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To investigate the conditions and mechanisms that link metabolic processes to cell population
dynamics, we here employ a previously introduced multi-scale model of multi-cellular system,
named FBCA (Flux Balance Analysis with Cellular Automata), which couples biomass accu-
mulation, simulated via Flux Balance Analysis of a metabolic network, with the simulation of
population and spatial dynamics via Cellular Potts Models.

In this work, we investigate the influence that different modes of nutrients diffusion within the
system may have on the emerging behaviour of cell populations. In our model, metabolic com-
munication among cells is allowed by letting secreted metabolites to diffuse over the lattice, in
addition to diffusion of nutrients from given sources. The inclusion of the diffusion processes in
the model proved its effectiveness in characterizing plausible biological scenarios.

Keywords: Multi-scale modeling, Cellular Potts Model, Flux Balance Analysis, Diffusion, Can-
cer development

1. Introduction

Increasing experimental evidences are suggesting that the deregulation of metabolism is one of the
key actors in tumor origination and development [1, 2]. In this respect, most current computational
strategies to investigate metabolic deregulation are based on the simulation of the steady state behavior
of an average cell belonging to a (heterogeneous) population [3, 4].

Yet, cancer (sub)population evolve and compete in a (micro)environment with usually limited re-
source (e.g., oxygen and nutrients) and with specific spatial properties, which significantly differs in
distinct tissues and organs [5]. For this reason, properties based on average measurements may be
scarcely significant, as they are not representative of the specific features of single cells and subpopu-
lations, as well as of their interactions with the surrounding environment [6].

This aspect has important translational repercussions, as the intra-tumor heterogeneity resulting
from such complex interplay is one of the major causes of drug resistance, therapy failure and relapse
[7, 8, 9]. Unfortunately, so far the emerging single-cell omics technologies are still unable to finely
characterize the interactions among cell (sub)populations, especially because of many technical issues
that compromise the overall resolution [10, 11].

For this reason, effective computational multi-scale models are increasingly needed to account
for processes and phenomena occurring at different time/ space scales and involving populations of
interacting cells, with the final goal of identifying the conditions that may lead to complex behaviours,
such as tissue patterning, cellular migration, homeostasis, and the emergence of pathological states
[12, 13]. In this respect, many attempts have been proposed to simulate the spatial/morphological
dynamics of multi-cellular systems, by employing biophysically plausible models of cells and their
interactions, e.g., within tissues and organs [14, 15, 16]. In general, investigating the emerging spatio-
temporal behaviour of the heterogeneous populations may facilitate the development of more effective
intervention strategies [17].

In [18], we developed FBCA (Flux Balance with Cellular Automata) as first attempt to connect the
dynamical behavior of metabolic networks to biophysically realistic spatial and morphological proper-
ties of real multi-cellular systems. This model combines a spatial/morphological dynamical model of
a general tissue, simulated via Cellular Potts Model (CPM) [19, 20, 21, 22], and a lower-level model of
the metabolic activity of its constituting single cells, computed via Flux Balance Analysis (FBA) [3].
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In [23], we extended the previous framework by adding a population density-sensing mechanism, that
led to more realistic results.

In this work, we further extended the methodology to model metabolites diffusion through space.
In particular, we modeled metabolic communication among cells by allowing metabolites (e.g., lactate
secreted by cells) to diffuse over the tissue according to a local spatial gradient. The final goal of this
study is to evaluate the impact of different models of nutrient diffusion on the overall cell population
dynamics.

2. Methods

In order to model a generic multi-cellular system, such as a cell culture or a tissue, we adopted FBCA,
which we previously introduced in [18, 23]. This computational methodology combines through a
multi-scale model the spatial dynamics representation of the system via CPM [24], with a model of
cell metabolism via FBA [3] (see Figure 1).
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Figure 1. FBCAmodel is depicted. Image modified from [18]. The morphology of a generic tissue is modeled
via Cellular Potts Model, in which biological cells are represented by sets of contiguous lattice sites, which
evolve via flip attempts driven by a Hamiltonian function #(L). H(L) depends on two terms, the first account-
ing for the Differential Adhesion Hypothesis (DAH), the second for the growth tendency of each cell due to
the accumulation of biomass (see Methods). Biomass is computed via Flux Balance Analysis on cell-specific
metabolic networks. Nutrients NV are diffused, from different sources, to sustain the cellular growth.



