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Abstract

We prove that there are single Henkin quantifiers such that first

order logic augmented by one of these quantifiers is undecidable in the

empty vocabulary. Examples of such quantifiers are given.

1 Introduction

In first order logic an existential variable y depends on all universal variables
x such that y lies in the scope of x. It follows that we can not express that
in a predicate P (x, y, z, w) a variable y depends only on x and w depends
only on z. To overcome this restriction Henkin proposed to use quantifiers
prefixes in which the ordering of variables is ony partial, not linear. Then,
we could express dependences as above with the following prefix:

∀x ∃y
∀z ∃w

P (x, y, z, w).

Henkin, or branched, quantiers are a way of introducing dependences between
variables which are not expressible in first order logic. They occurred to be
an interesting extension of first order logic which do not introduce the full
power of second order quantification. Henkin quantifiers were examined in
various contexts. Jaako Hintikka consider the following sentence of natural
language:
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“Some relative of each villager and some relative of each townsman hate

each other.”

His claim, known as Hintikka’s Thesis, states that the logical form of the
sentences as above essentially requires branched quantification. We refer to
Gierasimczuk and Szymanik [4] for a recent discussion of Hintikka’s Thesis.
In complexity theory branched quantifiers were examined as a way of captur-
ing complexity classes by logics, see Blass and Gurevich [1] and Ko lodziejczyk
[7].

In this paper we prove that there are single Henkin quantifiers H which
give undecidable extenstion of first order logic already in the empty voca-
bulary. Previous results by Krynicki and Mostowski and by Mostowski and
Zdanowski showed this property only for infinite classes of Henkin quantifiers.

2 Basic notions

We investigate different logics with Henkin quantifiers. The simplest Henkin
quantifier has the form

∀x ∃y
∀z ∃w

.

Intuitively, it expresses that the choice of y does not depend on the variable z
and the choice of w does not depend on x. More formally we can describe the
Henkin prefix as an ordered triple Q = (A,E,D), where A and E are disjoint
sets of universal and existential variables, respectively, and D ⊆ A × E is a
dependency relation. We say that a variable y ∈ E depends on a variable
x ∈ A if (x, y) ∈ D. Further on, we will make no differences between
quantifiers and quantifier prefixes.
Example.
∀x ∃y
∀z ∃w

= ({x, z}, {y, w}, {(x, y), (z, w)}).

We denote the above quantifier by H.
The inductive step in the definition of semantics for logic with Henkin

quantifiers is as follows. Let Q = ({x1, . . . , xn}, {y1, . . . , yk}, D). Then,

M |= Qϕ(x1, . . . , xn, y1, . . . , yk)
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if and only if

there are operations f1, . . . , fk on M such that

(M, {fi}i≤k) |=∀xϕ(x, f1(x1), . . . , fk(xk)),

where x are all universal variables in Q and xi are variables on which yi
depends in Q.

By H we denote the family of all Henkin quantifiers. For a family of
Henkin quantifiers Q, L(Q) is an extensions of the first order logic by quan-
tifiers in Q. For a single quantifier Q we write L(Q) for L({Q}).

The logic with Henkin quantifiers was shown to be a strengthening of first
order logic by Ehrenfeucht. He showed that one can define the finitness of
the universe by the following sentence.

¬∃t
∀x ∃y
∀z ∃w

(y = w ≡ x = z) ∧ (t 6= y).

The sentence above is equivalent to the second order sentence

¬∃t∃f∀x, y(f(x) = f(y) ⇒ x = y) ∧ ∀x(t 6= f(x))

which states that there is no injection of the universe of a given model into
itself which is not a bijection.

We have the following theorem relating the semantical power of logic with
Henkin quantifiers with that of second order logic. The first dependence
was independently proved by Enderton and Walkoe, the second is due to
Enderton.

Theorem 1 (see [3], [15]) Σ1
1 ≤ L(H) ≤ ∆1

2, where H is the family of all

Henkin quantifiers.

It should be added that all the inequalities above are strict. The first one
is obvious since L(H) is closed on the negation and Σ1

1 is not. The second
one was proven by M. Mostowski in [12] by means of truth definitions. For
a simpler argument which works for the empty vocabulary see [14].

We will consider the following kinds of Henkin quantifiers. By
Hnx1 . . . xn y1 . . . yn we denote the quantifier

∀x1 ∃y1
∀x2 ∃y2
. . . . . . . . .

