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Incomplete Information research is quite mature when it comes to so called
existential nulls, where an existential null is a value stored in the database, rep-
resenting an unknown object. For some reason universal nulls, that is, values
representing all possible objects, have received almost no attention. We remedy
the situation in this paper, by showing that a suitable finite representation mech-
anism, called Star Cylinders, handling universal nulls can be developed based
on the Cylindric Set Algebra of Henkin, Monk and Tarski. We provide a finitary
version of the cylindric set algebra, called Cylindric Star Algebra, and show that
our star-cylinders are closed under this algebra. Moreover, we show that any
First Order Relational Calculus query over databases containing universal nulls
can be translated into an equivalent expression in our cylindric star-algebra,
and vice versa. All cylindric star-algebra expressions can be evaluated in time
polynomial in the size of the database.

The representation mechanism is then extended to Naive Star Cylinders,
which are star-cylinders allowing existential nulls in addition to universal nulls.
For positive queries (with universal quantification), the well known naive eval-
uation technique can still be applied on the existential nulls, thereby allowing
polynomial time evaluation of certain answers on databases containing both
universal and existential nulls. If precise answers are required, certain answer
evaluation with universal and existential nulls remains in coNP. Note that the
problem is coNP-hard, already for positive existential queries and databases
with only existential nulls. If inequalities ¬(xi ≈ xj) are allowed, reasoning over
existential databases is known to be Πp

2-complete, and it remains in Πp
2 when

universal nulls and full first order queries are allowed.
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1 Introduction

In this paper we revisit the foundations of the relational model and unearth
universal nulls, showing that they can be treated on par with the usual existen-
tial nulls [19, 12, 13]. Recall that an existential null in a tuple in a relation R

represents an existentially quantified variable in an atomic sentence R(..). This
corresponds to the intuition ”value exists, but is unknown.” A universal null,
on the other hand, does not represent anything unknown, but stands for all
values of the domain. In other words, a universal null represents a universally
quantified variable. Universal nulls have an obvious application in databases, as
the following example shows. The symbol ”∗” denotes a universal null.

Example 1 Consider binary relations F (ollows) and H(obbies), where F (x, y)
means that user x follows user y on a social media site, and H(x, z) means that
z is a hobby of user x. Let the database be the following.

F

Alice Chris
∗ Alice
Bob ∗
Chris Bob
David Bob

H

Alice Movies
Alice Music
Bob Basketball

This is to be interpreted as expressing the facts that Alice follows Chris and
Chris and David follow Bob. Alice is a journalist who would like to give access
to everyone to articles she shares on the social media site. Therefore, everyone
can follow Alice. Bob is the site administrator, and is granted the access to all
files anyone shares on the site. Consequently, Bob follows everyone. ”Everyone”
in this context means all current and possible future users. The query below, in
domain relational calculus, asks for the interests of people who are followed by
everyone:

x4 . ∃x2∃x3∀x1(F (x1, x2) ∧H(x3, x4) ∧ (x2 ≈ x3)). (1)

The answer to our example query is {(Movies), (Music)}. Note that star-nulls
also can be part of an answer. For instance, the query x1, x2 . F (x1, x2) would
return all the tuples in F . ◂

Another area of applications of “*”-nulls relates to intuitionistic, or con-
structive database logic. In the constructive four-valued approach of [15] and
the three-valued approach of [13, 22] the proposition A ∨ ¬A is not a tautology.
In order for A ∨ ¬A to be true, we need either a constructive proof of A or a
constructive proof of ¬A. Therefore both [15] and [22] assume that the database
I has a theory of the negative information, i.e. that I = (I+, I−), where I+ con-
tains the positive information and I− the negative information. The papers [15]
and [22] then show how to transform an FO-query ϕ(x̄) to a pair of queries
(ϕ+(x̄), ϕ−(x̄)) such that ϕ+(x̄) returns the tuples ā for which ϕ(ā) is true in
I+, and ϕ−(x̄) returns the tuples ā for which ϕ(ā) is true in I− (i.e. ϕ(ā) is
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false in I). It turns out that databases containing “*”-nulls are suitable for
storing I−.

Example 2 Suppose that the instance in Example 1 represents I+, and that all
negative information we have deduced about the H(obbies) relation, is that we
know Alice doesn’t play Volleyball, that Bob only has Basketball as hobby, and
that Chris has no hobby at all. This negative information about the relation H

is represented by the table H− below. Note that H− is part of I−.

H−

Alice Volleyball
Bob ∗ (except Basketball)
Chris ∗

Suppose the query ϕ asks for people who have a hobby, that is ϕ = x1 .∃x2H(x1, x2).
Then ϕ+ = ϕ, and ϕ− = x1 .∀x2H(x1, x2). Evaluating ϕ+ on I+ returns {(Alice),
(Bob)}, and evaluating ϕ− on I− returns {(Chris)}. Note that there is no closed-
world assumption as the negative facts are explicit. Thus it is unknown whether
David has a hobby or not.

Universal nulls were first studied in the early days of database theory by
Biskup in [6]. This was a follow-up on his earlier paper on existential nulls
[5]. The problem with Biskup’s approach, as noted by himself, was that the
semantics for his algebra worked only for individual operators, not for compound
expressions (i.e. queries). This was remedied in the foundational paper [19]
by Imielinski and Lipski, as far as existential nulls were concerned. Universal
nulls next came up in [20], where Imielinski and Lipski showed that Codd’s
Relational Algebra could be embedded in CA, the Cylindric Set Algebra of
Henkin, Monk, and Tarski [16, 17]. As a side remark, Imielinski and Lipski
suggested that the semantics of their ”∗” symbol could be seen as modeling
the universal null of Biskup. In this paper we follow their suggestion1, and
fully develop a finitary representation mechanism for databases with universal
nulls, as well as an accompanying finitary algebra. We show that any FO (First
Order / Domain Relational Calculus) query can be translated into an equivalent
expression in a finitary version of CA, and that such algebraic expressions can
be evaluated ”naively” by the rules “∗ = ∗” and “∗ = a” for any constant “a.”
Our finitary version is called Cylindric Star Algebra (SCA) and operates on
finite relations containing constants and universal nulls “∗.” These relations
are called Star Cylinders and they are finite representations of a subclass of the
infinite cylinders of Henkin, Monk, and Tarski. Interestingly, the class of star-
cylinders is closed under first order querying, meaning that the infinite result
of an FO query on an infinite instance represented by a finite sequence of finite
star-cylinders can be represented by a finite star-cylinder.2 This is achieved

1We note that Sundarmurthy et. al. [25] very recently have proposed a construct related
to our universal nulls, and studied ways on placing constraints on them.

2Consequently there is no need to require calculus queries to be “domain independent.”

3



by showing that the class of star-cylinders are closed under our cylindric star-
algebra, and that SCA as a query language is equivalent in expressive power
with FO.

The Cylindric Set Algebra [16, 17] —as an algebraization of first order logic—
is an algebra on sets of valuations of variables in an FO-formula. A valuation
ν of variables {x1, x2, . . .} can be represented as a tuple ν, where ν(i) = ν(xi).
The set of all valuations can then be represented by a relation C of such tuples.
In particular, if the FO-formula only involves a finite number n of variables,
then the representing relation C has arity n. Note however that C has an infi-
nite number of tuples, since the domain of the variables (such as the users of a
social media site) should be assumed unbounded. One of the basic connections
[16, 17] between FO and Cylindric Set Algebra is that, given any interpreta-
tion I and FO-formula ϕ, the set of valuations ν under which ϕ is true in I

can be represented as such a relation C. Moreover, each logical connective and
quantifier corresponds to an operator in the Cylindric Set Algebra. Naturally
disjunction corresponds to union, conjunction to intersection, and negation to
complement. More interestingly, existential quantification on variable xi corre-
sponds to cylindrification ci on column i, where

ci(C) = {ν ∶ ν(i/a) ∈ C, for some a ∈ D},

and ν(i/a) denotes the valuation (tuple) ν′, where ν′(i) = a and ν′(j) = ν(j) for
i ≠ j. The algebraic counterpart of universal quantification can be derived from
cylindrification and complement, or be defined directly as inner cylindrification

c

i(C) = {ν ∶ ν(i/a) ∈ C, for all a ∈ D}.

In addition, in order to represent equality, the Cylindric Set Algebra also
contains constant relations dij representing the equality xi ≈ xj . That is, dij is
the set of all valuations ν, such that ν(i) = ν(j).

The objects C and dij of [16, 17] are of course infinitary. In this paper
we therefore develop a finitary representation mechanism, namely relations con-
taining universal nulls “∗” and certain equality literals. These objects are called
Star Tables when they represent the records stored in the database. When used
as run-time constructs in algebraic query evaluation, they will be called Star
Cylinders. Example 1 showed star-tables in a database. The run-time variable
binding pattern of the query (1), as well as its algebraic evaluation is shown in
the star-cylinders in Example 3 below.

Example 3 Continuing Example 1, in that database the atoms F (x1, x2) and
H(x3, x4) of query (1) are represented by star-tables CF and CH , and the equal-
ity atom is represented by the star-cylinder C23. Note that these are positional
relations, the ”attributes” x1, x2, x3, x4 are added for illustrative purposes only.
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CF
x1 x2 x3 x4
Alice Chris ∗ ∗
∗ Alice ∗ ∗
Bob ∗ ∗ ∗
Chris Bob ∗ ∗
CH
x1 x2 x3 x4
∗ ∗ Alice Movies
∗ ∗ Alice Music
∗ ∗ Bob Basketball

C23

x1 x2 x3 x4
∗ ∗ ∗ ∗ 2=3

The algebraic translation of query (1) is the SCA-expression

ċ2(ċ3( ˙c1((CF ⩀CH) ⩀C23))) (2)

The intersection of CF and CH is carried out as star-intersection ⩀, where for
instance {(a,∗,∗)} ⩀ {(∗, b,∗)} = {(a, b,∗)}. The result will contain 12 tuples,
and when these are star-intersected with C23, the star-cylinder C23 will act as
a selection by columns 2 and 3 being equal. The result is the star-cylinder
C′ = (CF ⩀CH) ⩀C23 below.

C′

x1 x2 x3 x4
∗ Alice Alice Movies
∗ Alice Alice Music
Bob Alice Alice Movies
Bob Alice Alice Music
Bob Bob Bob Basketball
Chris Bob Bob Basketball

The inner star-cylindrification on column 1 then yields C′′ = ˙c1((CF⩀CH)⩀C23).
C′′

x1 x2 x3 x4
∗ Alice Alice Movies
∗ Alice Alice Music

Finally, applying outer star-cylindrifications on columns 2 and 3 of star-cylinder
C′′ yields the final result C′′′ = ċ2(ċ3( ˙c1((CF ⩀CH) ⩀C23))).

