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Abstract

Many modern combinatorial solvers have a variety of parameters through
which a user can customise their behaviour. Algorithm configuration is the
process of selecting good values for these parameters in order to improve
performance. Time and again algorithm configuration has been shown
to significantly improve the performance of many algorithms for solving
challenging computational problems. Automated systems for tuning pa-
rameters regularly out-perform human experts, sometimes but orders of
magnitude.

Online algorithm configurators, such as ReACTR, are able to tune a
solver online without incurring costly offline training. As such ReACTR’s
main focus is on runtime minimisation while solving combinatorial prob-
lems. To do this ReACTR adopts a one-pass methodology where each
instance in a stream of instances to be solved is considered only as it ar-
rives. As such ReACTR’s performance is sensitive to the order in which
instances arrive. It is still not understood which instance orderings posi-
tively or negatively effect the performance of ReACTR. This paper inves-
tigates the effect of instance ordering and grouping by empirically evalu-
ating different instance orderings based on difficulty and feature values.

∗This paper is an extended version of work published in the Proceedings of the ACM
Symposium on Applied Computing 2017
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Though the end use is generally unable to control the order in which
instances arrive it is important to understand which orderings impact Re-
ACTR’s performance and to what extent. This study also has practical
benefit as such orderings can occur organically. For example as business
grows the problems it may encounter, such as routing or scheduling, often
grow in size and difficulty.

ReACTR’s performance also depends strongly configuration selection
procedure used. This component controls which configurations are se-
lected to run in parallel from the internal configuration pool. This paper
evaluates various ranking mechanisms and different ways of combining
them to better understand how the candidate selection procedure affects
realtime algorithm configuration. We show that certain selection proce-
dures are superior to others and that the order which instances arrive in
determines which selection procedure performs best.

We find that both instance order and grouping can significantly affect
the overall solving time of the online automatic algorithm configurator
ReACTR. One of the more surprising discoveries is that having groupings
of similar instances can actually negatively impact on the overall perfor-
mance of the configurator. In particular we show that orderings based
on nearly any instance feature values can lead to significant reductions in
total runtime over random instance orderings. In addition, certain candi-
date selection procedures are more suited to certain orderings than others
and selecting the correct one can show a marked improvement in solving
times.

1 Introduction

Modern search algorithms for solving computationally challenging problems are
extremely complex. Due to this complexity, and the fact that no single configu-
ration can perform best in all scenarios, algorithm creators will usually expose
an often large number of parameters to the end user so that the behaviour of
the solver can be customised at runtime. The choices available may include a
choice of which heuristic to use, how many cuts to make in a mixed integer
programming solver, or which restart strategy to use. Decisions made at this
point can have a large impact on overall performance of the solver, sometimes
by orders of magnitude [1, 2]. Furthermore, because the interactions between
an algorithm’s tens or possibly hundreds of parameters are often complex and
counter-intuitive it is a daunting task to set all parameters correctly, even for a
domain expert.

It is for this reason that the field of automated algorithm configuration has
emerged [3, 4]. Automated algorithm configuration involves automatically se-
lecting the most appropriate parameters for a certain set of instances such that
the algorithm’s performance is improved (running time, solution quality etc.).
Using an algorithm configurator allows the end user to achieve strong perfor-
mance gains without enduring the time consuming task of manually adjusting
the parameters.
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1.1 Offline Algorithm Configuration

There are two approaches to automated algorithm configuration, online and of-
fline, each with their own pros and cons [5]. Currently the predominant method
of algorithm configuration is the offline approach. Offline algorithm configura-
tion can be broken down into two phases: the training phase and the testing
phase. During the training phase a set of problem instances is used to learn a
single configuration for the solver. This configuration is then used to solve all
future unseen instances in the testing phase.

There are a number of state-of-the-art offline configurators that use various
methods of configuration learning in the training phase. F-Race and Iterated
F-Race adopt a racing approach to algorithm configuration [6, 7]. F-Race races
configurations from a predetermined pool against each other. This pool is cre-
ated either by a full factorial design or random sampling of the configuration
space. Each race or iteration is run on a problem instance. After each itera-
tion, configurations that are shown to be statistically weaker than the current
incumbent, using a non-parametric Friedman test, are removed. This process
continues until only a single configuration remains or the allotted configuration
time is exhausted. Iterated F-Race improves upon F-Race by removing the pre-
determined pool and instead sampling configurations from promising areas of
the configuration space after each iteration. Previous iteration results are used
to bias the sampling in the current run towards these promising areas.

ParamILS uses stochastic local search to explore the configuration space
around a given starting configuration, e.g. a default configuration [4]. In order
to avoid local optima a perturbation phase is applied after the local search phase.
ParamILS also diversifies by ‘jumping’ to a different starting configuration with
a certain probability.

Gender-based genetic solvers form the core of the GGA algorithm config-
urator [8]. Similar to regular genetic approaches, configurations are combined
using crossover while mutation is used to diversify the configurations discovered.
GGA also uses two ‘genders’, competitive and non-competitive, when perform-
ing crossover (mating). Only the best, top N%, of the competitive group are
able to mate in the next iteration. This puts a selection pressure on the best con-
figurations. Configurations that have been in the pool for more than a specified
number of iterations are removed from the pool.

SMAC uses a Sequential Model Based Optimisation (SMBO) approach to al-
gorithm configuration [1]. The configurator builds a random forest model which
uses instance features to predict performance. The configurations with the best
expected performance improvement based on this model are then selected for
evaluation against the current incumbent.

Instance Specific Algorithm Configuration (ISAC) partitions instances into
clusters based on their feature vectors[9]. The instance clusters are formed using
the g-means clustering algorithm (an extension of k-means which automatically
selects the k value). The previously outlined configurator GGA is used to learn
a configuration for each individual cluster. When a new instance arrives the
euclidean distance between it and the centres of the clusters is computed and
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the previously learned configuration from the nearest cluster is used.
Offline configuration techniques have been shown to work time and again,

occasionally improving performance by multiple orders of magnitude [1]. There
are a number of advantages to performing configuration offline. As the config-
urator is allocated a fixed amount of configuration time, there is more avail-
able overhead which allows instances to be solved multiple times with multiple
configurations. This allows for a better understanding of the corresponding
distribution and takes variance into account. The ability to revisit instances
means fewer training instances are required. The larger configuration budget
also allows for more expensive machine learning techniques to be used.

