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Abstract

In this study, the orthogonalization process for different inner prod-

ucts is applied to pairwise comparisons. Properties of consistent ap-

proximations of a given inconsistent pairwise comparisons matrix are

examined. A method of a derivation of a priority vector induced by a

pairwise comparison matrix for a given inner product has been intro-

duced.

The mathematical elegance of orthogonalization and its universal

use in most applied sciences has been the motivating factor for this

study. However, the finding of this study that approximations depend

on the inner product assumed, is of considerable importance.
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1 Introduction

The growing number of various orthogonalization approaches in [1, 2, 3, 4]
supports the importance of orthogonalization in various computer science
applications. Pairwise comparisons allow us to express assessments of many
entities (especially, of the subjective nature) into one value for the use in the
decision making process. Pairwise comparisons have been used since the late
years in the 13th century by Llull for conducting the better election process
(as stipulated in [5]). However, the ineffability of pairwise comparisons comes
from decision making which must have been made by our ancestors during
the Stone Age. Two stones must have been compared to decide which of
them fit for the purpose. It could be for a hatchet, a gift, or a decoration.

Pairwise comparisons matrices can be transformed by a logarithmic map-
ping into a linear space and the set of consistent matrices into its subspace.
The structure of a Hilbert space is obtained by using an inner product. Such
a space is complete with respect to the norm corresponding to the inner
product. In such a space, we may use orthogonal projections as a tool to
produce a consistent approximation of a given pairwise comparison matrix.

Structure of the paper

A gentle introduction to pairwise comparisons is provided in Section 2. Sec-
tion 3 discusses the problem of approximation of an inconsistent PC matrix
by a consistent PC matrix using Frobenius inner product on the space of
matrices. Other inner products are discussed in Section 4. In Section 5 the
dependence of an optimal priority vector on the choice of an inner product on
the space of pairwise comparison matrices has been proved. The Conclusions
are self explanatory.

2 Pairwise comparisons matrices

In this subsection, we define a pairwise comparisons matrix (for short, PC
matrix) and introduce some related notions. Pairwise comparisons are tra-
ditionally stored in a PC matrix. It is a square n×n matrix M = [mij ] with
real positive elements mij > 0 for every i, j = 1, . . . , n, where mij represents
a relative preference of an entity Ei over Ej as a ratio. The entity could be
an object, attribute of it, abstract concept, or a stimulus. For most abstract
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entities, we do not have a well established measure such as a meter or kilo-
gram. “Software safety” or “environmental friendliness” are examples of such
entities or attributes used in pairwise comparisons.

When we use a linguistic expression containing "how many times", we
process ratios. The linguistic expression "by how much", "by how much
percent" (or similar) gives us a relative difference. Ratios often express sub-
jective preferences of two entities, however, it does not imply that they can
be obtained only by division. In fact, equalizing the ratios with the divi-
sion (e.g., Ei/Ej), for pairwise comparisons, is in general unacceptable. It is
only acceptable when applied to entities with the existing units of measure
(e.g., distance). However, when entities are subjective (e.g., reliability and
robustness commonly used in a software development process as product at-
tributes), the division operation has no mathematical meaning although we
can still consider which of them is more (or less) important than the other
for a given project. The use of the symbol "/" is in the context of "related
to" (not the division of two numbers). Problems with some popular cus-
tomization of PCs have been addressed in [8]. We decided not to address
them here.

A PC matrix M is called reciprocal if mij =
1

mji
for every i, j = 1, . . . , n.

In such case, mii = 1 for every i = 1, . . . , n.
We can assume that the PC matrix has positive real entries and is re-

ciprocal without the loss of generality since a non reciprocal PC matrix can
be made reciprocal by the theory presented in [9]. The conversion is done
by replacing aij and aji with geometric means of aij and aji (

√
aijaji). The

reciprocal value is 1√
aijaji

.

Thus a PC matrix M is the n× n-matrix of the form:

M =











1 m12 · · · m1n
1

m12

1 · · · m2n

...
...

...
...

1
m1n

1
m2n

· · · 1











.

Sometimes, we write that M ∈ PCn in order to indicate the size of a given
PC matrix.
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2.1 The Geometric Means Method

The main goal to use a pairwise comparison matrix is to obtain the so called
priority vector. The coordinates of this vector correspond to the weights of
alternatives. If we know the priority vector, we can set alternatives in order
from the best to the worst one.

In the Geometric Means Method (GMM) introduced in [10] the coordi-
nates of the vector are calculated as the geometric means of the elements in
rows of the matrix:

vi = n

√

√

√

√

n
∏

j=1

aij . (1)

The above vector is the solution of the Logarithmic Least Square Method.