2.1. Simulation approach

According to CPM representation of multi-cellular system, biological cells are represented on a two
dimensional lattice L, and their spatial dynamics is driven by an energy minimization criterion ruled
by a Hamiltonian function (L). A rectangular and rigid grid composed of h x w square sites I’ € L
is used to represent the lattice. Given a set of cells tags C = {c.} represented in the lattice L, where
¢. € N, and a set of cellular types 7 = {t:}, where ¢, € N, each biological cell is identified through
the identifier c. and associated to a specific cellular type ¢;. The space occupied by cell c. on the
lattice is denoted as C. C L and corresponds to the set of contiguous lattice sites [’ associated to cell
c.. It is possible to represent on the lattice the empty space assigning to a lattice site the cellular type
FE (or the empty space).

To connect the information of lattice sites with the information of cells, it is possible to exploit
[N (1")], that is the concentration for a nutrient IV at a specific lattice site I*, together with the definition
of two operators:

e 0 : L — C such that o(I') = c.. For short, we can say that o; = ¢, where c is the identifier of
the cell that lies on lattice site [°.

e 7:C — T such that 7(0;) = 7(c(I¥)) = t;. For short, we can say that 7; = ¢, where t is the
cellular type that is associated to the cell that lies on lattice site [°.
The simulation
The simulation approach can be depicted as follows:
1. Initialize: L,C, N
2. For each simulation step:

e FBA computation

e Biomass accumulation

Removal of cell death by lacking of nutrient

e Minimization of the Hamiltonian function

Cell cycle phase evaluation

e Nutrient diffusion

Each step of the second phase is detailed in the following.

FBA computation. FBA is exploited to compute the biomass production rate of any cell present in
the lattice according to the corresponding nutrient availability. To this aim, a metabolic network model
of human central carbon metabolism consisting of 272 reactions and 240 metabolites is associated to
each cell c..; this model was introduced in [25]. A metabolic network is defined as the set of metabolites
and chemical reactions taking place in a cell, and it can be formalized as a M x R stoichiometric matrix
S, where M is the number of metabolites and R is the number of reactions. Each element s, , of the
matrix .S is the stoichiometric coefficient of metabolite m in reaction r, which expresses the number
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of molecules of metabolite m that are transformed in reaction r. For any cell, uptake rate boundaries
of extracellular nutrients are defined according to the simulated experimental setting. In general,
the uptake rate of a given metabolite is constrained to be lower than the sum of the corresponding
concentration values in all of the lattice sites in that cell closeness. For the sake of simulation, flux
values of extracellular nutrients uptake reactions are assumed to be proportional to the concentration
of the corresponding involved nutrient.

Given a metabolic network, Linear Programming is applied in FBA simulations to identify the flux

distribution v = (v1, ..., vg) that maximizes or minimizes a specific objective function Z:
R
Z=> wj; (1)
j=1

where wj is a coefficient that represents the contribution of flux v; in vector v to Z, given a steady-state
assumption for the abundance of each metabolite, i.e., S v = 0. In this work, the Linear Programming
Problem is solved at each Monte-Carlo Step (MCS) to maximize for each cell a pseudo-reaction that
represents the conversion rate of biomass precursors into biomass, as follows:

maximize vy

. 2
subjectto Sv=0, v <v < vy
where vy, is the biomass reaction flux of the cell c., whereas v, and v represent the vectors contain-
ing, respectively, minimum and maximum allowed reaction fluxes.

Biomass accumulation. At each time step s, the current value of the biomass so far accumulated
by a given cell ¢, is represented by the map B : R x time — R, that is B(o;, s) = B(c, s). To update
the current value for B(c, s), we add the biomass synthesis rate v;, obtained from the FBA simulation
for the corresponding cell, to the biomass that is so far accumulated by the cell itself:

B(c,s) = Blc,s = 1) +7- vy A3)
where ~ is a dimensionless factor linking the contribution of cell density to biomass accumulation.
B(c, s) is exploited to determine the corresponding cell density p. = %’CS).