1.2 Online Algorithm Configuration

While offline configuration has had its share of successes, there are a number
of drawbacks to using offline configuration techniques. Firstly, a representative
sample of instances must be available. For previously unseen problems these
instances might not be readily available. If there is an insufficient number of
training instances, or the training instances are not representative of those that
will be encountered during testing, then it is possible for offline techniques to
overfit the training instances. As the configuration ceases to be updated after
the initial training phase, any changes in the instance-types encountered will not
be considered unless retraining occurs. Secondly, an expensive training period is
required, after which the configuration stops improving regardless of the number
of instances encountered. It is possible for the time allocated to configuring the
solver to eclipse any improvements in solving time.

With these limitations in mind we turn our attention to online algorithm
configuration. It has been shown that the downtime between solving instances
could be used to find continually improving search heuristics for constraint pro-
gramming without using an explicit training period [10]. Our recent work in
the area of online algorithm configuration [11, 5] has shown that configurations
can be improved without downtime while avoiding some of the issues faced by
offline configurators outlined above. Our online configurator ReACTR requires
no previous instances or offline training period. Instances are solved only once so
the configuration incurs little overhead compared to offline configurators which
repeatedly solve the same instances during training. Configurations are con-
stantly evolving so if the type of instances change the configurator is able to
adapt and find more suitable configurations. In this way ReACTR is able to
reduce the total runtime required to solve problem instances to optimality while
also improving the configurations used.

Online algorithm configuration is closely related to the online algorithm se-
lection problem[12, 13]. Here an algorithm selection system is trained on the fly
as it processes a stream of instances.
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1.3 Objectives and Structure of this Paper

The goals of this paper are twofold: first, to explore the effect of instance
ordering and grouping on the ReACTR configuration system, and second, to
evaluate various candidate selection policies within ReACTR. The interaction
between both of these is also investigated; do some instance orderings achieve
better performance when using certain candidate selection procedures?

ReACTR is constantly updating and evolving throughout the lifetime of the
configuration process. While this is certainly an advantage, it may also cause
problems. ReACTR visits each instance only once and updates its leaderboard
between instances. The configurator is therefore extremely sensitive to the order
in which instances arrive to be processed. One of the two primary aims of this
paper is to investigate and try to understand how exactly, and to what extent
the ordering and grouping of instances affects ReACTR.

It is possible to imagine a run of adversarial instances designed to hinder the
performance of the ReACTR system. One way this might be achieved would
be to order instances such that the best configuration is changing rapidly. Re-
ACTR relies solely on historical performance and does not use instance features
when selecting which configuration to run. As such this type of ordering could
be used to disrupt ReACTR’s ranking system and selection procedure. If all
configurations are ranked similarly selecting amongst them may prove difficult
for the system. This flaw could be mitigated by selecting some of the most
recent winners in addition to configuration ranking. The advantage of this is
that it detects changes in the incumbent more rapidly than ranking systems
alone. We show that in certain cases this approach is very effective. Another
option would be to use an instance specific candidate selection procedure simi-
lar to ISAC, though integrating this to the ReACTR system would come at the
cost of additional overhead. Another pitfall which ReACTR is susceptible to is
overfitting. This happens when a long stream of instances are all solved by a sin-
gle configuration or a small group of configurations. More generally applicable
configurations (such as the default configuration) may be removed by ReACTR
as they are not winning any races. If the type of instances encountered shifts
suddenly the system will recover more slowly as it is not able to generalise as
well. One solution to this may be to keep previous winners or incumbents and
reintroduce them periodically (or when concept drift is detected), regardless of
rank.

Conversely, it is possible that certain orderings of the instances may actu-
ally improve configurator performance by providing more information at crucial
points in training. The concept of varying instance ordering has been explored
in machine learning to increase learning rate [14] and in algorithm configura-
tion to improve scaling performance [15]. Intuitively, grouping similar instances
together should result in improved performance as similar instances tend to
favour the same types of configurations. There are multiple ways to cluster sim-
ilar instances; sorting by feature values (as we have done in this paper), using
a homogeneity measure [16] or by adopting a clustering approach[9, 17]. This
paper aims to explore what effect this instance ordering has on the ReACTR
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system and how the system can take advantage of these insights.
ReACTR’s parallel racing mechanism provides it with a way to evaluate

multiple configurations side by side. This is what allows ReACTR to function
in an online fashion. An important part of this parallel racing mechanism is
being able to correctly identify which configurations should be evaluated on each
instance. Parallel algorithm portfolios face a similar challenge when selecting
which solvers to run on each instance. Portfolios generally aim to maximise
coverage of the number of instances by running complimentary solvers [18].
This is often done by looking at instance features and predicting which solvers
will work well on which instances[19]. ReACTR does not use instance features,
but instead relies on past performance data and a ranking system to determine
which candidates to select for each instance. The candidate selection procedure
plays a large role in the ReACTR system and its overall performance. We
explore various combinations of performance metrics to decide which provides
the best performance.

The paper is organised as follows. Section 2 outlines the core components of
the ReACT and ReACTR systems. Section 3 outlines the experimental setup
and the datasets. It also explains in detail the candidate selection policies and
instances orderings used. Section 4 focuses on the analysis of the effect of order-
ing, grouping and candidate selection on a dataset consisting of precomputed
runtime results for a fixed set of solvers. Section 5 presents the results of exper-
iments conducted using full ReACTR runs to determine the effect of instance
ordering and grouping with a dynamic configuration pool. Finally, Section 6
outlines our conclusions and potential extensions of this work.