2.2 Triads, transitivity, and submatrices of a PC matrix

One of the fundamental problems in pairwise comparisons is the inconsis-
tency. It takes place when we provide, for any reason, all (hence supernu-

merary) comparisons of n entities which is n2 or n(n−1)
2

if the reciprocity is
assumed and used to reduce the number of entered comparisons. The suffi-
cient number of comparisons is n− 1, as stipulated in [11], but this number
is based on some arbitrary selection criteria of the minimal set of entities to
compare. In practice, we have a tendency to make all n(n−1)/2 comparisons
(when reciprocity is assumed which is expressed by mij =

1
mji

property also

not always without its problem). Surprisingly, the equality x/y = 1
y/x

does
not take place even if both x 6= 0 and y 6= 0. For example, the blind wine
testing may result in claiming that x is better than y and y is better than x
or even that x is better than x which is placed on the main diagonal in a PC
matrix M , expressing all pairwise comparisons in a form of a matrix.

The basic concept of inconsistency may be illustrated as follows. If an
alternative A is three times better than B, and B is twice better than C,
than A should not be evaluated as five times better than C. Unfortunately,
it does not imply that A to C should be 3 · 2 hence 6, as the common sense
may dictate, since all three assessments (3, 5, and 2) may be inaccurate
and we do not know which one of them is or not incorrect. Inconsistency is
sometimes mistakenly taken for the approximation error but it is incorrect.
For example, triad T = (3, 5, 2) can be approximated by Tapprox(1, 1, 1) with
0 inconsistency but we can see that such approximation is far from optimal

4



by any standard. So, the inconsistency can be 0 yet the approximation error
can be different than 0 and of arbitrarily large value.

2.3 Multiplicative variant of pairwise comparisons

Definition 2.1. Given n ∈ N, we define

T (n) = {(i, j, k) ∈ {1, . . . , n} : i < j < k}

as the set of all PC matrix indexes of all permissible triads in the upper
triangle.

Definition 2.2. A PC matrix M = [mij ] is called consistent (or transitive)
if, for every (i, j, k) ∈ T (n) :

mikmkj = mij . (2)

Equation (2) was proposed a long time ago (in 1930s) and it is known as
a "consistency condition". Every consistent PC matrix is reciprocal, how-
ever, the converse is false in general. If the consistency condition does not
hold, the PC matrix is inconsistent (or intransitive). In several studies, con-
ducted between 1940 and 1961 ([12, 13, 14, 15]) the inconsistency in pairwise
comparisons was defined and examined.

Inconsistency in pairwise comparisons occurs due to superfluous input
data. As demonstrated in [11], only n − 1 pairwise comparisons are really
needed to create the entire PC matrix for n entities, while the upper triangle
has n(n − 1)/2 comparisons. Inconsistencies are not necessarily "wrong" as
they can be used to improve the data acquisition. However, there is a real
necessity to have a "measure" for it.

Lemma 2.3. If a PC matrix M = [mij ]
n
i,j=1 is consistent, then

mij =
ωi

ωj

for all i, j = 1, 2, . . . , n

where ω1 > 0 is arbitrary and ωj =
ω1

m1j
for every j = 2, 3, . . . , n.

Proof. By the definition of ωj and consistency of M one gets

m1j =
ω1

ω1/m1j
=

ω1

ωj
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and

mij =
mi−1,j

mi−1,i

=
ωi−1/ωj

ωi−1/ωi

=
ωi

ωj

.

whenever 1 < i ≤ n.

It is easy to observe that the set Mn = (Mn, ·) of all consistent PC ma-
trices M is a multiplicative subgroup of the group of all PC n×n-matrices en-
dowed with the coordinate-wise multiplication A·B = [aijbij ] , where A = [aij ]
and B = [bij ]. Its representation in Rn consists of all priority vectors υ (M) =
(ω1, ω2, . . . , ωn) , defined uniquely as in Lemma 2.3, up to a multiplicative
constant ω1 > 0. In the following we use priority vectors normalized by the
condition ω1 = 1, unless otherwise stated.

2.4 Additive variant of pairwise comparisons

Instead of a PC matrix M = [mij ] with mij ∈ R∗
+, the set of positive real

numbers considered with multiplication, we can transform entries of M by
a logarithmic function and get a matrix A = [aij] = [log mij ] . Since a PC
matrix M is reciprocal, it follows that it is anti-symmetric, i.e.

aij = −aji for every i, j = 1, 2, . . . , n.

Moreover, if M is consistent then A = log M satisfies the condition of addi-
tive consistency:

aik + akj = aij for every (i, j, k) ∈ T (n) ,

which yields the following well-known representation.

Lemma 2.4. If an anti-symmetric matrix A = [aij]
n
i,j=1 is additively con-

sistent, then

aij = σi − σj for all i, j = 1, 2, . . . , n,

where σ1 is arbitrary and σj = σ1− a1j for every j = 2, 3, . . . , n.

In view of this representation, the set An = (An,+) of all additively
consistent matrices is an additive subgroup of all n× n- matrices, whenever
it is endowed with the coordinatewise matrix addition A + B = [aij+bij ]
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of A = [aij ] and B = [bij ]. It is a one-to-one image of the multiplicative
group Mn = (Mn, ·) by the group isomorphism A = log M = [log mij ] .
The inverse group isomorphism is clearly given by the formula M = exp A =
[exp aij ] . Moreover, the additive priority vector υ (A) = (σ1, σ2, . . . , σn) of A
satisfies υ (A) = log υ (M) , where σ1 = logω1 is supposed to be arbitrary
additive constant. In particular, it is said to be normalized if σ1 = 0. Here and
in the following matrix functions log M = [log mij ] and exp A = [exp aij ]
are always understood in the coordinate- wise sense.