C′′′

x1 x2 x3 x4
∗ ∗ ∗ Movies
∗ ∗ ∗ Music
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The system can now return the answer, i.e. the values of column 4 in cylinder
C′′′. Note that columns where all rows are “∗” do not actually have to be
materialized at any stage. Negation requires some additional details that will be
introduced in Section 3.2. ◂

The aim of this paper is to develop a clean and sound modelling of univer-
sal nulls, and furthermore show that the model can be seamlessly extended to
incorporate the existential nulls of Imielinski and Lipski [19]. We show that
FO and our SCA are equivalent in expressive power when it comes to querying
databases containing universal nulls, and that SCA queries can be evaluated
(semi) naively. This will be done in three steps: In Section 2 we show the equiv-
alence between FO and Cylindric Set Algebra over infinitary databases. This
was of course only the starting point of [16, 17], and we recast the result here in
terms of database theory.3 In Section 3 we introduce our finitary Cylindric Star
Algebra. Section 3.1 develops the machinery for the positive case, where there is
no negation in the query or database. This is then extended to include negation
in Section 3.2. By these two sections we show that certain infinitary cylinders
can be finitely represented as star-cylinders, and that our finitary Cylindric Star
Algebra on finite star-cylinders mirrors the Cylindric Set Algebra on the infi-
nite cylinders they represent. In Section 4 we tie these two results together,
delivering the promised SCA evaluation of FO queries on databases containing
universal nulls. In Section 5 we seamlessly extend our framework to also handle
existential nulls, and show that naive evaluation can still be used for positive
queries (allowing universal quantification, but not negation) on databases con-
taining both universal and existential nulls. Section 6 then shows that all SCA
expressions can be evaluated in time polynomial in the size of the database when
only universal nulls are present. We also show that when both universal and
existential nulls are present, the certain answer to any negation-free (allowing
inner cylindrification, i.e. universal quantification) SCA-query can be evaluated
naively in polynomial time. When negation is present it has long been known
that the problem is coNP-complete for databases containing existential nulls.
We show that the problem remains coNP-complete when universal nulls are al-
lowed in addition to the existential ones. For databases containing existential
nulls it has been known that database containment and view containment are
coNP-complete and Πp

2-complete, respectively. We also show that the addition
of universal nulls does not increase these complexities.

2 Relational calculus and
cylindric set algebra

Throughout this paper we assume a fixed schema R = {R1, . . . ,Rm,≈}, where
each Rp, p ∈ {1, . . . ,m}, is a relational symbol with an associated positive integer
ar(Rp), called the arity of Rp. The symbol ≈ represents equality.

3Van Den Bussche [9] has recently referred to [16, 17] in similar terms.
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Logic. Our calculus is the standard domain relational calculus. Let {x1, x2, . . .}
be a countably infinite set of variables. We define the set of FO-formulas ϕ (over
R) in the usual way: Rp(xi1 , . . . , xiar(Rp)

) and xi ≈ xj are atomic formulas, and
these are closed under ∧,∨,¬,∃xi, and ∀xi, in a well-formed manner possibly
using parenthesis’s for disambiguation.

Let ϕ be an FO-formula. We denote by vars(ϕ) the set of variables in ϕ,
by f ree(ϕ) the set of free variables in ϕ, and by sub(ϕ) the set of subformulas
of ϕ (for formal definitions, see [1]). If ϕ has n variables we say that ϕ is an
FOn-formula. We assume without loss of generality that each variable occurs
only once in the formula, except in equality literals, and that a formula with n

variables uses variables x1, . . . , xn.

Instances. Let D = {a1, a2, . . .} be a countably infinite domain. An instance
I (over R) is a mapping that assigns a possibly infinite subset RIp of D

ar(Rp)

to each relation symbol Rp, and ≈I = {(a, a) ∶ a ∈ D}. Note that our instances
are infinite model-theoretic ones. The set of tuples actually recorded in the
database will be called the stored database (to be defined in Section 4).

In order to define the (standard) notion of truth of an FOn-formula ϕ in an
instance I we first define a valuation to be a mapping ν ∶ {x1, . . . , xn}→ D. If ν
is a valuation, xi a variable and a ∈ D, then ν(i/a) denotes the valuation which is
the same as ν, except ν(i/a)(xi) = a. Then we use the usual recursive definition
of I ⊧ν ϕ, meaning instance I satisfying ϕ under valuation ν, i.e. I ⊧ν (xi ≈ xj)
if (ν(xi), ν(xj)) ∈ ≈I , I ⊧ν Rp(xi1 , . . . , xiar(Rp)

) if (ν(xi1), . . . , ν(xiar(Rp)
)) ∈ RIp,

and I ⊧ν ∃xi ϕ if I ⊧ν(i/a) ϕ for some a ∈ D, and so on. Our stored databases
will be finite representations of infinite instances, so the semantics of answers
to FO-queries will be defined in terms of the infinite instances:

Definition 1 Let I be an instance, and ϕ an FOn-formula with f ree(ϕ) =
{xi1 , . . . , xik}, k ≤ n. Then the answer to ϕ on I is defined as

ϕI = {(ν(xi1), . . . , ν(xik)) ∶ I ⊧ν ϕ}.

Algebra. As noted in [20] the relational algebra is really a disguised version of
the Cylindric Set Algebra of Henkin, Monk, and Tarski [16, 17]. We shall there-
fore work directly with the Cylindric Set Algebra instead of Codd’s Relational
Algebra. Apart from the conceptual clarity, the Cylindric Set Algebra will also
allow us to smoothly introduce the promised universal nulls.

Let n be a fixed positive integer. The basic building block of the Cylindric
Set Algebra is an n-dimensional cylinder C ⊆ D

n. Note that a cylinder is
essentially an infinite n-ary relation. They will however be called cylinders, in
order to distinguish them from instances. The rows in a cylinder will represent
run-time variable valuations, whereas tuples in instances represent facts about
the real world. We also have special cylinders called diagonals, of the form
dij = {t ∈ Dn ∶ t(i) = t(j)} representing the equality xi ≈ xj . We can now define
the Cylindric Set Algebra.
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Definition 2 Let C and C′ be infinite n-dimensional cylinders. The Cylindric
Set Algebra consists of the following operators.

1. Union: C ⋃ C′. Set theoretic union.

2. Complement: C = D
n ∖C.

3. Outer cylindrification:

ci(C) = {t ∈ Dn ∶ t(i/a) ∈ C, for some a ∈ D}.

The operation ci is called outer cylindrification on the i:th dimension, and will
correspond to existential quantification of variable xi. For the geometric intu-
ition behind the name cylindrification, see [16, 20]. Intersection is considered a
derived operator, and we also introduce the following derived operator:

4. Inner cylindrification: c

i(C) = ci(C), corresponding to universal quantifi-
cation. Note that

c

i(C) = {t ∈ Dn ∶ t(i/a) ∈ C, for all a ∈ D}.

We also need the notion of cylindric set algebra expressions.

Definition 3 Let C = (C1, . . . ,Cm, dij)i,j ∈ {1,...,n} be a sequence of infinite n-
dimensional cylinders and diagonals. The set of CAn-expressions (over C) is
obtained by closing the atomic expressions Cp and dij under union, intersec-
tion, complement, and inner and outer cylindrifications. Then E(C), the value
of expression E on sequence C is defined in the usual way, e.g. Cp(C) = Cp,
dij(C) = dij , ci(E)(C) = ci(E(C)) etc.

Equivalence of FO and CA. In the next two theorems we will restate, in
the context of the relational model, the correspondence between domain rela-
tional calculus and cylindric set algebra as query languages on instances [16, 17].
An expression E in cylindric set algebra of dimension n will be called a CAn-
expression. When translating an FOn-formula to a CAn-expression we first need
to extend all k-ary relations in I to n-ary by filling the n− k last columns in all
possible ways. Formally, this is expressed as follows:

Definition 4 The horizontal n-expansion of an infinite k-ary relation R is

h
n(R) = ⋃

t∈R

{t} ×D
n−k.

The equality relation ≈I= {(a, a) ∶ a ∈ D} is expanded into diagonals dij for
i, j ∈ {1 . . . , n}, where

dij = ⋃
(a,a)∈≈I

D
i−1 × {a} ×D

j−i+1 × {a} ×D
n−j ,

and for an instance I = (RI1, . . . ,RIm,≈I), we have

h
n(I) = (hn(RI1), . . . ,hn(RIm), dij)i,j .
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Once an instance is expanded it becomes a sequence C = (C1, . . . ,Cm, dij)i,j of
n-dimensional cylinders and diagonals, on which Cylindric Set Algebra Expres-
sions can be applied.

The main technical difficulty in the translation from FOn to CAn is the corre-
lation of the variables in the FOn-sentence ϕ with the columns in the expanded
relations in the instance. This can be achieved using a derived “swapping” oper-
ator zi1,...,ikj1,...,jk

that interchanges the columns il and jl, where l ∈ {1, . . . , k}.4 Every

atom Rp in ϕ will correspond to a CAn-expression Cp = h
n(RIp). However, for

every occurrence of an atom Rp(xi1 , . . . , xik) in ϕ we need to interchange the
columns 1, . . . , k with columns i1, . . . , ik. This is achieved by the expression
z
1,...,k
i1,...,ik

(Cp).
Among the many identities holding in Cylindric Set Algebra we will in the

sequel need the following ones

Proposition 1 [16]. Let C be an n-dimensional cylinder, and i, j ∈ {1, . . . , n}.
Then

1. z
i
j(C) = z

j
i (C).

2. z
i
j(zji (C)) = C.

3. ci(zij(C)) = z
i
j(cj(C)).

4. If i ≠ j then z
i
j(C ∖C′) = z

i
j(C) ∖ z

i
j(C′).

5. If ci(C) = C and cj(C) = C then z
i
j(C) = C.

Proposition 2 Let i, j, k be pairwise distinct natural numbers, such that {i, j, k}∩
{1,2,3} = ∅, and let C be an n-dimensional cylinder that is 2-full5 and k-full.
Then

z
i,k
1,2(z3,2,1k,j,i (C)) = z

1,2,3
1,j,2(C).

Proof:

z
i,k
1,2(z3,2,1k,j,i

(C)) = z
i,k,3,2,1
1,2,k,j,i(C) = z

i,3,2,2,1
1,2,k,j,i(C) = z

i,3,2,1
1,2,j,i(C) =

z
i,1,3,2
1,i,2,j(C) = z

i,1,3,2
i,1,2,j(C) = z

1,3,2
1,2,j(C).

The second equality follows from Theorem 1.5.18 in [16], the third equality holds
since c2(C) = C and ck(C) = C, the fourth since {1, i} ∩ {2,3, j} = ∅. The last
two equalities follow from Theorem 1.5.17 and 1.5.13 in [16], respectively. �

The entire FOn-formula ϕ with f ree(ϕ) = {xi1 , . . . , xik} will then correspond

to the CAn-expression Eϕ = z
i1,...,ik
1,...,k (Fϕ), where Fϕ is defined recursively as

follows:

4This was already implicitly done in the expansion of ≈I in Definition 4. For a definition
of swapping using the primitive operators, see Definition 1.5.12 in [16].

5Cylinder C is i-full if ci(C) = C.
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• If ϕ = Rp(xi1 , . . . , xik) where k = ar(Rp), then Fϕ = z
1,...,k
i1,...,ik

(Cp).
• If ϕ = xi ≈ xj , then Fϕ = dij .

• If ϕ = ψ ∨ χ, then Fϕ = Fψ⋃Fχ, if ϕ = ψ ∧ χ, then Fϕ = Fψ ⋂Fχ, and if
ϕ = ¬ψ, then Fϕ = Fψ .