2 The ReACTR System

2.1 ReACT

We introduced the concept of realtime algorithm configuration using parallel
racing in our earlier ReACT work [11]. The goal of ReACT is to solve a stream
of instances as quickly as possible while also improving the solver configuration.
ReACT aims to incur very little overhead. Once an instance has been solved,
there is no incentive to solve it again, for this reason instances are visited once
and only once during a configuration run.

ReACT races multiple configurations in parallel on the same instance using
the multi-processor cores commonly available in modern computers. After each
race, the winning configuration is deemed to be the configuration that solved
the instance the quickest. All other runs are stopped once the instance has been
solved so as not to incur any additional overhead. A pool of n configurations
is maintained, where n is typically the number of cores in use. Wins and losses
between pairs of configurations are tracked in a matrix. Underperforming con-
figurations are removed by means of a simple statistical test. Configurations
are removed from the pool when a configuration has run a minimum number of
races against another and is being dominated by the other configuration, e.g.
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the dominant configuration has double the number of wins of the weaker config-
uration. The removed configuration is replaced by another sampled randomly
from the configuration space. Though the techniques used in ReACT are sim-
ple, it shows that this realtime configuration methodology works and laid the
ground work for future improvements.

The more recent ReACTR system improves on all aspects of the ReACT con-
figurator [5]. ReACTR can be broken into three main parts: the configuration
leaderboard, the candidate selection policy, and the configuration replacement
procedure.

2.2 Configuration Leaderboard

ReACTR replaces ReACT’s small configuration pool and simple statistical test
with a leaderboard able to track more configurations and rank them more ro-
bustly. This leaderboard is backed by the TrueSkill ranking system. TrueSkill
(TS) is a Bayesian ranking system developed by Microsoft Research [20]. It was
originally developed to provide close matches for XBox video game players. In
gaming, TrueSkill is used to match the skill level of players who may not have
competed against one another in order to create balanced games. In ReACTR,
it must quickly assess the relative performance of solver configurations while
they are constantly added and removed from the configuration leaderboard.
TrueSkill measures both a player’s average skill, µ, and its certainty in the as-
signed skill rating, σ. TrueSkill uses a Gaussian belief distribution to model a
player’s skill.

Updates to a player’s µ and σ are performed after each competition. The
magnitude of the update depends on the skill difference between players and
the confidence the system has in the assigned ratings. For example, if a strong
player defeats a weak player the result is unsurprising and so there is a minimal
adjustment to µ (assuming similar σ values). However, if a weak player beats
a strong player this will cause a large shift in the µ score for both players. The
system becomes more confident in its assigned scores with the more races that
are run and, as such, the σ value only decreases. These updates are extremely
fast and so the overhead in updating ReACTR’s leaderboard is negligible from
a performance perspective.

The systems leaderboard is typically initialised with configurations sampled
uniformly from the space of feasible configurations. The default configuration
of the solver being configured is also included in this leaderboard and given a
slightly higher TrueSkill ranking than other configurations. Aside from this,
the system is typically not warm started, though doing so is possible by in-
cluding desired configurations in the initial leaderboard. In order to limit the
memory impact of storing configurations we limit the leaderboard size to thirty
configurations.
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2.3 Candidate Selection Policy

ReACTR’s candidate selection policy is responsible for choosing which configu-
rations to run on an incoming instance. Given that only a limited number of con-
figurations may be run in parallel, the challenge lies in balancing the exploration
of newly added, untested configurations from the leaderboard while maintaining
good performance by using ‘proven’ configurations. This is known as the explo-
ration versus exploitation tradeoff and is a well-studied issue [21, 22]. Drawing
on previous research, the current version of ReACTR adopts an Epsilon-Greedy
approach for selecting candidates from the internal leaderboard. Here one third
of the chosen configurations are ‘good’ while the other two thirds are randomly
selected. Here ‘good’ is defined as the configurations with the highest score
using the TrueSkill performance metric.

2.4 Removing and Replacing Configurations

In order to explore the space of possible configurations it is necessary to remove
underperforming configurations. ReACTR uses TrueSkill’s skill and confidence
metrics to remove weak configurations without risking the removal of good con-
figurations. A configuration is removed when it is at the bottom of the leader-
board (it’s TrueSkill score falls below the median) and TrueSkill’s confidence
reaches a predefined threshold.

Configurations that have been removed must be replaced. ReACTR contin-
ues to use the random sampling technique used in ReACT which provides good
diversification in the configuration leaderboard. This is supplemented by an in-
tensification procedure based on genetic algorithms. Top configurations, based
on TrueSkill ranking, are combined by uniform crossover to create new configu-
rations with parameters taken from both parents. A small mutation chance of
mutation(5%) is also used to allow a parameter take on a value which neither
parent has. This allows search to move towards the more promising areas of
the configuration space. ReACTR generates an equal number of configurations
using randomisation and crossover. These procedures favour discrete parame-
ters but are able to naively handle continuous parameters also by discretising
the space at runtime.

3 Experimental Method

3.1 Candidate Selection

One of our aims is to more fully understand the candidate selection procedure
used in ReACTR. ReACTR’s current candidate selection policy uses TrueSkill
as its performance metric. In our experiments we evaluate a number of different
performance metrics, and various methods of combining them. The Epsilon-
Greedy approach is still used, so a proportion of candidates selected are always
random to ensure a certain level of exploration within the parameter pool. In
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addition to these, a number of ‘good’ candidates are selected based on various
performance metrics as discussed below.

In addition to testing TrueSkill as a performance metric we also look at a
number of simpler metrics based on the number of wins (win count), and how
recent those wins were measured. In this context a winner is defined as the
configuration that outperformed its competitors by finishing more quickly. Last
Winners (LW) keeps a list of the most recent winners. It then selects the n
most recent unique configurations. Win Count (WIN#) is the number of times
a certain configuration has performed best. It is important to note this is not
normalised based on the number of runs the configuration has taken part in.
Win Percentage (WIN%) is similar to Win Count but normalises for the number
of runs in which a configuration has participated. This normalisation makes Win
Percentage a better metric as it is no longer biased towards configurations with
more runs.