In [18], we considered the scenario where, at each time step, a given cell produces biomass ac-
cording only to the nutrient availability, disregarding other parameters and setting the factor v equal
to 1 to make the biomass accumulation independent of the current cellular density. However, in a
more realistic scenario, proposed in [23], cells avoid an uncontrolled raising of their cell density p.,
we therefore modelled the limitation of biomass accumulation B(c, s) at each time step introducing a
limiting factor ¢ € R as follows:

L, ifpe <

P

TN 1- min(1,2(= —1))%, otherwise
¥

In this way, we prevent the increase of the biomass accumulation in case of p. exceeding its initial
value of 1.5 times.



Hamiltonian function. The Hamiltonian function H(L) : L — R, is composed of two terms
H(L) = D(L) + G(L) that, respectively, account for the Differential Adhesion Hypothesis (DAH)
D(L) [26], and the growth tendency G(L) of each cell that is driven by biomass accumulation:

The first term D(L) is defined as follows:

1
D(L) = 3 > I 1) (1= by0;) 4)
i,jEN
where J(7;,7;) is the surface energy between cellular types 7; and 7; that is required to maintain
adjacent two cell sites, d,, o, is the Kronecker delta, and N is the Moore neighborhood.

The second term G(L) is defined as follows

G(L) =X (A — A (B(c, s)))? (5)

ceC

where the plasticity coefficient A\ € R™ is a Lagrange multiplier that accounts for the capacity to
deform a cell membrane, whereas A, is defined as A : L — N such that A(c(I*)) = A(o;) =
A(c.) = A. and corresponds to the current area of the cell ¢.. The target area Ag (B(c, s)) is function
of the biomass B(c, s) that is accumulated by the cell ¢, at each time step according to the current
nutrient availability. The latter depends on the adopted diffusion process according to the considered
environmental settings, as it will be discussed later in this Section in the paragraph Diffusion. The
accumulated biomass B(c, s) is converted into the corresponding Ag by using the conversion factor

v, Ag = @, which is usually set to 50.

Cell cycle phase evaluation. We associate to each cell an initial equal area, which is called base
area Ap, representing the corresponding initial area before a cell starts to grow. Each cell can grow
until it reaches twice the initial Ap. After that, following the half splitting of the updated space along
a randomly chosen horizontal or vertical direction, a daughter cell characterized by cell properties
inherited from its parent is produced.

Diffusion. The nutrient diffusion process, driven by the resulting positive outcomes shown in [27],
is here implemented averaging the nutrient concentrations in a neighborhood I of each lattice site [*:

A D A
[N(I*)] = T Y IN@)] ©)
jel
where, the neighborhood I has different definition according to the biological setting to be mimicked,
i.e. I := N U [ in case of permeable cells, or I := Cz N (N U [?) in case of impermeable cells.

C'p refers to the lattice sites where nutrients cannot diffuse because they are occupied by impermeable
cells. D is the diffusion coefficient chosen based on the nutrient species.

2.2. FBCA and diffusion

To investigate the ability of the proposed approach discussed in Section 2.1 to simulate the impact of
diverse nutrient diffusion models on a cell population dynamics, we modelled two different biologi-
cal scenarios corresponding, respectively, to a closed environment and to a tissue like environment.
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Regarding the latter, we proposed two configurations relative to the geometry of the nutrient sources.
These two configurations represent, respectively, a cross and a longitudinal section of the tissue like
environment (see Figure 2 panels A and B). Finally, to evaluate different descriptions of nutrient dif-
fusion across cellular membranes, namely cell membranes permeability, we modelled both cross and
longitudinal section configurations by considering cells as permeable and impermeable.

