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Abstract. “What is an algorithm?” is a fundamental question of computer science. Gurevich’s
behavioural theory of sequential algorithms (aka the sequential ASM thesis) gives a partial
answer by defining (non-deterministic) sequential algorithms axiomatically, without referring to a
particular machine model or programming language, and showing that they are captured by (non-
deterministic) sequential Abstract State Machines (nd-seq ASMs). Moschovakis pointed out that
recursive algorithms such as mergesort are not covered by this theory. In this article we propose
an axiomatic definition of the notion of sequential recursive algorithm which extends Gurevich’s
axioms for sequential algorithms by a Recursion Postulate and allows us to prove that sequential
recursive algorithms are captured by recursive Abstract State Machines, an extension of nd-seq
ASMs by a CALL rule. Applying this recursive ASM thesis yields a characterization of sequential
recursive algorithms as finitely composed concurrent algorithms all of whose concurrent runs are
partial-order runs.

1 Introduction

The notion of an algorithm is fundamental for computing, so it may seem surprising that there
is still no commonly accepted definition. This is different for the notion of computable function
that is captured by several equivalent formalisms such as Turing machines, random access
machines, partial-recursive functions, λ-definable functions and many more [9]. However, as
there is typically a huge gap between the abstraction level of an algorithm and the one of
Turing machines, Gurevich concluded that the latter ones cannot serve as a definition for the
notion of an algorithm [21]. He proposed to extend Turing’s thesis to a new thesis, based on the
observation that “if an abstraction level is fixed (disregarding low-level details and a possible
higher-level picture) and the states of an algorithm reflect all the relevant information, then
a particular small instruction set suffices to model any algorithm, never mind how abstract,
by a generalised machine very closely and faithfully”.

Still it took many years from the formulation of this new thesis to the publication of
the behavioural theory of sequential algorithms in [23]. In this seminal work—also known
as the “sequential ASM thesis”—a sequential algorithm (seq-algorithm) is defined by three
postulates3:

Sequential Time. A sequential algorithm proceeds in sequential time using states, initial
states and transitions from states to successor states.

Abstract State. States are universal algebras (aka Tarski structures), i.e. functions resulting
from the interpretation of a signature, i.e. a set of function symbols, over a base set.

Bounded Exploration. There exists a finite set of ground terms such that the difference
between a state and its successor state is uniquely determined by the values of these terms
in the state4.

3 A mathematically precise formulation of these postulates requires more care, see below, but the rough
summary here will be sufficient for now.

4 This set of terms is usually called a bounded exploration witness, while the difference between a state and
its successor is formally given by an update set. Informally, bounded exploration requires that there are only
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The behavioural theory further comprises the definition of sequential Abstract State Ma-
chines (seq-ASMs) and the proof that seq-ASMs capture seq-algorithms, i.e. they satisfy the
postulates, and every seq-algorithm can be step-by-step simulated by a seq-ASM. As pointed
out in [23, Sect.9.2] (and elaborated to a full proof in [15, Sect.7.2.2 -7.2.3]) it is easy to
extend the theory to cover also bounded non-determinism, using non-deterministic sequential
ASMs (nd-seq ASMs)5.

It should be noted that the definition of a sequential algorithm given by Gurevich does
not require a particular formalism for the specification. Seq-ASMs capture seq-algorithms, so
they are a suitable candidate for specification6, but they are not the only possible choice. For
instance, in the light of the proofs in [23] it is not an overly difficult exercise to show that
deterministic Event-B [2] or B [1] also capture seq-algorithms.

We believe that in order to obtain a commonly acceptable definition of the notion of
algorithm, this distinction between an axiomatic definition (as by Gurevich’s postulates for
seq-algorithms), which does not refer to a particular language or programming style, and the
capture by an abstract machine model (such as seq-ASMs, deterministic Event-B or others)
is fundamental.

In [29] Moschovakis raised the question how recursive algorithms like the well-known
mergesort are covered. He questions that algorithms can be adequately defined by machines
(see also [30]). Although the perception that Gurevich used seq-ASMs as a definition for
the general notion of algorithm—not only for its sequential instance—is a misinterpretation,
unfortunately the response by Blass and Gurevich [6] to Moschovakis’s criticism does not
clarify the issue in a convincing way. Instead of admitting that an extended behavioural theory
for recursive algorithms still needs to be developed, distributed ASMs with a semantics defined
through partial-order runs [22] are claimed to be sufficient to capture recursive algorithms.7

As Börger and Bolognesi point out in their contribution to the debate [10], a much simpler
extension of seq-ASMs suffices for the specification of algorithms of the mergesort kind, which
define recursive functions (as do Moschovakis’ systems of recursive equations called ‘recursive
programs’ [30], see the discussion in Sect.6). Furthermore, the response by Blass and Gurevich
blurs the subtle distinction between the axiomatic definition and the possibility to express
any algorithm on an arbitrary level of abstraction by an abstract machine. This led also to
Vardi’s almost cynical comment that the debate is merely about the preferred specification
style (functional or imperative), which is as old as the field of programming [35].8

While the difficult epistemological issue concerning the definition of the general notion
of algorithm has been convincingly addressed for sequential algorithms by Gurevich’s be-
havioural theory, no such theory for recursive algorithms or distributed algorithms was avail-
able at the time of the debate between Moschovakis, Blass and Gurevich, Börger and Bolog-
nesi, and Vardi. In the meantime a behavioural theory for concurrent algorithms has been

finitely many terms, the interpretation of which determine how a state will be updated by the algorithm to
produce the successor state.

5 It suffices to slightly modify the sequential time and the abstract state postulates, using in particular a
successor relation instead of a function and permitting the choice between finitely many rules. Gurevich
uses the term ‘bounded-choice nondeterministic algorithm’ instead of ‘nd-seq algorithm’.

6 In particular, as pointed out in [15], rules in an ASM look very much like pseudo-code, so the appearance
of ASM specifications is often close to the style, in which algorithms have been described in the past and in
textbooks. The difference is of course that the semantics of ASMs is precisely defined.

7 The definition of recursive ASMs in [24] uses a special case of this translation of recursive into distributed
computations.

8 This debate, however, is still much younger than the use of the notion of algorithm.
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developed [12]. It comprises an axiomatic definition of the notion of concurrent algorithm as
a family of nd-seq algorithms indexed by agents that is subject to an additional concurrency
postulate for their runs, by means of which Lamport’s sequential consistency requirement is
covered and generalised [25]. In a nutshell, the concurrency postulate requires that a succes-
sor state of the global state of the concurrent algorithm results from simultaneously applying
update sets of finitely many agents that have been built on some previous (not necessarily
the latest) states.

Using this theory of concurrency it is possible to reformulate the answer given by Blass
and Gurevich to Moschovakis’s question: every recursive algorithm is a concurrent algorithm
with partial-order runs. Since concurrent ASMs capture concurrent algorithms (as shown in
[12]), they provide a natural candidate for the specification of all concurrent algorithms, thus
in particular of recursive algorithms. However, the “overkill” argument will remain, as the
class of concurrent algorithms is much larger than the class of recursive algorithms.

For example, take the mergesort algorithm (see Sect.4.1). Every call to (a copy of) itself
and every call to (a copy of) the auxiliary merge algorithm could give rise to a new agent.
However, these agents only interact by passing input parameters and return values, but oth-
erwise operate on disjoint sets of locations. In addition, a calling agent always waits to receive
return values, which implies that only one or (in case of parallel calls) two agents are active
in any state. In contrast, in a concurrent algorithm all agents may be active, and they can
interact in many different ways on shared locations as well as on different clocks. As a conse-
quence, concurrent runs may become highly non-deterministic and not linearisable, whereas
a sequential9 recursive algorithm permits at most bounded non-determinism and without loss
of generality several simultaneous calls can always be sequentialised.

This motivates the research we report in this article. Our objective is to develop a be-
havioural theory of sequential recursive algorithms. For this we propose an axiomatic definition
of sequential recursive algorithms which enriches sequential algorithms by call steps, such that
the parent-child relationship between caller and callee defines well-defined shared locations
representing input and return parameters. We will present and motivate our axiomatisation
in Section 2. In Section 3 we define recursive ASMs by an appropriate extension of nd-seq
ASMs10 with a call rule and show our main result, aka Recursive ASM Thesis:

Main Theorem. Sequential recursive algorithms are captured by recursive ASMs.

Section 4 is dedicated to an illustration of our theory by examples. We concentrate on
mergesort , quicksort and the sieve of Eratosthenes for which we present recursive ASMs.
We use the examples to show that the parallelism of ASMs, which is unbounded, is stronger
than sequential recursion, so that there is no need to investigate parallel recursive algorithms
separately from parallel algorithms.

In Section 5 we report an application of the recursive ASM thesis.11 We return to the
observation by Blass and Gurevich—though not explicitly stated in [6]—that sequential re-
cursive algorithms are linked to concurrent algorithms with partial-order runs. We first show
that indeed the runs of a sequential recursive algorithm (read: of a recursive ASM) are defin-
able by partial-order runs (Theorem 5.2), which comes at no surprise. The amazing second

9 We use here the attribute ‘sequential’ to emphasize that we view recursive algorithms as sequential algo-
rithms which call sequential algorithms, so that no unbounded parallelism is allowed. The reason is that
unbounded parallelism permits to define recursion, as we explain in Sect.4.

10 Since by definition recursive ASMs are extensions of nd-seq ASMs, to obtain a short name we skip the two
attributes ‘non-deterministic’ and ‘sequential’.

11 A preliminary version of the result presented in Section 5 appeared in [14].
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discovery was that also a converse relation holds, namely if all runs of a finitely composed
concurrent algorithm (read: of a concurrent ASM C which consists only of instances of a
bounded number of nd-seq ASMs) are definable by partial-order runs, then this algorithm is
equivalent to a recursive ASM (Theorem 5.3). This relativizes the overkill argument.12

Theorem 5.3 can be strengthened if the given concurrent ASM is static, i.e. with a fixed
set of agents with associated programs. Such concurrent ASMs are equivalent to nd-seq ASMs
(Theorem 5.4). An interesting corollary of this theorem concerns the Process Rewrite Systems
investigated in [27]. They form the most general and most expressive set in a hierarchy of
classes of rewrite systems which can be used to model certain state-based concurrent systems
and are classified in [27] by their expressiveness. Furthermore, the Process Rewrite Systems
are shown in [27] to strictly extend Petri nets (by subroutines that can return a value to their
caller), but still to have a decidable reachability problem. As a corollary of Theorem 5.4 it
turns out that for each Process Rewrite System, its partial-order runs can be simulated by
runs of a nd-seq ASM (Corollary 5.1).

Finally, in Section 6 we embed our work into a larger picture of related work on behavioural
theories, and in Section 7 we present a brief summary and outlook on further research.

2 Axiomatisation of Recursive Algorithms

A decisive feature of a recursive algorithm is that it calls itself, or more precisely a copy
(we also say an instance) of itself. If we consider mutual recursion, then this becomes slightly
more general, as there is a finite family of algorithms calling (copies of) each other. Therefore,
providing copies of algorithms and enabling calls will be essential for the intended definition of
the notion of recursive algorithm, whereas otherwise we rely on Gurevich’s axiomatic definition
of sequential algorithms. Furthermore, there may be several simultaneous calls, which give rise
to non-determinism,13 as these simultaneously called copies may run sequentially in one order
or the other, or in parallel or even asynchronously. However, there is no interaction between
simultaneously called algorithms, which implies that the mentioned execution latitude already
covers all choices.