Another complimentary performance metric is evaluated, Defeats (DEF).
Defeats must be used in conjunction with a primary performance metric. De-
feats chooses the n configurations that have beaten the incumbent selected by
the primary metric the most.

These selection procedures are applied in the order they are listed. For exam-
ple 2TS2LW2RAND will select two configurations using TrueSkill ranking(TS),
two using the Last Winners procedure (LW) and finally two at random(RAND).
If a configuration has already been selected by a previous procedure then the
next unselected configuration is chosen. For example Last Winners will select
the next most recent winner that is available.

A number of baseline metrics are also provided. Due to the differing nature
of the runs, different baselines are proposed for static and dynamic datasets.
In the static case, three metrics are provided. First, the Oracle is the virtual
best system, which selects the best solver for every instance. This is the best
performance that is possible to achieve. Single Best shows the best single solver
that minimises the overall total solving time. Random selects six solvers (we’re
assuming six CPU cores are available) at random for each instance and chooses
the best solving time from these. In the dynamic case the baseline is the average
running time of the untuned solver.

3.2 Datasets and Instance Generation

For these experiments we use three different datasets. Two datasets, PROTEUS-
2014 and SAT12-ALL are taken from the Algorithm Selection Library (ASLib) [18,
23, 24]. These are static datasets where run times for all solvers are precom-
puted and the candidate selection procedure is performed as a processing step
without doing a full ReACTR run. In this case we treat each individual solver
as a different ”configuration” and candidate selection is performed on these.
The pool of ”configurations” is fixed as the removal and replacement procedure
normally seen in ReACTR are not employed. Excluding ReACTR’s removal
and replacement procedure also allows us to study the effect ordering and can-
didate selection in isolation. The caveat to this is that the interaction between
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these procedures cannot be studied and as such full ReACTR runs may behave
differently. However, it is necessary to use static datasets as running the full
ReACTR system requires a large number of CPU hours and does not readily
parallelise. Though the results are precomputed, we process the stream in the
same way as ReACTR one instance at at a time albeit without the removal
and replacement procedures. This processing step is quick, therefore the static
results are based on 100 runs which allow for far more statistically significant
conclusions. Using static datasets to help focus on interesting results is a ne-
cessity as each ReACTR run can take a number of hours or even days. A single
dynamic dataset, Combinatorial Auctions1, is also evaluated by a full ReACTR
run.

The first static dataset PROTEUS-2014 comprises 4021 constraint satisfac-
tion problems (CSP) solved using 22 different solvers. We use Mistral as the
default solver. This is in keeping with the methodology used in the paper which
created this dataset [18]. Instances that the default solver solved in less than
two seconds were filtered out. Additionally any instances where all solvers hit
the 3600 second cut-off time were removed. This left 2595 instances for analy-
sis which were neither too easy nor difficult. Four different orderings of these
2595 instances were then considered: lexicographic, shuffled, easy-to-hard and
hard-to-easy. Lexicographic orders the instances based on the lexicographical
ordering of the instance file paths. This is important because the way the
dataset was formed means similar instances tend to be clustered together in
the same folders e.g. 8-Queens would be next to 9-Queens in the n-Queens
folder. Shuffled completely shuffles all instances so they are randomly ordered.
Easy-to-hard and hard-to-easy sort the instances from fastest solving time to
slowest, and vice-versa, using the default solver, Mistral. For our feature or-
dering experiments we used a subset of the PROTEUS-2014 dataset comprising
623 instances. This subset was chosen so that all feature values were present
and did not need to be computed. All 198 instance features given as part of the
ASLib dataset are used; these are described in more detail in Section 3.3. These
feature values are used to sort the instances in both ascending and descending
order.

The second static dataset, SAT12-ALL, contains a mix of 1614 Boolean Sat-
isfiability (SAT) instances taken from SAT competitions. These are solved using
31 different solvers. Lingeling is selected as the default solver for this dataset.
Lingeling is a highly parameterised SAT solver which has performed well in re-
cent configurable SAT solver challenges[2]. Again, any instances that take less
than 2 seconds to solve with the default solver, Lingeling [25], or are unsolved
by any solver within the 1200 second cutoff time, were removed. The remaining
1474 instances were again ordered in the four orderings outlined above. Similar
to PROTEUS-2014, for our feature ordering experiments we only used a sub-
set of the instances where all instance feature values are available. This gave
a dataset comprising 721 instances. We ordered by all 115 instance features,
which will be described in Section 3.3, in both ascending and descending order.

1http://www.cs.ubc.ca/~kevinlb/CATS/
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In addition to the two static datasets, a single dynamic benchmark based on
combinatorial auctions was also used. This dynamic benchmark does not have
pre-calculated run times and must be solved by the ReACTR system to deter-
mine the runtimes. Due to computation time involved in running ReACTR over
a large number of instances, each run using the dynamic dataset is evaluated
only 10 times. All dynamic experiments were run on a system with 2×Intel
Xeon E5430 processors(2.66Ghz) and 12 GB RAM. The system has 8 avail-
able cores but only 6 are used so as to allow room for background processes
and other overhead without affecting timing. The Algorithm Configuration Li-
brary(ACLib) [26] framework was used to run the dynamic experiments.

Four different combinatorial auction domains are combined to create the
dynamic benchmark based on combinatorial auctions. These instances are gen-
erated using the Combinatorial Auctions Test Suite (CATS) [27]. The four
domains generated are arbitrary, paths, regions and scheduling. Arbitrary and
regions instances were both generated using 100-100 goods and 100-2000 bids,
paths instances have between 512 and 2048 goods with 3000-10000 bids, while
scheduling instances have 128-256 goods and 3000-10000 bids. These param-
eters were chosen in order to create instances that proved challenging for the
mixed integer programming (MIP) solver used, CPLEX [28]. CPLEX 12.6 is
used with 74 discretised parameters as provided by ACLib. The first 200 in-
stances for each domain, that were solvable within 30 to 600 seconds using the
default CPLEX configuration, are then merged to create a benchmark with 800
challenging but solvable instances. When solving using ReACTR a cut off time
of 180 seconds was used, which allows room for the configurator to improve over
the default solver configuration.