• If ϕ = ∃xiψ, then Fϕ = ci(Fψ).
• If ϕ = ∀xiψ, then Fϕ = c

i(Fψ).
For an example, let us reformulate the FO4-query ϕ from (1) as

x4 . ∃x2∃x3∀x1 (R1(x1, x2) ∧R2(x3, x4) ∧ (x2 ≈ x3))

When translating ϕ the relation RI1 is first expanded to C1 = RI1 ×D×D, and RI2
is expanded to C2 = RI2 ×D×D. In order to correlate the variables in ϕ with the
columns in the expanded databases, we do the shifts z1,21,2(C1) and z

1,2
3,4(C2). The

equality (x2 ≈ x3) was expanded to the diagonal d23 = {t ∈ D
n ∶ t(2) = t(3)}

so here the variables are already correlated. After this the conjunctions are
replaced with intersections and the quantifiers with cylindrifications. Finally,
the column corresponding to the free variable x4 in ϕ (whose bindings will
constitute the answer) is shifted to column 1. The final CAn-expression will
then be evaluated against I as Eϕ(h4(I)) =

z
4
1(c23( c

1(z1,21,2(RI1 ×D
2) ⋂ z

1,2
3,4(RI2 ×D

2)⋂ d23))).

We now have Eϕ(h4(I)) = h
4(ϕI). The following fundamental result follows

from [16, 17], but we prove it here for the benefit of the readers who don’t want
to consult [16, 17].

Theorem 1 For all FOn-formulas ϕ, there is a CAn expression Eϕ, such that

Eϕ(hn(I)) = h
n(ϕI),

for all instances I. ◂
Proof: We prove the stronger claim: For all FOn-formulas ϕ, for all ψ ∈ sub(ϕ),
with f ree(ψ) = {xi1 , . . . , xik}, there is an CAn expression Eψ, such that

z
i1,...,ik
1,...,k (Eψ(hn(I))) = h

n(ψI),

for all instances I. The main claim the follows since ϕ ∈ sub(ϕ), and the
outermost sequence of swappings can be considered part of the final expression
Eϕ. In all cases below we assume wlog6 that k < n so that the k + 1:st column
can be used in the necessary swappings.

6 If k = n we can introduce an additional variable xn+1 and the conjunct ∃xn+1(xn+1 ≈
xn+1) which would assure that the n+1:st dimension is full. Alternatively, we could introduce
swapping as a primitive in the algebra. This however would require a corresponding renaming
operator in the FO-formulas, see [16].
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• ψ = Rp(xi1 , . . . , xik), where k = ar(Rp). We let Eψ = z
k,...,1
ik,...,i1

(Cp). We have

z
i1,...,ik
1,...,k (Eψ(hn(I))) =

z
i1,...,ik
1,...,k (zk,...,1ik,...,i1

(Cp(hn(I))) =
By Proposition 1 (2)

Cp(hn(I)) =

h
n(RIp) =

h
n(ψI).

• ψ = xi ≈ xj . We assume wlog that n > 2 so that swaps can be performed.
We let Eψ = dij . We then have

z
i,j
1,2(Eψ(hn(I))) =

z
i,j
1,2(dij) =

z
i,j
1,2({t ∈ Dn ∶ t(i) = t(j)}) =

{t ∈ Dn ∶ t(1) = t(2)} =

{(a, a) ∶ a ∈ D} ×D
n−2 =

h
n({(a, a) ∶ a ∈ D}) =

h
n((xi ≈ xj)I) =

h
n(ψI).

• ψ = ¬ ξ, with f ree(ξ) = {xi1 , . . . , xik}. We assume wlog that k < n. Then
Eψ = Eξ, and the inductive hypothesis is

z
i1,...,ik
1,...,k (Eξ(hn(I))) = h

n(ξI)

We have
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z
i1,...,ik
1,...,k (Eψ(hn(I))) =

z
i1,...,ik
1,...,k (Eξ(hn(I))) =

z
i1,...,ik
1,...,k (Dn ∖Eξ(hn(I))) =

By Proposition 1 (2)

z
i1,...,ik
1,...,k (Dn ∖ (zk,...,1ik,...,i1

(zi1,...,ik1,...,k (Eξ(hn(I)))))) =

z
i1,...,ik
1,...,k (Dn ∖ (zk,...,1ik,...,i1

(hn(ξI)))) =
By Proposition 1 (5)

z
i1,...,ik
1,...,k (zk,...,1ik,...,i1

(Dn) ∖ (zk,...,1ik,...,i1
(zn(ξI)))) =

By Proposition 1 (4)

z
i1,...,ik
1,...,k (zk,...,1ik,...,i1

(Dn ∖ h
n(ξI)))) =

By Proposition 1 (2)

Dn ∖ h
n(ξI) =

h
n((¬ ξ)I) =

h
n(ψI).

• ψ = ξ∧χ, with f ree(ψ) = {xi1 , . . . , xik}, f ree(ξ) = {xr1 , . . . , xrp}, f ree(χ) =
{xs1 , . . . , xsq}, f ree(ψ) = f ree(ξ) ∪ f ree(χ), and7 f ree(ξ) ∩ f ree(χ) = ∅.
Now Eψ = Eξ ⋂Eχ. The inductive hypothesis is

z
r1,...,rp
1,...,p (Eξ(hn(I))) = h

n(ξI).

z
s1,...,sq
1,...,q (Eχ(hn(I))) = h

n(χI).

We have

7The last assumption is needed in steps †
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z
i1,...,ik
1,...,k (Eψ(hn(I))) =

z
i1,...,ik
1,...,k (Eξ ⋂Eχ (hn(I))) =

z
i1,...,ik
1,...,k (Eξ(hn(I)) ⋂ Eχ(hn(I))) =

By Proposition 1 (2)

z
i1,...,ik
1,...,k (zp,...,1rp,...,r1

(zr1,...,rp1,...,p (Eξ(hn(I)))) ⋂ z
q,...,1
sq ,...,s1

(zs1,...,sq1,...,q (Eχ(hn(I))))) =

z
i1,...,ik
1,...,k (zp,...,1rp,...,r1

(hn(ξI)) ⋂ z
q,...,1
sq,...,s1

(hn(χI))) =

z
i1,...,ik
1,...,k (

z
p,...,1
rp,...,r1

(hn({ν(xr1), . . . , ν(xrp) ∶ I ⊧ν ξ})) ⋂
z
q,...,1
sq ,...,s1

(hn({ν(xs1), . . . , ν(xsq ) ∶ I ⊧ν χ}))
) = †

By Proposition 1 (5)

z
i1,...,ik
1,...,k (

z
p+q,..., p+1, p,...,1
sq ,...,s1,rp,...,r1

(hn({ν(xrp), . . . , ν(xr1) ∶ I ⊧ν ξ})) ⋂
z
q+p,...,q+1,q,...,1
rp,...,r1,sq,...,s1

(hn({ν(xs1), . . . , ν(xsq) ∶ I ⊧ν χ}))
) = †

z
i1,...,ik
1,...,k (zk,...,1ik,...,i1

(hn({ν(xi1), . . . , ν(xik) ∶ I ⊧ν ξ ∧ χ}))) =
By Proposition 1 (2)

h
n({ν(xi1), . . . , ν(xik) ∶ I ⊧ν ξ ∧ χ} =

h
n((ξ ∧ χ)I) =

h
n(ψI).

13



• ψ = ∃xij ξ, with f ree(ξ) = {xi1 , . . . , xij , . . . , xik}. Let

{i′1, . . . , i′k−1} = {i1, . . . , ij , . . . , ik} ∖ {ij}
{r1, . . . , rn−k} = {1, . . . , n} ∖ {i1, . . . , ij , . . . , ik}
{r′1, . . . , r′n−k+1} = {r1, . . . , rn−k} ∪ {ij}

We assume wlog that k < n. Let Eψ = cij (Eξ). The inductive hypothesis
is

z
i1,...,ik
1,...,k (Eξ(hn(I))) = h

n(ξI).

We have

z
i′
1
,...,i′k−1

1,...,k−1 (Eψ(hn(I))) =

z
i′
1
,...,i′k−1

1,...,k−1 (cij (Eξ(hn(I)))) =
By Prop. 1 (3)

z
i′
1
,...,i′k−1

1,...,k−1 (cij (zk,...,1ik,...,i1
(zi1,...,ik1,...,k (Eξ(hn(I)))))) =

z
i′
1
,...,i′k−1

1,...,k−1 (cij (zk,...,1ik,...,i1
(hn(ξI)))) =

By Prop. 1 (3)

z
i′
1
,...,i′k−1

1,...,k−1 (zk,...,1ik,...,i1
(cj(hn(ξI)))) =

z
i1,...,ij−1,ij+1,...,ik
1,...,j−1,j,...,k−1 (zk,...,j,j−1,...,1ik,...,ij ,ij−1,...,i1

(cj(hn(ξI)))) =

z
i1,...,ij−1
1,...,j−1 ○ zij+1,...,ik

j,...,k−1 (zk,...,j+1,jik,...,ij+1,ij
○ (zj−1,...,1ij−1,...,i1

cj(hn(ξI)))) =
By Prop. 2

z
1,...,j−1,ij ,j,...,k−1
1,...,j−1,j,j+1,...,k (cj(hn(ξI))) =

By Prop. 1 (3)

cij(z1,...,j−1,ij ,j,...,k−11,...,j−1,j,j+1,...,k (hn(ξI))) =

cij(z1,...,j−1,ij ,j,...,k−11,...,j−1,j,j+1,...,k (hn({(ν(xi1), . . . , ν(xij ), . . . , ν(xik)) ∶ I ⊧ν ξ}))) =

cij(z1,...,j−1,ij ,j,...,k−11,...,j−1,j,j+1,...,k (
{(ν(xi1), . . . , ν(xij ), . . . , ν(xik), ν(xr1), . . . , ν(xrn−k)) ∶ I ⊧ν ξ})) =

14



cij({(ν(xi′1), . . . , ν(xi′k−1), ν(xr′1), . . . , ν(xij ), . . . , . . . , ν(xr′n−k+1)) ∶ I ⊧ν ξ}) =

⋃a∈D{(ν(xi′
1
), . . . , ν(xi′

k
), ν(xr′

1
), . . . , ν(xij ), . . . ν(xr′n−k+1), ) ∶ I ⊧ν(ij /a) ξ} =

{(ν(xi′
1
), . . . , ν(xi′

k
), ν(xr′

1
), . . . , ν(xij ), . . . , ν(xr′n−k+1)) ∶ I ⊧ν ∃xij ξ} =

h
n({(ν(xi′

1
), . . . , ν(xi′

k−1
)) ∶ I ⊧ν ∃xij ξ}) =

h
n(ξI).

�
On the other hand, CAn expressions E are translated into FOn-formulas ϕE
recursively as follows:

• If E = Cp, then

ϕE = Rp(x1, . . . , xar(Rp)) ∧ ⩕
k ∈ {ar(Rp)+1,...,n}

(xk ≈ xk).

• If E = dij , then

ϕE = (xi ≈ xj) ∧ ⩕
k ∈ {1,...,n}∖{i,j}

(xk ≈ xk).

• If E = F ⋃G, then ϕE = ϕF ∨ ϕG, if E = F ⋂G, then ϕE = ϕF ∧ ϕG, and
if E = F , then ϕE = ¬ϕF .