2.1 Non-deterministic Sequential Algorithms

In this section we recall the axiomatic definition of non-deterministic sequential algorithms.

Definition 2.1. A non-deterministic sequential algorithm (for short: nd-seq algorithm) is
defined by the branching time, abstract state and bounded exploration postulates 1, 2 and 3
in [23], paper to which we refer for the motivation for these axioms.

Postulate 1 (Branching Time Postulate) An nd-seq algorithm A comprises a set S, el-
ements of which are called states, a subset I ⊆ S, elements of which are called initial states,
and a one-step transition relation τ ⊆ S×S.14 Whenever τ(S ,S ′) holds, the state S ′ is called

12 In fact, it shows that, roughly speaking, finitely composed concurrent algorithms with partial-order runs
are indeed the sequential recursive algorithms, and the response given in [6] may be seen as the result of
ingenious serendipity. However, arbitrary concurrent algorithms as discussed in [12] are a much wider class
of algorithms.

13 The presence of this non-determinism in recursive algorithms has also been observed in Moschovakis’ criti-
cism [29], e.g. mergesort calls two copies of itself, each sorting one half of the list of given elements.

14 For deterministic algorithms τ is a function.
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a successor state of the state S and we say that the algorithm performs a step in S to yield
S ′.

Though Postulate 1 only gives a necessary condition for nd-seq algorithms and in particular
leaves open what states are, one can already derive some consequences from it such as the
notions of run, final state and behavioural equivalence.

Definition 2.2. Let A be a nd-seq algorithm with states S, intial states I and transition
relation τ . A run of A is a sequence S0,S1,S2, . . . with Si ∈ S for all i and S0 ∈ I such that
τ(Si ,Si+1) holds for all i .

Often Si is called a final state of a run S0,S1,S2, . . . of A (and the run is called terminated
in this state) if Sj = Si holds for all j ≥ i . But sometimes it is more convenient to use a
dynamic termination predicate whose negation guards the execution of the algorithm A and
which is set to true by A when A reaches a state one wants to consider as final.

States are postulated to be universal algebras (aka Tarski structures), which capture all
desirable structures that appear in mathematics and computing.

Definition 2.3. A signature Σ is a finite set of function symbols, and each f ∈ Σ is associated
with an arity ar(f ) ∈ N. A structure over Σ comprises a base set15 B and an interpretation
of the function symbols f ∈ Σ by functions fB : Bar(f ) → B . An isomorphism σ between two
structures is given by a bijective mapping σ : B → B ′ between the base sets that is extended
to the functions by σ(fB )(σ(a1), . . . , σ(an )) = σ(fB (a1, . . . , an)) for all ai ∈ B and n = ar(f ).

Postulate 2 (Abstract State Postulate) Each nd-seq algorithm A comprises a signature
Σ such that

(i) Each state S ∈ S of A is a structure over Σ.
(ii) The sets S and I of states and initial states, respectively, are both closed under isomor-

phisms.
(iii) Whenever τ(S ,S ′) holds, then the states S and S ′ have the same base set.
(iv) Whenever τ(S ,S ′) holds and σ is an isomorphism defined on S , then also τ(σ(S ), σ(S ′))

holds.

In the following we write fS to denote the interpretation of the function symbol f ∈ Σ in
the state S . Though we still have only necessary conditions for nd-seq algorithms, one can
define further notions that are important for the development of the theory.

Definition 2.4. A location of the nd-seq algorithm A is a pair ℓ = (f , (a1, . . . , an )) with
a function symbol f ∈ Σ of arity n and all ai ∈ B . If B is the base set of state S and
fS (a1, . . . , an) = a0 holds, then a0 is called the value of the location ℓ in state S .

We write valS (ℓ) for the value of the location ℓ in state S . The evaluation function val
can be extended to ground terms in a straightforward way.

Definition 2.5. The set of ground terms over the signature Σ is the smallest set T such that
f (t1, . . . , tn) ∈ T holds for all f ∈ Σ with ar(f ) = n and t1, . . . , tn ∈ T16. The value valS (t) of
a term t = f (t1, . . . , tn) ∈ T in a state S is defined by valS (t) = fS (valS (t1), . . . , valS (tn )).

15 For convenience to capture partial functions it is tacitly assumed that base sets contain a constant undef
and that each isomorphism σ maps undef to itself.

16 Clearly, for the special case n = 0 we get f () ∈ T. Instead of f () we usually write simply f .
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With the notions of location and value one can further define updates and their result on
states17.

Definition 2.6. An update of an nd-seq algorithm A in state S is a pair (ℓ, v) with a location ℓ
and a value v ∈ B , where B is the base set of S . An update (ℓ, v) is trivial iff valS (ℓ) = v holds.
An update set is a set of updates. An update set ∆ in state S is consistent iff (ℓ, v1), (ℓ, v2) ∈ ∆
implies v1 = v2, i.e. there can be at most one non-trivial update of a location ℓ in a consistent
update set. If ∆ is a consistent18 update set in state S , then S +∆ denotes the unique state

S ′ with valS ′(ℓ) =

{

v if (ℓ, v) ∈ ∆

valS (ℓ) otherwise
.

Considering the locations, where a state S and a successor state S ′ differ, gives us the
following well-known fact (see [23]).

Fact 1. If τ(S ,S ′) holds, then there exists a unique minimal consistent update set ∆ with
S +∆ = S ′.19

We use the notation ∆(S ,S ′) for the consistent update set that is defined by τ(S ,S ′).
We further write ∆(S ) for the set of all such update sets defined in state S , i.e. ∆(S ) =
{∆(S ,S ′) | τ(S ,S ′)}.

The third postulate concerns bounded exploration. It is motivated by the simple observa-
tion that any algorithm requires a finite representation, which implies that only finitely many
ground terms may appear in the representation, and these must then already determine the
successor state—for a more detailed discussion see [23]—or the successor states in the case of
non-determinism. Formally, this requires a notion of coincidence for a set of ground terms in
different states.

Definition 2.7. Let T ⊆ T be a set of ground terms for a nd-seq algorithm A. Two states
S1 and S2 with the same base set B coincide on T iff valS1

(t) = valS2
(t) holds for all terms

t ∈ T .

Postulate 3 (Bounded Exploration Postulate) Each nd-seq algorithm A comprises a
finite set of ground terms W ⊆ T such that whenever two states S1 and S2 with the same
base set coincide on W the corresponding sets of update sets for S1 and S2 are equal, i.e. we
have ∆(S1) = ∆(S2). The set W is called a bounded exploration witness.

Bounded exploration witnesses are not unique. In particular, the defining property remains
valid, if W is extended by finitely many terms. Therefore, without loss of generality we may
tacitly assume that a bounded exploration witness W is always closed under subterms. We
then call the elements of W critical terms. If t is a critical term, then its value valS (t) in a
state S is called a critical value. This gives rise to the following well-known fact.

Fact 2. The set ∆(S ) of update sets of an nd-seq algorithm A in a state S is finite, and
every update set ∆(S ,S ′) ∈∆(S ) is also finite.

17 Note that update sets as we use them are merely differences of states.
18 Otherwise, usually the term S + ∆ used to define the successor state is considered as not defined. An

alternative is to extend this definition letting S +∆ = S , if ∆ is inconsistent.
19 The conclusion is true for any given pair (S ,S ′) of states, independently of the relation τ (S ,S ′).
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For a proof we first need to show that in every update ((f , (v1, . . . , vn)), v0) in an update
set ∆(S ,S ′) the values vi are critical [23]. As W is finite, there are only finitely many critical
values, and we can only build finite update sets ∆(S ,S ′) and only finitely many sets of
update sets with these. We will use such arguments later in Section 3 to show that recursive
algorithms are captured by recursive ASMs, and dispense with giving more details here.

2.2 Recursion Postulate

As remarked initially, an essential property of any recursive algorithm is the ability to perform
call steps, i.e. to trigger an instance of a given algorithm (maybe of itself) and remain waiting
until the callee has computed an output for the given input. We make this explicit by extending
the postulate on the one-step transition relation τ of nd-seq algorithms by characteristic
conditions for a call step (see Postulate 4 below).

Furthermore, it seems to be characteristic for runs of recursive algorithms that in a given
state, the caller may issue in one step more than one call, though only finitely many, of callees
which perform their subcomputations independently of each other. For an example see the sort
rule in the mergesort algorithm in Section 4. The resulting ‘asynchronous parallelism’ implies
that the states in runs of a recursive algorithm are built over the union of the signatures of
the calling and the called algorithms.

The independency condition for parallel computations of different instances of the given
algorithms requires that for different calls, in particular for different calls of the same algo-
rithm, the state spaces of the triggered subcomputations are separated from each other. Below
we make the term instance of an algorithm more precise to capture the needed encapsulation
of subcomputations. This must be coupled with an appropriate input/output relation between
the input provided by the caller and the output computed by the callee for this input, which
will be captured by a call relationship in Definition 2.9.

This explains the following definition of an i/o-algorithm as nd-seq algorithm with call
steps and distinguished function symbols for input and output.

Definition 2.8. An algorithm with input and output (for short: i/o-algorithm) is an nd-seq
algorithm whose one-step transition relation τ may comprise call steps satisfying the Call Step
Postulate 4 formulated below and whose signature Σ is the disjoint union of three subsets

Σ = Σin ∪Σloc ∪Σout

containing respectively input, local and output function symbols that satisfy the input/output
assumption defined below.

Function symbols in Σin , Σout and Σloc , respectively, are called input, output and local
function symbols. Correspondingly, locations with function symbol in Σin , Σout and Σloc ,
respectively, are called input, output and local locations. We include into input resp. output
locations also variables which appear as input resp. output parameters of calls, although they
are not function symbols.

The assumption on input/output locations of i/o-algorithms is not strictly needed, but it
can always be arranged and it eases the development of the theory.

Input/Output Assumption for i/o algorithms A:

7



(i) Input locations of A are only read by A, but never updated by A. Formally, this implies
that if (ℓ, v) is an update in an update set ∆(S ,S ′) of A in any state S , then the function
symbol f in ℓ is not in Σin of A.

(ii) Output locations ofA are never read byA, but can be written byA. This can be formalised
by requiring that if W is a bounded exploration witness, then for any term f (t1, . . . , tn ) ∈
W we have f /∈ Σout .

(iii) Any initial state of A only depends on its input locations, so we may assume that
valS0

(ℓ) = undef holds in every initial state S0 of A for all output and local locations
ℓ. This assumption guarantees that when an i/o-algorithm is called, its run is initialized
by the given input, which reflects the common intuition using input and output.

In a call relationship we call the caller the parent and the callee the child algorithm.
Intuitively,

a) the parent algorithm is able to update input locations of the child algorithm, which de-
termines the child’s initial state;

b) when the child algorithm is called, control is handed over to it until it reaches a final state,
in which state the parent takes back control and is able to read the output locations of
the child;

c) the two algorithms have no other common locations.

