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Topology as faithful communication

through relations

S.Maschio, G. Sambin

Abstract

Basic pairs and their morphisms are the most elementary framework in
which standard topological notions can be defined. We present here a new
interpretation of topological concepts as those which can be communicated
faithfully between the two sides of basic pairs. In particular, we prove
that the subsets which can be communicated faithfully (in the suitable
way) are exactly open subsets and closed subsets. We also prove that a
relation (and in particular a function) between two sets of points can be
communicated faithfully if and only if it is continuous.

1 Introduction

Most topological concepts can be presented in a predicative and constructive
framework of basic pairs (see [1]). A basic pair (X,, S) consists of a set X , a
set S and a relation  from X to S. X is called concrete side and represents
points, while S is called formal side and represents a set of indexes for a basis
of neighbourhoods of a topology on X . If a is an index in S, then ext a is the
subset of X of those x for which x  a. The presence of the formal side S makes
the structure of a basic pair symmetric. If one adds two axioms

B1) ext a ∩ ext b =
⋃
{ ext c | ext c ⊆ ext a ∩ ext b}

B2) (∀x ∈ X)(∃a ∈ S)(x  a)

one can obtain a predicative and constructive account of topological spaces.
Concepts in the concrete and formal side are obtained by moving information

(subsets) from X to S or vice versa.
The idea is that topology can be read as faithful communication between

its sides. This interpretation is not technically difficult, but it introduces a new
intuitive point of view on topology which can shed light on unexpected links.

In particular we show that the notions of open and closed sets can be in-
terpreted as notions of communicable sets between the concrete and the formal
side. In the same style we show that a relation is continuous if and only if it is
communicable between the formal side and the concrete side.
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1.1 Communication

Suppose an individual A wants to communicate with another individual B,
but suppose A and B don’t share the same language. However A and B both
have their own collection of messages MA and MB which they use to represent
information. Some messages in MA are equivalent, because they have the same
meaning and the same holds for the messages in MB. Such equivalences can be
represented by equivalence relations ∼A and ∼B on MA and MB respectively.

Hence A is equipped with a pair (MA,∼A) and B with a pair (MB,∼B).
If we want A and B to communicate, then

1. B needs a decoding procedure ∆ to transform every message in MA in one
of its messages in MB. This decoding procedure is good if it translates
equivalent messages in MA in equivalent messages in MB.

2. Conversely A needs a decoding procedure ∇ to transform every message
in MB in one of its messages in MA. This decoding procedure is good if
it translates equivalent messages in MB in equivalent messages in MA.

As we well know, translators are not perfect devices and languages can be
very different each others.

We can say that a messagem inMA is (faithfully) communicable if it satisfies
the following requirement: if A communicates m to B, B translates it obtaining
∆(m) and then sends ∆(m) back to A, then the translation ∇(∆(m)) by A of
∆(m) is equivalent to m.

We can make this idea precise in the following definition

Def. 1.1 A communication system is a 4-tuple (MA,MB,∆,∇) in which:

1. MA is a pair (MA,∼A) with MA a collection and ∼A an equivalence
relation on MA

2. MB is a pair (MB,∼B) with MB a collection and ∼B an equivalence
relation on MB

3. ∆ is an operation from MA to MB (i.e. ∆(m) ∈ MB [x ∈ MA]) such that
for all m,m′ ∈ MA, if m ∼A m′ then ∆(m) ∼B ∆(m′)

4. ∇ is an operation from MB to MA (i.e. ∇(m) ∈ MA [x ∈ MB]) such that
for all m,m′ ∈ MB, if m ∼B m′, then ∇(m) ∼A ∇(m′).

We say that m ∈ MA is (∆,∇)-communicable if m ∼A ∇(∆(m)). Similarly we
say that m′ ∈ MB is (∆,∇)-communicable if m′ ∼A ∆(∇(m′)).

