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Abstract

We consider the Abelian longest common factor problem in two scenarios: when input strings are un-
compressed and are of size n, and when the input strings are run-length encoded and their compressed
representations have size at most m. The alphabet size is denoted by σ. For the uncompressed problem,
we show an o(n2)-time and O(n)-space algorithm in the case of σ = O(1), making a non-trivial use of
tabulation. For the RLE-compressed problem, we show two algorithms: one working in O(m2

σ
2 log3

m)
time and O(m(σ2 + log2 m)) space, which employs line sweep, and one that works in O(m3) time and
O(m) space that applies in a careful way a sliding-window-based approach. The latter improves upon the
previously known O(nm2)-time and O(m4)-time algorithms that were recently developed by Sugimoto
et al. (IWOCA 2017) and Grabowski (SPIRE 2017), respectively.

Keywords: Abelian longest common factor problem, jumbled pattern matching, run-length encoding
(RLE)

1 Introduction

Two strings are called Abelian equivalent if one of them is a permutation of the other. A string p is called
an Abelian factor of a string u if it is Abelian equivalent to one of the factors of u. Our aim in this work is
to compute the longest common Abelian factor of two strings, u and v. The longest common Abelian factor
is an approximate similarity measure of strings in the scope of so-called non-standard stringology.

The longest common Abelian factor problem is denoted here as LCAF. We also consider a version of this
problem, denoted as RLE-LCAF, in which the strings are specified by their run-length encodings (called
here RLE representations). We denote: by n the length of the strings, by m the length of their RLE
representations, and by σ the size of the alphabet.

1.1 Previous Results

Related Abelian stringology problems The best studied problem in Abelian stringology is the jumbled
indexing problem. In this problem we are to index a text to support queries asking if a given string is an
Abelian factor of the text. The query string is represented as a Parikh vector which stores the number
of occurrences of each letter from the alphabet in the pattern. In the case of a binary alphabet Σ =
{0, 1}, Cicalese et al. [11] proposed an index with O(n) size and O(1) query time and gave an O(n2)-time
construction algorithm for the index. The key observation behind their index is that it suffices to store, for
every query length ℓ, the minimum and maximum number of ones in a factor of length ℓ of the text.
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After a series of works of Burcsi et al. [8, 9] and Moosa and Rahman [22, 23], the construction of a

binary jumbled index was improved to O( n2

(log n)2 ). Furthermore, Hermelin et al. [18] reduced binary jumbled

indexing to all-pairs shortest paths problem and obtained preprocessing time of O( n2

2Ω((log n/ log log n)0.5)
) (a

similar reduction was shown by Bremner at el. [7]). Finally, Chan and Lewenstein [10] used techniques from
additive combinatorics to improve the construction time of the binary index to O(n1.859). Subquadratic-time
and space constructions of a jumbled index for any constant-sized alphabet were proposed in [19, 10].

Binary jumbled indexing was also considered in the case that the text is given as its RLE representation
of length m. Constructions of the index working in O(n+m2 logm) time [3, 4] and in O(n+m2) time [13, 14]
were proposed.

As for other Abelian stringology problems, subquadratic-time algorithms for computing Abelian squares,
Abelian periods, Abelian runs, Abelian covers, and Abelian borders over a constant-sized alphabet were
designed in [20, 21]. Computation of Abelian borders, Abelian periods, and Abelian squares on strings
specified by their RLE representations was considered in [3, 24].

Longest common Abelian factor In the special case of a binary alphabet, the LCAF problem reduces
in linear time to binary jumbled indexing [2]. Indeed, it suffices to construct jumbled indexes of each of the
strings and then to check, for each length ℓ, if both strings contain an Abelian factor of length ℓ containing
the same number of ones. Thus binary LCAF can be solved in O(n1.859) time using using the best known
jumbled index [10]. Moreover, binary RLE-LCAF can be solved in O(n + m2) time and O(n) space by
applying an efficient binary jumbled index for an RLE representation of the text [13, 14].

Over a general alphabet, for the LCAF problem the fastest known algorithms work in O(n2σ) time and
O(n) space, and in O(n2 log2 n log∗ n) time and O(n log2 n) space [5].

Known solutions for the RLE-LCAF problem (for arbitrary σ) work in O(nm2) [24], in O(m4), and in
O(n3/2σ

√
m logn) (provided that m = O(n/ logn)) time [15], respectively.

1.2 Our results

We first consider the LCAF problem when σ is O(1). Although subquadratic-time (and sometimes even
O(n2−ε)-time) algorithms are known for many Abelian stringology problems in the case of a constant-sized
alphabet, no such algorithm was previously developed for the longest common Abelian factor problem.
Moreover, the reduction to the jumbled indexing problem does not work for alphabet size σ > 2. We
present the first o(n2)-time algorithms for LCAF with any σ = O(1). We first describe algorithms that

work in O(n2/ log1/σ n) time and O(n(log logn)2/ logn) time, and then combine both techniques to obtain

O(n2/ log1+1/σ n) time complexity. Our algorithms work in O(n) space. This approach is described in
Section 3.

In Section 4 we show a reduction of RLE-LCAF to a problem of intersecting rectangles in Z
σ. This allows

us to develop two solutions to RLA-LCAF, that work in:

• O(m2σ2 log3 m) time and O(m(σ2 + log2 m)) space (see Section 5), and

• O(m3) time and O(m) space (see Section 6).