Therefore we define:

Definition 2.9. A call relationship holds for (instances of) two i/o-algorithms Ap (parent)
and Ac (child) if and only if they satisfy the following:

ΣAc

in ⊆ ΣAp
. Furthermore, Ap may update input locations of Ac, but never reads these

locations. Formally this implies that for a bounded exploration witness W of Ap and any
term f (t1, . . . , tn ) ∈W we have f /∈ ΣAc

in .
ΣAc

out ⊆ ΣAp
. Furthermore, Ap may read but never updates output locations of Ac, so

we have that for any update in an update set ∆(S ,S ′) in any state S of Ap , its function
symbol is not in ΣAc

out .
ΣAc

loc ∩ΣAp

= ∅ (no other common locations).

Postulate 4 (Call Step Postulate) When an i/o-algorithm p—the caller, viewed as par-
ent algorithm—calls a finite number of i/o-algorithms c1, . . . , cn—the callees, viewed as child
algorithms CalledBy(p)—a call relationship (denoted as CalledBy(p)) holds between the caller
and each callee. The caller activates a fresh instance of each callee ci so that they can start
their computations. These computations are independent of each other and the caller remains
waiting—i.e. performs no step—until every callee has terminated its computation (read: has
reached a final state). For each callee, the initial state of its computation is determined only
by the input passed by the caller; the only other interaction of the callee with the caller is to
return in its final state an output to p.

Definition 2.10. A sequential recursive algorithm R is a finite set of i/o-algorithms—i.e.
satisfying the branching time, abstract state, bounded exploration and call step postulates
1, 2, 3 and 4—one of which is distinguished as main algorithm. The elements of R are also
called components of R.

Differently from runs of a nd-seq algorithm as defined by Definition 2.2, where in each
state at most one step of the nd-seq algorithm is performed, in a recursive run a sequential
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recursive algorithm R can perform in one step simultaneously one step of each of finitely
many not terminated and not waiting called instances of its i/o-algorithms. This is expressed
by the recursive run postulate 5 below. In this postulate we refer to Active and not Waiting
instances of components, which are defined as follows:

Definition 2.11. To be Active resp. Waiting in a state S is defined as follows:

Active(q) iff q ∈ Called and not Terminated(q)
Waiting(p) iff forsome c ∈ CalledBy(p) Active(c)

Called = {main} ∪
⋃

p CalledBy(p)

Called collects the instances of algorithms that are called during the run. CalledBy(p) de-
notes the subset of Called which contains all the children called by p. Called = {main} and
CalledBy(p) = ∅ are true in the initial state S0, for each i/o-algorithm p ∈ R. In particular,
in S0 the original component main is considered to not be CalledBy(p), for any p.

Postulate 5 (Recursive Run Postulate) For a sequential recursive algorithmR with main
component main a recursive run is a sequence S0,S1,S2, . . . of states together with a sequence
C0,C1,C2, . . . of sets of instances of components of R which satisfy the following constraints
concerning the recursive run and bounded call tree branching:

Recursive run constraint.

C0 is the singleton set C0 = {main}, i.e. every run starts with main,
every Ci is a finite set of in Si Active and not Waiting instances of components of R,
every Si+1 is obtained in one R-step by performing in Si simultaneously one step of
each i/o-algorithm in Ci .

20 Such an R-step is also called a recursive step of R.

Bounded call tree branching. There is a fixed natural number m > 0, depending only on
R, which in every R-run bounds the number of callees which can be called by a call step.

To capture the required independence of callee computations we now describe a way to
make the concept of an instance of an algorithm and its computation more precise. The idea
is to use for each callee a different state space, with the required connection between caller
and callee through input and output terms. One can define an instance of an algorithm A
by adding a label a, which we invite the reader to view as an agent executing the instance
Aa = (a,A) of A. The label a can be used as environment parameter for the evaluation
valS (t , a) of a term t in state S with the given environment. This yields different functions
fa , fa′ as interpretation of the same function symbol f for different agents a, a ′, so that the
run-time interpretations of a common signature element f can be made to differ for different
agents, due to different inputs which determine their initial states.21

20 Our reviewers worried here about synchronous, asynchronous and interleaving executions. Due to the inde-
pendence of all the instances, whether they are executed in parallel, asynchronously or interleaved does not
matter here. Note that Ci is a not furthermore restricted finite subset of all in Si Active and not Waiting
(completely independent) instances of components of R. If Ci contains more than one instance, the instances
in this Ci and only these are synchronized (independently for each i), but also interleaving (where each Ci

is a singleton set) and asynchronous execution are possible. We impose no constraint at all on how the sets
Ci are determined, e.g. by an external scheduling mechanism.

21 The idea underlies the definition of ambient ASMs we will use in the following. It allows one to classify
certain f as ambient-dependent functions, whereby the algorithm instances become context-aware. For the
technical details we refer to the definition in the textbook [11, Ch.4.1].
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This allows us to make the meaning of ‘activating a fresh instance of a callee’ in the Call
Step Postulate more precise by using as fresh instance of a child algorithm A called by p an
instance Ac with a new label c, where the interpretation fc of each input or output function f
satisfies fc = fp during the run of Ac. Note that by the call relationship constraint in the Call
Step Postulate, input/output function symbols are in the signature of both the parent and the
child algorithm. This provides the ground for the ‘asynchronous parallelism’ of independent
subcomputations in the run constraint of the recursive run postulate. In fact, when a state
S ′ is obtained from state S by one step of each of finitely many Active and not Waiting
i/o-algorithms q1, . . . , qk , this means that for each j ∈ {1, . . . , k} the one-step transition
relation holds for the corresponding state restrictions, namely τqj (res(S , Σ

qj ), res(S ′, Σqj ))
where res(S , Σ) denotes the restriction of state S to the signature Σ.

With the above definitions one can make the Call Step Postulate more explicit by saying
that if Ap calls A1, . . . ,An in a state S so that as a result τAp (S ,S

′) holds22, then for fresh
instances Ai

ci
of Ai with input locations inputi (1 ≤ i ≤ n) the following holds:

In S ′ the following is true forall 1 ≤ i ≤ n :

Ai
ci
∈ Called and Ai

ci
∈ CalledBy(Ap) and Initialized(Ai

ci
, inputi )

and Waiting(Ap)
23

The predicate Initialized(Ai
ci
, inputi ) expresses that the restriction res(S ′, ΣAi

ci ) of S ′ to the
signature of Ai

ci
is an initial state of Ai

ci
determined by inputi , so that Ai

ci
is ready to start

its computation.

Remark (on Call Trees). If in a recursive R-run the main algorithm calls some i/o-
algorithms, this call creates a finitely branched call tree whose nodes are labeled by the
instances of the i/o-algorithms involved, with active and not waiting algorithms labeling the
leaves and with the main (the parent) algorithm labeling the root of the tree and becoming
waiting. When the algorithm at a leaf makes a call, this extends the tree correspondingly.
When the algorithm at a child of a node has terminated its computation, we delete the child
from the tree. The leaves of this (dynamic) call tree are labeled by the active not waiting
algorithms in the run. When the main algorithm terminates, the call tree is reduced again to
the root labeled by the initially called main algorithm.

Usually, it is expected that for recursive R-runs each called i/o-algorithm reaches a final
state, but in general it is not excluded that this is not the case. An example of the former case
is given by mergesort , whereas an example for the latter case is given by the recursive sieve
of Eratosthenes algorithm discussed in [29] and used in Section 4 to illustrate our definitions.

3 Capture of Recursive Algorithms

We now proceed with the second step of our behavioural theory, the definition of an abstract
machine model—these will be recursive ASMs, an extension of sequential ASMs—and the
proof of the main theorem that the runs of this model capture the runs of sequential recursive
algorithms (Theorems 3.1 and 3.2).

22 To simplify the presentation we adopt a slight abuse of notation, writing τA(S ,S ′) with the global states
S ,S ′ even where τA really holds for their restriction to the sub-signature of the concrete algorithm A.

23 Except the trivial case that all Ai
ci

when Called in S ′ are already Terminated .
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3.1 Recursive Abstract State Machines

As common with ASMs let Σ be a signature and let U be a universe of values. In addition,
we assume a background structure comprising at least truth values and their connectives as
well as the operations on them. Values defined by the background are assumed to be elements
of U . Then (ground) terms over Σ are built in the usual way (using also the operations from
the background), and they are interpreted taking U as base set—for details we refer to the
standard definitions of ASMs [15]. This defines the set of states of recursive ASM rules we are
going to define now syntactically. We proceed by induction, adding to the usual rules of non-
deterministic sequential (nd-seq) ASMs (which we repeat here for the sake of completeness)
named rules which can be called.24 We use an arbitrary set N of names for named rules.

Assignment. If t0, . . . , tn are terms over the signature Σ and f ∈ Σ is a function symbol of
arity n, then f (t1, . . . , tn) := t0 is a recursive ASM rule.

Branching. If ϕ is a Boolean term over the signature Σ and r is a recursive ASM rule, then
also IF ϕ THEN r is a recursive ASM rule.

Bounded Parallelism. If r1, . . . , rn are recursive ASM rules, then also their parallel com-
position, denoted PAR r1‖ . . . ‖rn is a recursive ASM rule.

Bounded Choice. If r1, . . . , rn are recursive ASM rules, then also the non-deterministic
choice among them, denoted CHOOSE r1 | · · · | rn is a recursive ASM rule.

Let. If r is a recursive ASM rule and t is a term and x is a variable, then LET x = t IN r is
also a recursive ASM rule.

Call. Let t0, . . . , tn be terms where the outermost function symbol of t0 is different from the
outermost function symbol of ti for every i 6= 0. Let N ∈ N be the name of a rule of
arity n, declared by N (x1, . . . , xn) = r , where r is a recursive ASM rule all of whose free
variables are contained in {x0, . . . , xn}. Then t0 ← N (t1, . . . , tn) is a recursive ASM rule.

Definition 3.1. A recursive ASM rule of form t0 ← N (t1, . . . , tn) is called a named i/o-rule
or simply i/o-rule.

The same way a sequential recursive algorithm consists of finitely many i/o-algorithms,
a recursive ASM R consists of finitely many recursive ASM rules, also called component (or
component ASM) of R.

Definition 3.2. A recursive Abstract State Machine (rec-ASM) R consists of a finite set of
recursive ASM rules, one of which is declared to be the main rule.

For the signature Σ of recursive ASM rules we use the notation Σin ∪Σloc ∪Σout for the
split of Σ into the disjoint union of input, output and local functions. For named i/o-rules
t0 ← N (t1, . . . , tn) the outermost function symbol of t0 is declared as an element of Σout and
for each ti the outermost function symbol of ti is declared as an element of Σin (i = 1, . . . ,n).
In the definition of the semantics of a named i/o-rule we will take care that the input/output
assumption and the call relationship defined in Section 2.2 for i/o-algorithms are satisfied by
named i/o-rules.

Sequential and recursive ASMs differ in their run concept, analogously to the difference
between runs of an nd-seq algorithm and of a sequential recursive algorithm. A sequential

24 The terse definition here avoids complicated syntax. We tacitly permit parentheses to be used in rules when
needed.
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ASM is a ‘mono-agent’ machine: it consists of just one rule25 and in a sequential run this very
same rule is applied in each step—by an execution agent that normally remains unmentioned.
This changes with recursive ASMs which are ‘multi-agent’ machines. They consist of a set
of independent rules, multiple instances of which (even of a same rule) may be called to be
executed independently (for an example see the sort rule in Sect. 4). We capture this by
associating an execution agent ag(r) with each rule r so that each agent can execute its rule
instance independently of the other agents, in its own copy of the state space (i.e. instances
of states over the signature of the executed rule), taking into account the call relationship
between caller and callee (see below).