• If E = ci(F ), then ϕE = (∃xiϕF ) ∧ (xi ≈ xi).
• If E = c

i(F ), then ϕE = (∀xiϕF ) ∧ (xi ≈ xi).

The following result can also be extracted from [16, 17].

Theorem 2 For every CAn expression E there is an FOn formula ϕE , such
that

ϕIE = E(hn(I)),
for all instances I. ◂

Proof: We do a structural induction

• E = Cp. Then ϕE = Rp(x1, . . . , xk) ∧ ⩕r ∈ {k+1,...,n}(xr ≈ xr), where
k = ar(Rp). Clearly
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ϕIE =

{(ν(x1), . . . , ν(xk), ν(xk+1), . . . , ν(xn)) ∶ I ⊧ν Rp(x1, . . . , xk)} =

RIp ×D
n−k =

Cp(hn(I)) =

E(hn(I)).

• E = dij . Then ϕE = (xi ≈ xj) ∧ ⩕r ∈ {1,...,n}∖{i,j}(xr ≈ xr). We have

ϕIE =

{(ν(x1), . . . , ν(xi), . . . , ν(xj), . . . , ν(xn)) ∶ I ⊧ν (xi ≈ xj)} =

{t ∈ Dn ∶ t(i) = t(j)} =

dij =

E(hn(I)).

• E = F1 ⋂ F2. Then ϕE = ϕF1
∧ϕF2

, and the inductive hypothesis is

ϕIF1
= F1(hn(I))

ϕIF2
= F2(hn(I))

Then,

ϕIE =

(ϕF1
∧ψF2

)I =

{(ν(x1), . . . , ν(xn)) ∶ I ⊧ν ϕF1
∧ ψF2

} =

{(ν(x1), . . . , ν(xn)) ∶ I ⊧ν ϕF1
} ∩

{(ν(x1), . . . , ν(xn)) ∶ I ⊧ν ξF2
} =

ϕIF1
∩ ξIF2

=

F1(hn(I)) ⋂ F2(hn(I)) =

F1⋂ F2 (hn(I)) =

E(hn(I)).
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• E = F , where Then ϕE = ¬ϕF , and the inductive hypothesis is ϕIF =
F (hn(I)). We have

ϕIE =

¬ϕIF =

ϕIF =

F (hn(I)) =

E(hn(I)).

• E = ci(F ), Then ϕE = (∃xi ϕF ) ∧ (xi ≈ xi). The inductive hypothesis is
ϕIF = F (hn(I)).
We have

ϕIE =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xi ϕF ) ∧ (xi ≈ xi)} =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xi ϕF )} ∩
{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (xi ≈ xi)} =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xi ϕF )} ∩ D
n =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xi ϕF )} =

⋃a∈D {(ν((x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν(i/a) ϕF } =

ci({(ν((x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν ϕF }) =

ci(ϕIF ) =

ci(F (hn(I))) =

E (hn(I)).

�
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3 Cylindric Set Algebra and
Cylindric Star Algebra

Since cylinders can be infinite, we want a finite mechanism to represent (at
least some) infinite cylinders, and the mechanism to be closed under queries.
Our representation mechanism comes in two variations, depending on whether
negation is allowed or not. We first consider the positive (no negation) case.

3.1 Positive framework

Star Cylinders. We define an n-dimensional (positive) star-cylinder Ċ to
be a finite set of n-ary star-tuples, the latter being elements of (D ∪ {∗})n ×
℘(Θn), where Θn denotes the set of all equalities of the form i = j, with i, j ∈
{1, . . . , n}. Star-tuples will be denoted ṫ, u̇, . . ., where a star-tuple such as ṫ =
(a,∗, c,∗,∗,{(4 = 5)}), is meant to represent the set of all “ordinary” tuples
(a,x, c, y, y) where x, y ∈ D. It will be convenient to assume that all our star-
cylinders are in the following normal form.

Definition 5 An n-dimensional star-cylinder Ċ is said to be in normal form
if ṫ(n + 1) is satisfiable, and ṫ(n + 1) ⊧ (i = j) entails (i = j) ∈ ṫ(n + 1) and
ṫ(i) = ṫ(j), for all star-tuples ṫ ∈ Ċ.

The symbol ⊧ above stands for standard logical implication. It is easily
seen that maintaining star-cylinders in normal form can be done efficiently in
polynomial time. We shall therefore assume without loss of generality that all
star-cylinders and star-tuples are in normal form. We next define the notion of
dominance, where a dominating star-tuple represents a superset of the ordinary
tuples represented by the dominated star-tuple. First we define a relation ⪯ ⊆
(D ∪ {∗})2 by a ⪯ a, ∗ ⪯ ∗, and a ⪯ ∗, for all a ∈ D.

Definition 6 Let ṫ and u̇ be n-dimensional star-tuples. We say that u̇ domi-
nates ṫ, denoted ṫ ⪯ u̇, if ṫ(i) ⪯ u̇(i) for all i ∈ {1, . . . , n}, and (i = j) ∈ u̇(n + 1)
entails (i = j) ∈ ṫ(n + 1) when ṫ(i) = ṫ(j) = ∗, and entails ṫ(i) = ṫ(j) otherwise.

We complete the definition by stipulating that ṫ ⪯ u̇ whenever ṫ(n+1) ⊧ false8.
We can now define the meet ṫ ⋏ u̇ of star-tuples ṫ and u̇ :

Definition 7 Let ṫ and u̇ be n-ary star-tuples. If ṫ(j), u̇(j) ∈ D for some j
and ṫ(j) ≠ u̇(j) then ṫ ⋏ u̇ (i) = a for i ∈ {1, . . . , n}, and ṫ ⋏ u̇(n + 1) = false. 9

Otherwise, for i ∈ {1, . . . , n}

ṫ ⋏ u̇ (i) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ṫ(i) if ṫ(i) ∈ D
u̇(i) if u̇(i) ∈ D
∗ if ṫ(i) = u̇(i) = ∗

8Note that in this case (only), ṫ is not in normal form.
9Here a is an arbitrary constant in D.
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and

ṫ ⋏ u̇ (n + 1) = ṫ(n + 1)∪ u̇(n + 1).

For an example, let ṫ = (a,∗,∗,∗,∗,{(3 = 4)}) and u̇ = (∗, b,∗,∗,∗,{(4 = 5)}).
Then we have ṫ ⋏ u̇ = (a, b,∗,∗,∗,{(3 = 4), (4 = 5), (3 = 5)}). Note that ṫ ⋏ u̇ ⪯ ṫ,
and ṫ ⋏ u̇ ⪯ u̇. Note also that for n-ary star-tuples ṫ∅ = (a, a, . . . , a,{false}) and
ṫDn = (∗,∗, . . . ,∗,{true}), and for any n-ary star-tuple ṫ, it holds that ṫ⋏ ṫ∅ = ˙t∅,
ṫ ⋏ ṫDn = ṫ, and ṫ∅ ⪯ ṫ ⪯ ṫDn .

We extend the order ⪯ to include ”ordinary” n-ary tuples t ∈ Dn by identify-
ing (a1, . . . , an) with star-tuple (a1, . . . , an,{true}). Let Ċ be an n-dimensional
star-cylinder. We can now define the meaning of Ċ to be the set [[Ċ ]] of all
ordinary tuples it represents, where

[[Ċ ]] = {t ∈ Dn ∶ t ⪯ u̇ for some u̇ ∈ Ċ}.
We lift the order to n-dimensional star-cylinders Ċ and Ḋ, by stipulating that
Ċ ⪯ Ḋ, if for all star-tuples ṫ ∈ Ċ there is a star-tuple u̇ ∈ Ḋ, such that ṫ ⪯ u̇.

Lemma 1 Let Ċ and Ḋ be n-dimensional (positive) star-cylinders. Then [[Ċ]] ⊆[[Ḋ]] iff Ċ ⪯ Ḋ.

Proof: We first show that [[{ṫ}]] ⊆ [[Ḋ]] iff there is a star-tuple u̇ ∈ Ḋ, such
that ṫ ⪯ u̇. For a proof, we note that if ṫ ⪯ u̇ for some u̇ ∈ Ḋ, then [[{ṫ}]] ⊆ [[Ḋ]].
For the other direction, assume that [[{ṫ }[[⊆ [[Ḋ]]. Let A ⊆ D be the finite set
of constants appearing in ṫ or Ḋ. Construct the tuple t ∈ (A ∪ {∗})n, where
t(i) = ṫ(i) if ṫ(i) ∈ A, and t(i) = ai if ṫ(i) = ∗. Here ai is a unique value
in the set D ∖ A. If ṫ(n + 1) contains an equality (i = j) we choose ai = aj .
Then t ∈ [[{ṫ}]] ⊆ [[Ḋ]], so there must be a tuple u̇ ∈ Ḋ, such that t ⪯ u̇. It
remains to show that ṫ ⪯ u̇. If t(i) = a for some a ∈ A, then ṫ(i) = a, and since
t ⪯ u̇ it follows that ṫ(i) ⪯ u̇(i). If t(i) = ai ∉ A then ṫ(i) = ∗, and therefore
t(i/b) ∈ [[{ṫ}]] ⊆ [[Ḋ]], for any b in the infinite set D ∖A. Therefore it must be
that u̇(i) = ∗, and thus ṫ(i) ⪯ u̇(i). This is true for all i ∈ {1, . . . , n}. Finally, if(i = j) ∈ u̇(n + 1), we have two cases: If t(i) ∈ A then ṫ(i) = ṫ(j), and if t(i) ∉ A
then (i = j) ∈ ṫ(n + 1). In summary, we have shown that ṫ ⪯ u̇.

We now return to the proof of the claim of the lemma. The if-direction
follows directly from definitions. For the only-if direction, assume that [[Ċ]] ⊆[[Ḋ]]. To see that Ċ ⪯ Ḋ let ṫ ∈ Ċ. Then [[{ṫ}]] ⊆ [[Ċ]] ⊆ [[Ḋ]]. We have just
shown above that this entails that there is a u̇ ∈ Ċ such that ṫ ⪯ u̇, meaning that
Ċ ⪯ Ḋ. �

Positive Cylindric Star Algebra

Next we redefine the positive cylindric set operators so that [[Ċ ○̇ Ḋ]] = [[Ċ]] ○[[Ḋ]] or ○([[Ḋ]]) = [[○̇(Ḋ)]], for each positive cylindric operator ○, its redefini-
tion ○̇, and star-cylinders Ċ and Ḋ.
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Definition 8 The positive cylindric star-algebra consists of the following oper-
ators.

1. Star-diagonal: ḋij = {(
n³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ∗, . . . ,∗, (i = j))}

2. Star-union: Ċ ⊍ Ḋ = {ṫ ∶ ṫ ∈ Ċ or ṫ ∈ Ḋ}
3. Star-intersection: Ċ ⩀ Ḋ = {ṫ ⋏ u̇ ∶ ṫ ∈ Ċ and u̇ ∈ Ḋ}
4. Outer cylindrification: Let i ∈ {1, . . . , n}, let Ċ be an n-dimensional star-

cylinder, and ṫ ∈ Ċ. Then

ċi(ṫ)(j) = { ṫ(j) if j ≠ i
∗ if j = i

for j ∈ {1, . . . , n}, and

ċi(ṫ)(n + 1) = {(j = k) ∈ ṫ(n + 1) ∶ j, k ≠ i}.
We then let ċi(Ċ) = {ċi(ṫ ) ∶ ṫ ∈ Ċ}.