2 Communication of subsets

2.1 Operators on subsets in a basic pair

We first recall some basic notions from [1].
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If D and E are subsets of a set A, then D ≬ E is an abbreviation for the
formula (∃x ∈ A)(x ǫ D ∧ x ǫ E).

If r is a relation from a set X to a set Y , then if x ∈ X and y ∈ Y we
can define a subset r x of Y as {y ∈ Y | r(x, y)} and a subset r

− y of X as
{x ∈ X | r(x, y)}. If D is a subset of X and E is a subset of Y we define

rD := {y ∈ Y | r− y ≬ D} (1)

r
−∗D := {y ∈ Y | r− x ⊆ D} (2)

r
−E := {x ∈ X | rx ≬ E} (3)

r
∗ E := {x ∈ X | r x ⊆ E} (4)

Def. 2.1 A basic pair (X,, S) is a pair of sets X and S together with a relation
 from X to S.

When we consider a basic pair we distinguish the operators defined in (1), (2),
(3), (4) with a specific notation:

Def. 2.2 Let (X,, S) be a basic pair.

1. if a ∈ S, then ext a :=− a = {x ∈ X |x  a}

2. if x ∈ X, then ✸ x := x = {a ∈ S|x  a}

If D is a subset of X, then

1. ✸D := D = {a ∈ S| ext a ≬ D)}

2. ✷D :=−∗ D = {a ∈ S| ext a ⊆ D)}

If U is a subset of S then

1. extU :=− U = {x ∈ X |✸ x ≬ U)}

2. rest U :=∗ U = {x ∈ X |✸ x ⊆ U)}

Let us present some preliminaries results (see [1]).

Proposition 2.3 The following properties hold for a basic pair (X,, S):

1. if D ⊆ E are subsets of X, then ✸D ⊆ ✸E and ✷D ⊆ ✷E;

2. if U ⊆ V are subsets of S, then extU ⊆ extV and rest U ⊆ rest V ;

3. ext is left adjoint to ✷, i. e. if D is a subset of X and U is a subset of S,
extU ⊆ D if and only if U ⊆ ✷D;

4. rest is right adjoint to ✸, i. e. if D is a subset of X and U is a subset of
S, D ⊆ rest U if and only if ✸D ⊆ U .

In particular if D is a subset of X, then ext✷D ⊆ D and D ⊆ rest ✸D.
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2.2 Communicable subsets

Let (X,, S) be a basic pair. As we said in the introduction we call X its
concrete side and S its formal side.

We are interested here in a communication system of the form

((PX,=), (PS,=),∆,∇)

The communicating individuals are the concrete side and the formal side of
(X,, S). Their messages are subsets: MX = (PX,=) and MS = (PS,=)
respectively.

The formal side can understand a subset D of X of the concrete side only
by means of a subset of S. There are basically two meaningful ways ∆ for
the formal side to understand the information in D: ✷D or ✸D. The first
is an approximation by defect of D: the formal side considers the subset of
all neighbourhoods of which the extensions are contained in D. The second is
an approximation by excess of D: the formal side considers the subset of all
neighbourhoods of which the extensions overlap D.

The same holds in the opposite direction. The concrete side can understand
a subset U of S of the formal side only by means of a subset of X . There
are basically two meaningful ways ∇ for the formal side to understand the
information in U : rest U or extU . The first is an approximation by defect
of D: the concrete side considers the subset of all points of which all basic
neighbourhoods are in D. The second is an approximation by excess of D:
the formal side considers the subset of all points which belong to some basic
neighbourhood in D.

We can interpret this communication in a different way. The formal side S

can understand a subset D of X of the concrete side by asking the question
“Is a in the concept D?” to X . X understands a not by means of an element,
but of the subset ext a and hence it can answer either “Yes” when ext a ≬ D or
“Yes” when ext a ⊆ D. In the first case S understands D as ✸D, in the second
case S understands D as ✷D. A similar interpretation holds in the opposite
direction.