∀xn ∃yn
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By Enx1 x2 y1 . . . yn z1 . . . zn we denote

∀x1 ∃y1 . . . yn
∀x2 ∃z1 . . . zn

By Hω we denote the family of Henkin quantifiers {Hn}n=2,3,... and simi-
larly for Eω.

Clearly, each quantifier En can be defined in the logic with quantifier Hn.
However, it is not known if for each k there is n such that L(Hk) ≤ L(En).

Now, we present known results on decidability of different logics with
Henkin quantifiers. Our aim is to outline for these logics the boundary be-
tween decidable and undecidable.

Theorem 2 ([8]) Let σ be a monadic vocabulary. Logic Lσ(H2) is decidable.

Theorem 3 ([8]) Let σ contains one unary function symbol. Then logic

Lσ(H2) is undecidable.

Theorem 4 ([9]) Let σ be an infinite monadic vocabulary. Then Lσ(H4) is

undecidable.

The proof of theorem 3 gives an up-to-isomorphism a characterization
of the standard model of arithmetic in the language of Lσ(H2). An unary
function symbol is intended there to be a successor function. Similarly, def-
initions of addition and multiplication by means of a successor function are
given. In [13] it was observed that also for some finite monadic vocabulary
τ one obtain undecidable logic Lτ (H4).

As far as the empty vocabulary is concern it was not known whether there
exists a single Henkin quantifier Q such that L∅(Q) is undecidable. The only
undecidability results were established for the infinite families Hω ([9]) and
Eω ([13]).

Theorem 5 ([9],[13]) Logics L∅(Hω) and L∅(Eω) are undecidable.

In the next section we prove that there is one Henkin quantifier for which
we obtain undecidable logic in the empty vocabulary. We present also exam-
ples of such quantifiers.
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3 Undecidable logics with one Henkin quan-

tifier

Firstly, we prove that there is a single Henkin quantifier such that the logic
with this quantifier is undecidable in the empty vocabulary. Next, we give an
estimation of a size of such quantifier. Our proof is a modification of proofs
of Theorem 5 as presented in [9] and [13]. Krynicki and Mostowski gave in
[9] a reduction of the word problem for semigroups to the tautology problem
for L∅(Hω). We carry out this method in a way which allows us to obtain a
single Henkin quantifier Hn or En such that the logic with this quantifier is
undecidable in the empty vocabulary.

Theorem 6 There is n such that logics L∅(Hn) and L∅(En) are undecidable.

Proof. Let Σ = {a, b} be an alphabet and let E = {vi = wi : i ≤ m∧wi, vi ∈
Σ∗} be a semigroup. The word problem for E is the set of equations v = w

of words from Σ∗ such that any semigroup satisfying E satisfies also v = w.
We denote this by E |= v = w. Let us fix such a semigroup E that its word
problem is undecidable.

For each letter x in Σ we fix a function symbol fx and by f ◦ g we denote
the composition of f and g. For a word c1 . . . ck ∈ Σ∗ we define the translation
tr as follows, tr(c1 . . . ck) = fc1 ◦ . . . ◦ fck .

By the representation theorem for semigroups each semigroup is isomor-
phic to a semigroup of unary functions with the composition as the semigroup
operation. Thus we have that

E 6|= v = w if and only if
∃M∃fa fb unary operations on M such that
(M, fa, fb) |=

∧
i≤m ∀x tr(vi)(x) = tr(wi)(x) ∧ ∃x tr(v)(x) 6= tr(w)(x).

Let v = v1 . . . vm and w = w1 . . . wk be arbitrary words over Σ. Then
we can express ∃fa∃fb∀x(tr(v)(x) = tr(w)(x)) by means of some Henkin
quantifier Hn and the following formula

∀x1 ∃y1
. . . . . .

∀zm ∃ym
∀z1 ∃r1
. . . . . .

∀zk ∃rk

(ϕ0 ∧ ϕv=w),
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where

ϕ0 =
∧

vi=vj

(xi = xj ⇒ yi = yj) ∧
∧

wi=wj

(zi = zj ⇒ ri = rj)∧

∧

vi=wj

(xi = zj ⇒ yi = rj),

ϕv=w = ((
∧

1≤i<m

(xi = yi+1) ∧
∧

1≤i<k

(zi = ri+1)) ⇒ (xm = zk ⇒ y1 = r1).