5. Inner cylindrification: Let Ċ be an n-dimensional cylinder and i ∈ {1, . . . , n}.
Then

˙ci(Ċ) = {ṫ ∈ Ċ ∶ ṫ(i) = ∗, and (i = j) ∉ ṫ(n + 1) for any j}.
We illustrate the positive cylindric star-algebra with the following small ex-

ample.

Example 4 Let Ċ1 = {(a,∗,∗,∗,∗,{(3 = 4)})}, Ċ2 = {(∗, b,∗,∗,∗,{(4 = 5)})},
Ċ3 = {(a, b,∗,∗,∗,{(4 = 5)})}, and consider ˙c3((ċ1,4(Ċ1 ⩀ Ċ2)) ⊍ Ċ3). Then we
have the following.

Ċ1 ⩀ Ċ2 = {(a, b,∗,∗,∗,{(3 = 4), (4 = 5)})}

ċ1,4(Ċ1 ⩀ Ċ2) = {(∗, b,∗,∗,∗,{(3 = 5)})}

(ċ1,4(Ċ1 ⩀ Ċ2)) ⊍C3 = {(∗, b,∗,∗,∗,{(3 = 5)})

(a, b,∗,∗,∗,{(4 = 5)})}

˙

c

3((c1,4(Ċ1 ⩀ Ċ2)) ⊍C3) = {(a, b,∗,∗,∗,{(4 = 5)})}

Next we show that the cylindric star-algebra has the promised property.

Theorem 3 Let Ċ and Ḋ be n-dimensional star-cylinders and ḋij an n-dimensional
star-diagonal. Then the following statements hold.

1. [[ḋij]] = dij .
2. [[Ċ ⊍ Ḋ]] = [[Ċ]] ⋃ [[Ḋ]].
3. [[Ċ ⩀ Ḋ]] = [[Ċ]] ⋂ [[Ḋ]].
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4. [[ċi(Ċ)]] = ci([[Ċ]]),
5. [[˙ci(Ċ)]] = c

i([[Ċ]]),
Proof:

1. t ∈ [[ḋij]] iff t ⪯ (∗, . . . ,∗, (i = j)) iff t ∈ {t ∈ Dn ∶ t(i) = t(j)} iff t ∈ dij .
2. t ∈ [[Ċ ⊍ Ḋ]] iff ∃u̇ ∈ Ċ ∶ t ⪯ u̇ or ∃v̇ ∈ Ḋ ∶ t ⪯ v̇ iff t ∈ [[Ċ]] or t ∈ [[Ḋ]] iff
t ∈ [[Ċ]] ⋃ [[Ḋ]].

3. Let t ∈ [[Ċ⩀Ḋ]]. Then there is a star-tuple ṫ ∈ Ċ ⩀Ḋ such that t ⪯ ṫ, which
again means that there are star-tuples u̇ ∈ Ċ and v̇ ∈ Ḋ, such that ṫ = u̇⋏ v̇.
As a consequence t ⪯ u̇ and t ⪯ v̇, which implies t ∈ [[Ċ]] and t ∈ [[Ḋ]], that
is, t ∈ [[Ċ]] ⋂ [[Ḋ]]. The proof for the other direction is similar.

4. Let t ∈ [[ċi(Ċ)]]. Then there is a star-tuple ṫ ∈ ċi(Ċ) such that t ⪯ ṫ. This
in turn means that there is a star-tuple u̇ ∈ Ċ such that either u̇ = ṫ(i/a)
for some a ∈ D, or u̇(i) = ∗ and u̇ = ṫ, except possibly u̇(n + 1) ⊧ θ where
θ is a set of equalities involving column i, and ṫ(n + 1) does not have any
conditions on i.

Case 1. u̇ = ṫ(i/a) for some a ∈ D. Then ṫ(i/a) ∈ Ċ which means that there
is a tuple u ∈ [[Ċ]] such that u ⪯ ṫ(i/a). Since [[Ċ]] ⊆ ci([[Ċ]]), it follows
that u ∈ ci([[Ċ]]). Suppose u ≠ t. Then u(j) ≠ t(j) for some j ∈ {1 . . . , n}.
If j = i, then t = u(j/t(j)) ∈ cj([[Ċ]]) = ci([[Ċ]]).
If j ≠ i and ṫ(j) = ∗ it means that u̇(j) = ∗, and thus t = u(j/t(j)) ∈ [[Ċ]],
which in turn entails that t ∈ ci([[Ċ]]). Otherwise, if ṫ(j) ≠ ∗, then ṫ(j) ∈ D,
which means that u̇(j) ∈ D, and u(j) = t(j) after all.

Case 2. u̇(i) = ∗ and (possibly) u̇(n + 1) contains a set of equalities say θ,
involving column i, and ṫ(n + 1) does not have any conditions on i.

Suppose first that t ⊧ θ. Then t ⪯ u̇, and consequently t ∈ [[Ċ]] ⊆ ci([[Ċ]]).
Suppose then that t /⊧ θ. If t violates an equality (i = j) ∈ θ it must be that
ṫ(j) = u̇(j) = ∗, and ṫ and u̇ have the same conditions on column j. Let u
be a tuple such that u ⪯ u̇. Then t(i/u(i)) ∈ [[Ċ]], and hence t ∈ ci([[Ċ]]).
For the other direction, let t ∈ ci([[Ċ]]). Then there is a tuple u ∈ [[Ċ]],
such that t(i/u(i)) = u. Hence there is a star-tuple u̇ ∈ Ċ, such that u ⪯ u̇
and t(i/u(i)) ⪯ u̇. If t /⪯ u̇ it is because t(i) violates some condition in u̇(n+
1). Since all conditions involving column i are deleted in ċi(Ċ), it follows
that ċi(Ċ) must contain a star-tuple v̇ obtained by outer cylindrification
of u̇. Then clearly t ⪯ v̇ and t ⊧ v̇(n + 1). Consequently t ∈ [[ċi(Ċ)]].

�

In order to show the equivalence of positive cylindric star-algebra and posi-
tive cylindric set algebra we need the concept of algebra expressions.

21



Definition 9 Let Ċ = (Ċ1, . . . , Ċm, ḋij)i,j be a sequence of n-dimensional star-
cylinders and star-diagonals. We define the set of positive cylindric star alge-
bra expressions SCA+n and values of expressions as in Definition 3, noting that
Ċp(Ċ) = Ċp, and ḋij(Ċ) = ḋij.

We now have from Theorem 3

Corollary 1 For every SCA+n-expression Ė and the corresponding CA+n expres-
sion E, it holds that [[Ė(Ċ)]] = E([[Ċ]])
for every sequence of n-dimensional star-cylinders and star-diagonals Ċ.

3.2 Adding negation

From here on we also allow conditions of the form (i ≠ j), (i ≠ a), for a ∈ D in
star-cylinders, which then will be called extended star-cylinders. Conditions of
the form (i = j), (i ≠ j) or (i ≠ a) will be called literals, usually denoted ℓ. In
other words, in an extended n-dimensional star-cylinder each (extended) star-
tuple ṫ has a (finite) set of literals in position n + 1.

Everything else remains unchanged, except for the inner cylindrification will
be redefined below, along with the definition of the complement operator. It is
an easy exercise to verify that the proofs of parts 1 – 4 of Theorem 3 remain
valid in the presence of literals. Complement and inner cylindrification will be
defined below.

Example 5 In Example 2 we were interested in the negative information as
well as positive information. The instance from Example 2 can be formally
represented as the extended star-cylinder below.

H−

Alice Volleyball {true}
Bob ∗ {(2 ≠ Basketball)}
Chris ∗ {true}

For complement and inner cylindrification we first introduce the notion of a
sieve-cylinder.

Definition 10 Let Ċ be a sequence of n-dimensional extended star-cylinders
and A be the set of constants appearing therein. For t ∈ (A ∪ {∗})n, define St ={i ∶ t(i) = ∗} and SSt = {(i, j) ∶ t(i) = t(j) = ∗}. For each tuple t ∈ (A∪{∗})n and
each subset SS+t of SSt, form the star-tuple ṫ with ṫ(i) = t(i) for i ∈ {1, . . . , n},
and ṫ(n + 1) =

⋃
i∈St

{(i ≠ a) ∶ a ∈ A} ⋃
(i,j) ∈SS+

t

{(i = j)} ⋃
(i,j) ∈SSt∖SS+t

{(i ≠ j)}.
Ȧ is the extended star-cylinder of all such star-tuples ṫ, and it is called the sieve
of Ċ.
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The sieve Ȧ has the following useful properties.

Lemma 2 Let Ċ be an n-dimensional star-cylinder and Ȧ = {ṫ1, . . . , ṫm} its
sieve. Then

1. [[Ȧ]] = D
n and {[[{ṫ1}]], . . . , [[{ṫm}]]} is a partition of [[Ȧ]].

2. If ṫ ∧ u̇ ∈ Ċ ⩀ Ȧ and ṫ ∧ u̇ ≠ ṫ∅, then ṫ ∧ u̇ = u̇.

Proof: To see that [[Ȧ]] = D
n, let t be an arbitrary tuple in D

n. By
construction, there are star-tuples ṫ ∈ Ȧ such that ṫ(i) = t(i) if t(i) ∈ A, and ṫ(i) =
∗ if t(i) ∈ D ∖A. Since there is the subset SS+t = {(i, j) ∶ t(i) = t(j), and t(i) ∈
D ∖ A} we see that for one of these ṫ-tuples it holds that t ⪯ ṫ. The fact that[[{ṫi}]] ∩ [[{ṫj}]] = ∅ whenever i ≠ j follows from the fact that if there were a
tuple t in the intersection, it would have to agree with ṫi and ṫj on all columns
with values in A. But the SS+t set used for ṫi would be different than the one
used for ṫj , which means that we cannot have both t ⪯ ṫi and t ⪯ ṫj .

For part 2, let ṫ∧ u̇ ∈ Ċ ⩀ Ȧ and ṫ∧ u̇ ≠ ṫ∅. We claim that u̇ ⪯ ṫ, which would
imply ṫ ⋏ u̇ = u̇.

Since ṫ∧ u̇ ≠ ṫ∅ there is a tuple t ∈ [[{ṫ∧ u̇}]]. For each i ∈ {1, . . . , n}, consider
u̇(i). If u̇(i) = a ∈ A, then t(i) = a, which means that ṫ(i) = a or ṫ(i) = ∗.
Consequently u̇(i) ⪯ ṫ(i). If u̇(i) = ∗ then t(i) ∈ D ∖A, since (i ≠ a) ∈ u̇(n + 1)
for all a ∈ D ∖A. Since t(i) ⪯ ṫ(i), and ṫ(i) ∈ A ∪ {∗}, it follows that ṫ(i) = ∗.

Then let (i = j) ∈ ṫ(n + 1). Since ṫ ⋏ u̇ (n + 1) is satisfiable, and u̇(n + 1)
contains either (i = j) or (i ≠ j), it follows that (i = j) ∈ u̇(n + 1). We have now
shown that u̇ ⪯ ṫ. �

Lemma 3 Let Ċ and Ḋ be n-dimensional extended star-cylinders and Ȧ their
(common) sieve. Then

[[Ċ]] ⊆ [[Ḋ]] iff Ċ ⩀ Ȧ ⪯ Ḋ ⩀ Ȧ.