2.3 Open and closed subsets as communicables

Let us fix a basic pair (X,, S).

Def. 2.4 A subset D of X is

1. open if (∀x ∈ X)(x ǫ D → (∃a ∈ S)(x  a ∧ ext a ⊆ D)), i.e. if every
point in D has a basic neighbourhood included in D.

2. closed if (∀x ∈ X)((∀a ∈ S)(x  a → ext a ≬ D) → x ǫ D), i.e. if a point
is in D whenever every of its basic neighbourhoods overlaps D.

We first consider mixed decoding strategies ((✷, ext ) and (✸, rest ), which
obviously make sense because if one side uses an approximation by defect, it is
quite natural for the other to use an approximation by excess to compensate it.
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Our first result is:

Theorem 2.5 Let D be a subset of X. Then

1. D is open if and only if D is (✷, ext )-communicable;

2. D is closed if and only if D is (✸, rest )-communicable.

Proof. By definition D is open if and only if (∀x ∈ X)(x ǫ D → ✸x ≬ ✷D)
if and only if D ⊆ ext✷D. Similarly, by definition D is closed if and only if
(∀x ∈ X)(✸x ⊆ ✸D → x ǫ D) if and only if rest ✸D ⊆ D.

The result follows from proposition 2.3. ✷

In order to prove the next theorem we first need:

Lemma 2.6 Let U be a subset of S. Then extU is open and restU is closed.

Proof. As extU ⊆ extU , from proposition it follows that 2.3 U ⊆ ✷ extU

and hence extU ⊆ ext✷ extU . We already know by proposition 2.3 that
ext✷ extU ⊆ extU . This implies that extU = ext✷ extU . Hence, thanks
to theorem 2.5, extU is open.

Similarly one can prove that restU is closed. ✷

Let us now consider the excess/excess (✸, ext ) and defect/defect (✷, rest )
decoding strategies.

Theorem 2.7 Let D be a subset of X. Then

1. if D is (✸, ext )-communicable, then D is open;

2. if D is (✷, rest )-communicable, then D is closed.

In particular if D is (✷, rest )-communicable and (✸, ext )-communicable, then
it is clopen.

Proof. The proof is an immediate consequence of lemma 2.6.
✷

The converses of the statements in theorem 2.7 don’t hold. In fact one can
consider the basic pair (2,,3) where x  y ≡def x = y ∨ y = 2.

The singleton subsets {0} and {1} of 2 are both closed and open, but none
of them is either (✷, rest )- or (✸, ext )-communicable.

In particular the basic pairs (2,,3) and (2,=,2) give rise to the same
open and closed subsets of 2, while at the same time they give rise to different
(✷, rest )- and (✸, ext )-communicable sets.

A basic pair (X,, S) satisfies the axiom B2, if

X = extS (5)

A useful consequence is
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Lemma 2.8 If (X,, S) satisfies B2, then for every subset U of S

rest U ⊆ extU

Proof. Suppose x ǫ rest U . Then ✸x ⊆ U . As a consequence of B2 there exists
a ∈ S such that a ǫ ✸x. This implies that a ǫ U . We thus proved that ✸x ≬ U ,
i. e. x ǫ extU . ✷

Theorem 2.9 If (X,, S) satisfies B2, then for every subset D of X the fol-
lowing are equivalent:

1. D is (✸, ext )-communicable;

2. D is (✷, rest )-communicable;

3. D is clopen and ✸D ⊆ ✷D.

Proof. (1 ⇒ 3) If D is (✸, ext )-communicable, then D = ext✸D and hence
ext✸D ⊆ D. From this, by proposition 2.3, it follows that ✸D ⊆ ✷D. Using
proposition 2.3 and lemma 2.8 we can deduce the following chain of inclusions