3.3 Features

The SAT12-All dataset uses 115 SAT instance features that are used by SatZilla
in the 2009 SAT competition [29]. For the sake of brevity we will not exhaus-
tively list all features, however, they can be divided into subgroups: problem
size features, variable-clause graph features, variable graph features, balance fea-
tures, proximity to Horn formula, DPLL probing features, local search probing
features, survey propagation features and clause learning features. A technical
report describing these features in more detail is available [30].

The PROTEUS-2014 dataset contains instances and features used in the
Proteus hierarchical portfolio of solvers [31]. Proteus uses both SAT and CSP
solvers, sometimes encoding a CSP problem in SAT and solving using a SAT
solver if this is expected to improve performance. Therefore, the PROTEUS-
2014 dataset contains a mixture of both CSP and SAT features. There are
36 CSP features which were originally used in CPHydra [32]. These include
statistics about the domain sizes, the type of constraints and the progress of
the Mistral solver when run for 2 seconds. The SAT features used for the
PROTEUS-2014 dataset are similar to those of SAT12-All outlined above. The
one notable difference is that the features are calculated from multiple different
SAT encodings of the CSP instances (support, direct order and direct).
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4 Experiments on Fixed-set Solver Datasets

4.1 Lexicographical and Runtime-based Ordering

This paper has two goals, to explore which candidate selection strategies work
best, and also what effect the instance ordering has on the overall solving time.
To do this different performance metrics (described in Section 3.1) are used
and combined in a number of ways and then evaluated on multiple instance
orderings. Figure 1 shows box plots representing the solving time using various
selection mechanisms on the SAT12-ALL dataset which has been ordered lexi-
cographically. The sampling methods are ordered by their median values, which
is indicated in the boxplot by the red central line. The blue box shows the first
and third quartiles (the 25th and 75th percentiles). The lower whisker shows
Q1 − 1.5 × IQR, inter-quartile range (IQR), while the upper whisker shows
Q3 + 1.5 × IQR, where Q1 and Q3 are the first quartile and third quartile,
respectively, and the IQR is the difference between them. Outliers are marked
with black crosses.
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Figure 1: Comparison of all candidate selection methods on the SAT12-ALL
dataset ordered lexicographically (Avg. of 100 runs).

Three baselines are included to give some context to the results. Oracle
chooses the best possible solver for each instance. Random selects six solvers
at random for each instance and logs the best time achieved from the six.
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SingleBest is the solver which has the lowest overall solving time over all
instances. All of the selection methods shown outperform both the Random
and SingleBest baselines which shows that using any of the ReACTR selec-
tion methods alone even without the ability to modify or introduce new solvers
or configurations still gives an improvement and is a worthwhile endeavour.
Though not shown, this result holds across all orderings of both PROTEUS-
2014 and SAT12-ALL datasets.

Figure 1 shows a jump in solving time when transitioning from 1LW 5RAND
to 5WIN% 1RAND. Prior to this point all selection policies used Last Winners
(LW) as a selection component, after the point combinations of TrueSkill, Win
Percentage and Defeats are used instead. It is clear that having Last Winners as
part of the selection policy is important for SAT instances that are lexicograph-
ically ordered. When the instances are ordered lexicographically rapid changes
in the domain type occur, for example when switching from a folder containing
hardware verification to cryptography instances. By using the last winner these
changes are detected quickly rather than waiting for a TrueSkill score or Win
Percentage to rise sufficiently for the candidate to be selected by those metrics.
Supporting this hypothesis is that none of the other SAT orderings, which are
shuffled instance-wise, show this sharp jump.

There is a smaller jump also visible between the ninth and tenth box plots
(1TS 1LW 4RAND and 5LW 1RAND) which appears to be caused by the re-
duction in the number of random candidates. Last Winners, in the SAT lexico-
graphical case, seems to need a larger number of random candidates included.
Since the domains encountered are changing rapidly, a heavy emphasis on ex-
ploration within the leaderboard is required. Random selection provides this
exploration and allows the selection policy to quickly discover the best solver
for the current instance type, while using Last Winners allows the best solver to
be kept and used for upcoming instances. This behaviour is not typical for the
other orderings or datasets where normally more exploitation using only one or
two Random exploration candidates is favoured.

Note that selection policies that include Defeats appear to under-perform.
When examined more closely Defeats adds little improvement over selecting
randomly. In general, it appears the majority of any good performance observed
when Defeats is used can be attributed to the TrueSkill part of its composition.

Figures 2 and 3 show the best selection policies from each individual ordering
evaluated on all of the other instance orderings for both PROTEUS-2014 and
SAT12-ALL respectively. The y-axis is shown in a log scale in order to include
the baseline results. Again we see that all selection policies outperform the
Random and Single Best baselines. In both cases we see that instances that
are ordered lexicographically are solved faster than all other orderings using the
optimal selection policy. Shuffled instances, though not solved fastest, have the
smallest deviation in solving time. This is most obvious in the case of Proteus
Shuffled.

