Paliouras G. A Probabilistic Logic Programming Event Calculus.
Theory and Practice of Logic Programming. 2015 Mar;15(2):213–245. Special Issue on Probability, Logic
and Learning. doi:10.1017/S1471068413000690.

[10] Hofstedt P. Multiparadigm Constraint Programming Languages. Cognitive Technologies. Springer; 2011.
doi:10.1007/978-3-642-17330-1.

[11] Kifer M, Subrahmanian VS. Theory of generalized annotated logic programming and its applications. The
Journal of Logic Programming. 1992 Apr;12(4):335—367. doi:10.1016/0743-1066(92)90007-P.

[12] Kowalski R. Logic Programming. In: Mason REA, editor. Information Processing 83, Proceedings of
the IFIP 9th World Computer Congress, Paris, France, September 19-23. North-Holland/IFIP; 1983. p.
133–145.

[13] Bramer M. Logic Programming with Prolog. 2nd ed. Springer; 2013. doi:10.1007/978-1-4471-5487-7.

[14] Castelfranchi C. Modelling social action for AI agents. Artificial Intelligence. 1998 Aug;103(1-2):157–
182. doi:10.1016/S0004-3702(98)00056-3.

[15] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation Computer Systems. 2013 Sep;29(7):1645–1660.
doi:10.1016/j.future.2013.01.010.

[16] Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Computer Networks. 2010
Oct;54(15):2787–2805. doi:10.1016/j.comnet.2010.05.010.

[17] Fortino G, Guerrieri A, Russo W, Savaglio C. Integration of agent-based and Cloud Computing
for the smart objects-oriented IoT. In: IEEE 18th International Conference on Computer Sup-
ported Cooperative Work in Design (CSCWD 2014). Hsinchu, Taiwan: IEEE; 2014. p. 493–498.
doi:10.1109/CSCWD.2014.6846894.

[18] Lippi M, Mamei M, Mariani S, Zambonelli F. Coordinating Distributed Speaking Objects. In: 37th IEEE
International Conference on Distributed Computing Systems (ICDCS 2017). Atlanta, GA, USA: IEEE
Computer Society; 2017. p. 1949–1960. doi:10.1109/ICDCS.2017.282.

[19] Arsénio A, Serra H, Francisco R, Nabais F, Andrade J, Serrano E. Internet of Intelligent Things: Bringing
Artificial Intelligence into Things and Communication Networks. In: Inter-cooperative Collective Intel-
ligence: Techniques and Applications. vol. 495 of Studies in Computational Intelligence. Springer; 2014.
p. 1–37. doi:10.1007/978-3-642-35016-0 1.

[20] Denti E, Omicini A, Calegari R. tuProlog: Making Prolog Ubiquitous. ALP Newsletter. 2013;Oct. Avail-
able from: http://www.cs.nmsu.edu/ALP/2013/10/tuprolog-making-prolog-ubiquitous/.

[21] Robinson JA. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM. 1965
Jan;12(1):23–41. doi:10.1145/321250.321253.

[22] Fellbaum C. WordNet(s). In: Brown K, editor. Encyclopedia of Language and Linguistics. vol. 13. 2nd
ed. Elsevier; 2006. p. 665–670.

[23] Cohen J. Constraint Logic Programming Languages. Communications of the ACM. 1990 Jul;33(7):52–68.
doi:10.1145/79204.79209.

[24] Imbert JL, Cohen J, Weeger MD. An Algorithm for Linear Constraint Solving: Its Incorporation
in a Prolog Meta-Interpreter for CLP. The Journal of Logic Programming. 1993;16(3):235–253.
doi:10.1016/0743-1066(93)90044-H.

[25] Jaffar J, Maher MJ. Constraint logic programming: a survey. The Journal of Logic Program-
ming. 1994 May–Jul;19–20, Supplement 1:503–581. Special Issue: Ten Years of Logic Programming.
doi:10.1016/0743-1066(94)90033-7.

[26] Colmerauer A. An Introduction to Prolog III. In: Lloyd JW, editor. Computational Logic. Symposium
Proceedings, Brussels, November 13/14, 1990. ESPRIT Basic Research Series. Springer; 1990. p. 37–79.
doi:10.1007/978-3-642-76274-1 2.

[27] Denti E, Omicini A, Ricci A. Multi-paradigm Java-Prolog Integration in tuProlog. Science of Computer
Programming. 2005 Aug;57(2):217–250. doi:10.1016/j.scico.2005.02.001.

[28] Sterling L, Shapiro EY, Warren DHD. The Art of Prolog. Advanced Programming Techniques. vol. 1994.
MIT Press; 1986. Available from: http://mitpress.mit.edu/books/art-prolog.

[29] Calegari R, Denti E, Omicini A. Labelled Variables in Logic Programming: A First Prototype in tuProlog.
In: Bellodi E, Bonfietti A, editors. AI*IA 2015 DC Proceedings. vol. 1485 of CEUR Workshop Pro-
ceedings. Ferrara, Italy: AI*IA; 2015. p. 25–30. Available from: http://ceur-ws.org/Vol-1485/

paper5.pdf.

[30] tuProlog. Home Page [Web Site]. Università di Bologna, Italy; 2017. Available from: http:

//tuprolog.unibo.it.

[31] Parker LE. Distributed Intelligence: Overview of the Field and its application in Multi-robot Systems.
Journal of Physical Agents. 2008;2(1):5–14. doi:10.14198/JoPha.2008.2.1.02.