D ⊆ rest✸D ⊆ ext✸D ⊆ D

from which we can deduce that D is closed. We already know that D is open
by theorem 2.7, thus D is clopen.
(2 ⇒ 3) If D is (✷, rest )-communicable, then D = rest✷D and hence D ⊆
rest✷D. From this, by proposition 2.3, it follows that ✸D ⊆ ✷D. Using
proposition 2.3 and lemma 2.8 we can deduce the following chain of inclusions

D ⊆ rest✷D ⊆ ext✷D ⊆ D

from which we can deduce that D is open. We already know that D is closed
by theorem 2.7, thus D is clopen.
(3 ⇒ 1), (3 ⇒ 2) If ✸D ⊆ ✷D, then, using lemma 2.8, we deduce that

rest✸D ⊆ ext✸D ⊆ ext✷D

and
rest✸D ⊆ rest✷D ⊆ ext✷D

If A is clopen, then A = ext✷A = rest✸A and hence A = ext✸A and A =
rest✷A.

✷

2.4 Other decoding strategies

There are other operators which one can define on the basic pair (X,, S):

Def. 2.10 If D is a subset of X and U is a subset of S, then

1. D→ := {a ∈ S| (∀x ∈ X)(x ǫ D → x  a)} = {a ∈ S|D ⊆ ext (a)}
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2. U← := {x ∈ X | (∀a ∈ S)(a ǫ U → x  a)} = {x ∈ X |U ⊆ ✸U}

Notice that these operators enjoy the following properties:

Proposition 2.11 If D and E are subsets of X and U and V are subsets of S,
then

1. if D ⊆ E, then E→ ⊆ D→;

2. if U ⊆ V , then V← ⊆ U←;

3. D ⊆ U← if and only id U ⊆ D→;

In particular D ⊆ (D→)←.

Theorem 2.12 Every (→, ext )-communicable subset of X is open and every
(→, rest )-communicable subset of X is closed.

Proof. This is an immediate consequence of lemma 2.6. ✷

Theorem 2.13 Every (✷,← )-communicable and every (✸,← )-communicable
subset of X is (→,← )-communicable.

Proof. If D = (✷D)←, then in particular D ⊆ (✷D)← from which by propo-
sition 2.11 it follows ✷D ⊆ D→ and thus D ⊆ (D→)← ⊆ (✷D)←.Hence
D = (D→)←.

Analogously one can prove that if D = (✸D)←, then D = (D→)←. ✷

Theorem 2.14 D is (→,← )-communicable if and only if D =
⋂
{ ext a| a ∈ U}

for some subset U of S.

Proof. By definition (D→)← =
⋂
{ exta|D ⊆ ext a} =

⋂
{ exta| a ǫ D→}.

Conversely, if D =
⋂
{ ext a| a ∈ U}, then

(D→)← =
⋂

{ exta| a ǫ D→} =
⋂

{ ext a|D ⊆ ext a} =

=
⋂

{ ext a|
⋂

{ ext b| b ∈ U} ⊆ ext a} ⊆
⋂

{ exta| a ∈ U} = D.

But we already know from lemma 2.11 that D ⊆ (D→)←. Thus D = (D→)←.
✷

Remark 2.15 In a classical and impredicative framework a topology T on a
set Ω gives rise to a basic pair (Ω,∈, T ). A T0-point is an equivalence class
with respect to the equivalence relation of topological indistinguishibility ∼ on Ω
defined by x ∼ y if and only if {D ∈ T |x ∈ D} = {D ∈ T | y ∈ D}. In this
framework:

D = ext✷D iff D ∈ T .

D = rest✸D iff D is closed.

D = ext✸D iff D = rest✷D iff D = ∅ or D = Ω.
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D = ext (D→) iff D = ((✷D)←) iff D = Ω.

D = ((D→)←) iff D is an intersection of open sets.

D = rest (D→) iff D is a closed T0-point.

D = ((✸D)←) iff D is a T0-point which is an intersection of open sets.