Therefore every single step of a recursive ASM R may involve the execution of one step by
each of finitely many Active and not Waiting agents a which execute in their state space the
rule pgm(a) they are associated (we also say equipped) with. To describe this separation of state
spaces of different agents (in particular if they execute the same program), we define instances
of a rule r by ambient ASMs of form amb a in r with agents a (see below for details). The
following definition paraphrases the run constraint in the Recursive Run Postulate 5.

Definition 3.3. A recursive run of a recursive ASM R is a sequence S0,S1,S2, . . . of states
together with a sequence A0,A1,A2, . . . of subsets of Agent , where each a ∈ Agent is equipped
with a pgm(a) that is an instance amb a in r of a rule r ∈ R, such that the following holds:

A0 is a singleton set A0 = {a0}, which in S0 equals the set Agent , and its agent a0 is
equipped with pgm(a0) = (amb a0 in main).
Ai is a finite set of in Si Active and not Waiting agents. We define (see Definition 2.11):

Active(a) (in state S ) iff a ∈ Agent and not Terminated(pgm(a)) (in S )
Waiting(a) (in state S ) iff forsome a ′ ∈ CalledBy(a) Active(a ′) (in S )

Si+1 is obtained from Si in one R-step by performing for each agent a ∈ Ai one step of
pgm(a).26

To complete the definition of recursive ASM runs, which extends the notion of runs of
sequential ASMs, it suffices (besides explaining ambient ASMs) to add a definition for what
it means semantically to apply a named i/o-rule. Using the ASM framework this boils down
to extend the inductive definition of the update sets computed by sequential ASMs in a given
state by defining the update sets computed by named i/o-rules.

A detailed definition of ambient ASMs can be found in [11, Ch.4.1]. Here it suffices to
say that using amb a in r as instance of a called rule r permits to isolate the state space of
agent a from that of other agents, namely by evaluating terms t in state S considering also
the agent parameter a, using valS (t , a) instead of valS (t). To establish the call relationship
we require below the following: when a recursive ASM rule r , executed by a parent agent p,
calls a rule q to be executed by a child agent c, then the input/output functions f of q are
also functions in r and are interpreted there in the state space of p the same way as in the
state space of c.

For the sake of completeness we repeat the definition of update sets for sequential ASM
rules from [22] and extend it for named i/o-rules. Rules r of sequential ASMs do not change
neither the set Agent nor the pgm function, so Agent and pgm do not appear in the definition

25 For notational convenience, this rule is often spelled out as a set of rules, however these rules are always
executed together, in parallel.

26 If one wants to stick to interleaving executions, it suffices to determine Ai as singleton sets.
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of ∆r (S ).
27 i/o-rules are the only rules which involve also introducing a new element a

into Agent (with a value assigned to pgm(a)) and a state initialization corresponding to the
provided input, so that a executes its instance of the called rule.

If r is an assignment rule f (t1, . . . , tn ) := t0, then let vi = valS (ti ). We define ∆r (S ) =
{{((f , (v1, . . . , vn)), v0)}}.
If r is a branching rule IF ϕ THEN r ′, then let v be the truth value valS (ϕ). We define
∆r (S ) = ∆r ′(S ) for v = true and ∆r (S ) = {∅} otherwise.
If r is a parallel composition rule PAR r1‖ . . . ‖rn ,

28 then we define∆r (S ) = {∆1∪· · ·∪∆n |
∆i ∈ ∆ri (S )}.
If r is a bounded choice rule CHOOSE r1 | · · · | rn , then we define ∆r (S ) = ∆r1(S ) ∪ · · · ∪
∆rn (S ).
If r is a let rule LET x = t IN r ′, then let v = valS (t), and define ∆r (S ) = {[v/x ].∆ |
[v/x ].∆ ∈ ∆r ′(S )}.

Now consider the case that r is a call rule t0 ← N (t1, . . . , tn). In this case let t0 =
f (t ′1, . . . , t

′
k ), and let N (x1, . . . , xn ) = q be the declaration of the rule named N , with all free

variables of q among x0, x1, . . . , xn .

In the call tree, the caller program r plays the role of the parent of the called child program
that will be executed by a new agent c. The child program is an instance qc of q with the
outer function symbols of ti for 1 ≤ i ≤ n classified as denoting input functions (which are not
read by the caller program) and with the outer function symbol f of t0 classified as denoting
an output function (which is not updated by the caller program).29 The first two of the call
relationship conditions are purely syntactical and can be assumed (without loss of generality)
for caller and callee programs. The third condition is satisfied, because each local function
symbol f of arity n is implicitly turned in a program instance into an (n + 1)-ary function
symbol, namely by adding the additional agent as environment parameter for the evaluation
of terms with f as leading function symbol. Therefore, each local function of the callee is
different from each local function of the caller, and to execute the call rule means to create
a new agent c,30 which is CalledBy the agent self that executes the call, to equip c with
the fresh program instance qc and Initialize its state by the values of ti , t

′
j . This makes the

callee ready to run and puts the caller into Waiting mode, in the sense defined by Definition
2.11 (except the trivial case that qc is already Terminated when Called so that it will not be
executed).

In other words we define ∆r (S ) as the singleton set containing the update set computed in
state S by the following ASM, a rule we denote by Call(t0 ← N (t1, . . . , tn)) which interpretes
the named i/o-rule t0 ← N (t1, . . . , tn).

Definition 3.4. Call(t0 ← N (t1, . . . , tn )) =

let N (x1, . . . , xn) = q // declaration of N

let v1 = t1, . . . , vn = tn // input evaluation valS (ti , self) by caller

27 Note that ∆r (S) defines the set of update sets by which rule r changes state S into a successor state S ′.
28 Parallel composition rules are also written by displaying the components ri vertically, omitting PAR and ‖.
29 The input parameters and the output location parameters are passed by value, so that the involved i/o-

function symbols can be considered as belonging to the signature of caller and callee.
30 The function new is assumed to yield for each invocation a fresh element, pairwise different ones for parallel

invocations. One can define such a function also by an import construct which operates on a (possibly
infinite) special reserve set and comes with an additional constraint on the par construct to guarantee that
parallel imports yield pairwise different fresh elements, see [15, 2.4.4].
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let t0 = f (t ′1, . . . , t
′
k )

let v ′1 = t ′1, . . . , v
′
k = t ′k // output location evaluation valS (t

′
i , self ) by caller

let c = new (Agent)

pgm(c) := amb c in q // equip callee with its program instance

Insert(c,CalledBy(self ))

Initialize(qc, v1/x1, . . . , vn/xn , f (v
′
1, . . . , v

′
k )/xo)

CalledBy(c) := ∅

Note that (f , (v ′1, . . . , v
′
k )) denotes the output location which the caller expects to be

updated by the callee with the return value.

Theorem 3.1. Each recursive ASMM defines a sequential recursive algorithm Ma (in the
sense of Definition 2.10) such that the recursive runs ofM can be step-for-step simulated by
the runs of Ma .

Proof. LetM be a recursive ASM. First of all we have to show that it satisfies the postulates
in Definition 2.10 whereby it is a sequential recursive algorithm.

Each rule r belonging toM, including named i/o-rules, is associated with a signature Σr

given by the function symbols that appear in the rule or in the rule body if the rule is a named
rule. This together with the agents c in amb c in r , defines the states (as sets of states of
signature Σr , one per r ∈ M) and gives the satisfaction of the abstract state postulate 2.

The satisfaction of the branching time postulate 1 is an immediate consequence of the
fact that for every state S , applying any recursive ASM rule in S , including named i/o-rules,
yields a successor state.

For the satisfaction of the bounded exploration postulate 3 we exploit that by [23], each
sequential ASM (i.e. without named i/o-rules) which appears inM is an nd-seq algorithm and
thus satisfies the bounded exploration postulate. To extend this to the rules ofM, for each (of
the finitely many) named i/o-rule we take every bounded exploration witness which appears
in the rule body (including the parameters). By Definition 3.4 these witnesses determine the
update sets yielded by the named i/o-rule in any given state.

By the definition of recursive ASM runs (Definition 3.3) and of the effect of a call rule
step (Definition 3.4), the call step postulate 4 is satisfied by every recursive ASM.

As to the recursive run postulate 5, the run constraint is satisfied by the definition of
recursive ASM runs (Definition 3.3). The bounded call tree branching constraint is satisfied,
because there are only finitely many named i/o-rules in each of the finitely many rules r ∈ M.

It remains to show that the recursive runs ofM can be step-for-step simulated by corre-
sponding runs of the sequential recursive algorithmMa that is induced by this interpretation
ofM. This follows from the two run characterizations in Postulate 5 and Definition 3.3 and
from the fact that the successor relation ofMa is defined by the update sets which are yielded
by the rules ofM and define also the successor relation ofM. ✷

3.2 The Characterisation Theorem

We now show the converse of Theorem 3.1. The proof largely follows the ideas underlying the
proof of the sequential ASM thesis in [23].
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Theorem 3.2. For each sequential recursive algorithm R in the sense of Definition 2.10 there
exists a recursive Abstract State Machine which is equivalent to R with respect to recursive
runs (in the sense of Definition 3.3 and Postulate 5).

Proof. LetR denote any sequential recursive algorithm. Then for each state S and a successor
state S ′ in a recursive run of R we obtain by Fact 1 an update set ∆(S ,S ′) ∈∆(S ). According
to the Recursive Run Postulate 5 each such state transition is defined by one step of each of
finitely many Active and notWaiting i/o-algorithms Ai . Each of these i/o-algorithms is a fresh
instance Ai of some component of R. In particular, by the freshness and the independence
condition in the Call Step Postulate 4, the instances Ai have disjoint signatures Σi and yield
subruns with states res(S , Σi ) and update sets ∆(res(S , Σi ), res(S

′, Σi )).
Consider now any such fresh instance Ai of a component A ∈ R. All function symbols

used by Ai in its states and update sets are copies of function symbols of A, labelled to ensure
the freshness condition of the instance. Removing these labels we obtain for any state S of A
and successor state S ′ of A pairs (S ,∆A(S ,S

′)) with ∆A(S ,S
′) ∈∆A(S ). Let DA be the set

of all pairs (S ,∆A(S )) obtained this way, for any state S in the given recursive run of R.
To complete the proof of the theorem it therefore suffices to show that the result of any

A-step in the given run, namely to apply an update set ∆A(S ,S
′) ∈∆A(S ) to a state S , can

be described as result of a step of a recursive ASM rule rA, namely to apply to S an update
set in ∆rA(S ). This is established by the following Lemma 3.1. ✷

Lemma 3.1. For each A there exists a recursive ASM rule rA with ∆rA(S ) = ∆A(S ) for
all states S appearing in DA.

Proof. We choose a fixed bounded exploration witness WA for each A ∈ R.
First we show that the argument values of any location ℓ in an update of A in any state

S are critical values in S . The proof uses the same argument as in [23, Lemma 6.2].
To show the property consider an arbitrary update set∆A(S ,S

′) ∈∆A(S ) and let (ℓ, v0) ∈
∆A(S ,S

′) be an update at location ℓ = (f , (v1, . . . , vn). We show that the assumption that vi
is not a critical value leads to a contradiction.