Proof: For the if-direction, let t ∈ [[Ċ]] = [[Ċ⩀Ȧ]]. Then there is a star-tuple
ṫ ∈ Ċ ⩀ Ȧ, such that t ⪯ ṫ. Since Ċ ⩀ Ȧ ⪯ Ḋ ⩀ Ȧ there is a star tuple u̇ ∈ Ḋ ⩀ Ȧ
such that ṫ ⪯ u̇. Thus t ∈ [[Ḋ ⩀ Ȧ]] = [[Ḋ]].

For the only-if direction, let ṫ1 ⋏ u̇1 ∈ Ċ ⩀ Ȧ, and t ⪯ ṫ1 and t ⪯ u̇1. Then
t ∈ [[Ċ]] ⊆ [[Ḋ]] = [[Ḋ ⩀ Ȧ]], so there are star-tuples ṫ2 ∈ Ḋ and u̇2 ∈ Ȧ such that
t ⪯ ṫ2 and t ⪯ u̇2. From part 1 of this lemma it follows that u̇1 = u̇2, and thus
ṫ1 ⋏ u̇1 = u̇1 = u̇2 = ṫ2 ⋏ u̇2. Consequently ṫ1 ⋏ u̇1 ⪯ ṫ2 ⋏ u̇2. �

We can now define the desired operations.

Definition 11 Let Ȧ be the sieve of Ċ and Ċ be an extended star-cylinder in Ċ.
Then

1. ¬̇ Ċ = {ṫ ∈ Ȧ ∶ {ṫ} ⩀ Ċ = {ṫ∅}}. and

2. ˆci(Ċ) = {ṫ ∈ Ċ ⩀ Ȧ ∶ (ċi({ṫ})⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ)}.
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Example 6 Let Ċ = {(a,∗,{true})}. Then Ȧ is shown in the extended star-
cylinder below, and ¬̇ Ċ consists of the first, second, and fourth tuples of Ȧ.

Ȧ

∗ ∗ {(1 ≠ a), (2 ≠ a), (1 = 2)}
∗ ∗ {(1 ≠ a), (2 ≠ a), (1 ≠ 2)}
a ∗ {(2 ≠ a)}
∗ a {(1 ≠ a)}
a a {true}

Now, let Ċ = {(a,∗,{(2 ≠ a)}), (a, a,{true})}. Then Ȧ is as above, and ˆc2(Ċ) =
Ċ as the reader easily can verify.

We can now verify that the new operators work as expected.

Theorem 4 Let Ċ be an extended star-cylinder. Then

1. [[¬̇ Ċ]] = [[Ċ]]
2. [[ˆci(Ċ)]] = c

i([[Ċ]]).
Proof: For part 1, it is easy to see that [[¬̇ Ċ]] ∩ [[Ċ]] = ∅ which implies

[[¬̇ Ċ]] ⊆ [[Ċ]]. For a proof of the other direction of part 1, for each tuple t ∈ [[Ċ]],
we construct the star-tuple ṫ, where ṫ(i) = t(i) if t(i) ∈ A, and ṫ(i) = ∗ if t(i) /∈ A.
We then choose a subset SS+t of SSt where (i, j) ∈ SS+ if and only if t(i) = t(j).
We insert in ṫ(n + 1) the condition (i = j) for each (i, j) ∈ SS+t , and (i ≠ j) for
each (i, j) ∈ SSt ∖ SS+t , Then clearly t ∈ [[{ṫ}]] and ṫ ∈ Ȧ. It remains to show
that ṫ ∈ ¬̇ Ċ. Towards a contradiction, suppose that there is a star-tuple u̇ ∈ Ċ
such that ṫ ⋏ u̇ ≠ ṫ∅. In other words, ṫ(n + 1) ∪ u̇(n + 1) is satisfiable. Thus,
whenever ṫ(i) ∈ D, we must have u̇(i) = ṫ(i) = t(i) ∈ A. Furthermore, for each(i, j) ∈ SSt there is a literal involving i and j in ṫ(n+1). Therefore u̇(n+1) can
consist of only a subset of these literals. It follows that t ⪯ ṫ ⪯ u̇ ∈ Ċ, meaning
that t ∈ [[Ċ]], contradicting our initial assumption.

For a proof of part 2 of the theorem, let t ∈ [[ˆci(Ċ)]]. Then t ∈ [[{ṫ ∈ Ȧ ∶(ċi({ṫ})⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ)}]]. Therefore there is a star tuple ṫ ∈ Ȧ such that, t ⪯ ṫ
and (ċi({ṫ}) ⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ). Lemma 3 then gives us [[ċi({ṫ})]] ⊆ [[Ċ]], and
Theorem 3, part 4 (which still holds for extended star-cylinders) tell us that[[ċi({ṫ})]] = ci([[{ṫ}]]) which implies [[ċi({ṫ})]] ⊆ [[Ċ]]. By the definition
of inner cylindrification in CA, the last containment implies that [[{ṫ}]] ⊆

c

i([[Ċ]]). Consequently t ∈ c

i([[Ċ]]).
For the other direction, let t ∈ c

i([[Ċ]]), which implies ci({t}) ⊆ [[Ċ]]. Then
there is a star-tuple ṫ ∈ Ċ ⩀ Ȧ, such that ci({t}) ⊆ ci([[{ṫ}]]) ⊆ [[Ċ]]. Conse-
quently, [[ċi(ṫ)]] ⊆ [[Ċ]], which by Lemma 3 proves that (ċi({ṫ})⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ).
Moreover, the first part of Lemma 3 implies that t ∈ [[{ṫ ∈ Ȧ ∶ (ċi({ṫ}) ⩀ Ȧ) ⪯(Ċ ⩀ Ȧ)}]]. �

We can thus conclude
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Corollary 2 For every SCAn-expression Ė and the corresponding CAn-expression
E, it holds that [[Ė(Ċ)]] = E([[Ċ]])
for every sequence of n-dimensional extended star-cylinders and star-diagonals Ċ.

4 Stored databases with
universal nulls (u-databases)

We now show how to use the cylindric star-algebra to evaluate FO-queries on
stored databases containing universal nulls. Let k be a positive integer. Then
a k-ary star-relation Ṙ is a finite set of star-tuples of arity k. In other words,
a k-ary star-relation is a star-cylinder of dimension k. A sequence Ṙ of star-
relations (over schema R) is called a stored database. Examples 1 and 5 show
stored databases. Everything that is defined for star-cylinders applies to k-ary
star-relations. The exception is that no operators from the cylindric star-algebra
are applied to star-relations. To do that, we first need to expand the stored
database Ṙ.

Definition 12 Let ṫ be a k-ary star-tuple, and n ≥ k. Then ḣ
n(ṫ), the n-

expansion of ṫ, is the n-ary star-tuple u̇, where

u̇(i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṫ(i) if i ∈ {1, . . . , k}
∗ if i ∈ {k + 1, . . . , n}
ṫ(k + 1) if i = n + 1,

For a stored relation Ṙ and stored database Ṙ we have

ḣ
n(Ṙ) = {ḣn(ṫ) ∶ ṫ ∈ Ṙ}

ḣ
n(Ṙ) = (ḣn(Ṙ1), . . . , ḣn(Ṙm), ḣn({(a, a) ∶ a ∈ D})).

In other words, ḣ
n(Ṙ) is the sequence of star-cylinders obtained by moving

the conditions in column k + 1 to column n + 1, and filling columns k + 1, . . . , n
with ”*”’s in each k-ary relation. Examples 1 and 3 illustrate the expansion of
star-relations.

On the other hand, a k-ary star-relation Ṙ can also be viewed as a finite
representative of the infinite relation [[Ṙ]] = {t ∈ Dk ∶ t ⪯ ṫ for some ṫ ∈ Ṙ}, and
the stored database Ṙ a finite representative of the infinite instance I(Ṙ), as
in the following definition.

Definition 13 Let Ṙ = (Ṙ1, . . . , Ṙm) be a stored database. Then the instance
defined by Ṙ is

I(Ṙ) = ([[Ṙ1]], . . . , [[Ṙm]],{(a, a) ∶ a ∈ D}).
The instance and expansion of Ṙ are related as follows.

Lemma 4 [[ḣn(Ṙ)]] = h
n(I(Ṙ)).

Proof: It directly follows from the definition of hn, ḣn and [[]]. �
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We are now ready for our main result.

Theorem 5 For every FOn-formula ϕ there is an (extended) SCAn expression
Ėϕ, such that for every stored database Ṙ

h
n(ϕI(Ṙ)) = [[Ėϕ(ḣn(Ṙ))]].

Proof: h
n(ϕI(Ṙ)) = Eϕ(hn(I(Ṙ)) = Eϕ([[ḣn(Ṙ)]]) = [[Ėϕ(ḣn(Ṙ))]]. The

first equality follows from Theorem 1, the second from Lemma 4, and the third
from Corollaries 1 and 2.

5 Adding existential nulls

Let N = {�1,�2, . . .} be a countable infinite set of existential nulls. An instance
I where the relations are over D ∪N, is in the literature variably called a naive
table [19, 13] or a generalized instance [12]. In either case, such an instance
is taken to represent an incomplete instance, i.e. a (possibly) infinite set of
instances. In this paper we follow the model-theoretic approach of [12]. The
elements in D represent known objects, whereas elements in N represent generic
objects. Each generic object could turn out to be equal to one of the known
objects, to another generic object, or represent an object different from all other
objects. We extend our notation to include univ(I), the universe of instance I.
So far we have assumed that univ(I) = D, but in this section we allow instances
whose universe is any set between D and D ∪ N. We are lead to the following
definitions.

Definition 14 Let h be a mapping on D ∪ N that is identity on D, and let I
and J be instances (over R), such that h(univ(I)) = univ(J). We say that h
is a possible world homomorphism from I to J , if h(RIp) ⊆ RJp for all p, and

h(≈I) = ≈J . This is denoted I →h J .

Definition 15 Let I be an instance with D ⊆ univ(I) ⊆ D∪N. Then the set of
instances represented by I is

Rep(I) = {J ∶ ∃h s.t. I →h J}.
We can now formulate the (standard) notion of a certain answer to a query.10

By FO+ below we mean the set of all FO-formulas not using negation.

Definition 16 Let I be an incomplete instance and ϕ an FO+-formula. The
certain answer to ϕ on I is

C ert(ϕ, I) = ⋂
J∈Rep(I)

ϕJ .

10Here we of course assume that valuations have range univ(J), and that other details are
adjusted accordingly.
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Back to cylinders. We now extend positive n-dimensional cylinders to be
subsets of D ∪N, and use the notation univ(C) and univ(C) with the obvious
meanings. This also applies to the notation C →h D, and Rep(C). The op-
erators of the positive cylindric set algebra CA+ remain the same, except D is
substituted with univ(C) or univ(C), i.e. we use naive evaluation. For instance,
the outer cylindrification now becomes

ci(C) = {t ∈ univ(C)
n ∶ t(i/x) ∈ C, for some x ∈ univ(C)}.