3 Communication of relations

3.1 Relations between basic pairs

Let us fix two basic pairs X = (X,, S) and Y = (Y,, T ).
A relation f from X to Y is

1. single-valued if (∀x ∈ X)(∀y ∈ Y )(∀y′ ∈ Y )(f(x, y) ∧ f(x, y′) → y = y′);

2. total if (∀x ∈ X)(∃y ∈ Y ) f(x, y);

3. a function if it is single-valued and total.

As usual, if f is a function from X to Y , for every proposition P (y) depending
on y ∈ Y we define the abbreviation

P (f(x)) ≡def (∃y ∈ Y )(f(x, y) ∧ P (y))

As f is a function, this is equivalent to (∀y ∈ Y )(f(x, y) → P (y)).
Continuity of f with respect to X and Y can be defined, using basic neigh-

bourhoods, as usual: for all x ∈ X and for all b ∈ T

f(x) ǫ ext b → (∃a ∈ S)(x ǫ ext a ∧ (∀x′ ∈ X)(x′ ǫ ext a → f(x′) ǫ ext b))

However one can easily notice that P (f(x)) is equivalent to fx ≬ {y ∈ Y |P (y)}.
Hence the condition of continuity is equivalent to: for all x ∈ X and for all
b ∈ T

fx ≬ ext b → (∃a ∈ S)(x ǫ ext a ∧ (∀x′ ∈ X)(x′ ǫ ext a → fx′ ≬ ext b))

Using (3) the condition becomes: for all x ∈ X and for all b ∈ T

x ǫ f− ext b → (∃a ∈ S)(x ǫ ext a ∧ (∀x′ ∈ X)(x′ ǫ ext a → x′ ǫ f− ext b))

which is equivalent to: for all x ∈ X and for all b ∈ T

x ǫ f− ext b → (∃a ∈ S)(x  a ∧ ext a ⊆ f
−
ext b)

We use this representation of continuity to extend the notion of continuity to
relations.

Def. 3.1 A relation r from X to Y is continuous from X to Y if

(∀b ∈ T )(∀x ∈ X)(x ǫ r− ext b → (∃a ∈ S)(x  a ∧ ext a ⊆ r
−
ext b)) (6)
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Notice that the condition (6) of continuity is also equivalent to:

(∀b ∈ T )(∀x ∈ X)(x ǫ r− ext b → ✸x ≬ ✷r
−
ext b)) (7)

We also define a notion of equivalence between relations from X to Y and
from S to T with respect to X and Y.

Def. 3.2 For relations r1, r2 from X to Y , we write r1 ∼ r2 if

(∀b ∈ T )(r−1 ext b = r
−

2 ext b)

For relations s1, s2 from S to T , we write s1 ≈ s2 if

(∀x ∈ X)(s1✸x = s2✸ x)

3.2 Communicable relations

We are interested in a communication system of the form

((Rel(X,Y ),∼), (Rel(S, T ),≈),∆,∇)

Here the communicating individuals are the concrete sides (X,Y ) and the for-
mal sides (S, T ). Their messages are relations: M(X,Y ) = (Rel(X,Y ),∼) and
M(S,T ) = (Rel(S, T ),≈) respectively.

The next definition proposes candidates for ∆ and ∇.

Def. 3.3 Let r be a relation from X to Y , then σ(r) from S to T is the relation
defined by

σ(r)(a, b) ≡def
ext a ⊆ r

−
ext b

Let s be a relation from S to T , then ρ(s) from X to Y is the relation defined by

ρ(s)(x, y) ≡def
✸y ⊆ s✸x

Let us first prove the following:

Proposition 3.4 Let r1, r2 be relations from X to Y and let s1, s2 be relations
from S to T . Then

1. if r1 ∼ r2, then σ(r1) = σ(r2);

2. if s1 ≈ s2, then ρ(s1) = ρ(s2).