The formula ϕ0 says that the choice functions are the same if their rows
represent the same letter. The formula ϕv=w expresses the fact that if the
values of x’s and z’s satisfy the dependences of the diagram below and xm =
zk, then fv1(x1) = fw1

(z1). We may depict it as follows. An arrow of the form
y 7−→

f
z indicates that z = f(y). Thus, the predecessor of ϕv=w expresses the

following dependences:

xm 7−→
fvm

xm−1 7−→
fvm−1

. . . 7−→
fv2

x1 7−→
fv1

y1,

zk 7−→
fwk

zk−1 7−→
fwk−1

. . . 7−→
fw2

z1 7−→
fw1

r1

Then, equality y1 = r1 means that tr(v)(xm) = tr(w)(zk). Since xm and zk
are quantified universally and we assume their equality this is equivalent to
∀x(tr(v)(x) = tr(w)(x)).

Next, we choose n big enough to express ∃fa fb(
∧

i≤m ϕvi=wi
) in L(Hn).

Now, we need to observe that in order to express ∃x tr(v)(x) 6= tr(w)(x) it
suffices to add only first order quantification, no matter how long are words
v and w. This is the place when we modify previous constructions in order
to stay with a fixed Henkin quantifier. To show this let us assume that the
choice functions for y and r below are respectively fa, fb and that v = v1 . . . vl
and w = w1 . . . wk.

Let us consider the following formula,

∃t0 . . . tl s0 . . . sk

∀x ∃y
∀z ∃r
∀x3 ∃y3
. . . . . .

∀xn ∃yn

(ϕ0 ∧ (
∧

i≤m

ϕvi=wi
) ∧ ϕv 6=w), (1)
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where

ϕv 6=w =
∧

vi=a

(x = ti ⇒ y = ti−1) ∧
∧

vi=b

(z = ti ⇒ r = ti−1)∧

∧

wi=a

(x = si ⇒ y = si−1) ∧
∧

wi=b

(z = si ⇒ r = si−1)∧

(tl = sk) ∧ (t0 6= s0).

Here, ϕv 6=w states that we can find in a given semigroup two sequences of
elements, tl, . . . , t0 and sk, . . . , s0 such that the values of terms tr(v) and tr(w)
on the tl and sk are different. But since tl = sk, it follows that ∃x tr(v)(x) 6=
tr(w)(x).

Below we present the dependencies which satisfy the elements of these
two sequences as it is described by ϕv 6=w.

tm 7−→
fvm

tm−1 7−→
fvm−1

. . . 7−→
fv1

t0,

sk 7−→
fwk

sk−1 7−→
fwk−1

. . . 7−→
fw1

s0.

It follows that the formula (1) is satisfiable if and only if there is a semigroup
M with generators a, b such that it satisfies all equations from E and
M |= v 6= w. Therefore, we reduced the problem whether E 6|= v = w

to the satisfability problem for L(Hn). It should be noted that a similar
construction works also in a case of sufficiently large quantifier En. See [13]
and below where we construct explicit formulas describing the equations
from a given semigroup in the logic L(En). �

4 An estimation of a size of quantifiers H

with undecidable logic L∅(H)

Now, we give an estimation of the value of n for which we get undecidable
logics L(Hn) and L(En). Let C be the semigroup with generators a, b, c, d, e,
defined by the following equations:

ac = ca, ad = da, bc = cb, bd = db, eca = ce, edb = de, cca = ccae.

Ceitin proved that the word problem the semigroup C is undecidable, see [2]
or chapter A.4 of [10].
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Theorem 7 (Ceitin) The word problem for C is undecidable.

Having fixed a single semigroup with undecidable word problem we can
explicitly construct a quantifier. Below we describe the formulas with quan-
tifiers H12 and E10 which express that the functions fa, . . . , fe satisfy the
equations from the Ceitin’s semigroup. It follows that

Theorem 8 The logics L∅(H12) and L∅(E10) are undecidable.

Proof. The following formula describes the equations from the semigroup
C.