The latter improves upon the time complexities of the algorithms of Sugimoto et al. [24] (O(nm2)) and
Grabowski [15] (O(m4)). In the case of constant σ, we obtain the following improved versions of the former:

• in O(m2
√
log logm) time in expectation or O(m2 log logm) time deterministically and O(m) space for

σ = 2, and

• in O(m2 log2 m) time and O(m logm) space for σ = 3.
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2 Preliminaries

We assume that the symbols of a string are numbered starting from 1. A factor of string u spanning from
position i to position j (inclusive) will be denoted as u[i . . . j]. The string u is a concatenation of symbols
over an alphabet Σ = {1, 2, . . . , σ}. The concatenation of two strings, u and v, is denoted as uv. By P(u)
we denote the Parikh vector of a string u. It is defined as a vector (array) of size σ storing the number of
occurrences of each alphabet symbol in u. Formally, P(u)[c] = k iff |{i : u[i] = c}| = k, for any alphabet
symbol c. Two Parikh vectors are equal when the equality of corresponding counters holds for all symbols
from Σ. We also define P(u) to be the family of Parikh vectors of all factors of u. Recall that our task is to
find a vector P ∈ P(s) ∩P(t) maximizing ‖P‖ℓ1 .

The run-length encoding (RLE) representation of string u of length n is a sequence of m non-empty
substrings ui, 1 ≤ i ≤ m, such that u = u1u2 . . . um, the number of distinct alphabet symbols in each ui is
one, and the number of distinct symbols in every concatenation uiui+1 is two. It is trivial to obtain the RLE
representation of u in O(n) time, but in the (RLE-related) algorithms presented in this work we assume that
the input strings are already RLE-compressed. The RLE representation can be stored in O(m) space. In
this work, the RLE representations of strings are denoted by capital letters.

The notation u ∼ v tells that the strings u and v are Abelian equivalent. We say that string p is an
Abelian factor of string u if there exist indices i and j such that u[i . . . j] ∼ p. A common Abelian factor of
two strings, u and v, is a pair of factors u[i′ . . . j′] and v[i′′ . . . j′′] such that u[i′ . . . j′] ∼ v[i′′ . . . j′′] (obviously,
j′ − i′ = j′′ − i′′).

All logarithms considered in this work are of base 2.
Let us formally state the problems studied in this work.

Problem 1. LCAF
Input: two strings s and t over an alphabet of size σ = O(1), each of length at most n
Output: the length of the longest common Abelian factor of s and t

Problem 2. RLE-LCAF
Input: RLE representations S and T of two strings s and t over an alphabet of size σ = O(1), each
representation of length at most m and each string of length at most n
Output: the length of the longest common Abelian factor of s and t

We assume the word-RAM model with machine words of w = Θ(logn) bits.
Let Tsort(m) and Ssort(m) denote the time and space to sortm integers (in the word-RAM). Currently the

fastest randomized algorithm works in O(m2
√
log logm) time in expectation [17] and the fastest deterministic

algorithm works in O(m2 log logm) worst-case time [16]. Both algorithms require O(m) space.

3 Algorithm for LCAF over Constant-Sized Alphabet

In this section, we present three slightly subquadratic algorithms for LCAF with constant-size alphabets. In
this setting, [5, Sec. 4] gives an algorithm with O(n2) time and O(n) space.

The input consists in two strings, s and t, of total length n, with symbols over an alphabet Σ of size
σ = O(1). We assume that the symbols of s and t are packed into O(n log σ/w) machine words so that any
O(w/ log σ) consecutive characters can be retrieved in constant time.

We start by introducing the subdivision of the space Z
σ into cells, which is the main concept common

to our algorithms. Next, in Section 3.2, we present a simple solution running in O(n2/ log1/σ n) time, which

is improved to O((n log logn)2/ logn) in Section 3.3. Finally, in Section 3.4, we derive an O(n2/ log1+1/σ n)
bound on the running time. For super-constant alphabet size σ, the time complexities of the first two
algorithms increase by factors polynomial in σ (which we analyze in detail), while for the last solution the
extra factor is exponential in σ (and we omit the detailed analysis).
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3.1 Orthogonal Cells in Z
σ

Note that P(x) ⊆ Z
σ; the key tool in our algorithms is a subdivision of Zσ into orthogonal cells. For a vector

P = (p1, . . . , pσ) and a positive integer b, we define

⌊P/b⌋ = (⌊p1/b⌋, . . . , ⌊pσ/b⌋) and P mod b = (p1 mod b, . . . , pσ mod b).

We define cells (of side length b) as equivalence classes with respect to the mapping P  ⌊P/b⌋. The family
of all such cells is denoted by Cellsb, and cellb : Z

σ → Cellsb is the canonical projection. In the algorithms, a
cell C ∈ Cellsb is identified by the value ⌊P/b⌋ common to all P ∈ C, and any vector P ∈ C is identified by
P mod b.

3.2 O(n2/ log1/σ n) time

Our solution uses a parameter b ≥ σ, whose value will be settled later. We process the strings s and t in
O(n/b) stages ; each stage is responsible for factors of length within a range R of size |R| ≤ b. In other words,
our task is to find the maximum common Abelian factor of s and t whose length belongs to R or to certify
that there is no such common Abelian factor.

The main mechanism used by our algorithm is a simple bucketing: for each considered factor u, its
Parikh vector P(u) will be inserted into a bucket corresponding to the cell cellb(P(u)). Then, we shall scan
all non-empty buckets in search of a vector inserted both as an Abelian factor of s and of t.

In the first solution, we store the contents of each bucket simply as a bitmask of size bσ (equal to the cell

size). We require that bσ ≤ w = Θ(logn), which implies b = O(log1/σ n). As a result of processing s, for
each cell C we shall guarantee that in the corresponding bucket the bit representing Q ∈ {0, . . . , b − 1}σ is
set if and only if s contains a factor u with |u| ∈ R, cellb(P(u)) = C, and P(u) mod b = Q. The other string
t is handled in the same way; for clarity, below we discuss processing s only.