3 Approximation by projections

Numerous heuristics have been proposed for approximations of inconsistent
pairwise comparisons matrices by consistent pairwise comparisons matrices.
Geometric means (GM) of rows is regarded as dominant. Some mathemati-
cal evidence, to support GM as the method of choice, was also provided in
[16]. [17] shows that orthogonal projections have a limit which is GM (to
a constant). [18] demonstrates that the inconsistency reduction algorithm
based on the orthogonal projections converges very quickly for practical ap-
plications. The proof of inconsistency convergence was outlined in [6] and
finalized in [7]. Axiomatization of inconsistency still remains elusive. Its
recent mutation in [22] has a deficiency (the monotonicity axiom incorrectly
defined).

3.1 Space of consistent matrices

Let K= R or C. Let M (n,K) be the set of all n×n-matrices with entries from
the field K, and let C = Mn ⊂ M (n,K) be the set of all consistent n × n-
matrices with entries from the field K. We consider M (n,K) as a K−linear
space with addition of matrices and multiplication by numbers from the field
K, clearly dimK M (n,K)= n2 and the unit matrices

Eij =
[

ei,jrs
]n

r,s=1
, i, j = 1, 2, . . . , n,

form a basis in M (n,K) , where ei,jrs is equal to 1, if r = i and s = j, and
otherwise 0.

In the linear space M (n,K) one can define the Frobenius inner product
as follows. For all A = [aij ] , B = [bij ] ∈ M (n,K) ,
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〈A,B〉F =
n
∑

i=1

n
∑

j=1

aij b̄ij .

In this Section we recall results from [19].

Theorem 3.1. The set C is a linear subspace of M(n,K).

Proof. Let A = [aij ], B = [bij ] ∈ C, that is

aik + akj = aij and bik + bkj = bij .

Let C = [cij] = A+B, then

cik + ckj = (aik + bik) + (akj + bkj) = (aik + akj) + (bik + bkj) = aij + bij = cij .

Hence, C ∈ C.
Let α ∈ K and A ∈ C. It is clear that αA ∈ C.

Theorem 3.2. The subspace C ⊂ M(n,K) has dimension n− 1 over K.

Proof. By applying the consistency condition, all elements of the matrix
A = [aij ] can be generated by n− 1 elements ak,k+1 for k = 1, . . . , n− 1, i.e.
by the second diagonal, that is diagonal directly above the main diagonal
(see [11]).

Theorem 3.3 ([19, Proposition 1]). The following set of n − 1 matrices

constitutes a basis of C :

Bk = [bkij ], where bkij =











1, for 1 ≤ i ≤ k < j ≤ n,

−1, for 1 ≤ j ≤ k < i ≤ n,

0, otherwise,

where k = 1, . . . n− 1.

Remark. For the standard inner product (i.e. Frobenius), an example of
approximation of a 4× 4 inconsistent matrix as a projection onto C is given
in [19].
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3.2 Approximation by a consistent matrix

Suppose that we have a PC matrix A ∈ M (n,K) \C, i.e. A is inconsistent.
Our aim is to find a consistent metric projection AC of A onto the set
C = An or Mn with respect to norm ‖·‖ induced by an inner product 〈·, ·〉,
i.e. a nonlinear mapping AC : M (n,K) ∋ A 7→ Aapprox ∈ C such that the
distance of A to C

dist (A, C) = infB∈C ‖A−B‖ = ‖A−Aapprox‖ .
is attained by the matrix B = Aapprox.

In the additive case C = An metric projection AAn
coincides with the

orthogonal projection Aproj : A 7→ Aapprox of M (n,K) onto the (n− 1)-
linear subspace An, which is characterized by the well-known orthogonality
condition

A− Aapprox⊥ An.

This condition enables to compute the orthogonal projection Aproj much more
effectively than its nonlinear multiplicative counterpart MMn

: M 7→ Mapprox.
Therefore, it was proposed [10, 17] to linearize the process of determining
metric projections for practical applications. It was achieved by introducing
a new concept of linearized consistent approximations to estimate nonlinear
metric projections. For the simplicity, in the following the symbol Mapprox will
be also used to denote these linearized consistent approximations. It would
not lead to misunderstanding, since we shall always restrict our attention to
the linearized case, unless otherwise stated.

Definition 3.4. Let M ∈ M (n,K) \Mn be a PC inconsistent matrix.
A consistent approximation Mproj : M 7→ Mapprox of M onto Mn is defined
in the following way:

1. we construct the matrix A = log M,

2. we find the orthogonal projection Aapprox of A onto the (n− 1)-dimensional
subspace C = log Mn .

3. we set Mapprox = exp (Aapprox) .