Overall, all these investigated scenarios share the following properties: i) the lattice is a fully
closed environment where the process of cellular death by starving is the only way to remove cells;
i) in [23], the limitation of biomass accumulation allowed to obtain outcomes that are close to the
biological reality. For this reason, we maintain the assumption in this work; iii) metabolism of each
cell is simulated by using a core model of human central carbon metabolism [25, 28, 29]; iv) in this
study we consider one cellular type ¢ and empty space E i.e. 7 = {c, E}, with surface energies
J(c,c) = 8 and J(¢, E) = 2, mimicking the tendency to fill the empty space if available. Finally,
simulation parameters are set as in [18], unless otherwise specified.

2.2.1. Nutrients distribution and geometry

The first simulated biological scenario corresponds to a closed environment. In this regard, we mod-
elled a rectangular lattice space consisting of 150 x 100 sites. In this configuration, metabolites are
uniformly distributed over the lattice and their concentration values are equally set in all the lattice
sites. Furthermore, intercellular interactions only depend on nutrients exchange rather than on specific
nutrient diffusion dynamics.

In the initialization phase, the lattice is populated with four cells having the same area. At each
simulation time step: 1) to reset a uniform nutrients distribution over the lattice, the amount of each
nutrient at each lattice site, [IV(I*)] is set to its mean value over the entire lattice; ii) nutrients uptake
rate of each cell is set proportionally to its area A, and constraints of each cell vi;, v, are set to [N (1%)]:
Ag; iii) a FBA optimization is performed for each and every cell being in the lattice, and the secreted
metabolites instantaneously diffuse; iv) finally, the nutrients amount in the lattice is updated. The
simulation is halted before that cells saturate the closed environment (i.e. 1000 time steps) according
to the biological inspiration.

In the second biological scenario, we conceived a rectangular lattice space of 175 x 115 sites to
represent a tissue-like environment. Moreover, this lattice is completely closed to avoid the removal
of cells from the system beyond the cell death. According to this space configuration, nutrient dif-
fusion dynamics is considered and metabolites concentration in each lattice site [IN(I*)] is set equal
to the mean of the corresponding concentrations in its neighborhood according to Equation 6. In the
initialization phase, the lattice is randomly populated with cells of different initial area.

Many projections are possible sections of a three dimensional space into a two dimensional one,
but to pursue our intent to mimic realistic conditions of a tissue, we opted for the following two
sections.

Cross section represents a transversal section of a generic biological tissue that consists of 5 square
nutrient sources that are fixed placed within the lattice. These point sources represent blood vessels
from which nutrients radially diffuse. As depicted in Figure 2A, vessels area is equal to 121 lattice
sites per the top and bottom point sources, whereas it is equal to 81 for the three central ones.
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Figure 2. Schematic representation of the nutrient sources geometry and access. On the left: A) The tissue is
represented from a cross section point of view. B) The tissue is represented from a longitudinal section point
of view. Yellow rectangles and squares show the position and the area of the nutrient sources in the lattice.
On the right: Cells have different nutrient availability (light blue surface) according to their permeability. C)
Impermeable cells exchange nutrients with lattice sites of the empty space adjacent to cell membrane (red solid
lines); D) permeable cells exchange nutrients with lattice sites within the cell membrane.

Longitudinal section represents a biological tissue traversed by a blood vessel. The blood vessel
is here represented as a rectangle occupying all the central area of the lattice equal to 11 x 115 lattice
sites. In this configuration, nutrients diffuse in the lattice with a linear gradient perpendicular to the
vessel axis.

The geometry and the position of the nutrient source are the only elements discriminating the two
tissue like configurations. At each diffusion step, each one of the considered nutrients concentration
within lattice sites of the source area is set equal to a specific value, i.e., oxygen is equal to 100 fmol,
glucose is equal to 50 fmol, and glutamine is equal to 50 fmol. The lactate is not supplied in the ex-
tracellular environment, but it may be just produced and then exchange from the cells. Once nutrients
concentration values are updated in these lattice sites, the diffusion in the entire lattice occurs accord-
ing to equation 6. If nutrients are not consumed by cells, they are removed from the simulated lattice
through a constant flux value when the corresponding edges of the lattice itself are reached.