First, we scan s in order to construct a list of O(nσ) requests to insert certain vectors to certain buckets.
A single request consists of bucket’s identifier and a bitmask representing Parikh vectors to be inserted
there. There might be many requests concerning the same bucket, but we shall make sure that after all these
insertions are performed, the contents of each bucket are as specified above.

In the j-th step, we consider all factors u (with |u| ∈ R) starting at position j, and our aim is to
create insertion requests responsible for their Parikh vectors. Let these factors be u(0), . . . , u(b′) (ordered by
increasing lengths) for 0 ≤ b′ < b, and let B(i) = ⌊P(u(i))/b⌋. Note that for each coordinate d, we have

B(0)[d] ≤ · · · ≤ B(b′−1)[d] ≤ B(0)[d] + 1.

Consequently, the sequence B(0), . . . , B(b′) consists of at most σ + 1 distinct cells.
Furthermore, we note that the shift B(i) −B(0) and the vector P(u(i)) mod b depend only on the vector

P(u(0)) mod b and the last characters of u(1), . . . , u(b′). Therefore, we can build a lookup table whose keys
consist of

(a) a vector Q ∈ {0, . . . , b− 1}σ, corresponding to P(u(0)) mod b, and

(b) up to b− 1 symbols c1, . . . , cb′ , corresponding to the last characters of u(1), . . . , u(b′).

As the values, we store up to σ+1 insertion requests to buckets, with cell identifiers stored relative to B(0).
The key size is thus O(σ · log b + (b − 1) · log σ) = O(b log σ) = o(logn) bits, while the value contains O(σ)
machine words. Hence, the lookup table can be constructed in o(nσ) time (and it can be used across all
stages).

In the j-th step, we retrieve the necessary insertion requests from the lookup table and we add B(0) to shift
the cell identifiers. As a result, the pass over s produces O(nσ) insertion requests to buckets, representing
the Parikh vectors of all substrings u of s with |u| ∈ R. The string t is processed analogously.

Recall that our task is to decide if the requests from s and t contain a common entry. To verify this, we
group the requests by the cell identifiers and process each cell independently. A single cell identifier takes
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O(σ logn) bits and there are O(nσ) requests to be grouped, so this process can be implemented in O(nσ2)
time using radix sort.

For each cell, we build the corresponding buckets, separately for s and t. A single request is handled in
constant time with a simple bitwise-OR operation on two machine words.

After that, to check if the two buckets contain a common entry, we perform a bitwise-AND operation on
the two bitmasks. When the result of this operation is non-zero, we find in constant time (e.g., using another
lookup table) a set bit representing a Parikh vector with maximum ℓ1 norm (as our goal is obviously to find
the longest common Abelian factor).

The total running time of the presented algorithm is O(n2σ2/b) = O((nσ)2/ log1/σ n) and the space
consumption is O(nσ2) words.

3.3 O(n(log log n)2/ logn) time

Recall that the cell size is bσ. Hence, its elements can be represented using log(bσ) = σ log b bits each. In
this solution, we change the bucket representation to a packed list (see [19, Fact 5.1]), which is simply a
concatenation of the (σ log b)-bit integers representing its contents (possibly with repetitions).

We also use this representation in the insertion requests stored in the lookup table. The key size is still
O(b log σ) bits, while the value size is now O(σ2 + b · σ log b) = O(σb log b) bits. We take b = o(log n/ logσ)
to make sure that the table size and construction time are o(nσ).

The total size of all O(nσ) requests constructed in a single stage is now O(nbσ log b) bits. As each bucket
is represented using a packed list, concatenation is used to create a packed list representing it (with entries
coming from one or more requests).

To answer LCAF, for each cell (with non-empty buckets) we need to check if the buckets constructed for
s and t contain a common entry. To this end, we use Lemma 5.3 from [19], which lets us compute for a given
packed list the FirstOcc bitmask, which marks positions where each entry occurs for the first time in the
packed list. We construct FirstOcc bitmasks F1 and F2 for the packed lists representing the two buckets,
and a bitmask F3 for the concatenation of those two lists. Finally, we observe that the buckets have no
element in common if and only if F3 = F1F2.

Let us now analyze the time and space complexity of the described variant. In a single stage, we have
O(nσ) packed lists with O(nb) entries in total, and the universe size is N = bσ. By [19, Lemma 5.3],
the FirstOcc bitmasks can be computed in O(nσ + nb log2(bσ)/w) = O(nσ + nbσ2 log2 b/w) time, while
the space complexity is O(nσ + nσb log b/w) words. Across all stages, the overall running time becomes
O(n2σ2/b + n2σ2 log2 b/w), whereas the space consumption is O(nσ2 + nσb log b/w) words. Setting b =
Θ(logn/ log logn), we obtain the promised O((nσ log logn)2/ logn) time using O(nσ2) words of space.

3.4 O(n2/ log1+1/σ n) time

In our final solution, instead of using a single partition of Zσ into cells, we recursively subdivide Z
σ into

cells of smaller and smaller side length. For each cell C, we solve the LCAF problem restricted to C, i.e.,
we find a vector P ∈ C ∩P(s) ∩P(t) maximizing ‖P‖ℓ1. Depending on the side length b and the size of the
corresponding buckets, we either solve this task directly, or we partition C into 2σ smaller cells and recurse
on each of them.