In short, we define Mapprox = exp
[

(log M)approx

]

.
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3.3 Orthogonalization

In order to simplify calculation in the examples below, we would like to
have orthogonal basis for C. We produce such a basis by the Gram-Schmidt
process. Namely, let V be an n-dimensional vector space over K with an
inner product 〈·, ·〉 and B1, . . . , Bn be its basis. We construct an orthogonal
basis E1, . . . , En as follows:

E1 =B1,

E2 =B2 −
〈E1, B2〉
〈E1, E1〉

E1,

E3 =B3 −
〈E1, B3〉
〈E1, E1〉

E1 −
〈E2, B3〉
〈E2, E2〉

E2,

. . . = . . .

En =Bn −
n−1
∑

j=1

〈Ej , Bn〉
〈Ej , Ej〉

Ej .

(3)

Example 3.5. Consider an inconsistent PC matrix M in the multiplicative
variant:

M =





1 e2 e7

e−2 1 e3

e−7 e−3 1



 . (4)

Its priority vector v(M) obtained by (1) is

v(M) =





e3

e
1

3

e−
10

3



 . (5)

Taking natural logarithms, we switch to the additive PC matrix variant and
get the following additive PC matrix:

A =





0 2 7
−2 0 3
−7 −3 0



 .

We need to find Aproj, the projection of A onto C. By Theorem 3.2, we have
that dimR C = 2. By Theorem 3.3, we get a basis of the linear space of
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consistent matrices C :

B1 =





0 1 1
−1 0 0
−1 0 0



 and B2 =





0 0 1
0 0 1

−1 −1 0



 .

Evidently, 〈B1, B2〉F = 2. Therefore, we have to apply Gram-Schmidt process
of orthogonalization (3). If E1, E2 denotes an orthogonal basis of C, then

E1 =





0 1 1
−1 0 0
−1 0 0



 and E2 =





0 −1
2

1
2

1
2

0 1
−1

2
−1 0



 .

Our goal is to find Aproj = ε1E1 + ε2E2, that is to find coefficients ε1 and ε2
such that for every C ∈ C, 〈A−Aproj, C〉F = 0 which is equivalent to solving:

〈A− ε1E1 − ε2E2, E1〉F =0,

〈A− ε1E1 − ε2E2, E2〉F =0.

Since E1 and E2 are orthogonal, we get a system of linear equations:

〈A,E1〉F − ε1〈E1, E1〉F =0,

〈A,E2〉F − ε2〈E2, E2〉F =0.

By computing Frobenius inner products, we get the following equation:

18− 4ε1 =0,

11− 3ε2 =0.

By solving the above equations for ε1, ε2, we get ε1 =
9
2

and ε2 =
11
3
. Thus,

Aproj = Aapprox,F =
9

2
E1 +

11

3
E2 =





0 8
3

19
3

−8
3

0 11
3

−19
3

−11
3

0



 .

Finally, we get a consistent approximation for M,

Mapprox,F =





1 e
8

3 e
19

3

e−
8

3 1 e
11

3

e−
19

3 e−
11

3 1



 ∈ C.

Notice that the priority vector v(Mapprox,F) coincides with v(M) given by (5).
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4 Other inner products on M(n,K)

The standard (Frobenius) inner product on the linear space M(n,K) is de-
fined by:

〈A,B〉F = Tr(B∗A). (6)

The above inner product is exactly the Frobenius inner product defined in
previous section, and it defines the Frobenius norm in a usual way by:

‖A‖2F = 〈A,A〉F =
n
∑

i=1

n
∑

j=1

|aij|2.

In [20] the following result is mentioned:

Proposition 4.1. For every m ∈ N and positive semi-definite matrices

Xi, Yi, i = 1, . . . , m, the following function:

〈A,B〉∗ = Tr

(

m
∑

i=1

B∗XiAYi

)

(7)

defines an inner product in M(n,K).

Proof. All properties of an inner product follow from the following equation:

〈A,B〉∗

= Tr

(

m
∑

i=1

B∗XiAYi

)

= TrB∗

(

m
∑

i=1

XiAYi

)

=

〈

m
∑

i=1

XiAYi, B
∗

〉

F

.

Example 4.2. Consider the following four matrices in the space M(3,R) :

X1 =





1 1 2
1 2 3
2 3 6



 , X2 =





2 1 1
1 2 1
1 1 5



 , Y1 =





2 3 2
3 7 3
2 3 5



 , Y2 =





5 2 1
2 5 1
1 1 1



 .

By applying Sylvester’s criterion in [21], it is easy to see that they are positive
semi-definite. Evidently, they are symmetric hence Hermitian.

Let
A(A) = A{Xi,Yi|i=1,2}(A) = X1AY1 +X2AY2.
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Define
〈A,B〉∗ = 〈A(A), B〉F.

By Proposition 4.1, 〈·, ·〉∗ is an inner product in M(n,R).

Example 4.3. Consider 3 × 3 matrices B1, B2 with real entries computed
by the formula in Theorem 3.3 (see Example 3.5 for details). Evidently,
B = {B1, B2} is a basis for C ⊂ M(3,R). By applying Gram-Schmidt process
(3) with the inner product from Example 4.2 to the basis B, we get an
orthogonal basis E = {E1, E2} for C in 〈·, ·〉∗.
The above transformations imply that 〈E1, B2〉∗ = 〈A(E1), B2〉F. Since

A(E1) =





−5 9 4
−17 −5 −3
−35 −13 −6



 ,

we have
〈E1, B2〉∗ = 49 and 〈E1, E1〉∗ = 65.