If vi is not a critical value, one can create a new structure Ŝ by swapping vi with a fresh
value w not appearing in S (e.g. w taken from the Reserve set), so Ŝ is a state of A. As
vi is assumed to not being critical, we must have valS (t) = val

Ŝ
(t) for all terms t ∈ WA.

Therefore it follows from the bounded exploration postulate that ∆A(S ) = ∆A(Ŝ ). This
implies that the update ((f , (v1, . . . , vn)), v0) appears in at least one update set in ∆A(Ŝ )
(since (ℓ, v0) ∈ ∆A(S ,S

′) ∈ ∆A(S )), contradicting the fact that vi does not occur in Ŝ and
thus cannot occur in an update set created in this state.

Furthermore, for each pair (S ,∆A(S )) ∈ DA we have a recursion depth function which
indicates the maximal nesting of recursive calls performed starting in state S to compute the
value of an output location in a possible successor state S ′. The function is defined inductively
as follows (induction on the call tree), taking the maximum over all successor states S ′ of S
and over all updates leading from S to S ′.

rdepthA(S ) = max{rdepthA(S ,S
′)) | ∆A(S ,S

′) ∈∆A(S )}
rdepthA(S ,S

′)) = max{depth(ℓ, v) | (ℓ, v) ∈ ∆A(S ,S
′)}

depth(ℓ, v) (with ℓ = (f , (v1, . . . , vn))) defined as follows:

• Case 1: f is an output function symbol of a terminating recursive subcomputation
started in S and leading to S ′.
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Formally this means that for some callee Ac just activated in the run by A, the
restriction res(S , Σc) of S to the signature of Ac is an initial state S c

0 of a terminating
run S c

0 ,S
c
1 , . . . ,S

c
k of the callee, during which A remains waiting, and such that

∗ the callee receives in state S the input from the caller, expressed by the equation
res(S c

0 , Σ
c
in) = res(S , Σc

in ),
∗ the caller receives in state S ′ the callee’s output in the callee’s final state, formally
res(S ′, Σc

out ) = res(S c
k , Σ

c
out ) for the final state S c

k for Ac

and f ∈ Σc
out .

Then the depth of the update is defined as successor of the maximal recursion depth
between any two successive states in the subcomputation, formalized by the equation
depth(ℓ, v) = max{rdepthAc (S c

i ,S
c
i+1) | 0 ≤ i ≤ k − 1}+ 1.

• Case 2: Otherwise. Then we define depth(ℓ, v) = 0.

We now proceed by a case distinction for rdepthA(S ).

Case 1: rdepthA(S ) is defined for all states S ∈ SA. In this case we proceed by induction over
d = max{rdepthA(S ) | S ∈ SA}. The base case is de facto the proof of the non-deterministic
sequential ASM thesis.

Induction Base: Let d = 0. First we construct for every state S with rdepthA(S ) = 0 a
(sequential ASM) rule rA,S whose application to S yields the updates sets defined for S by

A, formally such that ∆rA,S
(S ) = ∆A(S ), and the same for all states Ŝ that are ‘similar’ to

S (as defined below) wrt the bounded exploration witness WA.
To show this let S be a state with rdepthA(S ) = 0 and let S ′ be any successor state,

resulting from S by applying the updates in ∆A(S ,S
′) ∈ ∆A(S ). Consider any such update

(ℓ, v0) ∈ ∆A(S ,S
′) at location ℓ = (f , (v1, . . . , vn). As all vi are critical values and there is no

child with f ∈ Σc
out , there exist terms ti ∈WA with valS (ti) = vi . Thus, the assignment rule

f (t1, . . . , tn) := t0 yields the given update in state S and the parallel composition rA,S ,S ′ of
all these assignment rules for every update in ∆A(S ,S

′) yields in S the update set ∆A(S ,S
′).

Therefore the bounded choice composition of these rules for all successor states S ′ defines a
rule rA,S with ∆rA,S

(S ) = ∆A(S ).
Next we extend ∆rA,S

(S ) = ∆A(S ) from S to all states which are ‘similar’ to S with
respect to the bounded exploration witness WA.

31

(i) First, we show the equation ∆rA,S
(Ŝ ) = ∆A(Ŝ ) for every state Ŝ which coincides with S

on WA. In fact, if S and Ŝ coincide on WA, then ∆A(S ) = ∆rA,S
(S ) = ∆rA,S

(Ŝ ) holds

because the rule rA,S only uses terms in WA, which have the same values in S and Ŝ . We

further have ∆A(S ) = ∆A(Ŝ ) due to the bounded exploration postulate. These equations
together give ∆rA,S

(Ŝ ) = ∆A(Ŝ ).
(ii) Second, we show that ∆rA,S

(S1) = ∆A(S1) carries over to isomorphic states S2. Let S1,S2
be isomorphic states for which ∆rA,S

(S1) = ∆A(S1) is true. Let ζ be the isomorphism with
ζS2 = S1. Then we have ζ∆rA,S

(S2) = ∆rA,S
(S1) (because all ASMs satisfy the Abstract

State Postulate) and also ζ∆A(S2) = ∆A(S1) (by the Abstract State Postulate). These
equations together give ζ∆rA,S

(S2) = ζ∆A(S2) and hence also ∆rA,S
(S2) = ∆A(S2).

(iii) Third, we conclude from (i) and (ii) that the equation ∆rA,S
(Ŝ ) = ∆A(Ŝ ) holds for every

state Ŝ that is WA-similar to S . We define states S1,S2 to be WA-similar iff they identify

31 These cases are captured in Lemmata 6.7, 6.8. and 6.9 in [23]
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the same critical terms, i.e. formally iff valS1
(t1) = valS1

(t2)⇔ valS2
(t1) = valS2

(t2) holds
for all terms t1, t2 ∈ WA. No let Ŝ be any state that is WA-similar to S . We can assume
without loss of generality that S and Ŝ are disjoint.
In fact, if this is not the case consider a state S̈ isomorphic to Ŝ , in which each value that
appears also in S is replaced by a fresh one. Then S̈ is disjoint from S and by construction
WA-similar to Ŝ , hence also WA-similar to S .
Now define a structure S ∗ isomorphic to Ŝ by replacing val

Ŝ
(t) by valS (t) for all t ∈WA.

The definition of S ∗ is consistent because since S and Ŝ are WA-similar, valS (t1) =
valS (t2)⇔ val

Ŝ
(t1) = val

Ŝ
(t2) holds for all terms t1, t2 ∈WA. Since S and S ∗ coincide on

WA, we obtain by (i) that ∆rA,S
(S ∗) = ∆A(S

∗) which by (ii) implies ∆rA,S
(Ŝ ) = ∆A(Ŝ ).

To complete the proof for the induction base we exploit that WA is finite, hence there
are only finitely many partitions of WA and only finitely many WA-similarity classes [Si ]WA

(say i = 1, . . . ,m). For each such class we define a formula ϕi such that for each state S this
formula evaluates in S to true if and only if S ∈ [Si ]WA

holds. ϕi formalizes the similarity type
of Si by the conjunction of all equations t1 = t2 with valSi

(t1) = valSi
(t2) and all inequalities

t1 6= t2 with valSi
(t1) 6= valSi

(t2) for all critical terms t1, t2 ∈WA. Then we can define the rule
rA as follows:

PAR (IF ϕ1 THEN rA,S1
) ‖ . . . ‖ (IF ϕm THEN rA,Sm )

Induction Step: Let d > 0. For a state S with rdepthA(S ) = 0 we proceed as in the base
case to construct a rule rA,S such that ∆rA,S

(Ŝ ) = ∆A(Ŝ ) holds for all states Ŝ that are
WA-similar to S . For the case that rdepthA(S ) > 0 we construct such a rule as follows.

Let (ℓ, v0) ∈ ∆A(S ,S
′) ∈∆A(S ) be any update at location ℓ = (f , (v1, . . . , vn)). Then we

have two cases:

(i) If there is no child algorithm Ac with f ∈ Σc
out , then we argue as in the base case, i.e.

as all vi are critical values, there exist terms ti ∈ WA with valS (ti ) = vi , and thus the
assignment rule f (t1, . . . , tn) := t0 produces the given update in state S .

(ii) If we have f ∈ Σc
out for some child algorithm Ac, i.e. f is an output function symbol of

an algorithm that is called by A, then according to our assumption on call relationships,
locations with such function symbols never appear in an update set created by A itself,
so the update results from a final state of a run of Ac. Let this run be S c

0 ,S
c
1 , . . . with

final state S c
k .

Then we must have max{rdepthAc (S ) | S ∈ SAc} ≤ d − 1, so we can apply the induction
hypothesis. That is, there exists an ASM rule rAc with ∆rAc (S

c
i ) = ∆Ac (S c

i ) for all
0 ≤ i ≤ k .

As the values vi for i = 1, . . . ,n are critical in S , we find terms t̂i ∈ WA with
valS (t̂i ) = vi .
As v0 results from an update made by Ac, it is critical in S c

ℓ for some ℓ < k , so there
must exist a term t0 ∈WAc with valSc

ℓ
(t0) = v0.

The initial state S c
0 is defined by values v ′i (i = 1, . . . ,m) of input locations, which are

critical for S c
0 , which gives rise to terms t ′i ∈WAc with valSc

0
(t ′i ) = v ′i .

As the input values v ′i for A
c have been produced by updates made by A we further

find terms ti ∈WA with valS (ti ) = v ′i .
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Using a name N for the rule of Ac we obtain a named rule f (t̂1, . . . , t̂n)← N (t ′1, . . . , t
′
m).

Furthermore, according to the definition of update sets produced by call rules, we see that
the call t0 ← N (t1, . . . , tm) produces the update ((f , (v1, . . . , vn), v0).

Again the parallel composition of all the assignment and call rules (for every update in
∆A(S ,S

′)) yields in S the update set ∆A(S ,S
′).The bounded choice composition of these

rules for all successor states S ′ defines a rule rA,S with ∆rA,S
(S ) = ∆A(S ).

Using again the same arguments as in (i), (ii), and (iii) for the base case we get ∆rA,S
(Ŝ ) =

∆A(Ŝ ) for all states Ŝ that are WA-similar to S , and exploiting the finiteness of bounded
exploration witnesses we obtain again the rule rA with the required property, i.e. ∆rA(S ) =
∆A(S ) for all states S .

Case 2: Assume that rdepthA(S ) is not defined for all states S ∈ SA.
For states S for which rdepthA(S ) is defined we use the same construction as above to

obtain a rule rA,S with ∆rA,S
(S ) = ∆A(S ).

Now take a state S , for which rdepthA(S ) is not defined. Then there exists a child algo-
rithm Ac with an initial state S c

0 initiated by A, but no run starting in S c
0 leads to a final

state. Then the input values define terms ti and t ′i for i = 1, . . . ,m in the same way as for the
construction of the call rule above. We can use arbitrary critical terms t0, t̂i (i = 1, . . . ,n) and
a named rule f (t̂1, . . . , t̂n ) ← N (t ′1, . . . , t

′
m ) as before, then the call rule t0 ← N (t1, . . . , tm )

will lead to the run of Ac without final state.