Our main improvement compared to Section 3.3 is a more space-efficient encoding of PC(v) := C ∩P(v)
for fixed C. To develop it, we also recursively subdivide N into blocks : for a parameter b, the blocks
Blocksb are consecutive intervals of length b (the last block might be shorter). For a string v and two blocks
I, J ∈ Blocksb, we define

P(I,J)(v) = {P(v[i . . . j]) : i ∈ I and j ∈ J}.

For a cell C ∈ Cellsb, we also define BlocksC(v) as the set of all pairs (I, J) ∈ Blocks
2
b such that C intersects

the bounding box of P(I,J)(v).
Let us fix C ∈ Cellsb and a string v. For any ([i . . . i′], [j . . . j′]) = (I, J) ∈ BlocksC(v), we keep C∩P(I,J)(v)

in O(b) bits as follows. We store P(v[i′ . . . j]) relative to C (which takes O(σ log b) = O(log b) bits) as well
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as the characters v[i], . . . , v[i′] and v[j], . . . , v[j′] (which take O(b log σ) = O(b) bits). The set PC(v) is then
simply kept as a concatenation of the representations of C ∩P(I,J)(v) over (I, J) ∈ BlocksC(v). The size of
this representation is O(1+ |BlocksC(v)|b/ logn) machine words. Moreover, it is easy to construct it in O(n)
time for b = n (and the block [1, . . . , n]).

To solve the problem for a cell C ∈ Cellsb, we consider three cases. If bσ < w = Θ(logn), we convert
the representations of PC(s) and PC(t) into bitmasks: we scan them word by word, use a lookup table to
convert each word into a bitmask, and combine these bitmasks with bitwise-OR. Finally, we bitwise-AND
the bitmasks obtained for s and t.

On the other hand, if PC(s) and PC(t) take logn bits in total, we use another precomputed table to
extract the answer.

In the remaining cases, we partition C into 2σ cells C′ ∈ Cellsb/2. For each such cell C′, we scan the
representation of PC(v) and construct an analogous representation of PC′(v): for each (I, J) ∈ BlocksC(v),
we consider all four pairs of blocks I ′, J ′ ∈ Blocksb/2 with I ′ ⊆ I and J ′ ⊆ J , construct the representation
of C′ ∩ P(I′,J′)(v), and append it to the representation of PC′(v) provided that (I ′, J ′) ∈ BlocksC′(v). If
b = Ω(log n), it is easy to process each pair (I, J) ∈ BlocksC(v) in O(b/ logn) time. For b = o(log n), on the
other hand, we build a lookup table to exploit bit parallelism.

We conclude with a complexity analysis. Observe that (I, J) ∈ BlocksC(v) for at most 3σ = O(1)
cells C ∈ Cellsb, so the total size of the representations of PC(v) in a single level (for fixed b) is O(n2/b)
bits. Since we terminate the recursion whenever PC(s) and PC(t) contain logn bits, the processing time
is O(n2/(b logn)) per level. This bound forms a geometric progression dominated by the largest term

O(n2/ log1+1/σ n) arising from b = Θ(log1/σ n).
The space complexity is at most O(n) bits within each recursive call, because |BlocksC(v)| = O(n/b) for

C ∈ Cellsb. Overall, this gives O(n logn) bits, i.e., O(n) machine words.

4 RLE-LCAF as a Problem of Intersecting Rectangles

In this section we show a reduction of RLE-LCAF to a problem of intersecting rectangles in the σ-dimensional
space Z

σ. This reduction is then used in both the algorithms for RLE-LCAF in the next two sections. We
also develop basic properties of the resulting rectangle sets.

We define a rectangle in d-dimensional space Z
d
+ (d ≥ 2) as a Cartesian product of d closed intervals,

such that at least d− 2 of them are singletons. E.g., {3} × [2, 5]× [1, 7]× {0} is a rectangle in Z
4
+.

For an RLE-representation V of string v and indices i, j such that 1 ≤ i ≤ j ≤ |V |, we denote by
rectV (i, j) a rectangle with opposite corners P(Vi . . . Vj) and P(Vi+1 . . . Vj−1). If i = j or i+1 = j, the latter
is the zero vector. Let

RectV = {rectV (i, j) : 1 ≤ i ≤ j ≤ |V |}.

Observation 4.1. The integer points in rectangles from RectV represent the set P(v).

This observation lets us reduce the RLE-LCAF problem to the following auxiliary problem.

Problem 3. Maximal Intersection Point of Rectangles in Z
d
+

Input: two families R1 and R2 of rectangles in d-dimensional space, each containing at most N rectangles
Output: a common point of a rectangle from R1 and a rectangle from R2 with the maximum ℓ1-norm or
“NO” if no two rectangles from R1 and R2 intersect

Lemma 4.2. The RLE-LCAF problem is equivalent to Problem 3 with N = m2, d = σ, R1 = RectS, and
R2 = RectT .

Proof. By Observation 4.1, the points in rectangles from RectS and RectT represent Parikh vectors of all
factors of s and t, respectively. Hence, the point returned by the solution to Problem 3 for R1 and R2

represents the Parikh vector of the longest common Abelian factor of s and t.
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4.1 Properties of Rectangles in RectV

For a rectangle R, by L(R) we denote the interval of ℓ1-norms of points in R. For an integer l, by RectV (l) ⊆
RectV we denote a subset which consists of rectangles R such that l ∈ L(R).

For a given index i ∈ {1, . . . ,m}, by j(i, l) we denote the minimum index j such that |Vi|+ . . .+ |Vj | ≥ l.
If no such index exists, we set j(i, l) = m+ 1. We further set j(m+ 1, l) = m+ 1. Indices j(i, l) allow us to
characterize the set RectV (l) as follows.