The lexicographically sorted Proteus dataset is solved fastest using a com-
bination of TrueSkill and Last Winners. This is in keeping with what was
shown in Figure 1 and for possibly the same reasons outlined previously. The

13



2
T
S
, 
2
LW

, 
2
R

A
N

D

5
W

IN
%

, 
1
R

A
N

D

2
T
S
, 
3
W

IN
%

, 
1
R

A
N

D

Lexicographic

1e+05

1e+06

8e+04
9e+04

2e+05

3e+05

4e+05

5e+05
6e+05
7e+05
8e+05
9e+05

2e+06

3e+06

4e+06
Lo

g
 S

ca
le

 S
o
lv

in
g
 T

im
e
(s

)

2
T
S
, 
2
LW

, 
2
R

A
N

D

5
W

IN
%

, 
1
R

A
N

D

2
T
S
, 
3
W

IN
%

, 
1
R

A
N

D

Shuffled

2
T
S
, 
2
LW

, 
2
R

A
N

D

5
W

IN
%

, 
1
R

A
N

D

2
T
S
, 
3
W

IN
%

, 
1
R

A
N

D

Easy to Hard

2
T
S
, 
2
LW

, 
2
R

A
N

D

5
W

IN
%

, 
1
R

A
N

D

2
T
S
, 
3
W

IN
%

, 
1
R

A
N

D

Hard to Easy

O
ra

cl
e

R
a
n
d
o
m

S
in

g
le

 B
e
st

Baseline

PROTEUS-2014

Figure 2: The solving time for the best performing candidate selection mecha-
nisms for each PROTEUS-2014 ordering when evaluated on all other orderings
(Avg. over 100 executions).

other orderings appear to express a preference for certain candidate selection
models as well regardless of dataset. Shuffled instances from both Proteus and
SAT are are solved most quickly using a Win Percentage-based system (5WIN%
1RAND and 1TS 3WIN% 2RAND, respectively). Similarly, selection policies
using TrueSkill and Last Winners perform best on instances that are ordered
from hard-to-easy (2TS 2LW 2RAND for Proteus and 3TS 1LW 2RAND for
SAT). The only ordering which bucks this trend is easy-to-hard, favouring a
TrueSkill and Win Percentage-based model for Proteus (2TS 3WIN% 1RAND)
but a TrueSkill and Last Winners approach for SAT (3TS 1LW 2RAND).

Some commonality amongst the most preferred selection policies is visible
also. Proteus Lexicographical and Hard-to-Easy fare best using two TrueSkill,
two Last Winners and two Random, while both SAT Easy-to-Hard and SAT
Hard-to-Easy agree on three TrueSkill, one LastWinner and two Random as the
optimal selection policy. This may signify that these ratios are the right balance
for those particular datasets. Unfortunately there is no general consensus on ra-
tios across datasets, though Proteus Hard-to-Easy does have 3TS 1LW 2RAND
as a second choice suggesting some commonality is present.
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Figure 3: The solving time for the best performing candidate selection mecha-
nisms for each SAT12-ALL ordering when evaluated on all other orderings (Avg.
over 100 executions).

4.2 Feature-Based Ordering

Our initial ordering experiments showed that instance ordering does make a
difference and positive improvements in the total solving time can be achieved
based on ordering alone. Here we extend these ordering experiments to inves-
tigate the effect of ordering instances based on their feature values. Instance
features can reveal much about the instances being processed such as their size,
structure, and how the instance changes when a solver is run on it for a very
short period of time; we refer to running a solver in this way as ‘probing’. Most
features can be computed extremely quickly, often by just parsing the instance
file. Understanding how ReACTR performs on orderings based on different
instance features provides a greater fundamental understanding of the config-
urator. These experiments show where ReACTR achieves its best and worst
performance in certain domains.

Getting these insights leads to a greater understanding of how ReACTR
will perform in real world scenarios. Companies are often faced with a stream
of increasingly large problems to solve. For example a ride-sharing company
might see the stream of instances it must solve grow in size and complexity
as the company expands over time, or there can be similar effects between
off-peak and rush-hour periods at a daily level. Similarly a factory may face
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increasingly difficult scheduling problems as the company employs more staff
or takes on more orders. Though there is no direct control over the type of
instances encountered it is still important to be aware of how the configurator
responds to the size of certain features increasing and decreasing so as to avoid
any pitfalls.

The previous experiments have focused on which of the selection policies is
most preferred whereas the goal of these experiments is to study the effect of
instance feature ordering. As such we use a single candidate selection policy for
the experiment: 2TS 2LW 2RAND comprising two TrueSkill, two Last Winners
and two Random selectors. This candidate selection policy was chosen as it
performed best in two of the previous PROTEUS-2014 experiments. Candidate
selection policies containing a mixture of TrueSkill and Last Winner also per-
formed well on the SAT12-All dataset making this a good compromise choice
for both datasets being investigated.

The instances in the SAT12-All dataset has 115 unique instance features.
These are ordered both ascending and descending to give a total of 230 different
instance orderings. Each instance ordering is evaluated 100 times. We compared
the distribution of total runtimes for each instance ordering against the distribu-
tion given by 100 runs of both Random and Easy-to-Hard ordering using a statis-
tical hypothesis test (Student’s t-test). Of the 230 different SAT feature order-
ings 223 were statistically better (P=0.01) than random ordering while 200 were
statistically better than the Easy-to-Hard ordering. No ordering was statistically
worse than Random, though four orderings did have worse average runtimes
(UNARY and POSNEG RATIO CLAUSE max sorted both ascending and de-
scending). Eight orderings were statistically worse than the Easy-to-Hard order-
ing (POSNEG RATIO CLAUSE min, POSNEG RATIO VAR min (ascending
and descending), gsat FirstLocalMinStep CoeffVariance, POSNEG RATIO CLAUSE max
(ascending and descending) and UNARY (ascending and descending)).

Figure 4 shows the average cumulative solving time for the instance feature
ordering, with the best and worst performance as well as the baselines Random
ordering, Easy-to-Hard ordering and Hard-to-Easy ordering. Even the worst
feature ordering was only 1.9% slower than Random while the best feature
ordering was 28.9% faster than Random. This implies that the potential gains of
ordering instances by any feature value greatly outweighs the potential penalty
associated with ordering on one of the few features that perform worse than
Random. In other words, ordering instances randomly seems to be the worst
thing one can do: it is important to order instances in a way that recognises
instance size or structure.