By equations (3), we get

E1 =





0 1 1
−1 0 0
−1 0 0



 and E2 =





0 −49
65

16
65

49
65

0 1
−16

65
−1 0



 =
1

65





0 −49 16
49 0 65

−16 −65 0



 .

Example 4.4. Take the following additive PC matrix:

A =





0 2 7
−2 0 3
−7 −3 0



 .

This is the PC matrix from Example 3.5. Next, we compute the orthogonal
(with respect to the inner product from Example 4.2) projection onto the
space C. For it, we need to solve a system of linear equations for ε1 and ε2:

〈A,E1〉∗ − ε1〈E1, E1〉∗ =0,

〈A,E2〉∗ − ε2〈E2, E2〉∗ =0.
(8)

We get

A(E2) = − 1

65





570 1, 710 36
226 1, 234 −650
1, 930 5, 050 1, 006



 .
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We can also utilize some computation conducted in the previous example and
by using the symmetry of the inner product 〈·, ·〉∗, the equation (8) becomes:

355− 65 ε1 =0,

27, 390

65
−
(

1

65

)2

473, 520 ε2 =0.

Consequently, ε1 =
355
65

= 71
13
, ε2 =

59,345
15,784

therefore, we get:

Aproj,1 = Aapprox,∗1 = ε1E1 + ε2E2 =





0 ε1 − 49
65
ε2 ε1 +

16
65
ε2

−ε1 +
49
65
ε2 0 ε2

−ε1 − 16
65
ε2 −ε2 0



 .

Finally, we obtain the following multiplicative PC matrix:

Mapprox,∗1 =





1 eε1−
49

65
ε2 eε1+

16

65
ε2

e−ε1+
49

65
ε2 1 eε2

e−ε1− 16

65
ε2 e−ε2 1



 .

Example 4.5. Let us repeat the calculations made in Examples 4.2, 4.3
and 4.4 to provide a consistent approximation of the matrix M set in (4) by
means of the inner product induced by matrices:

X1 =





1 0 0
0 2 0
0 0 3



 , X2 =





2 0 0
0 3 0
0 0 1



 , Y1 =





3 0 0
0 1 0
0 0 2



 , Y2 =





1 0 0
0 3 0
0 0 2



 .

We obtain

A(E1) =





0 7 6
−9 0 0
−10 0 0



 ,

so
〈E1, B2〉∗ = 16 and 〈E1, E1〉∗ = 32.

By equations (3), we get

E1 =





0 1 1
−1 0 0
−1 0 0



 and E2 =





0 −1
2

1
2

1
2

0 1
−1

2
−1 0



 =
1

2





0 −1 1
1 0 2

−1 −2 0



 .
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Since

A(E2) = −1

2





0 −7 6
9 0 20

−10 −12 0



 ,

we calculate the inner products

〈A,E1〉∗ = 144, 〈A,E2〉∗ = 88 and 〈E2, E2〉∗ = 24.

By solving the equations

144− 32 ε1 =0,

88− 24ε2 =0.

we get ε1 =
9
2
, and ε2 =

11
3

therefore,

Aproj,2 = Aapprox,∗2 = ε1E1 + ε2E2 =





0 8
3

19
3

−8
3

0 11
3

−19
3

−11
3

0



 .

Finally,

Mapprox,∗2 =





1 e
8

3 e
19

3

e−
8

3 1 e
11

3

e−
19

3 e−
11

3 1



 ,

and its priority vector calculated with the use of GMM is equal to

v(Mapprox,∗2) =





e3

e
1

3

e−
10

3



 = v(M).

5 Approximation selection

It is worthwhile to stress that in the previous examples we got three approx-
imations of the same matrix M . An important dilemma has surfaced: how
to compare different approximations of a given PC matrix obtained by the
use of different inner products? The answer to this question is: they are
incomparable.
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5.1 Inconsistency

The first criterion that we took into consideration was to compare incon-
sistency indices of the exponential transformations of differences A − Aproj.
However, this attempt appeared to be incorrect.

Let us consider the inconsistency index Kii of a pairwise comparison
matrix M given by formula:

Kii(M) = max
i<j<k

(

1−min

{

mik

mijmjk
,
mijmjk

mik

})

. (9)

This indicator satisfies all the desired axioms formulated in [22].

Theorem 5.1. Let A and B be additive pairwise comparison matrices such

that B is additively consistent. Then

Kii (exp(A− B)) = Kii (exp(A)) .

Proof. Take any (i, j, k) ∈ T (n). Since bij + bjk = bik, we get

1 − min

{

eaik−bik

eaij−bijeajk−bjk
,
eaij−bijeajk−bjk

eaik−bik

}

=

1 − min

{

eaikebij+bjk−bik

eaijeajk
,

eaijeajk

eaikebij+bjk−bik

}

=

1 − min

{

eaik

eaijeajk
,
eaijeajk

eaik

}

,

which completes the proof.