2.2.2. Cell membrane permeability

In this work, we devise a simulator suitable to investigate the interplay between cellular population dy-
namics and nutrient diffusion. In this framework two different length scales take place: the one of the
nutrients that has dimensions of A and the one of the cells that has length of pm. This, combined with
the fact that we exploit lattices, bi-dimensional objects to represent cells, three-dimensional objects,
suggested us to compare two different descriptions of nutrient diffusion across cellular membranes,
permeable versus impermeable cells (see Figure 3).

Permeable cell. In this condition, cell and nutrients move on two distinct overlapping layers:
the cell matrix, in which cells evolve, overlays the nutrient matrix, where metabolites freely diffuse
disregarding the presence of the cells. In this configuration, cells have access to the nutrients and
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Figure 3. Nutrient diffusion simulation. In each frame the same environment is depicted with a lattice pop-
ulated with five cells (C1, ..., C5) where in each lattice site I* the color correspond to the concentration of a
generic nutrient [N (I*)] at that time step. In this dynamics there is no interaction between cells and nutrient but
the space occupied by each cell. Comparing the upper part (impermeable setting) with the lower one (permeable
setting), it is possible to recognize the shading effect, due to the cellular membrane, and the slower diffusion
process due to the limited amount of space available to nutrients to the impermeable configuration.

metabolites of each lattice site over which they “float” (See Figure 2D). The set of lattice sites in
which diffusion takes place I = N U [’ does not require that sites belong to the empty space. In the
same way, the metabolites produced by each cell flow only into those lattice sites under the same cell
surface C. Cells are completely permeable to nutrients and metabolites and the diffusion process takes
place “independently” from the cells positions.

Impermeable cell. Cells and nutrients share a common layer, and nutrient diffusion is strongly
affected by cells locations. In this scenario, cells are fully impermeable to nutrients. Consequently,
nutrients cannot diffuse in the lattice sites that are occupied by cells (See Figure 2C). Set [ = Cg N
(N U 1%) adopted in Equation 6 requires to consider only lattice sites belonging to the empty space.
In this configuration, cells only access to metabolites that are available in lattice sites adjacent to their
external surface. In a similar manner, the metabolites produced by each cell flow only into lattice sites
on the perimeter of the cell surface. However, in this way, two neighbouring cells that are separated
by just a unique lattice site, share the set of nutrients in lattice sites that are adjacent to cellular
external sides. To avoid the situation where a limiting nutrient concentration is consumed by both
cells, we updated the corresponding nutrients concentration values after metabolic fluxes computation
of each single cell. Moreover, to avoid bias, we randomized the order in which these optimizations
were performed. Since nutrient diffusion and computation of the cellular dynamics are sequentially
executed, if cell area increase includes a previously empty lattice site, nutrients concentration is shifted
in that lattice site and then splitted among its neighborhood belonging to the set of empty sites.
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2.3. Implementation

The scripts to perform all the analysis and the functions to simulate the spatial dynamics and the
diffusion steps has been written from scratch in Matlab. We used the COBRA Toolbox[30] to optimize
the metabolic networks and compute the biomass for each cell in the lattice. A complete MCS requires
between ~3 s and ~6 s with a PC Intel Core i7-3770 CPU 3.40 GHz 64-bit capable, with 32 GB of
RAM DDR3 1600 MT/s.

3. Results

3.1. Closed environment

As shown in Figure 4, when we modelled the closed environment setting, we observed that cells
start to grow and to fill the empty available space. Nevertheless, cells dimension does not increases
excessively because of the previously defined growth rules with a mitotic area set to 50.

Moreover, Figure 4 contains few snapshots of the metabolic history of the entire cells population
suggesting a metabolic switch from glucose uptake to lactate consumption: cells turn from red to blue.

Chemostat
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20 MCS 500 MCS 780 MCS 1000 MCS

‘ Il Glucose consumption ] Lactate consumption‘

Figure 4. Cells population dynamics in the closed environmental setting. In this configuration, metabolites
are uniformly distributed over the lattice and their concentration values are equally set in all the lattice sites. In-
tercellular interactions only depend on nutrients exchange rather than on a specific nutrient diffusion dynamics.
The color assigned to each cell depends on its emerging metabolic trait. Red cells depend on glucose utiliza-
tion, while the blue ones on lactate utilization. Color shades are intended to distinguish among cells and are not
informative about fluxes values.