Figure 5 shows box plots for the performance of the best ten orderings,
the worst ten orderings, and three baselines (Random, Easy-to-Hard and Hard-
to-Easy). Features that are appended with DESC are sorted in descending
order. It is immediately obvious that there is a large gap between the best
performing orderings and the worst. This is to be expected given the low p-
values seen when statistically comparing these distributions against Random.
What is somewhat surprising is that the disparity between the performance of
the baselines and the worst performing feature orderings is quite small. While
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Figure 4: SAT12-All: Cumulative runtime graph for best and worst feature
orderings with baselines (Avg. over 100 executions).

Easy-to-Hard outperforms Random, and Random outperforms Hard-to-Easy –
which agrees with what was shown in previous experiments – all of the baselines
are scarcely better than even the worst-performing ordering based on features.

Looking more closely at the features themselves we can see that statis-
tics about the number of learned clauses (sorted descending) dominate the
top ten. These clause learning features are based on a two second of run
Zchaff rand. DIAMETER mean is the mean diameter of the variable graph.
VCG CLAUSE max is a Variable-Clause Graph feature for the maximum clause
node degree. cluster coeff mean is the mean clustering coefficient of the Clause
Graph. lobjois mean depth over vars is a DPLL Probing feature which gives
an estimate of the search tree size. This suggests that focusing on the con-
strainedness of instances, and specifically considering more tightly constraint
instances first, is a good strategy. Instances of this kind provide greater oppor-
tunity to learn, since the relative strength of different solver configurations will
be more clearly discernable. If one focuses on instances that are easy for all
configurations, then there is little to distinguish them.

Visually inspecting the orderings produced by sorting on these features we
see that similar instances tend to cluster together (not shown). This is akin
to what we saw in the lexicographical ordering of our previous experiments.
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Figure 5: SAT12-All: Box-plots of the ten best, ten worst and three baselines
(Avg. over 100 executions).

However, feature based ordering is more powerful than lexicographic ordering
in that it does not rely on instances being within the same folder to group similar
instances e.g. crypto instances from the SAT 2007 competition will still appear
near crypto instances from the SAT 2009 competition despite not being in the
same directory.

We see that the sorting order (ascending or descending) is important for the
top performing features. For example ‘DIAMETER mean’ sorted ascending is
the best performing feature taking 109k seconds, however ‘DIAMETER mean’
sorted descending is ranked 145th (132k seconds). It should be noted that
both are still statistically better than all baselines. The opposite seems to
be true of the poorly performing features whose runtime is close to that of
the Random ordering. Both ascending and descending orderings of ‘UNARY’,
‘POSNEG RATIO CLAUSE MAX’ and ‘POSNEG RATIO VAR MIN’ are in
the worst ten performing.

Turning our attention to the PROTEUS-2014 dataset again we see that a
large percentage of feature orderings outperform the random ordering. Of the
potential 396 orderings (198 features sorted both ascending and descending)
376 have a lower average total solving time. After analysing these results using
Student’s t-test we find that 310 feature orderings give a statistically significant
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Figure 6: PROTEUS-2014: Cumulative runtime graph for best and worst fea-
ture orderings with baselines (Avg. over 100 executions).

improvement over the random ordering while only four where statistically worse
(direct cluster-coeff-mean DESC, support cluster-coeff-mean DESC, csp dyn log stdev weight,
directorder VCG-VAR-max). The ordering with the fastest total solving time
was 32.1% faster than random ordering while the worst was 6.2% slower. When
comparing against Easy-to-Hard, we find that 74 feature orderings perform sta-
tistically better while 221 are statistically worse. Figure 6 shows the average
cumulative solving time for the best and worst feature ordering in addition to the
three baselines. The progression for best ordering is interesting in that it follows
the gradient of the random ordering for the first 300 instances before solving
the remaining 323 instances extremely quickly. This somewhat contradicts the
idea that solving the easiest instances first is always desirable. However, it is
important to remember that these are static experiments with a fixed pool of
solvers. In the dynamic case it may be desirable to solve the easiest instances
first and by doing so learn more configurations quickly.

The box-plots in Figure 7 show that unlike SAT12-All the ten worst orderings
do perform worse than the baselines though not too much worse than Random
ordering. The features for the PROTEUS dataset are interesting in that they
contain a mixture of CSP and SAT features. The SAT features are replicated
for three different encodings used when encoding the CSP instances to SAT
(DIRECT, DIRECTORDER and SUPPORT). These encodings are prepended
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Figure 7: PROTEUS-2014: Box-plots of the ten best, ten worst and three
baselines (Avg. over 100 executions).

to the feature names to indicate the encoding used, while CSP features have
‘CSP’ prepended to them. Both the ten best and ten worst contain at least
one of each type of feature. It is also interesting to note that the PROTEUS
and SAT datasets do not agree on the best features to order by, in fact CLUS-
TER COEFF MEAN DESC is the second best feature ordering in SAT whereas
it is the third, fourth and sixteenth worst in PROTEUS for SUPPORT, DIRECT
and DIRECTORDER encodings respectively.

Variable-graph node degree statistics seem to be important for ordering the
PROTEUS dataset. The maximum node degree occurs twice in the ten best or-
derings (DIRECTORDER VG-MAX DESC, SUPPORT VG-MAX DESC) while
the node degree mean also appears in the top ten (DIRECT VG-MEAN DESC).
Statistics relating to the Variable-Clause graph occur three times in the top ten
(SUPPORT VCG-CLAUSE-MEAN DESC, DIRECT VCG-CLAUSE-COEFF-
VARIATION DESC, SUPPORT VCG-VAR-MEAN DESC). These are both in-
teresting since the variable graph and the variable-clause both relate to the con-
strainedness of the instances, mirroring some of the intuition that lies behind
successful variable ordering heuristics for search which prefer more constrained
instances, and prefer higher degree variables.

For the CSP features the average predicate shape and arity are important as
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is the maximum arity (CSP PERTEN AVG PREDSHAPE DESC, CSP MAX ARITY,
CSP PERTEN AVG PREDARITY). Again visual inspection of the orderings
produced by these features shows that they tend to group instances from sim-
ilar domains together. This, of course, might simply be a consequence of how
these problems are modelled.