The rule rA with the required property, i.e. ∆rA(S ) = ∆A(S ) for all states S , then results
by applying again the same arguments as above. ✷

4 Examples

We now present three simple examples of sequential recursive algorithms, mergesort , quicksort
and the sieve of Eratosthenes. These algorithms will be specified by recursive ASMs, which
we use to illustrate the concepts in our axiomatisation. Furthermore, we show that sequential
recursion can already be expressed by ASMs, as these support unbounded parallelelism. We
illustrate this for the first two selected algorithms. This shows that unbounded parallelism,
which is a decisive feature of ASMs, is much stronger than sequential recursion, and there is
no need to separately investigate recursive parallel algorithms.

4.1 Mergesort

We first give a specification of a recursive ASM comprising two named rules sort (the main
rule) and merge.

sorted list ← sort(unsorted list) =
IF sorted list = undef THEN

LET n = length(unsorted list)
IN PAR

(IF n ≤ 1 THEN sorted list := unsorted list ) ‖
(IF n > 1 ∧ sorted list1 = undef ∧ sorted list2 = undef
THEN LET list1 = IL.length(L) = ⌊n2 ⌋ ∧ ∃L

′.concat(L,L′) = unsorted list
IN LET list2 = IL′.concat(list1,L

′) = unsorted list
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IN PAR

(sorted list1 ← sort(list1) ‖
sorted list2 ← sort(list2)) ‖

(IF n > 1 ∧ sorted list1 6= undef ∧ sorted list2 6= undef
THEN sorted list ← merge(sorted list1,sorted list2))

Here we used terms of the form Ix .ϕ with a variable x and a formula ϕ, in which x is free
to denote the unique value x satisfying ϕ32.

merged list ← merge(inlist1,inlist2) =
IF merged list = undef THEN

PAR

(IF inlist1 = [] THEN merged list := inlist2) ‖
(IF inlist2 = [] THEN merged list := inlist1) ‖
(IF inlist1 6= [] ∧ inlist2 6= []
THEN LET x1 = head(inlist1) IN

LET restlist1 = tail(inlist1) IN
LET x2 = head(inlist2) IN
LET restlist2 = tail(inlist2) IN

PAR

(IF x1 ≤ x2 ∧merged restlist = undef
THEN merged restlist ← merge(restlist1, inlist2)) ‖
(IF x1 > x2 ∧merged restlist = undef
THEN merged restlist ← merge(inlist1, restlist2)) ‖
(IF x1 ≤ x2 ∧merged restlist 6= undef
THEN merged list := concat([x1],merged restlist)) ‖
(IF x1 > x2 ∧merged restlist 6= undef
THEN merged list := concat([x2],merged restlist))

The root of the call tree is labelled by sort . Every node labelled by sort has three children
labelled by instances of sort , sort and merge, respectively. A node labelled by merge has two
children, both labelled by merge.

Since in a run of a sequential recursive algorithm, in each step only finitely many algorithms
are executed at the same time and these do not stand in an ancestor relationship, we can in
fact instead of using copies of the algorithms use directly copies of the locations and run all
these part-algorithms in parallel. They can only make a step, if their input has been defined.
The parallelism is then unbounded, but in each step only finitely many parallel branches are
executed. We present such a specification using parallel ASMs for the mergesort algorithm,
using sequences of indeces 0, 1, 2 for the parameters. The original input we are interested in
is unsorted list([ ]), the computed output of interest is sorted list([ ]).33

forall I ∈ {0, 1, 2}∗ do

32 In the cases above we could have used equivalently @x .ϕ denoting an arbitrary value x satisfying ϕ, but
emphasising that the value exists and is indeed unique makes the specification clearer. Both kinds of terms
were originally introduced by David Hilbert using ǫ instead of @ and ι instead of I. The notation @ reflects
the common use of ANY (@) in rigorous methods and I comes from Fourman’s formalisation of higher-order
intuitionistic logic.

33 We use the vertical notation of ri instead of PAR r1‖ . . . ‖rn .
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if sorted list(I ) = undef and unsorted list(I ) 6= undef then
let n = length(unsorted list(I ))
if n ≤ 1 then sorted list(I ) := unsorted list(I )
if n > 1 then

SplitList(I )
if SortedSubLists(I ) then

if SubListsToBeMerged(I )
then Merge(I , sorted list(I 0), sorted list(I 1))
else OutputSortingResult(I )

The three submachines are defined as follows:

SplitList(I ) =
if unsorted list(I 0) = undef = unsorted list(I 1) then

let (l0, l1) with
length(l0) = ⌊

n
2 ⌋ and unsorted list(I ) = concat(l0, l1) in

unsorted list(I 0) := l0
unsorted list(I 1) := l1

where
SortedSubLists(I ) iff

sorted list(I 0) 6= undef and sorted list(I 1) 6= undef
SubListsToBeMerged(I ) iff merged list(I ) = undef
OutputSortingResult(I ) = (sorted list(I ) := merged list(I ))

Merge(I , l1, l2) =
if l1 = [ ] then merged list(I ) := l2
else if l2 = [ ] then merged list(I ) := l1

else
InitializeInputLists(I , l1, l2)
InitializeRestLists(I , l1, l2)
OneMergeStep(I )

where
InitializeInputLists(I , l1, l2) =

if inlist1(I ) = inlist2(I ) = undef THEN

inlist1(I ) := l1
inlist2(I ) := l2

InitializeRestLists(I , l1, l2) =
if restlist1(I ) = restlist2(I ) = undef then

restlist1(I ) := tail(l1)
restlist2(I ) := tail(l2)

OneMergeStep(I ) =
if inlist1(I ) 6= [ ] 6= inlist2(I ) and restlist1(I ) 6= undef 6= restlist2(I ) then

let x1 = head(inlist1(I )), x2 = head(inlist2(I ))
if x1 ≤ x2 then

if merged list(I 2) = undef
then

inlist1(I 2) := restlist1(I )
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inlist2(I 2) := inlist2(I )
else merged list(I ) := concat([x1],merged list(I 2))

if x1 > x2 then
if merged list(I 2) = undef

then
inlist1(I 2) := inlist1(I )
inlist2(I 2) := restlist2(I )

else merged list(I ) := concat([x2],merged list(I 2))

Remark. Note that in this way every sequential recursive algorithms can be captured by an
ASM as defined in [15], i.e. exploiting FORALL rules. This shows that the concept of unbounded
parallelism that is decisive for ASMs and is theoretically founded by the behavioural theory of
parallel algorithms [19] covers the needs of sequential recursive algorithms.34 However, parallel
algorithms are a much wider class than sequential recursive algorithms35. We dispense with
discussing this any further here. It further means that the concept of recursion extends the
class of sequential algorithms, but an extension of the class of parallel algorithms by means
of recursion is meaningless.

Furthermore, instead of using a single parallel ASM with the rule above we can also define
agents aI for all indices I ∈ {0, 1, 2}

∗, each associated with an ASMMI using a rule rI defined
as above without the outermost FORALL. The effect on runs is that for the concurrent runs of
the concurrent ASM {(aI ,MI ) | I ∈ {0, 1, 2}

∗} the individual agents operate asynchronously,
which permits additional runs. However, these runs only reflect the combination of runs of
the individual agent machines at different paces as already mentioned in the introduction.
This will be exploited in Section 5.

4.2 Quicksort

Again we first give a specification of a sequential recursive ASM with a single named i/o-rule
qsort.

sorted list ← qsort(unsorted list) =
PAR (IF unsorted list = [] THEN sorted list := []) ‖

(IF unsorted list 6= [] ∧ sorted list1 = undef ∧ sorted list2 = undef
THEN LET x = head(unsorted list) IN

LET unsorted list1 = sublist[y | y < x ](unsorted list) IN
LET unsorted list2 = sublist[y | y > x ](unsorted list) IN
PAR (sorted list1 ← qsort(unsorted list1)) ‖

(sorted list2 ← qsort(unsorted list2)))
(IF unsorted list 6= [] ∧ sorted list1 6= undef ∧ sorted list2 6= undef
THEN sorted list := concat(sorted list1, concat(head(unsorted list), sorted list2)))

34 A reviewer objected that we cannot describe ‘recursive algorithms with unbounded number of callees’. In
fact one cannot do this with sequential recursive ASM because they satisfy the Bounded Exploration and the
Bounded Call Tree Branching Postulates. But one can do it using ASMs with unbounded FORALL. Similarly,
the reviewer’s question how to define ‘recursive symmetry-braking algorithms’ can be answered by using
ASMs with unbounded choice.

35 This explains why in the behavioural theories developed so far the emphasis was more on parallel than
on recursive algorithms. Nonetheless, the ASM rule above expressing the sequential recursive algorithm is
somehow easier to read than the rule for the behaviourally equivalent parallel ASM, because in the latter
one the copies of locations are made explicit.
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In this case all nodes of the call tree are labelled by instances of the one i/o-algorithm
qsort . The following ASM rule shows how to capture the algorithm by a parallel ASM.

FORALL I ∈ {0, 1}∗ DO

PAR (IF unsorted list(I ) = [ ] THEN sorted list(I ) := [ ]) ‖
(IF unsorted list(I ) 6= [ ] ∧ unsorted list(I ) 6= undef
THEN PAR

(IF unsorted list(I 0) = undef ∧ unsorted list(I 1) = undef
THEN LET x = head(unsorted list(I )) IN

PAR (unsorted list(I 0) := sublist[y | y < x ](unsorted list(I ))) ‖
(unsorted list(I 1) := sublist[y | y > x ](unsorted list(I ))))‖

(IF sorted list(I 0) 6= undef ∧ sorted list(I 1) 6= undef
THEN sorted list(I ) := concat(sorted list(I 0),

concat(head(unsorted list(I )), sorted list(I 1)))))

As for mergesort , one can define a concurrent ASM {(aI ,MI ) | I ∈ {0, 1}
∗}, where the

rule rI of the machineMI is defined as above without the outermost FORALL.

4.3 Sieve of Eratosthenes

The sieve of Eratosthenes algorithm computes all prime numbers. Starting from the set {x ∈
N | x ≥ 2} as the start sieve, the smallest number of the sieve is added to the output (or
printed)—so the output will be infinite—and all elements of the sieve that are divisable by the
number added to the output are removed from the sieve. The following is a simple recursive
ASM rule for this algorithm.

← eratosthenes(sieve) =
LET p = min(sieve) IN
LET reduced sieve = {x ∈ sieve | p ∤ x} IN
PAR ← eratosthenes(reduced sieve) ‖ out prime := p

More generally, if the input sieve is any subset of N, then the algorithm will return all
numbers in {x ∈ sieve | ∀y ∈ sieve (y | x ⇒ y = x )} (via values assigned to out prime). None
of the calls in this algorithm will reach a final state.

The crucial problem with this algorithm is not only the infinite input and output (both
can in principle be handled using streams), but the fact that the involved computation of
reduced sieve requires the availability of all elements of sieve, i.e. in general infinitely many.
A remedy is the following rule, which keeps sieve constant, but uses all previously determined
output values in a set divisors (initially ∅) to determine the next number in the output, which
requires only the investigation of an initial segment of sieve.