From the above theorem it follows that if we take two different consistent
approximations B and C of an additive matrix A they satisfy

Kii (exp(A− B)) = Kii (exp(A)) = Kii (exp(A− C)) .

5.2 Priority vectors for different inner products

The second attempt to judge whether a consistent approximation Aapprox of a
PC matrix A is acceptable could be to compare the priority vectors induced
by A and Aapprox for any inner product. In [10] it has been proved that
the elements of a projection matrix Aapprox induced by a Frobenius product
are given by the ratios wi

wj
, where vector w is obtained by GMM. As it has

been shown in [17] the priority vectors induced by A and Aapprox in this case
coincide:
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Theorem 5.2. Let A be a PC matrix and Aapprox =
[

wi

wj

]

, where w =

GM(A), i.e.

wk = n

√

√

√

√

n
∏

j=1

akj.

Then GM(A) = GM(Aapprox).

As the following example shows the priority vectors of a matrix and its
consistent approximation may differ if we use other inner products.

Example 5.3. Consider an inconsistent additive PC matrix A from Exam-
ple 3.5:

A =





0 2 7
−2 0 3
−7 −3 0





and its corresponding multiplicative PC matrix M = exp(A). Let us take
three inner products: Frobenius product and the inner products 〈·, ·〉∗1 and
〈·, ·〉∗2 from Examples 4.2 and 4.5. The approximations Aapprox,F, Aapprox,∗1
and Aapprox,∗2 are given in Examples 3.5, 4.3 and 4.5, respectively.

Notice that

GM(exp(A)) = GM(exp(Aapprox,F)) = GM(exp(Aapprox,∗2)),

but GM(exp(A)) and GM(exp(Aapprox,∗1)), are linearly independent. This
observation, however, is not surprising. The matrix exp(Aapprox,∗1) minimizes
the distance from exp(A) to the set of cosistent PC matrices according to
the inner product < ·, · >∗1, but not to the Frobenius inner product.

In the following we show that as we change the inner product, we also have
to change the formula for a priority vector. It is done by extending Theorem
5.2 to weighted Frobenius inner products. For this purpose we recall the
most general standard definition of an inner product in M (n,K) :

Let G1, G2, . . . , GN be N = n2 linearly independent matrices in the space
M (n,K). Represent matrices A,B ∈ M (n,K) in a unique manner as

A=
N
∑

k=1

αkGk; αk ∈ K,

17



and

B=
N
∑

k=1

βkGk; βk ∈ K,

and define the inner product by

〈A,B〉 =
N
∑

i,j=1

γijαiβj,

where Γ = [γij] is a positive definite N × N -matrix. For example, if we
choose the identity matrix Γ = I and G(i−1)n+j = Eij/

√
̺ij for a matrix

P = [̺ij ] = [̺i̺j ] of n2 positive weights, then we get weighted Frobenius
norm ‖ A ‖2F,P = 〈A,A〉F,P induced by the weighted Frobenius inner product

〈A,B〉F,P =

n
∑

i,j=1

̺ijaijbij.

By Lemma 2.4 each matrix [bij ] ∈ An satisfies bij = σi − σj, where
the additive constant σ1 is fixed. Hence the squared weighted distance
distF,P (A,An) of an anti-symmetric real matrix A to the space An of all ad-
ditively consistent real matrices is equal to the minimal value of the quadratic
function

fA (σ) =
n
∑

i,j=1

̺ij(aij − σi + σj)
2,

of variable σ = (σ1, σ2, . . . , σn) ∈ Rn with first coordinate σ1 fixed. This
minimal value is attained at the unique solution σ2, σ3, . . . , σn of the following
system of normal equations

n
∑

j=1

̺j (aij − σi + σj) = 0, i = 2, 3, . . . , n, (10)

with left-hand sides equal to − 1
4̺i

∂fA(σ)
∂σi

.
From now on we consider only real-valued n × n –matrices and, unless

otherwise stated, always choose the first coordinate σ1 of priority vector σ
equal to 0. In view of the following theorem it follows that another reasonable
choice for additive constant σ1 in (10) would be the weighted arithmetic mean
of the first row of matrix A :

σ1 =

∑n
j=1 ̺ja1j
∑n

j=1 ̺j
.
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Theorem 5.4. Let A = [aij ] be an anti-symmetric real matrix. If P =
[̺i̺j ] is a matrix of positive weights, then the additively consistent orthogonal

approximation Aapprox = [σi − σj ] of A onto An with respect to weighted

Frobenius norm ‖ · ‖F,P is determined by:

σi =

∑n
j=1 ̺jaij
∑n

j=1 ̺j
, i = 1, 2, . . . , n. (11)

Proof. Since the orthogonal projection is determined uniquely, it is sufficient
to check that normal equations (10) are satisfied by given in (11) values of
σi. For this purpose denote |̺| = ̺1 + · · ·+ ̺n and note that

n
∑

j=1

̺j (aij − σi) =
n
∑

j=1

̺jaij − σi |̺| = 0

for these values of σi. Moreover, by the anti-symmetry of A we have ajk =
−akj , and so

n
∑

j=2

̺jσj =−
n
∑

j=2

̺j
|̺|

n
∑

k=1

̺kakj = −
n
∑

k=1

̺k
|̺|

(

−̺1ak1 +

n
∑

j=1

̺jakj

)

= ̺1σ1 −
n
∑

k=1

̺kσk =−
n
∑

k=2

̺kσk.