Proof. if r1 ∼ r2, then for every b ∈ T , r−1 ext b = r
−

2 ext b and thus

σ(r1)(a, b) ↔ ext a ⊆ r
−

1 ext b ↔ ext a ⊆ r
−

2 ext b ↔ σ(r2)(a, b)

The proof of the second statement is analogous. ✷

Hence we obtain the following:

Corollary 3.5 ((Rel(X,Y ),∼), (Rel(S, T ),≈), ρ, σ) is a communication sys-
tem.
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3.3 Continuity as communication

Before proving the main theorem of this section, we need some preliminary
lemmas:

Lemma 3.6 Let r be a relation from X to Y . Then for all b ∈ T

ρ(σ(r))− ext b ⊆ r
−
ext b

Proof. Let b ∈ T and suppose x ǫ ρ(σ(r))− ext b. Thus there exists y ∈ Y such
that y  b and ρ(σ(r))(x, y). Notice that ρ(σ(r))(x, y) is equivalent to

(∀c ∈ T )(c ǫ ✸y → ✸x ≬ ✷r
−
ext c)

As b ǫ ✸y we obtain ✸x ≬ ✷r
−
ext b which is equivalent by definition to

x ǫ ext✷r
−
ext b from which it immediately follows by proposition 2.3 that

x ǫ r− ext b.

Lemma 3.7 If r : X → Y is continuous, then for all b ∈ T

r
−
ext b ⊆ ρ(σ(r))− ext b

Proof. Suppose r is continuous. Then for every x ∈ X and for every c ∈ T

x ǫ r− ext c → ✸x ≬ ✷r
−
ext c

Moreover suppose that x ǫ r− ext b. This implies that we can fix an y ∈ Y such
that b ǫ ✸y and r(x, y). Suppose now that c ǫ ✸y and c ∈ T . This implies that
y ǫ r− ext c and hence, by continuity, ✸x ≬ ✷r

−
ext c. So we proved that

(∃y ∈ Y )(b ǫ ✸y ∧ (∀c ∈ T )(c ǫ ✸y → ✸x ≬ ✷r
−
ext c))

i.e. x ǫ ρ(σ(r))− ext b. ✷

Theorem 3.8 r is continuous if and only if r is (σ, ρ)-communicable.

Proof. If r is continuous, then r ∼ ρ(σ(r)) as it follows from the previous two
lemmas.

Conversely if r ∼ ρ(σ(r)), then in particular for every x ∈ X and b ∈ T

(x ǫ r− ext b → x ǫ ρ(σ(r))− ext b)

Suppose now that x ǫ r
−
ext b, then x ǫ ρ(σ(r))− ext b which in particular

means that there exists y ∈ Y with y  b and ρ(σ(r))(x, y), i.e.

(∀c ∈ T )(c ǫ ✸y → ✸x ≬ ✷r
−
ext c)

Taking b = c and using the fact that b ǫ ✸y one obtains that ✸x ≬ ✷r
−
ext b.

Thus x ǫ r− ext b → ✸x ≬ ✷r
−
ext b. Hence r is continuous. ✷

Let us now consider the case in which r is a function.
A basic pair (X,, S) is Hausdorff (or T2) if for every x ∈ X and x′ ∈ X

(∀a ∈ S)(∀a′ ∈ S)(x  a ∧ x′  a′ → ext a ≬ ext a′) → x = x′

10



Proposition 3.9 If f is a function and (Y,, T ) is Hausdorff, then ρ(σ(f)) is
a single-valued relation which is a restriction of f.

Proof. Suppose that ρ(σ(f))(x, y). If y  b, then there exists a ∈ S, such that
x  a and ext a ⊆ f

−
ext b, and thus in particular f(x)  b. This implies that

if y  b and f(x)  b′, then ext b ≬ ext b′. As (Y,, T ) is Hausdorff, we obtain
that y = f(x). Hence ρ(σ(f)) is a restriction of f and thus it is a single-valued
relation. ✷
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