Observation 4.3. RectV (l) = {rectV (i, j) : i = 1, . . . ,m, j(i, l) ≤ j ≤ j(i+ 1, l), j ≤ m}.

The following lemma states some algorithmic properties of the sets RectV (l).

Lemma 4.4. Let V be an RLE representation of size m of a string v.

(a) For a given l ∈ {0, . . . , |v|}, the set RectV (l) has at most 2m elements and can be computed in O(m)
time.

(b) All sets RectV (l) \ RectV (l − 1) and RectV (l − 1) \ RectV (l) for l = 1, . . . , |v| such that at least one of
these sets is non-empty can be computed in O(mTsort(m)) total time and O(Ssort(m)) space.

Proof. (a): We use the characterization of RectV (l) from the observation. Indices j(i, l) can be computed in
O(m) time using a sliding-window-based approach. Note that

|RectV (l)| ≤
m∑

i=1

(j(i+ 1, l)− j(i, l) + 1) = m+

m∑

i=1

(j(i+ 1, l)− j(i, l)) ≤ 2m.

This also implies that RectV (l) can be computed in O(m) time.
(b): We store the current set RectV (l) in a data structure S which is an array indexed by i of lists of

rectV (i, j), ordered by j in each list. Each rectangle is represented in O(1) space.
For subsequent values of l we store all pairs of the form (|Vi|+ . . .+ |Vj(i,l)|, i) such that j(i, l) < m+ 1

in a priority queue, with the minimum stored on the top. Let (a, i) be the pair currently stored on the top.
If l < a, we know that RectV (l) = . . . = RectV (a) but RectV (a + 1) 6= RectV (a). Thus we will increase l
directly to l = a+1. To compute the symmetric difference of the two sets, we pop from the priority queue all
pairs with the first component equal to a. For each such pair (a, i), we set j(i, a+1) = j(i, a) + 1, removing
rectV (i+ 1, j(i, a)) from S and inserting rectV (i, j(i, a+ 1)) to S if j(i, a+ 1) ≤ m. We then insert the pair
(|Vi|+ . . .+ |Vj(i,a+1)|, i) to the priority queue provided that j(i, a+ 1) ≤ m.

Each index j(i, l) is incremented at most m times. Hence:

• the total number of operations performed on the priority queue,

• the total number of lengths l such that (RectV (l)\RectV (l−1))∪(RectV (l−1)\RectV (l)) is nonempty,
and

• the total number of rectangles reported

are all bounded by O(m2). By a reduction of Thorup [25], the priority queue can be implemented in
O(Ssort(m)) space using O(Tsort(m)/m) time per operation.

5 Algorithm for RLE-LCAF over Small Alphabet

5.1 RLE-LCAF over Binary Alphabet

First, we present a simple solution for σ = 2. Our approach is based on the following known property specific
to binary strings (see [11]).
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Observation 5.1. If (p, q1), (p, q2) ∈ P(v) for q1 ≤ q2 and a binary string v, then (p, q′) ∈ P(v) for every
integer q′ ∈ [q1 . . . q2].

In other words, the set P(v) is an orthogonally convex subset of Z2. Let us define upv(p) = max{q :
(p, q) ∈ P(v)} and downv(p) = min{q : (p, q) ∈ P(v)} to be functions representing the upper and lower
boundary of this region, respectively. Note that due to Observation 5.1 (with the two coordinates inter-
changed) and the fact that each point in P(v) is dominated by P(v), both these functions are non-decreasing.

Lemma 5.2. Let V be the RLE representation of a binary string v. If the size of V is m, then the functions
upv and downv are piecewise constant with O(m2) pieces. Such representations can be generated in the
left-to-right order in O(m · Tsort(m)) time using O(Ssort(m)) space.

Proof. The function upv is the upper envelope of O(m2) rectangles in RectV . To determine upv, we process
the top-left corners of the rectangles in the left-to-right order. During this sweep, the value upv is the largest
second coordinate of the already scanned points. In a similar way, we determine downv as the bottom
envelope of the rectangles, i.e., processing their bottom-right corners in the bottom-to-top order.

A simple implementation involves sorting the coordinates of all O(m2) vectors P(Vi · · ·Vj). However, this
would require O(mSsort(m)) space. Therefore, instead we maintain a priority queue of size m which contains,
for each index i, the coordinates of the top-left corner of the rectangle rectV (i, j) such that j is the first
unprocessed index for this value of i. Upon the removal of rectV (i, j) from the queue, we insert rectV (i, j+1)
provided that j < m. Finally, just as in the proof of Lemma 4.4(b), we use the reduction of Thorup [25] to
implement the priority queue in O(Ssort(m)) space using O(Tsort(m)/m) time per operation.

Proposition 5.3. The RLE-LCAF problem for σ = 2 can be solved in O(mTsort(m)) time and O(Ssort(m))
space. With the state-of-the-art sorting algorithms, the running time is O(m2

√
log logm) in expectation or

O(m2 log logm) deterministic, both with O(m) space.

Proof. We apply Lemma 5.2 to determine the staircase functions ups, downs, upt, and downt. Next, we
scan their representations to find out for each p if there is a point (p, q) ∈ P(s) ∩ P(t), i.e., whether
ups(p) ≥ downt(p) and upt(p) ≥ downs(p). If so, to maximize the ℓ1 norm, we take q = min(ups(p), upt(p)).
We also observe that it suffices to consider values p which are right endpoints of a step in at least one of the
considered functions. The running time of this post-processing is O(m2) and the extra space consumption
is constant.

The overall time complexity is dominated by sorting integers in Lemma 5.2. The fastest randomized [17]
and deterministic [16] sorting algorithms yield the announced bounds on the running time.