Thus the last sum is also equal to 0, which completes the proof.

Theorem 5.5. Let M = [mij ] be a PC matrix. If P = [̺i̺j ] is a matrix of

positive weights, then the consistent approximation

Mapprox := exp(log M) approx = [ωi/ωj] ǫMn

of M with respect to weighted Frobenius norm ‖ · ‖F,P is determined uniquely

by:

ωi =

[

n
∏

j=1

(mij)
̺j

]1/
∑n

j=1
̺j

, i = 1, 2, . . . , n. (12)

Proof. Apply Theorem 5.4 to the anti-symmetric matrix A = [aij ] with aij =
logmij in order to show that the elements of consistent orthogonal projection
(logM )approx = [σi − σj ] of logM onto An are determined by:
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σi =

∑n
j=1 ̺jlogmij
∑n

j=1 ̺j
= log

[

n
∏

j=1

(mij)
̺j

]1/
∑n

j=1
̺j

, i = 1, 2, . . . , n.

Hence we get formulae (12) from identity ωi = exp σi, which is a direct
consequence of Definition 3.4.

The direct corollaries of Theorems 5.4 and 5.5 are the following general-
izations of Theorem 5.2, which state that Definition 3.4 is idempotent:

Corollary 5.6. Let A = [aij] be an anti-symmetric matrix. If P = [̺i̺j ] is a

matrix of positive weights, then the additively consistent approximation with

respect to weighted Frobenius norm ‖ · ‖F,P is idempotent:

(Aapprox)approx = Aapprox.

Corollary 5.7. Let M = [mij ] be a PC matrix. If P = [̺i̺j ] is a matrix of

positive weights, then the consistent approximation with respect to weighted

Frobenius norm ‖ · ‖F,P is idempotent:
(

exp
[

(log M) approx

] )

approx.
= exp

[

(log M) approx

]

.

This means that in a weighted Frobenius norm the consistent approximation
mapping Mproj : M 7→ Mapprox from Definition 3.4 is a projection of the set
PCn of all PC matrices onto the multiplicative group Mn = (Mn, ·) .

5.3 Nonlinear consistent projection in weighted Frobe-

nius norms

The squared weighted Frobenius distance distF,P (M,Mn) of a PC ma-
trix M to the space Mn of all multiplicatively consistent matrices [xi/xj ] is
determined by a point x = (x1, x2, . . . , xn) with the first coordinate x1 = 1,
for which minimal value of the function

gM (x) =
n
∑

i,j=1

̺ij(mij −
xi

xj
)
2

, x1 = 1.

is attained. If P = [̺ij ] is a symmetric matrix of positive weights, then this
minimal value is attained at solution x2, x3, . . . , xn of the following system of
nonlinear normal equations
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1

xi

n
∑

j=1

̺j

[

xj

xi

(

1

mij
− xj

xi

)

− xi

xj

(

mij −
xi

xj

)]

= 0, i = 2, 3, . . . , n, (13)

where the left- hand sides are equal to −1
4
∂gM (x)
∂xi

.
It seems unlikely that one can find an explicit solution of this system.

However, it can be solved by the locally convergent Newton’s method. As a
starting point, the priority vector x = (x1, x2, . . . , xn), given in Theorem 5.5,
should be used. Moreover, further improvement could be made by applying
recent results on classical discrete orthogonal polynomials proposed in [23].

The lack of an explicit solution should not be a huge surprise. Similar
situation exists in physics with the three body problem having only numerical
solution and a proof that the general case of this problem has no analytical
solution. Evidently, the numerical solution is sufficient to conquer the space.

6 Conclusions

The primary goal of this study was to generalize orthogonal projections for
computing approximations of inconsistent PC matrices from the Euclidean
space to the Hilbert space of PC matrices endowed in a different inner prod-
uct. However, a side product of our study seems to be even more important:
there is no mathematical reasoning to support any belief that there is only
one approximation method of inconsistent PC matrices. It is a matter of an
arbitrary choice of the dot product for the orthogonalization projection pro-
cess. However, there is a practical reason to use a Frobenius inner product
(which generates GM solution), which is its computational simplicity.

Acknowledgments

The authors would also like to express appreciation to Tiffany Armstrong
(Laurentian University, Computer Science), and Grant O. Duncan, Team
Lead, Business Intelligence, Integration and Development, Health Sciences
North, Sudbury, Ontario, Canada) for the editorial improvements of our
text and their creative comments. The research of the third author was
supported by the National Science Centre, Poland as a part of the project
no. 2017/25/B/HS4/01617, and by the Faculty of Applied Mathematics of

21



AGH UST within the statutory tasks subsidized by the Polish Ministry of
Science and Higher Education, grant no. 16.16.420.054.