[32] Chen H, Finin T, Joshi A. An Ontology for Context-Aware Pervasive Computing Environments. The
Knowledge Engineering Review. 2003 Sep;18(3):197–207. doi:10.1017/S0269888904000025.

[33] Smart P. Situating Machine Intelligence Within the Cognitive Ecology of the Internet. Minds and Ma-
chines. 2017 Jun;27(2):357–380. doi:10.1007/s11023-016-9416-z.

[34] Oliya M, Pung HK. Towards Incremental Reasoning for Context Aware Systems. In: Abraham A,
Lloret Mauri J, Buford JF, Suzuki J, Thampi SM, editors. Advances in Computing and Communications:
First International Conference, ACC 2011, Kochi, India, July 22-24, 2011. Proceedings, Part I. vol. 190 of
Communications in Computer and Information Science. Springer; 2011. p. 232–241. doi:10.1007/978-3-
642-22709-7 24.

[35] Niezen G. Ontologies for interaction: Enabling serendipitous interoperability in smart environments. Jour-
nal of Ambient Intelligence and Smart Environments. 2013 Jan;5(1):135–137. doi:10.3233/AIS-120194.

[36] Feijó B, Bento J. A logic-based environment for reactive agents in intelligent CAD systems. Advances in
Engineering Software. 1998;29(10):825–832. doi:10.1016/S0965-9978(97)00066-5.

[37] Endriss U, Mancarella P, Sadri F, Terreni G, Toni F. Abductive Logic Programming with CIFF: System
Description. In: Alferes JJ, Leite J, editors. Logics in Artificial Intelligence: 9th European Conference,
JELIA 2004, Lisbon, Portugal, September 27-30, 2004. Proceedings. vol. 3229 of Lecture Notes in Com-
puter Science. Springer; 2004. p. 680–684. doi:10.1007/978-3-540-30227-8 56.

[38] Fung TH, Kowalski R. The IFF proof procedure for abductive logic programming. The Journal of Logic
Programming. 1997;33(2):151–165. doi:10.1016/S0743-1066(97)00026-5.

[39] Ranganathan A, Campbell RH. An Infrastructure for Context-awareness Based on First Order Logic.
Personal and Ubiquitous Computing. 2003 Dec;7(6):353–364. doi:10.1007/s00779-003-0251-x.

[40] Katsiri E, Mycroft A. Knowledge-Representation and Scalable Abstract Reasoning for Sentient Comput-
ing using First-Order Logic. In: Colton S, Gow J, Sorge V, Walsh T, editors. 1st Workshop on Challenges
and Novel Applications for Automated Reasoning. CADE-19, Miami, FL, USA; 2003. p. 73–87.

[41] Henricksen K, Indulska J, Rakotonirainy A. Modeling Context Information in Pervasive Computing Sys-
tems. In: Pervasive Computing. vol. 2414 of Lecture Notes in Computer Science. Springer; 2002. p.
167–180. doi:10.1007/3-540-45866-2 14.

[42] Loke SW. Representing and reasoning with situations for context-aware pervasive computing: a
logic programming perspective. The Knowledge Engineering Review. 2004 Sep;19(3):213–233.
doi:10.1017/S0269888905000263.

[43] Sympson AK. The Proof Theory and Semantics of Intuitionistic Modal Logics [PhD Thesis]. University
of Edinburgh, UK; 1994.

[44] Broda K, Finger M, Russo A. Labelled natural deduction for substructural logics. Logic Journal of the
IGPL. 1999;7(3):283–318. doi:10.1093/jigpal/7.3.283.

[45] D’Agostino M, Gabbay DM, Broda K. Tableau Methods for Substructural Logics. In: D’Agostino M,
Gabbay DM, Hähnle R, Posegga J, editors. Handbook of Tableau Methods. Dordrecht: Springer Nether-
lands; 1999. p. 397–467. doi:10.1007/978-94-017-1754-0 7.

[46] Artosi A, Governatori G, Rotolo A. Labelled Tableaux for Nonmonotonic Reasoning: Cumu-
lative Consequence Relations. Journal of Logic and Computation. 2002 Dec;12(6):1027–1060.
doi:10.1093/logcom/12.6.1027.

[47] Blackburn P. Internalizing labelled deduction. Journal of Logic and Computation. 2000;10(1):137–168.
doi:10.1093/logcom/10.1.137.

[48] Russo AM. Modal Labelled Deductive Systems [PhD Thesis]. Department of Computing, Imperial Col-
lege London, UK; 1996.

[49] Broda K, Gabbay DM, Lamb LC, Russo A. Labelled Natural Deduction for Conditional Logics of Nor-
mality. Logic Journal of the IGPL. 2002;10(2):123–163. doi:10.1093/jigpal/10.2.123.

[50] Dovier A, Pontelli E. Present and Future Challenges for ASP Systems. In: Erdem E, Lin F, Schaub
T, editors. Logic Programming and Nonmonotonic Reasoning. 10th International Conference, LPNMR
2009, Potsdam, Germany, September 14-18, 2009. Proceedings. vol. 5753 of Lecture Notes in Computer
Science. Springer; 2009. p. 622–624. doi:10.1007/978-3-642-04238-6 70.

[51] Dovier A, Formisano A, Pontelli E. Autonomous Agents Coordination: Action Languages Meet
CLP(FD) and Linda. Theory and Practice of Logic Programming. 2013 Sep;13(2):149–173.
doi:10.1017/S1471068411000615.

	Copertina_postprint_IRIS_UNIBO
	CDDO-FI-2017