But, it is in Figure 5 that is possible to account for this phenomenon, at the beginning glucose
and glutamine represent the main nutrients adopted from cells to grow, even if the initial consumed
concentration of glucose is higher than that of glutamine. Moreover, from the red curve in Figure 5
A, that corresponds to the available amount of glucose over time and space, we observed that cell
consumption of this nutrient does not follow a linear trend due to the initial low number of cells that
are present in the lattice.
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Figure 5. Nutrient dynamics and average area in the closed environment setting. A) The graph depicts the
mean nutrients amount (solid line) and its standard deviation (shaded area) over 10 independent simulations. B)
The graph depicts the mean cell area (solid line) and its standard deviation (shaded area) over 10 independent
simulations.

These two nutrient sources are gradually consumed over MCS time step and lactate is produced.
However, at the point where there is no more available glucose to grow, we observed that cells start
to use lactate as alternative nutrient source. Accordingly, in the second and third panel of Figure
4, we observed a rapid switch of cellular metabolism from cells mainly growing on glucose to cells
whose growth is dependent on the consumption of lactate. This rapid switch can occur because of
the identical access of cells to nutrients. In line with the description of closed environment setting,
nutrients access only changes among cells according to their dimension.

In Figure 5B, we plotted the average cell area over MCS. The starting setting of 4 cells having the
same area showed very well the cellular growth process due to the initial sharp increase of cell average
area. Moreover, we can appreciate how long it takes a cell to double, i.e., the mitosis process. As cells
continue to grow, we observed that their number increases, and differences begins to emerge among
them due to the no longer equal size. Accordingly, the average cell area results to be the mean of a
more extended range of values.

3.2. Tissue like environment

In the tissue-like model, we consider that all cells can be either permeable or impermeable to nutrients.
Our simulations consider either a longitudinal or a cross-section of a 3D lattice, therefore originating
4 independent simulation scenarios (Figure 6).

In all scenarios, nutrients are injected in the system only within a specialized lattice subset that we
refer to as “vessel”, they mix only locally and cells can move and die (because of nutrient depletion).
Since their survival chances collapses as they move away from nutrient availability, cells tend to stay
close to the vessels in all four simulation scenarios over the course of the entire simulation (Figure 7).

Snapshots of the lattices at the end of simulations are shown in Figure 6. We assigned cells in the
population to three groups according to their way of metabolizing lactate, taken as an indication of
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Figure 6. Snapshot of the final simulation step relative to cell population arrangement according to the four
possible configurations of tissue environmental setting. The tissue is represented from a cross section (panels
A,B) and from a longitudinal section point of view (panels C, D). The cells have permeable membrane (panels
A, C) and impermeable membrane (panels B, D). The yellow lattice sites represent the nutrient sources in the
lattice. Biological cells are differently colored according the corresponding lactate metabolism, i.e. green if
lactate is produced, orange is lactate is consumed and purple if lactate is both produced or consumed with a flux
less than 0.1 fmol.

12



Permeable Impermeable

A B
250 250
200 200
2
I
o 150 150
o
P
T
Q
£ 100 100
> 3
bl
i-] =z
v
£ 50
o P e e At IS A it N
[
o
c 0 . . . . . . . . ) o
o 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
=]
g © "
T 50
oL
a 2
o
o O 40
o =
8
o
o
I~
=
o
b
E — P - SRURRIN e -
S W— e A AR Ao
=
] 10
v
c
o
s
2 0
O 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
MCS MCS
E F

250

200

150

100

Number of cells

50

0 i L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

longitudinal section geometry

G H
‘g 50 50
=
@
I
) 40
£
=
@ 30
%] 30
3
2
20 20
£
2 [ e
8 10 10
=4
2
a0 0
o 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
MCS MCS
\Cell metabolism: M Lactate not used ¥ Lactate produced Lactate consumed \