5.2 Space-Efficient Reduction to Problem 3

We use a more sophisticated reduction than the one of Lemma 4.2 that leads to more space-efficient algo-
rithms.

Lemma 5.4. In O(mTsort(m)) time and O(Ssort(m)) space, the RLE-LCAF problem can be reduced to O(m)
instances of Problem 3 with N = O(m), d = σ, R1 ⊆ RectS, and R2 ⊆ RectT . Each rectangle is represented
in constant space as R = rectV (i, j) for V ∈ {S, T }.
Proof. For subsequent integers l = 0 to min(|s|, |t|) we maintain families RectS(l) ⊆ RectS and RectT (l) ⊆
RectT using Lemma 4.4(b). We only consider the values of l for which RectS(l) or RectT (l) changes comparing
to l − 1.

At the same time, we maintain sets R1 and R2 with RectS(l) ⊆ R1 ⊆ RectS and RectT (l) ⊆ R2 ⊆ RectT .
To make sure that the invariant is satisfied, every insertion to RectS(l) and RectT (l) is performed also in R1

and R2, respectively. Moreover, after every m insertions (including the final insertion), we make an instance
of Problem 3 out of R1 and R2, and we set R1 := RectS(l) and R2 := RectT (l). This way, the size of these
families is bounded by O(m). Moreover, the number of insertions is O(m2), so the number of instances is
O(m).

Finally, note that the conclusion follows from the fact that for every l, including the length of the sought
LCAF, we output an instance with RectS(l) ⊆ R1 and RectT (l) ⊆ R2.
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We say that an instance of Problem 3 is normalized if all coordinates of the corners of the rectangles are
of magnitude O(N). Any instance of Problem 3 can be transformed into a normalized one in O(Tsort(N))
time by renumbering each coordinate of the rectangles’ corners separately preserving their relative order. In
all the algorithms below we normalize the instance as a first step. However, in order to compute the result
for the original instance, which need not be normalized, when comparing the ℓ1 norms of intersection points
found, we need to transform the renumbered values of all coordinates back to the original ones.

Let us denote the dimensions by x1, . . . , xd. We define the dimensions of a rectangle R as the indices
i such that the projection of R to xi is not a singleton. We also say that rectangle is a ij-rectangle (for
1 ≤ i < j ≤ d) if its dimensions form a subset of {i, j}.

5.3 Solution to Problem 3 in 2D

Lemma 5.5. Problem 3 for d = 2 can be solved in O(N logN) time and O(N) space.

Proof. The maximal intersection point of two rectangles in 2D is either the top right corner of one of them
or an intersection point of a vertical edge of one rectangle with a horizontal edge of the other rectangle.

To handle the first case, we generate all top right corners of rectangles from Rq and find the one with
the maximal ℓ1 norm that is contained in a rectangle from R3−q, for q = 1, 2. This requires a classical
line sweep algorithm. Say that the sweep goes from left to right. The events in the sweep are the points
constructed from Rq and the beginnings and endings of rectangles from R3−q. The events can be sorted in
O(N) time thanks to the fact that the instance is normalized. The vertical intervals of all the rectangles
that are currently intersected by the broom are stored in a range tree [6]. When a point is encountered,
in O(logN) time we can check if it is contained in one of the intervals using the range tree. This gives
O(N logN) time.

The second case is handled using a similar line sweep. This time the broom stores the set of horizontal
segments from Rq that it currently intersects, in a range tree ordered by their horizontal component. When
a vertical segment resulting from R3−q is encountered, the range tree can be queried in O(logN) for the
topmost horizontal segment that intersects it. This completes the O(N logN)-time algorithm.

5.4 Solution to Problem 3 in 3D

Lemma 5.6. Problem 3 for d = 3 can be solved in O(N log2 N) time and O(N logN) space.

Proof. The maximum intersection point comes from two rectangles with the same dimensions or with different
dimensions. The former reduces to the 2D version of the problem. Indeed, we iterate over all subsets of
two dimensions; let us assume that the common dimensions of the rectangles are 1 and 2. We group such
rectangles from R1 and R2 according to x3. For each group, we find the maximum intersection of two
rectangles using Lemma 5.5. (The rectangles for each group can be normalized in O(N) time, for all the
groups together.) This takes O(N logN) time and O(N) space.

Now let us consider the pairs of rectangles from R1 and R2 that have just one dimension in common. We
consider all permutations of the set of components {x1, x2, x3}. For a given permutation, we want to check
for the maximal intersection point of a 12-rectangle from Rq and a 23-rectangle from R3−q, for q = 1, 2. Let
R1 ∈ Rq and R2 ∈ R3−q be two such rectangles. The maximal intersection point of R1 and R2, if exists, has
the first component equal to the first component of R2, the third component equal to the third component
of R1, and the second component equal to the minimum of the maximal second components of R1 and R2.
Without the loss of generality, we will assume that the second component is equal to the maximal second
component of the rectangle from R3−q. (The opposite case will be covered when considering the components
in order x3, x2, x1.)

The algorithm uses a plane sweep along the x3 axis. The broom stores the rectangles from R3−q that
intersect with the plane. For such a rectangle {a} × [b1, b2] × [c1, c2], we store a 2D point (a, b2) with the
weight a+ b2. When the broom encounters a rectangle [a′1, a

′

2]× [b′1, b
′

2]×{c′} from Rq, it suffices to find the
point stored in the broom in the range [a′1, a

′

2]× [b′1, b
′

2] with the maximal weight and add c′ to this weight.
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The broom can be implemented as a 2-dimensional range tree; the structure of this tree can be static,
since the set of all potential points that are to be stored in it is known in advance. A single operation on
the range tree costs O(log2 N) time and the total space is O(N logN). This yields the complexity of the
algorithm.