The crucial property of the positive cylindric star-algebra is the following.

Theorem 6 Let E be an expression in CA+n, and C and D sequences of n-
dimensional naive cylinders and diagonals. If C →h D for some possible world
homomorphism h, then E(C) →h E(D).

Proof: Suppose C →h D. We show by induction on the structure of E that
E(C)→h E(D).

• For E = Ci and E = dij the claim follows directly from the definition of a
possible world homomorphism.

• Let t ∈ h(F ⋃G (C)) = h(F (C) ∪ G(C)) = h(F (C)) ∪ h(G(C)). Then
there is a tuple s in F (C) or in G(C) such that t = h(s). If s is in, say,
F (C), then, since F (C)→h F (D) and F (D) ⊆ F ⋃G (D), it follows that
t = h(s) ∈ F ⋃G (D).

• Let t ∈ h(F ⋂G (C)) = h(F (C) ∩ G(C)). Then there is a tuple s in
F (C) and a tuple s′ in G(C) such that t = h(s) = h(s′). Thus h(s) ∈
h(F (C)) ⊆ F (D), and h(s′) ∈ h(G(C)) ⊆ G(D). Consequently t = h(s) =
h(s′) ∈ F (D) ∩ G(D) = F ⋂G (D).

• Let t ∈ h(ci(F (C))). Then there is an s ∈ ci(F (C)), such that t = h(s).
Furthermore, s(i/x) ∈ F (C) for some x ∈ univ(C). Then h(s(i/x)) =
h(s)(i/h(x)) ∈ h(F (C)), for h(x) ∈ h(univ(C)) = univ(D), This means
that t = h(s) ∈ ci(F (D)).

• Let t ∈ h( c

i(F (C))). Then there is an s ∈ c

i(F (C)), such that t = h(s).
Furthermore, s(i/x) ∈ F (C) for all x ∈ univ(C). Then h(s(i/x)) =
h(s)(i/h(x)) = t(i/h(x)) ∈ h(F (C)) for all x ∈ univ(C). In other words,
t(i/y) ∈ h(F (C)) ⊆ F (D) for all y ∈ h(univ(C)) = univ(D). Thus
t ∈ c

i(F (D))
�

Also, for an n-dimensional naive cylinder C, we denote the subset C ∩ D
n

by C↓. We now have our main ”naive evaluation” theorem.

Theorem 7 Let C be a sequence of n-dimensional naive cylinders and diago-
nals, and let E be an expression in CA+n. Then

E(C)↓ = ⋂
D ∈Rep(C)

E(D).
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Proof: Let t ∈ E(C)↓ ⊆ E(C), and D ∈ Rep(C). Since C →h D for some
possible world homomorphism h, by Theorem 6, h(t) ∈ E(D). Since t is all
constants, h(t) = t for all h. In other words, t ∈ E(D), for all D ∈ Rep(C).

For the ⊇-direction, let t ∈ ⋂D ∈Rep(C)E(D). Then t ∈ Dn, and for all possible
world homomorphisms h it holds that t ∈ E(h(C)). Since identity is a valid h,
is follows that t ∈ E(C), and since t is all constants we have t ∈ E(C)↓. �

Mixing existential and universal nulls

We want to achieve a representation mechanism able to handle both universal
nulls and naive existential nulls. To this end we need the following definition.

Definition 17 A naive n-dimensional (positive) star-cylinder is a finite subset
C̈ of (D ∪ N ∪ {∗})n × ℘(Θn). A naive diagonal is defined as d̈ij = {(x,x) ∶
x ∈ univ(C̈)}. A sequence of n-dimensional star-cylinders and diagonals is
denoted C̈.

After this we extend Definitions 5, 6, and 7 in Section 3 from star-cylinders
to naive star-cylinders, by replacing D with univ(C̈) or univ(C̈) everywhere.
Theorem 5 will still hold, but Corollary 1 only holds in the weakened form as
Corollary 3 below. First we need two lemmas and a definition.

Lemma 5 Suppose all possible world homomorphisms h are extended by letting
h(∗) = ∗. Let C̈ be an n-dimensional naive star-cylinder. Then

h([[C̈]]) = [[h(C̈)]],
for all possible world homomorphisms h.

Proof: Let t ∈ h([[C̈]]). Then there exists a tuple u ∈ [[C̈]], such that
t = h(u). Also there exists a naive star-tuple ü ∈ [[C̈]], such that u ⪯ ü. Now it
is sufficient to show that t ⪯ h(ü), for all i ∈ {1,2, . . . , n}.

If ü(i) ∈ D, then u(i) = ü(i). Also, homomorphisms are identity on constants
and therefore h(u(i)) = u(i), which implies t(i) = u(i).

If ü(i) = ∗, then u(i) ∈ univ(C̈). As a result h(u(i)) ∈ univ(h(C̈)), which
implies t(i) ⪯ ∗ = h(ü(i)), since homomorphisms map stars to themselves.

If ü(i) ∈ N, then u(i) = ü(i), which implies t(i) = h(u(i)) = h(ü(i)).
For the other direction, let t ∈ [[h(C̈)]]. Then there exists a tuple ẗ ∈ h(C̈)

and a tuple ü ∈ C̈, such that t ⪯ ẗ and ẗ = h(ü). Consequently, t ⪯ h(ü). We
show that we can find a tuple u ∈ [[ü]] such that h(u) = t.

If ü(i) ∈ D, then u(i) = ü(i). Since h is the identity on constants h(ü(i)) =
ü(i), which implies t(i) = u(i).

If ü(i) = ∗, then h(ü(i)) = ∗. As h is onto univ(h(C̈)), it follows that there
is a value ü(i) ∈ univ(C̈), such that h(u(i)) = t(i).

If ü(i) ∈ N, then u(i) = ü(i), which implies t(i) = h(ü(i)) = h(u(i)). �
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Definition 18 Let I and J be sets of instances. We say that I and J are
co-initial, denoted I ∼ J , if for each instance J ∈ J there is an instance I ∈ I,
and a possible world homomorphism h, such that I →h J , and vice-versa.

In the context of naive star-cylinders Corollary 1 will be weakened as follows.

Corollary 3 For every SCA+n-expression Ė and the corresponding CAn-expression
E, it holds that

Rep([[Ė(C̈)]]) ∼ E(Rep([[C̈]])),
for every sequence of n-dimensional naive star-cylinders and star-diagonals C̈.

Proof: We have Rep([[Ė(C̈)]]) ∼ Rep(E([[C̈]])) from Corollary 1. It
remains to show that Rep(E([[C̈]]) ∼ E(Rep([[C̈]])). Let’s denote [[C̈]] by C.
We’ll show that Rep(E(C)) ∼ E(Rep(C)).

Let D ∈ E(Rep(C)), meaning that D = E(C′) for some C′ ∈ Rep(C). Then
there is a possible world homomorphism h such that C →h C′. Theorem 6
then yields E(C) →h E(C′), and since E(C) ∈ Rep(E(C)) one direction of
Definition 18 is satisfied.

Then let D ∈ Rep(E(C)). Then there is a possible world homeomorphism h,
such that E(C) →h D. Since E(C) ∈ E(Rep(C)), it means that the vice-versa
direction is also satisfied. �

Naive evaluation of existential nulls

We extend Definition 15 from infinite instances to sequences of naive star-
cylinders as follows.

Definition 19 Let C̈ be a sequence of n-dimensional naive star-cylinders and
diagonals with univ(C̈) = D∪N. Then the (infinite) set of (infinite) n-dimensional
cylinders represented by C̈ is

Rep([[C̈]]) = {D ∶ [[C̈]]→h D}.
For a naive star-cylinder C̈ we let C̈↓ = C̈∩ (D∪ {∗})n. We note that obviously[[C̈↓]] = ([[C̈]])↓, and that if Rep(C̈) ∼ Rep(D̈), then C̈↓ = D̈↓. We now have
the main result of this section.

Theorem 8 For every SCA+-expression Ė and the corresponding CA+-expression
E, it holds that [[Ė(C̈)↓]] = ⋂

D∈Rep([[C̈]])

E(D).
for every sequence C̈ of naive star-cylinders and diagonals.

Proof: [[Ė(C̈)↓]] = [[Ė(C̈)]]↓ = (E([[C̈]]))↓ = ⋂C∈Rep([[C̈]])E(C). The
second equality follows from Corollary 3, the third from Theorem 7. �
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Stored databases with universal and existential nulls (ue-databases)

We extend the Definitions 12 and 13 of Section 4 from stored databases to
naive stored databases (ue-databases) by substituting D with D∪N everywhere.
Lemma 4 then becomes

Lemma 6 Let C̈ be a stored ue-database with universe D∪N. Then [[ḣn(R̈)]] =
h
n(I(R̈)).

We first note that Theorem 5 in the ue-setting becomes

Theorem 9 For every FO+n-formula ϕ there is an SCA+n expression Ėϕ, such
that [[Ėϕ(ḣn(R̈))]] = h

n(ϕI(R̈))
for every stored ue-database R̈

We also have

Theorem 10 For every FO+n-formula ϕ there is a CA+n expression Ėϕ, such
that

Rep([[Ėϕ(ḣn(R̈))]]) ∼ {hn(ϕJ) ∶ J ∈ Rep([[R̈]])}
for every stored ue-database R̈

We have now arrived our main theorem for ue-databases.

Theorem 11 For every FO+n-formula ϕ there is an SCA+n expression Ėϕ, such
that [[Ėϕ(ḣn(R̈))↓]] = ⋂

J∈Rep([[R̈]])

h
n(ϕJ)

for every stored ue-database R̈

Proof: We have {hn(ϕJ) ∶ J ∈ Rep([[R̈]])} ∼ Rep([[Ėϕ(ḣn(R̈))]]) by Theo-
rem 10. Hence

⋂J∈Rep([[R̈]]) h
n(ϕJ) = ⋂ Rep([[Ėϕ(ḣn(R̈))]]) =

([[Ėϕ(ḧn(R̈))]])↓ = [[Ėϕ(ḣn(R̈))↓]]. �

6 Complexity

In this section we provide complexity results for Cylindric Star Algebra and Star
Cylinders. We start by defining the size of extended star-cylinders. Let Ċ be
a sequence of n-dimensional extended star-cylinders and diagonals. By ∣Ċ∣ we
denote the larger of the number of star-tuples in Ċ and the number of literals
in the star-tuple with the largest condition column n + 1. The same notation
also applies to sequences of naive star-cylinders C̈.

First, we investigate the complexity of evaluating SCA-expressions over
naive star-cylinders and then we characterize various membership and con-
tainment problems. It turns out Ė(Ċ) can be computed efficiently for SCAn-
expressions Ė, even though universal quantification and negation are allowed.
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Theorem 12 Let Ė be a fixed SCAn-expression, and Ċ a sequence of n-dimen-
sional extended star-cylinders and diagonals. Then there is a polynomial π, such
that ∣Ė(Ċ)∣ = O(π(∣Ċ∣)). Moreover, Ė(Ċ) can be computed in time O(π(∣Ċ∣)),
and if negation is not used in Ė this applies to naive star-cylinders C̈ as well.

Proof: Since Ė is fixed it is sufficient to prove the first claim for each operator
separately. Note that since Ė is fixed, it follows that n is also fixed.