Figure 7. Comparison of the effect of cell permeability and simulation geometry on number and distance from
source of cells of different metabolic phenotype. In panels A, B, C, D the geometry is shaped to represent a
cross-section while in panels E, F, G, H it is shaped as a longitudinal section. Panels A, B, E and F depict
the mean number of cells (solid line) and its standard deviation (shaded area) over 10 independent simulations.
Panels C, D, G and H depict the mean distance of the cells from the closest nutrients source (solid line) and
its standard deviation (shaded area) over 10 independent simulations, where the distance is calculated between
the cell and the closest source barycentre. Biological cells are differently colored according the corresponding
lactate metabolism, i.e. green if lactate is produced, orange is lactate is consumed and purple if lactate is both
produced or consumed with a flux less than 0.1 fmol.
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their metabolism: Outward lactate flux (green), Inward lactate flux (orange), No lactate flux (purple).
Purple cells, corresponding to the ones that are not either consuming or producing lactate with a flux
greater than 0.1 fmol, are missing among the permeable cells. These cells show a rapid drop in number
in the early simulation cycles, completely disappearing at MCS 200, in both the cross-section (Figure
7 A to D) and longitudinal (Figure 7 E to H) simulation settings. The average number of lactate
producing (outward flux, green) and their distance from the vessel was similar in both the cross-
section and longitudinal simulations (panels A,B and E,F, respectively, of Figure 7), although the
latter showed increased variability. In both cross- and longitudinal sections, lactate producing cells
were present in higher number and farther to the vessels than lactate-consuming cells. Differently
from permeable cells, the impermeable ones showed all the three types of lactate metabolism (Figure
6 and 7). Lactate producing (outward flux, green) cells represent the less abundant sub-population in
both the longitudinal and cross-section simulation scenarios (panel B and F of Figure 7, respectively).
Similar to the trend observed in permeable cells, longitudinal simulations of impermeable cells showed
increased variability compared to cross-section variability (panels B, D and F, H of Figure 7), and a
steady state was reached after about 200 MCS.

4. Discussion

In this work, we extended the previous FBCAmethodology presented in [18, 23] to evaluate the impact
of different nutrient diffusion models on the population dynamics. In particular, we modeled metabolic
interaction among cells by allowing secreted metabolite to diffuse over the lattice together with the
diffusion of nutrients from different sources.

We proved that the inclusion of the diffusion process in the system dynamics can characterize
realistic and complex biological processes and phenomena. The developed simulator allowed to per-
form in depth quantitative analyses of cell populations properties in two different biological scenarios,
namely a cell culture in a closed environment and a tissue. In the first scenario, the simulator faithfully
reproduced the diauxic growth of yeast in a well stirred flask, whereas the second scenario properly
mimicked the behaviour of a tissue organization or tumor micro-environment niche. In both cases,
already known phenomena have been reproduced, such as for example the switch of the carbon source
exploited to grow when the mainly used one is totally consumed.

In addition, our simulator showed the ability to discriminate cells having different ways of nutrient
access according to their permeability, i.e. permeable and impermeable cells. Simulations regarding
tissue experimental setting revealed that the corresponding geometry considerably influence cell po-
sitions within the lattice. Nevertheless, our model faithfully represented the cellular structure that we
modelled like an in vivo cross or longitudinal sectioning of a biological tissue. This ability could be,
in the future, exploited to model more complex and close to reality blood vessels configurations.

Overall, the choice of the most suitable experimental setting is linked to the aim of the research.
A higher interest on the population dynamics rather than on the investigation of how nutrients are
consumed by cells leads to consider permeable cells a better approximation. In the opposite case,
impermeable cells result to be more appropriate.

In the next future we plan to perform further analyses to investigate the influence of different ini-
tial set of nutrients on cellular growth dynamics, as well as to explore any difference with the current
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outcomes. This strategy could assist the analysis of the differences emerged in this work between al-
ternative experimental settings. In particular, the reason why a more heterogeneous situation occurred
only when impermeable cells were considered, could be investigated.

In view of the outcomes we obtained in this work, we are confident that our simulator is enough

plastic to be adapted to the simulation of various and more complex scenarios, geometry of the system
and nutrient diffusion process.
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