Looking at the worst ten features to order on we see that the clause graph fea-
tures relating to the clustering coefficient perform poorly (SUPPORT CLUSTER-
COEFF-MAX DESC, SUPPORT CLUSTER-COEFF-COEFF-VARIATION DESC,
DIRECT CLUSTER-COEFF-MEAN DESC, SUPPORT CLUSTER-COEFF-MEAN DESC).
Two features relating to proximity to Horn formula also appear; the mean and
max number of occurrences in a Horn clause for each variable (DIRECT HORNY-
VAR-MEAN, DIRECTORDER HORNY-VAR-MAX). Similar to the point made
previously, the poor performance from using these features reflects the poor
performance associated with variable ordering anti-heuristics that prefer less
constrained instances.

5 Experiments on Non-fixed Solver Configura-
tions

These experiments involve running ReACTR in full which constantly adds and
removes configurations to the configuration pool. This differs substantially from
the static case we studied above, where a fixed set of solvers were constantly
being selected from. Due to the lengthy solving time incurred by full ReACTR
runs the dynamic experiments are limited to using a single selection policy. We
use the candidate selection policy used in the feature ordering experiments (two
TrueSkill, two Last Winners and two Random) for the same reasons outlined
previously. The overall objective of these runs is to reduce the mean solving
time.

Initially the effect of grouping on solving time was examined. The com-
binatorial auctions benchmark is an amalgamation of four different types of
combinatorial auction instances. By grouped we mean that instances are organ-
ised by class, and all instances are kept together though within the group they
may be ordered differently (Shuffled, Easy-to-Hard, Hard-to-Easy).

Figure 8 shows a scatter plot of grouped vs. ungrouped instances solving
times for various orderings. All points occur above the identity line which means
that ungrouped performance exceeds that of grouped in every case. This result is
somewhat unexpected especially considering that the lexicographically-ordered
instances (a type of grouping) had the lowest solving time in the static exper-
iments. One possible explanation for this is that a type of over fitting occurs
when the configurator only encounters instances of a single type. Due to the fact
that all instances are of a single type initially, specialised configurations may
beat more generally applicable configurations and cause them to be removed.
This theory is supported by the trajectory of the grouped and shuffled instances
in Figure 10. Here, the solving time for the initial group looks promising with
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Figure 8: A scatter plot showing the total solving time for grouped vs. un-
grouped instances on the Combinatorial Auctions benchmark (Avg. over 10
ReACTR executions).

a steep incline in the plot but after changing groups at 200 instances the slope
becomes flatter, denoting slower solving time. Student’s T-Test shows that both
the Ungrouped Hard-to-Easy and Shuffled orderings outperform there Grouped
counterparts (P=0.006 and P=0.054 respectively). The Easy-to-Hard results
could not be shown to be statistically better (though this could be due to the
relatively number of runs).

The box plots in Figure 9 provide further evidence that grouping is not ben-
eficial during dynamic ReACTR runs. Interestingly, not only do all grouped
runs perform worse than their ungrouped counterparts but they also exhibit a
much larger spread in terms of solving time. Figure 9 also shows that ordering
instances by Easy-to-Hard results in the fastest solving time regardless of group-
ing or not; Shuffled instances are in the middle in terms of solving time, and
Hard-to-Easy instances take the longest to solve. This agrees with what would
be expected intuitively. At the start the configurator has not had a chance to
find any improvement and so solving hard problems is detrimental to the overall
solving time. Figures 10 and 11 show what is happening more clearly; Hard-to-
Easy solves fewer instances early on and, as such, the configurator learns less
while also solving the instances more slowly because the configurations have
not improved yet. Easy-to-Hard is able to solve the easy instances first which
even the default configuration, which is used due to warm starting, should solve
relatively quickly. Because the instances at the beginning of the Easy-to-Hard
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Figure 9: The total solving time for various orderings of the Combinatorial
Auctions benchmark both grouped and ungrouped (Avg. over 10 ReACTR
executions).

ordering are less challenging, ReACTR is also able to solve more in a short
amount of time. This allows the configurator to learn better configurations
much faster than if it were solving hard instances. By the time the solver has
reached the more difficult instances at the end of the Easy-to-Hard order of
instances it has learned multiple good configurations to make solving difficult
instances much quicker.

6 Conclusions and Future Work

This paper has investigated what affect instance ordering and candidate selec-
tion has on the real-time algorithm configurator ReACTR. We demonstrate that
both the selection procedure used to select configurations and the order which
instances arrive in have a significant impact the ReACTR’s performance.

Furthermore we show that instance ordering and the selection procedure
used are linked. Some candidate selection procedures are better suited to certain
instance orderings than others. Choosing the correct selection procedure can
lead to marked improvements in configurator performance.

The efficiency of ReACTR when configuring over streams various instance
orderings is also examined. Using two static datasets (with no configuration
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Figure 10: Instances Solved vs. Solving Time for grouped instances of the
Combinatorial Auctions benchmark (Avg. over 10 ReACTR executions).

replacement occurs) in different domains we show that ordering based on nearly
any feature value is better than doing so at random. We also evaluate difficulty
and group based orderings using full ReACTR configuration runs. Somewhat
surprisingly in this case grouping appears to hamper the performance of the
configurator. This is believed to be due to overfitting that occurs when the
configurator encounters only one type of instance for a long time and discards
more generally applicable configurations from its pool.

Future work will focus on preventing overfitting by detecting when a change
occurs in grouped instance and re-evaluating previous incumbents. Another
aspect of future work will be to consider automatically detecting the incoming
instance ordering and choosing the most appropriate candidate selection pro-
cedure for this. We also aim to investigate whether processing smaller batches
of instances in a specific order can result in performance improvements. For
example if there is a backlog of instances is it advantageous to process these
based on a particular feature ordering? Finally, we will consider optimising
other statistics related to solving streams of instances arriving online.
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