5.5 Solution to Problem 3 in 4D

This time we start with an auxiliary data structure.

Lemma 5.7 (Interval Stabbing-Max [1]). A collection of p weighted intervals on a line can be stored in O(p)
space subject to the following operations:

• inserting a weighted interval,

• deleting a weighted interval, and

• finding an interval with the maximum weight that contains a given point,

each implemented in amortized O(log p) time.

Lemma 5.8. Problem 3 for d = 4 can be solved in O(N log3 N) time and O(N log2 N) space.

Proof. First, assume that the sought pair of rectangles has at least one dimension in common. We consider
all 3-element subsets of the set of dimensions {x1, . . . , x4}. For each subset X , we consider the rectangles
from R1 and R2 that have both their dimensions in X . We group the rectangles by equal values on all
the remaining dimension and, for each group, solve an instance of Problem 3 for d = 3. The total time
complexity is O(N log2 N) and the total space complexity is O(N logN), due to Lemma 5.6.

Finally, let us consider the case that the sought rectangles have no dimensions in common. By considering
all permutations of the components, we can assume that we choose a 12-rectangle from Rq and a 34-rectangle
from R3−q, for q ∈ {1, 2}. This time we will use a hyperplane sweep along the x4 axis.

The broom stores the rectangles from R3−q that intersect with the hyperplane. For such a rectangle
{a} × {b} × [c1, c2]× [d1, d2], we store the line segment {a} × {b} × [c1, c2] with the weight a+ b. When the
broom encounters a rectangle [a′1, a

′

2] × [b′1, b
′

2]× {c′} × {d′} from Rq, it suffices to find the segment stored
in the broom intersecting the rectangle [a′1, a

′

2]× [b′1, b
′

2]× {c′} with the maximal weight and add c′ + d′ to
its weight.

The broom is implemented as a 3-dimensional range tree. Again, the structure of the range tree can
be static if computed in advance. The first two dimensions correspond to the x1 and x2 coordinates of
line segments. The third dimension is a data structure that stores 1D weighted intervals that supports the
operations of: inserting a weighted interval, deleting a weighted interval, and finding an interval with the
maximum weight that contains a given value. For this, the data structure of Lemma 5.7 can be used.

Inserting a line segment {a} × {b} × [c1, c2] with weight a + b to the data structure is straightforward.
The query for a rectangle [a′1, a

′

2]× [b′1, b
′

2]×{c′} reduces to O(log2 N) queries for the point c′ in the 1D data
structures.

The total size of the data structure is O(N log2 N) and each event in the sweep is processed in O(log3 N)
time. The conclusion follows.

5.6 Solution to Problem 3 in d Dimensions

Lemma 5.9. Problem 3 can be solved in O(Nd2 log3 N) time and O(N(d2 + log2 N)) space.

Proof. The strategy behind our algorithm is to produce several instances of d′-dimensional Problem 3 with
d′ ≤ 4. Each instance is going to be created for a particular subset D ⊆ {1, . . . , d} and its goal is to
process pairs of rectangles R1 ∈ R1 and R2 ∈ R2 whose union of dimensions is precisely D. Thus, for each
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rectangle R1 ∈ R1 with dimensions D1, we consider all sets D2 with |D2| ≤ 2 and insert R1 to the instance
corresponding to D = D1 ∪D2. Rectangles R2 ∈ R2 are processed symmetrically.

Next, we further subdivide each instance by grouping the rectangles according to the values at coordinates
in the complement of D so that the space dimension can be reduced from d to |D|. For this, we would like
to efficiently compare two coordinate vectors ignoring |D| = O(1) positions. A simple solution is to build a
data structure for constant-time Longest Common Extension (LCE) queries (see [12]) for the concatenation
of the coordinate vectors of all the rectangle corners. Constructing it takes linear time and space (with
respect to the input size, which is Θ(Nd)).

Each rectangle R is inserted to O(d2) instances of dimension at most 4, so the overall running time to
solve these instances is O(Nd2 log3 N). The space complexity is O(Nd2) for storing the input of the instances
and O(N log2 N) for solving them one by one.

Theorem 5.10. The RLE-LCAF problem can be solved:

• in O(m2
√
log logm) time in expectation or O(m2 log logm) time deterministically and O(m) space for

σ = 2,

• in O(m2 log2 m) time and O(m logm) space for σ = 3,

• in O(m2σ2 log3 m) time and O(m(σ2 + log2 m)) space for arbitrary σ.

Proof. For σ = 2 we use Proposition 5.3. For σ = 3 and σ > 3 we use the reduction of Lemma 5.4 to O(m)
instances of Problem 3 and the algorithm of Lemma 5.6 or Lemma 5.9, respectively.

6 Algorithm for RLE-LCAF over Large Alphabet

It is a known and simple fact that we can assume the alphabet is Σ = {1, . . . ,m}; otherwise all the letters
could be renumbered in O(m logm) time.

We use the interpretation of the RLE-LCAF problem as a problem of intersecting rectangles from the sets
RectS and RectT (Lemma 4.2). Recall that they consist of rectangles of the form rectX(i, j) for X = S, T ,
respectively.

Recall that L(R) denotes the interval of ℓ1-norms of points in R. We say that rectangles R1 and R2 are
compatible if L(R1)∩L(R2) 6= ∅. We further say that R2 is max-compatible with R1 if max(L(R1)) ∈ L(R2).
The following basic observation characterizes these notions.

Observation 6.1. Let R1 and R2 be rectangles.

(a) If R1 ∩R2 6= ∅, then R1 and R2 are compatible.