← eratos(divisors,sieve) =
LET p = min({x ∈ sieve | ∀d ∈ divisors d ∤ x}) IN
PAR ← eratos(divisors ∪ {p}, sieve) ‖ out prime := p

It is an easy exercise to describe this algorithm by a parallel or a concurrent ASM.
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5 Recursive Algorithms and Partial-Order Runs

In their response to Moschovakis’ criticism [29] Blass and Gurevich argued in [6] with the
capture of sequential recursive algorithms by what is known as distributed ASMs. The seman-
tics of distributed ASMs has been defined by partial-order runs [22], which later have been
recognized as too restrictive and have been replaced in [12] by a rather comprehensive defini-
tion of concurrency. In this section we investigate the relationship between distributed ASMs
and recursive algorithms/ASMs, as defined in Section 2. We will show (a precise version of)
the following theorem.

Theorem 5.1. Characterization of partial-order runs. Recursive algorithms are exactly
those finitely-composed concurrent algorithms C with nd-seq components such that all concur-
rent C-runs are definable by partial-order runs.

The decisive notions used in this theorem such as partial-order runs and finitely-composed
concurrent algorithms will be formally introduced below, together with the corresponding
concepts for concurrent ASMs. The theorem fortifies the argument that partial-order runs are
too weak a concept to serve as a semantic foundation for concurrent algorithms36. The latter
aspect has been overcome by the definition of concurrent ASM runs and the corresponding
concurrent ASM thesis in [12].

We will also show that if the concurrent runs are restricted further to partial-order runs
of a concurrent algorithm with a fixed finite number of agents and their nd-seq programs, one
can simulate them even by a non-deterministic sequential algorithm (see Theorem 5.4). An
interesting example of this special case are partial-order runs of Process Rewrite Systems [27]
(see Corollary 5.1).

To prove the theorem we use the characterization of runs of sequential recursive algorithms
as recursive runs of recursive ASMs (Theorem 3.2) and of runs of concurrent algorithms as
concurrent ASM runs (see [12]).

5.1 Partial-Order Runs

Syntactically, a concurrent algorithm C is defined as a family of algorithms alg(a), each
associated with (‘indexed by’) an agent a ∈ Agent (see [22], [12]) that executes the algorithm
in concurrent runs. These algorithms are often assumed to be (possibly non-deterministic)
sequential algorithms, though this restriction is not necessary in general. In our case here this
restriction is, however, important, as we have seen in Section 4 that without this restriction,
permitting unbounded forall and choose constructs, we obtain algorithms far more powerful
than the recursive ones. Sometimes it is also assumed that the Agent set is finite, a special
case we consider in Sect. 5.3.

In a concurrent run, as in recursive runs, different agents can be associated dynamically
with different instances of the same algorithm. Therefore, when relating concurrent runs of
a concurrent algorithm C to recursive runs of a sequential recursive algorithm—which by
Definition 2.10 is a finite set of i/o-algorithms—we need to finitely compose C, namely by a
finite set of nd-seq components of which each alg(a) ∈ C is an instance.

In a concurrent run as defined in [12], multiple agents with different clocks may contribute
by their single moves to define the successor state of a state. Therefore, when a successor state

36 As our discussion in the previous section shows, even the concept of unbounded parallelism, by means of
which synchronous parallelism is captured, is stronger than recursion.
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Si+1 of a state Si is obtained by applying to Si multiple update sets Ua with agents a in a
finite set Agenti ⊆ Agent , each Ua is required to have been computed by a ∈ Agenti in a
preceding state Sj , i.e. with j ≤ i . It is possible that j < i holds so that for different agents
different alg(a)-execution speeds (and purely local subruns to compute Ua) can be taken into
account.

This can be considered as resulting from a separation of a step of an nd-seq algorithm
alg(a) into a read step—which reads location values in a state Sj—followed by a write step
which applies the update set Ua computed on the basis of the values read in Sj to a later
state Si (i ≥ j ). We say that a contributes to updating the state Si to the successor state
Si+1, and that a move starts in Sj and contributes to updating Si (i.e. it finishes in Si+1).
This is formally expressed by the following definition of concurrent ASMs and their runs.

Definition 5.1. A concurrent ASM is defined as a family C of ASMs asma (also called
programs and written pgm(a)) with associated agents a ∈ Agent . A concurrent run of C is
defined as a sequence S0,S1, . . . of states together with a sequence A0,A1, . . . of finite subsets
of Agent , such that S0 is an initial state and each Si+1 is obtained from Si by applying to it
the updates computed by the agents in Ai , where each a ∈ Ai computes its update set Ua

on the basis of the location values (including the input and shared locations) read in some
preceding state Sj (i.e. with j ≤ i) depending on a.

Remark. In this definition we deliberately permit the set of Agents to be infinite or dynamic
and potentially infinite, growing or shrinking in a run. Below we consider the special cases
that Agent is a static finite set (see Section 5.3) or a dynamic set all of whose members are
equipped however with instances of a fixed (static) finite set of programs (see Definition 5.3).
In Definition 5.2 below the set of Agents is fixed by the set of M oves.

For the reason explained above, in the following we restrict our attention to concurrent
ASMs in which each component asma is an nd-seq ASM.

In [22] Gurevich defined the notion of partial-order run of concurrent algorithms.37 The
partial order is defined on the set of single moves of the agents which execute the individual
algorithms. For a nd-seq algorithm A, to make one move means to perform one step in a state
S , as defined by the Branching Time Postulate 1, applying a set ∆(S ,S ′) ∈∆(S ) of updates
to S .

Definition 5.2. Let C = {(a, alg(a))}a∈Agent be a concurrent algorithm, in which each alg(a)
is an nd-seq algorithm. A partial-order run for C is defined by a set M of moves of instances
of the algorithms alg(a) (a ∈ Agent), a function ag : M → Agent assigning to each move the
agent performing the move, a partial order ≤ on M , and an initial segment function σ such
that the following conditions are satisfied:

finite history. For each move m ∈ M its history {m ′ | m ′ ≤ m} is finite.
sequentiality of agents. The moves of each agent are ordered, i.e. for any two moves m

and m ′ of one agent ag(m) = ag(m ′) we either have m ≤ m ′ or m ′ ≤ m.

coherence. For each finite initial segment M ′ ⊆ M (i.e. for m ∈ M ′ and m ′ ≤ m we also
have m ′ ∈ M ′) there exists a state σ(M ′) over the combined signatures of the algorithms

37 Note that in [22] Gurevich actually uses the wording distributed algorithm instead of concurrent algorithm,
whereas we prefer to stick with the notation from [12]. One reason for this is that distribution requires also
to discuss (physical) notations and messaging (as handled in [13]), whereas concurrency abstracts from this.
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Ai such that for each maximum element m ∈ M ′ the state σ(M ′) is the result of applying
m to σ(M ′ − {m}).

In order to characterise recursive ASM runs in terms of partial-order runs of a concurrent
ASM C several restrictions have to be made. First of all the component ASMs must be nd-seq
ASMs, an assumption we already justified above. Second, the component machines asma can
only be copies (read: instances) of finitely many different ASMs, which we will call the program
base of C.38 Third, runs must be started by executing a distinguished main component.39 We
capture these restrictions by the notion of finitely composed concurrent ASM.

Definition 5.3. A concurrent ASM C is finitely composed iff (i) and (ii) hold:

(i) There exists a finite set B of nd-seq ASMs such that each C-program is of form amb a in r
for some program r ∈ B—call B the program base of C.

(ii) There exists a distinguished agent a0 which is the only one Active in any initial state.
Formally this means that in every initial state of a C-run, Agent = {a0} holds. We denote
by main the component in B of which a0 executes an instance. For partial-order runs of C
this implies that they start with a minimal move which consists in executing the program
asm(a0) = amb a0 in main .

(iii) Any program base component may contain rules of form let a = new (Agent) in r .40

Together with (ii) this implies that every agent, except the distinguished a0, before making
a move in a run must have been created in the run.

C is called finite iff Agent is finite.

We are now ready to more precisely state and prove the first part of Theorem 5.1. It
should come as no surprise; it provides the justification for the argumentation by Blass and
Gurevich in [6].

Theorem 5.2. For every recursive ASM R one can construct an equivalent finitely composed
concurrent ASM CR with nd-seq ASM components such that every concurrent run of CR is
definable by a partial-order run.

Proof. LetR be a recursive ASM given with distinguished program main. We define a finitely
composed concurrent ASM CR with program base {r∗ | r ∈ R}, where r∗ is defined as

r∗ = if Active(r) and not Waiting(r) then r .

That is, r∗ can only contribute a non-empty update set to form a state Si+1 in a concurrent
run, if r is Active and not Waiting ; this is needed, because in every step of a recursive run of
R only Active and not Waiting rules are executed.

In doing so we use for each call rule r ∈ R in the then part of r∗ instead of t0 ←
N (t1, . . . , tn) its interpretation by the ASM rule Call(t0 ← N (t1, . . . , tn)) defined in Sect. 3.1.

38 This reflects the stipulation in [22] that in concurrent ASMs the agents are equipped with instances of
programs which are taken from ‘a finite indexed set of single-agent programs’ (p.31).

39 The restriction to one component is equivalent to, but notationally simplifies, the requirement stated in [22,
6.2, p.31] for concurrent ASM runs that in initial states there are only finitely many agents, each equipped
with a program.

40 This reflects the stipulation for concurrent ASMs in [22] that ‘An agent a can make a move at S by firing
Prog(a) ... and change S accordingly. As part of the move, a may create new agents’ (p.32), which then
may contribute by their moves to the run in which they were created.
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The definition of r∗ obviously guarantees the behavioral equivalence of R and CR: in each run
step the same Active and not Waiting rules r respectively r∗ and their agents are selected
for their simultaneous execution. Remember that, by the definition of Call(i/o-rule), each
agent operates in its own state space so that the view of an agent’s step as read-step followed
by a write-step is equivalent to the atomic view of this step.

Note that in a concurrent run of CR the Agent set is dynamic, in fact it grows with each
execution of a call rule, together with the number of instances of R-components executed
during a recursive run of R.

It remains to define every concurrent run (S0,A0), (S1,A1), . . . of CR by a partial-order
run. For this we define an order on the set M of moves made during a concurrent run, showing
that it satisfies the constraint on finite history and sequentiality of agents, and then relate
each state Si of the run to the state computed by the set Mi of moves performed to compute
Si (from S0), showing that Mi is a finite initial segment of M and that the associated state
σ(Mi) equals Si and satisfies the coherence condition.

Each successor state Si+1 in a concurrent run of CR is the result of applying to Si the write
steps of finitely many moves of agents in Ai . This defines the function ag , which associates
agents with moves, and the finite set Mi of all moves finished in a state belonging to the initial
run segment [S0, . . . ,Si ]. Let M = ∪iMi . The partial order ≤ on M is defined by m < m ′ iff
move m contributes to update some state Si (read: finishes in Si) and move m ′ starts reading
in a later state Sj with i + 1 ≤ j . Thus, by definition, Mi is an initial segment of M .

To prove the finite history condition, consider any m ′ ∈ M and let Sj be the state in which
it is started. There are only finitely many earlier states S0, . . . ,Sj−1, and in each of them only
finitely many moves m can be finished, contributing to update Sj−1 or an earlier state.

The condition on the sequentiality of the agents follows directly from the definition of
the order relation ≤ and from the fact that in a concurrent run, for every move m =
(readm ,writem ) executed by an agent, this agent performs no other move between the readm -
step and the corresponding writem -step in the run.