∀xa ∃ya
∀x′a ∃y′a
∀xb ∃yb
∀x′b ∃y

′
b

∀xc ∃yc
∀x′c ∃y

′
c

∀xd ∃yd
∀x′d ∃y′d
∀xe ∃ye
∀x′e ∃y

′
e

∀xcc ∃ycc
∀x′cc ∃y

′
cc

(ψ ∧ ϕ ∧
∧

i<7

ϕi),

where

ψ =
∧

q∈{a,b,c,d,e,cc}

(xq = x′q ⇒ yq = y′q),

ϕ = (xc = xcc ∧ yc = x′c ⇒ y′c = ycc),

ϕ0 = (xa = xc ∧ x
′
a = yc ∧ x

′
c = ya ⇒ y′c = y′a),

ϕ1 = (xa = xd ∧ x
′
a = yd ∧ x

′
d = ya ⇒ y′d = y′a),

ϕ2 = (xb = xc ∧ x
′
b = yc ∧ x

′
c = yb ⇒ y′c = y′b),

ϕ3 = (xb = xd ∧ x
′
b = yd ∧ x

′
d = yb ⇒ y′d = y′b),

ϕ4 = (xa = x′e ∧ ya = xc ∧ y
′
e = x′c ∧ xe = yc ⇒ ye = y′c),

ϕ5 = (xb = x′e ∧ yb = xd ∧ yd = xe ∧ y
′
e = x′d ⇒ ye = y′d),

ϕ6 = (xa = x′e ∧ ya = xcc ∧ y
′
e = x′a ∧ y

′
a = x′cc ⇒ ycc = y′cc).

8



The formula ψ expresses the fact that variables yq and y′q describe the same
functional dependency, for q ∈ {a, b, c, d, e, cc}. The formula ϕ expresses that
the choice function for ycc (and, implicitly, for y′cc) is just a composition of a
function for yc with itself. The formulas ϕi describe the i-th equations from
the semigroup C given above. It should be clear that indices of variables
indicate what kind of function or a composition of functions they represent.

Now let us describe the equations from C with the quantifier E10. The
formula has the form

∀x1 ∃ya ∃yca ∃yda ∃yb ∃ycb ∃ydb ∃ye ∃yeca ∃yde ∃ycca
∀x2 ∃yc ∃yac ∃yd ∃yad ∃ybc ∃ybd ∃y′e ∃y

′
cca

(γ ∧ γ0123 ∧
∧

4≤i<7

γi).

Above, the formula γ establishes that existential variables describe the
function compositions according to their subscripts. It has the following form:

γ =(ya = x2 ⇒ yc = yca) ∧ (yc = x1 ⇒ ya = yac) ∧ (ya = x2 ⇒ yda = yd)∧

(yd = x1 ⇒ yad = ya) ∧ (yb = x2 ⇒ ycb = yc) ∧ (yc = x1 ⇒ yb = ybc)∧

(yb = x2 ⇒ ydb = yd) ∧ (yd = x1 ⇒ ybd = yb) ∧ (x1 = x2 ⇒ ye = y′e)

(yca = x2 ⇒ yeca = y′e) ∧ (ye = x2 ⇒ yde = yd)∧

(yca = x2 ⇒ ycca = yc) ∧ (x1 = x2 ⇒ ycca = y′cca).

The formulas γx, for x ∈ {0123, 4, 5, 6} state that axioms of Ceitin’s semi-
group C are true for these functions. For brevity we grouped the first four
equations into one axiom.

γ0123 = (x1 = x2 ⇒ (yca = yac ∧ yad = yda ∧ ybc = ycb ∧ ydb = ybd)),

γ4 = (ye = x2 ⇒ yeca = yc),

γ5 = (ydb = x2 ⇒ yde = y′e),

γ6 = (ye = x2 ⇒ ycca = y′cca).

Now, to express for arbitrary words v, w over the alphabet {a, . . . , e}
that C 6|= v = w it suffices to follow the proof of theorem 6. One need only
to add a proper first order prefix to formulas above and the formula ϕv 6=w.
Thus, we reduced the problem whether C 6|= v = w to the satisfability
problem for L(H12) or L(E10). �
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5 Conclusions

We showed that there are single, relatively simple, Henkin quantifiers H

such that the first order logic augmented with H is undecidable already in
the empty vocabulary. However, there is a considerable gap between the
decidable logic L∅(H2) (see [8]) and undecidable logics L∅(H12) and L∅(E10).
It would be desirable to close this gap or, at least, make it smaller.

Moreover, we did not touch a question of decidability of these logics
in finite models. Articles by Gurevich [5] and by Gurevich and Lewis [6]
could be a good starting point for investigating this problem in finite models.
However, if one aims at small quantifiers it may be better to construct by
hand a semigroup with the undecidable word problem in the class of finite
semigroups.

Finally, let us mention that Mostowski and Zdanowski proved in [13] that
logics Lk

∅(Q), for all k and Q, are decidable in the class of infinite models
only. However, we also know that for sufficiently large k and Q no algorithm
can be proved in ZFC as deciding the tautology problem for the logic Lk

∅(Q)
(see [11]). Here again, the complexity of logics Lk

∅(Q) in finite models is
unknown.
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