(b) R1 and R2 are compatible if and only if R1 is max-compatible with R2 or R2 is max-compatible with R1.

For a rectangle R, by P(R) we denote the components of any point in R, with ‘⋆’ at the coordinates that
correspond to the dimensions of R. Thus P(R) represents the coordinates of all points in R. In similarity
with the original problem, we call P(R) the Parikh vector of the rectangle R. We call two rectangles R1 and
R2 consistent if P(R1) and P(R2) are equal for each coordinate where ⋆ does not appear in either vector.
By ∆(R1, R2) we denote the intervals of R1 and R2 that correspond to the coordinates where at least one
of the Parikh vectors P(R1), P(R2) contains a ⋆.

Example 6.2. The rectangles

R1 = {5} × [1, 3]× {4} × [1, 6]× {3}
R2 = [4, 5]× {2} × {4} × [2, 5]× {3}

are consistent. We have P(R1) = (5, ⋆, 4, ⋆, 3) and P(R2) = (⋆, 2, 4, ⋆, 3). Here the set ∆(R1, R2) stores the
intervals {5}, [1, 3], and [1, 6] from R1 and [4, 5], {2}, and [2, 5] from R2 that correspond to the coordinates
1, 2, and 4.
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Let us make the following observation. Point (a) of the observation is straightforward. Point (b) boils
down to simple arithmetics (see also [15]).

Observation 6.3. Let R1 and R2 be rectangles.

(a) If R1 ∩R2 6= ∅, then R1 and R2 are consistent.

(b) If R1 and R2 are consistent, then knowing L(R1), L(R2), and ∆(R1, R2), one can compute the maximum
ℓ1-norm of a point in R1 ∩R2, if it exists.

The following lemma forms the basis of our algorithm. It follows from the properties of the sets RectV (l)
for V ∈ {S, T } (Lemma 4.4(a)).

Lemma 6.4. Let R1 ∈ RectS and assume that P(R1) is known.

(a) The set of all R2 ∈ RectT that are max-compatible with R1 has size at most 2|T |.

(b) The values L(R2) and ∆(R1, R2) for all R2 ∈ RectT that are max-compatible and consistent with R1 can
be computed in O(m) time and space.

Proof. We start by computing L(R1). Let k = maxL(R1). Let us recall that R2 is max-compatible with R1

if and only if k ∈ L(R2). The set of all such rectangles is precisely RectT (k). By Lemma 4.4(a), this set has
size at most 2|T |. This concludes point (a).

Lemma 4.4(a) asserts that the set RectT (k) can be computed in O(m) time. To implement point (b),
we will use a sliding window approach. We iterate over all indexes i = 1, . . . ,m and for each of them we
consider j = j(i, k), . . . , j(i + 1, k) as in Observation 4.3. When any index i or j is incremented, P(R2) for
R2 = rectT (i, j) can be updated in O(1) time, starting from an initial Parikh vector with all zeros. This
allows us to store and update L(R2) and ∆(R1, R2). We also store a counter q of positions a ∈ {1, . . . , σ}
such that P(R1) and P(R2) differ at position a and a is not a dimension of any of the two rectangles. This
counter can be updated in O(1) time whenever i and j is incremented by inspecting the positions in P(R2)
that have changed. Then R2 is consistent with R1 if and only if q = 0.

The computations made upon an incrementation of i or j take O(1) time; the time complexity follows.
The only additional space used in the algorithm is the Parikh vector which takes O(σ) = O(m) space.

We arrive at the main result of this section.

Theorem 6.5. The RLE-LCAF problem can be solved in O(m3) time and O(m) space.

Proof. We apply the reduction to Problem 3 of Lemma 4.2.
For each i = 1, . . . , |S| we generate P(rectS(i, j)) for consecutive j = i, . . . , |S|. The next Parikh vec-

tor overwrites the previous one. Thus these Parikh vectors can be computed one by one in O(m) total
time and space. Whenever a new Parikh vector is generated, we use Lemma 6.4 to compute the values
L(R2) and ∆(R1, R2) for all R2 ∈ RectT that are max-compatible and consistent with R1. Finally, we use
Observation 6.3(b) to compute the maximum ℓ1 norm of a point in R1 ∩R2, for any of the rectangles R2.

Next we repeat the whole procedure with S and T interchanged.
Correctness of the algorithm follows from Observation 6.1: if R1 ∈ RectS and R2 ∈ RectT intersect, then

they are compatible, which means that R2 is max-compatible with R1 or R1 is max-compatible with R2.
There are O(m2) rectangles R1 ∈ RectS and for each of them the computations take O(m) time. Hence,

the algorithm works in O(m3) time. The space complexity is linear.

7 Conclusions and Open Problems

We have presented efficient algorithms for the LCAF and RLE-LCAF problems:

• O(n2/ log1+1/σ n)-time and O(n)-space algorithm for LCAF with σ = O(1);
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• O(m2σ2 log3 m) time and O(m(σ2 + log2 m)) space algorithm for RLE-LCAF with arbitrary σ;

• O(m3)-time and O(m)-space algorithm for RLE-LCAF with arbitrary σ.

For LCAF over a constant-sized alphabet, we have obtained an over-logarithmic speedup comparing to a
naive O(n2)-time solution. Let us recall that over the binary alphabet, LCAF can be solved much more
efficiently, in O(n1.859) time [2, 10]. An open question is to design an O(n2−ε)-time algorithm (ε > 0) for
LCAF for alphabet of any constant size, e.g., for σ = 3.

For the RLE-LCAF problem, the most interesting question is for the existence of an O(m3−ε)-time and
O(m) space algorithm for an arbitrary σ.
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