References

[1] Balazs P, Ozsva Z, Tasi TS, Nyul LG. A Measure of Directional Con-
vexity Inspired by Binary Tomography. Fundamenta Informaticae. 2015;
141(2-3): 151–167.

[2] Barcucci E, Brocchi S. Solving Multicolor Discrete Tomography Prob-
lems by Using Prior Knowledge. Fundamenta Informaticae. 2013; 125(3-
4): 313–328.

[3] Goupy A, Pagani SMC. Probabilistic Reconstruction of hv-convex Poly-
ominoes from Noisy Projection Data. Fundamenta Informaticae. 2014;
135(1-2): 117-134.

[4] Wichert A, Moreira C., On Projection Based Operators in l(p) Space
for Exact Similarity Search. Fundamenta Informaticae. 2015; 136(4):
461-474.

[5] Llull R. Artifitium electionis personarum, available at The Augs-
burg Web Edition of Llull’s Electoral Writings, https://www.math.uni-
augsburg.de/htdocs/emeriti/pukelsheim/llull/

[6] Holsztynski, W., Koczkodaj WW, Convergence of Inconsistency Algo-
rithms for the Pairwise Comparisons. Article, Information Processing
Letters, 59: 197-202, 1996.

[7] Koczkodaj, WW, Szarek, SJ, On distance-based inconsistency reduction
algorithms for pairwise comparisons, Logic Journal of the IGPL, 18(6):
859-869, 2010.

[8] Koczkodaj WW, Mikhailov M, Redlarski G, Soltys M, Szybowski J,
Tamazian G, Wajch E, Yuen KEF, Important facts and observations
about pairwise comparisons. Fundamenta Informaticae. 2016; 144(3-4):
291–307.

22



[9] Koczkodaj WW, Orlowski M., Computing a consistent approximation to
a generalized pairwise comparisons matrix. Computers & Mathematics
with Applications. 1999; 37(3): 79–85.

[10] Crawford G, Williams C., A note on the analysis of subjective judgement
matrices. Journal of Mathematical Psychology. 1985; 29:387–405.

[11] Koczkodaj WW, Szybowski J. Pairwise comparisons simplified. Applied
Mathematics and Computation, 253:387–394, 2015.

[12] Gerard HB, Shapiro HN., Determining the Degree of Inconsistency in a
Set of Paired Comparisons. Psychometrika, 23(1): 33–46, 1958.

[13] Hill RJ, A note on inconsistency in paired comparison judgments. Amer-
ican Sociological Review, 18(5): 564–566, 1953.

[14] Kendall MG, Babington-Smith B. On the method of paired comparisons.
Biometrika, 31(3-4): 324–345, 1940.

[15] Slater P. Inconsistencies in a schedule of paired comparisons. Biometrika,
48(3-4):303–310, 1961.

[16] Choo EU, Wedley WC, Wijnmalen DJD, Mathematical Support for the
Geometric Mean when Deriving a Consistent Matrix from a Pairwise
Ratio Matrix. Fundamenta Informaticae, 144(3-4): 263–278, 2016.

[17] Koczkodaj WW, Szybowski J. The Limit of Inconsistency Reduction in
Pairwise Comparisons. International Journal of Applied Mathematics
and Computer Science, 26(3):721-729, 2016;

[18] Koczkodaj WW, Kosiek M, Szybowski J, Xu D. Fast Convergence of
Distance-based Inconsistency in Pairwise Comparisons. Fundamenta In-
formaticae, 137(3):355-367, 2015.

[19] Koczkodaj WW, Orlowski M., An orthogonal basis for computing a
consistent approximation to a pairwise comparisons matrix. Computers
& Mathematics with Applications, 34(10):41–47, 1997.

[20] Martinez-Avendaño RA, Rios-Cangas JI, Inner products on the space
of complex square matrices, Linear Algebra and its Applications,
439(11):3620–3637, 2013.

23



[21] Lang S. Algebra. Revised third edition. Graduate Texts in Mathematics,
211 Springer-Verlag, New York, 2002.

[22] Koczkodaj WW, Urban R. Axiomatization of inconsistency indicators
for pairwise comparisons, International Journal Journal of Approximate
Reasoning, 94:18–29, 2018.

[23] Rutka P, Smarzewski R., Difference inequalities and barycentric iden-
tities for classical discrete iterated weights. Mathematics of Computa-
tions< 318:1791–1804, 2018.

24


	1 Introduction
	2 Pairwise comparisons matrices
	2.1 The Geometric Means Method
	2.2 Triads, transitivity, and submatrices of a PC matrix
	2.3 Multiplicative variant of pairwise comparisons
	2.4 Additive variant of pairwise comparisons

	3 Approximation by projections
	3.1 Space of consistent matrices
	3.2 Approximation by a consistent matrix
	3.3 Orthogonalization

	4 Other inner products on M(n,K)
	5 Approximation selection
	5.1 Inconsistency
	5.2 Priority vectors for different inner products
	5.3 Nonlinear consistent projection in weighted Frobenius norms

	6 Conclusions