1. If Ė(Ċ) = Ċp(Ċ), then ∣Ė(Ċ)∣ = ∣Ċp∣ ≤ ∣Ċ∣ = O(π(∣Ċ∣)).
2. If Ė(Ċ) = ḋij(Ċ), then ∣Ė(Ċ)∣ = O(∣Ċ∣) ×O(1) = O(π(∣Ċ∣)).
3. If Ė(Ċ) = Ċp(Ċ) ∪ Ċq(Ċ), then ∣Ė(Ċ)∣ ≤ ∣Ċ∣ = O(π(∣Ċ∣)).
4. If Ė(Ċ) = Ċp(Ċ) ⩀ Ċq(Ċ), then the number of tuples in Ė(Ċ) is at most

∣Ċ∣2, and each tuple in the output can have a condition of length at most
2 ⋅ ∣Ċ∣. As a result, ∣Ė(Ċ)∣ ≤ 2 ⋅ ∣Ċ∣3 = O(π(∣Ċ∣)).

5. If Ė(Ċ) = ċi(Cp(Ċ)), then ∣Ė(Ċ)∣ ≤ ∣Ċp∣ ≤ ∣Ċ∣ = O(π(∣Ċ∣)).
6. For the case Ė(Ċ) = ˙c i(Cp(Ċ)) we note that ˙c i(Cp(Ċ)) ⊆ (Cp(Ċ)⩀Ȧ) ⊆ Ȧ.

We can construct the star-tuples in Ȧ by iterating over the star-tuples in
Ċp and using the constants in A. This means that ∣Ȧ∣ = (n× (∣A∣))+ (2n+
∣A∣) ≤ O(1) × O(∣Ċ∣) + O(1) × O(∣Ċ∣) = O(π(∣Ċ∣)). Note that n is the
dimensionality of Ċ and is a constant.

7. If Ė(Ċ) = ¬̇(Cp(Ċ)), then similar to the inner cylindrification we have

¬̇ Ċp ⊆ Ȧ which implies ∣Ė(Ċ)∣ = O(π(∣Ċ∣)).
For the time complexity we note that we need to keep all conditions in Ė(C)

as a logically closed set of literals. To do this, we start with Ċ in normal form.
With each tuple we associate a graph with vertices {1, . . . , n} and a blue edge{i, j} if (i = j) is in the condition of the tuple,, and a red edge {i, j} if (i ≠ j)
is in the condition. Next, we compute the transitive closure of the graph wrt
the blue edges. Then each connected component is an equivalence class, unless
there is some pair {i, j} that has both a blue and a red edge, in which case
the tuple is inconsistent. We don’t need to consider conditions of the forms(i ≠ a) in star-tuples ṫ. This is because then ṫ(i) = ∗, and ṫ(i) can still contain
a an infinite (more precisely cofinite) set of values Finally, when we compute
the dot-intersection, for each pair of tuples, we take the union of their condition
graphs, and recompute the blue transitive closure. Since Ė is fixed, this needs
to be done only a bounded number of times. �

Membership. In the membership problems, we ask if an ordinary tuple t

belongs to the set specified by a (naive) star-cylinder, of by a fixed expression Ė
and a (naive) star-cylinder. In other words, all results refer to data complexity.
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Theorem 13 Let t ∈ Dn and C̈ a sequence of n-dimensional naive star-cylinders
and diagonals. The membership problems and their respective data complexities
are as follows.

1. t
?∈ ⋂E(Rep([[C̈]])) is in polytime for positive E.

2. t
?∈ ⋂E(Rep([[C̈]])) is coNP-complete for E where negation is allowed in

equality atoms only.

Proof:

1. By Theorem 8, we have ⋂E(Rep([[C̈]])) = [[Ė(C̈)↓]], so to test if t ∈
⋂E(Rep([[C̈]])), we compute Ė(C̈)↓, and see if there is a star-tuple ṫ ∈
Ė(C̈)↓, such that t ⪯ ṫ. By Theorem 12, Ė(C̈)↓ can be computed in
polytime.

2. To check if t /∈ ⋂E(Rep([[C̈]])), it is sufficient to find a homomorphism
h such that t /∈ h([[C̈]]). We guess the homomorphism h, and check in
polytime if t /∈ h([[C̈]]). Thus t /∈ ⋂E(Rep([[C̈]])) is in NP, and t ∈
⋂E(Rep([[C̈]])) is in coNP. The lower bound follows from Theorem 5.2.2
in [2].

�

Containment. The containment problems ask for containment of star-cylinders
(naive star-cylinders), or views over star-cylinders (naive star-cylinders). We
have the following.

Theorem 14 Let Ċ and Ḋ (resp. C̈ and D̈) be sequences of n-dimensional
(naive) star-cylinders and diagonals. Then

1. E1([[Ċ]]) ?⊆ E2([[Ḋ]]) is in polytime for CAn expression E1 and E2.

2. Rep([[C̈]]) ?⊆ Rep([[D̈]]) is NP-complete.

3. E1(Rep([[C̈]])) ?⊆ E2(Rep([[D̈]])) is Πp
2-complete for positive E1 and E2.

Proof:

1. By Lemma 3, we have [[Ė1(Ċ)]] ⊆ [[Ė2(Ḋ)]] if and only if Ė1(Ċ) ⩀ Ȧ ⪯
Ė2(Ḋ)⩀ Ȧ. The latter dominance is true if and only if for each star-tuple
ṫ ∈ Ė1(Ċ) ⩀ Ȧ there is a star-tuple u̇ ∈ Ė2(Ḋ) ⩀ Ȧ, such that ṫ ⪯ u̇. From
Theorem 12 we know that Ė1(Ċ)⩀ Ȧ and Ė2(Ḋ)⩀ Ȧ can be computed in
polytime.
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2. We first extend the domain of possible world homomorphisms by stip-
ulating that they are the identity on ∗. Then it is easy to see that
Rep([[C̈]]) ⊆ Rep([[D̈]]) if and only if there exists a possible world ho-
momorphism h such that D̈ →h C̈. This makes the problem NP-complete.

3. The lower bound follows from Theorem 4.2.2 in [2], For the upper bound
we observe that E1(Rep([[C̈]])) ⊆ E2(Rep([[D̈]]) iff for every C ∈ Rep([[C̈]])
there exists a D ∈ Rep([[D̈]]) such that E1(C) = E2(D) iff for every pos-
sible world homomorphism h on C̈ there exists a possible world homo-
morphism g on D̈ such that E1(h([[C̈]])) = E2(g([[D̈]])). By Corollary 1,
this equality holds iff [[Ė1(h(C̈))]] = [[Ė1(g(D̈))]]. By Lemma 3, the last
equality holds iff E1(h([[C̈]]))⩀ Ȧ ⪯ E2(g([[D̈]]))⩀ Ȧ, and vice-versa. By
Theorem 12, the star-cylinders in the two dominances ⪯ can be computed
in polynomial time.

�

7 Related and future work

Cylindric Set Algebra gave rise to a whole subfield of Algebra, called Cylindric
Algebra. For a fairly recent overview, the reader is referred to [4]. Within
database theory, a simplified version of the star-cylinders and a correspond-
ing Codd-style positive relational algebra with evaluation rules “∗ = ∗” and
“∗ = a” was proposed by Imielinski and Lipski in [20]. Such cylinders corre-
spond to the structures in diagonal-free Cylindric Set Algebras [16, 17]. The
exact FO-expressive power of these diagonal-free star-cylinders is an open ques-
tion. Nevertheless, using the techniques of this paper, it can be shown that naive
existential nulls can be seamlessly incorporated in diagonal-free star-cylinders.

In addition to the above and the work described in Section 1, Imielinski and
Lipski also showed in [20] that the fact that Codd’s Relational Algebra does not
have a finite axiomatization, and the fact that equivalence of expressions in it is
undecidable, follow from known results in Cylindric Algebra. This is of course
true for a host of general results in Mathematical Logic.

Yannakakis and Papadimitriou [26] formulated an algebraic version of de-
pendency theory using Codd’s Relational Algebra. Around the same time Cos-
madakis [8] proposed an interpretation of dependency theory in terms of equa-
tions over certain types of expressions in Cylindric Set Algebra, and described
a complete finite axiomatization of his system. It was however later shown by
Düntsch, Hodges, and Mikulas [18, 11], again using known results from Cylin-
dric Algebra, that Cosmadakis’s axiomatization was incomplete, and that no
finite complete axiomatization exists.

Interestingly, it turns out that one of the models for constraint databases in
[21] by Kanellakis, Kuper, and Revesz — the one where the constraints are equal-
ities over an infinite domain — is equivalent with our star-tables. Even though
[21] develops a bottom-up (recursive) evaluation mechanism for FO-queries, the
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mechanism is goal-oriented and contrary to our star-cylinders, there is no algebra
operating on the constraint databases. We note however that the construction
of the sieve Ȧ in Section 3 is inspired by the constraint solving techniques of [21].
It therefore seems that our star-cylinders and algebra can be made to handle
inequality constraints on dense linear orders as well as polynomial constraints
over real-numbers, as is done in [21]. We also note that our work is related to
the orbit finite sets, treated in a general computational framework in [7].

As noted in Section 1, the existential nulls have long been well understood.
According to [10] the fact that positive queries (no negation, but allowing uni-
versal quantification) are preserved under onto-homomorphisms are folklore in
the database community. Using this monotonicity property, Libkin [13] has
recently shown that positive queries can be evaluated naively on finite existen-
tial databases I under a so called weak closed world assumption, where Rep(I)
consists of all complete instances J , such that h(I) ⊆ J and J only involves con-
stants that occur in I, and furthermore h is onto from the finite universe of I
to the finite universe of J . Our Theorem 7 generalizes Libkin’s result to infinite
databases. In this context it is worth noting that Lyndon’s Positivity Theorem
[23] tells us that a first order formula is preserved under onto-homomorphisms
on all structures if and only if it is equivalent to a positive formula. It has sub-
sequently been shown that the only-if direction fails for finite structures [3, 24].
Since our star-cylinders represent neither finite nor unrestricted infinite struc-
tures, it would be interesting to know whether the only-if direction holds for
infinite structures represented by star-cylinders. If it does, it would mean that
our Theorem 7 would be optimal, meaning that if ϕ is not equivalent to a posi-
tive formula, then naive evaluation does not work for ϕ on databases represented
by naive star-cylinders.

Finally we note that Sundarmurthy et al. [25] have generalized the condi-
tional tables of [19, 14] by replacing the labelled nulls with a single null m that
initially represents all possible domain values. They then add constraints on
the occurrences of these m-values, allowing them to represent a finite or infinite
subset of the domain, and to equate distinct occurrences of m. Sundarmurthy
et al. then show that their m-tables are closed under positive (but not allow-
ing universal quantification) queries by developing a difference-free Codd-style
relational algebra that m-tables are closed under. Merging our approach with
theirs could open up interesting possibilities.
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bras and Algebraic Logic, volume 22. Springer Science & Business Media,
2014.

[5] Joachim Biskup. A foundation of codd’s relational maybe-operations. ACM
Trans. Database Syst., 8(4):608–636, 1983.

[6] Joachim Biskup. Extending the relational algebra for relations with maybe
tuples and existential and universal null values. Fundam. Inform., 7(1):129–
150, 1984.
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