This leaves us to define the function σ for finite initial segments M ′ ⊆ M and to show the
coherence property. We define σ(M ′) as result of the application of the moves in M ′ in any
total order extending the partial order ≤. For the initial state S0 we have σ(∅) = S0. This
implies the definability claim Si = σ(Mi ).

The definition of σ is consistent for the following reason. Whenever two moves m 6= m ′

are incomparable, then either they both start in the same state or say m starts earlier than
m ′. But m ′ also starts earlier than m finishes. This is only possible for agents ag(m) = a and
ag(m ′) = a ′ whose programs pgm(a), pgm(a ′) are not in an ancestor relationship in the call
tree. Therefore these programs have disjoint signatures, so that the moves m and m ′ could
be applied in any order with the same resulting state change.

To prove the coherence property let M ′ be a finite initial segment, and letM ′′ = M ′\M ′
max,

where M ′
max is the set of all maximal elements of M ′. Then σ(M ′) is the result of applying

simultaneously all moves m ∈ M ′
max to σ(M ′′), and the order, in which the maximum moves

are applied is irrelevant. This implies in particular the desired coherence property. ✷

Note that the key argument in the proof exploits the fact that for recursive runs of R, the
runs of different agents are initiated by calls and concern different state spaces with pairwise
disjoint signatures, due to the function parameterization by agents, unless pgm(a ′) is a child
(or a descendant) of pgm(a), in which case the relationship between the signatures is defined
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by the call relationship. Independent moves can be guaranteed in full generality only for
algorithms with disjoint signatures.

5.2 Capture of Partial-Order Runs

While Theorem 5.2 is not surprising, we will now show the less obvious converse of Theorem
5.1. The fact that (by Definition 3.2) a recursive ASM R is a finite set of recursive ASM rules,
starts its runs with a main program and uses during any run only instances of its rules implies
that if R simulates a concurrent ASM, this concurrent ASM must be finitely composed (as
assumed in [22, Sect. 6] for the definition of partial-order runs) and must use only instances
of its finitely many nd-seq components.

Theorem 5.3. For each finitely composed concurrent ASM C with program base {ri | i ∈ I }
of nd-seq ASMs such that all its concurrent runs are definable by partial-order runs, one can
construct a recursive ASM RC which simulates C, i.e. such that for each concurrent run of C
there is an equivalent recursive run of RC.

41

Proof. Let a concurrent C-run (S0,A0), (S1,A1), . . . be given. If it is definable by a partial-
order run (M ,≤, ag , pgm, σ), the transition from Si = σ(Mi) to Si+1 is performed in one
concurrent step by parallel independent moves m ∈ Mi+1 \Mi , where Mi is the set of moves
which contributed to transform S0 into Si . Letm ∈ Mi+1\Mi be a move performed by an agent
a = ag(m) with rule pgm(a) = amb a in r , an instance of a rule r in the program base of C.
To execute the concurrent step by steps of a recursive ASM RC , we simulate each of its moves
m by letting agent a act in the RC-run as caller of a named rule outr ← OneStepr (inr ).
The callee agent c acts as delegate for one step of a: it executes amb a ∈ r and makes its
program immediately Terminated .

To achieve this, we refine the recursive Call machine of Definition 3.4 to a recursive ASM
Call

∗ by adding to Initialize the update Terminated(amb c in q) := false. When Call
∗

is applied to outr ← OneStepr (inr ), the update of Terminated makes the delegate Active
so that it can make a step to execute amb c in OneStepr . OneStepr is defined to perform
amb caller(c) in r and immediately terminate (by setting Terminated to true). For ease of
exposition we add in Definition 3.4 also the update caller(c) :=self , to distinguish agents in
the concurrent run—the callers of OneStepr -machines—from the delegates each of which
simulates one step of its caller and immediately terminates its life cycle.

It remains to determine the input and output for calling OneStepr . For the input we
exploit the existence of a bounded exploration witness Wr for r . All updates produced in a
single step are determined by the values of Wr in the state, in which the call is launched.
So Wr defines the input terms of the called rule OneStepr , combined in inr . Analogously,
a single step of r provides updates to finitely many locations that are determined by terms
appearing in the rule, which defines outr .

We summarize the explanations by the following definition:

RC = {outr ← OneStepr (inr ) | r ∈ program base of C}
OneStepr =

amb caller(self ) in r // the delegate executes the step of its caller
Terminated(pgm(self )) := true // ... and immediates stops

41 Equivalence via an inverse simulation of every recursive RC-run by a concurrent C-run can be obtained if
the delegates of C-agents, called in the recursive run to perform the step of their caller in the concurrent
run, act in an ‘eager’ way. See the remark at the end of the proof.
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Note that each caller step step amb a in outr ← OneStepr (inr ) in an RC-run is by
definition equivalent to the machine amb a in Call

∗(outr ← OneStepr (inr )) and triggers
the execution of the delegate program amb c in OneStepr (where a = caller(c), which
triggers amb c in amb a in r (by definition). Furthermore, since the innermost ambient
binding counts, this machine is equivalent to the simulated C-run step amb a in r .

Thus the recursive RC-run which simulates (S0,A0), (S1,A1), . . . starts by Definition 5.3
in S0

42 with program amb a0 in outmain ← OneStepmain(inmain ). Let

Ai = {ai1 , . . . , aik } ⊆ Agent for some ij and k depending on i
where aij = ag(mij ) ∈ Mi+1 \Mi and pgm(aij ) = amb aij in rij (forall 1 ≤ j ≤ k)

We use the same agents aij for Ai in the RC-run, but with outrij ← OneSteprij
(inrij ) as

program. Their step in the recursive run leads to a state S ′
i where all callers aij are Waiting

and the newly created delegates cij are Active and not Waiting . So we can choose them for
the set A′

i of agents which perform the next RC step, whereby

all rules rij are performed simultaneously (as in the given concurrent run step), in the
ambient of caller(cij ) = aij thus leading as desired to the state Si+1,
the delegates make their program Terminated , whereby their callers aij become again not
Waiting and thereby ready to take part in the next step of the concurrent run. We assume
for this that whenever in the C-run (not in the RC run) a new agent a is created, it is
made not Waiting (by initializing CalledBy(a) := ∅).

✷

Remark. Consider an RC-run where each recursive step of the concurrent caller agents in
Ai , which call each some OneStep program, alternates with a recursive step of all—the just
called—delegates whose program is not yet Terminated . Then this run is equivalent to a
corresponding concurrent C-run.

Note that Theorem 5.3 heavily depends on the prerequisite that C only has partial-order
runs. With general concurrent runs as defined in [12] the construction would not be possible.43

The rather strong conclusion from this is that the class of sequential recursive algorithms is
already rather powerful, as it captures all attempts to capture asynchronous parallelism by
a formalism that includes some form of a lockstep application of updates defined by several
agents. However, true asynchronous behaviour only results, if it is possible that steps by
different agents can be started as well as terminated in an independent way, which is covered
by the theory of concurrency in [12].

5.3 Finite Static Concurrent ASMs with partial-order runs

In this section we consider the special case of static finite concurrent ASMs, which means by
Definition 5.1 a static set of pairs (a, pgm(a)). These ASMs have fixed finite sets of agents and
programs and a fixed association of each program with an executing agent, so that there is

42 For the sake of notational simplicity we disregard the auxiliary locations of RC.
43 The other prerequisites in Theorem 5.3 appear to be rather natural. Unbounded runs can only result, if

in a single step arbitrarily many new agents are created. Also, infinitely many different rules associated
with the agents are only possible, if new agents are created and added during a concurrent run. Though
this is captured in the general theory of concurrency in [12], it was not intended in Gurevich’s definition of
partial-order runs.
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no rule instantiation with new agents which could be created during a run. Therefore one can
define global states as the union of the component states and the functions σ(I ) associated
with the po-runs yield for every finite initial segment I as value the global state obtained by
firing the rules in I .

For this particular kind of concurrent ASMs with partial-order runs one can define the
concurrent runs by runs of nd-seq ASMs, as we are going to show in this section. This theorem
illustrates the rather special character the axiomatic coherence condition imposes on partial-
order runs.

Theorem 5.4. For each finite static concurrent ASM C = {(aj , rj ) | 1 ≤ j ≤ n} with nd-seq
component ASMs rj such that all its concurrent runs are definable by partial-order runs one
can construct a nd-seq ASMMC such that the concurrent runs of C and the runs ofMC are
equivalent.

Corollary 5.1. The partial-order runs of every Process Rewrite System [27] can be simulated
by runs of a non-deterministic sequential ASM.

Proof. For the states Si of a given concurrent run of C let σ(Mi) be the state associated with
an initial segment Mi of a corresponding partial order run (M ,≤, ag , pgm, σ), where each step
leading from Si to Si+1 consists of pairwise incomparable moves in Mi+1 \Mi . We call such a
sequence S0,S1, . . . of states a linearised run of C. For i > 0 the initial segments Mi are non
empty.

The linearized runs of C can be characterized as runs of a nd-seq ASMMC : in each step
this machine chooses one of finitely many non-empty subsets of the fixed finite set of rules in
C to execute them in parallel. Formally:

MC = choose AllRulesOf(J1) | · · · | AllRulesOf(Jm)

where

AllRulesOf({j1, . . . , jk}) =
rj1
. . .

rjk
{J1, . . . , Jm} = {J

′ 6= ∅ | J ′ ⊆ J} // the non-empty subsets of J

J = {i | 1 ≤ j ≤ n} // the fixed set of rule indices

m = 2|J | − 1

To complete the proof it suffices to show the following lemma. ✷

Lemma 5.1. The linearised runs of C are exactly the runs of MC.

Proof. To show that each run S0,S1, . . . of the nd-seq ASM MC is a linearised run of C
we proceed by induction to construct the underlying partial-order run (M ,≤) with its finite
initial segments Mi . For the initial state S0 = σ(∅) there is nothing to show, so let Si+1

result from Si by applying an update set produced by AllRulesOf(J ′) for some non-empty
set J ′ = {j1, . . . , jk} ⊆ J . By induction we have Si = σ(Mi ) for some initial segment of a
partial-order run (M ,≤). Since AllRulesOf(J ′) is a parallel composition, Si+1 results from
applying the union of update sets ∆jl ∈ ∆rjl

for l = 1, . . . , k to Si . Each ∆jl defines a move
mjl of some ag(mjl ) = ajl , move which finishes in state Si . We now have two cases:
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(i) The moves mjl with 1 ≤ l ≤ k are pairwise independent, i.e. their application in any order
produces the same new state. Then (M ,≤) can be extended with these moves such that
Mi+1 = Mi ∪ {mj1 , . . . ,mjk } becomes an initial segment and Si+1 = σ(Mi ) holds.

(ii) If the moves mjl with 1 ≤ l ≤ k are not pairwise independent, the union of the corre-
sponding update sets is inconsistent, hence the run terminates in state Si .

To show the converse we proceed analogously. If we have a linearized run of states Si =
σ(Mi) for all i ≥ 1, then Si+1 results from Si by applying in parallel all moves in Mi+1 \Mi .
Applying a move m means to apply an update set produced by some rule rj of C in state
Si , and applying several update sets in parallel means to apply their union ∆, which then
must be consistent. So we have Si+1 = Si + ∆ with ∆ =

⋃

j∈J ′ ∆j for some non-empty
J ′ = {j1, . . . , jk} ⊆ J , where each ∆jl is an update set produced by rjl (for 1 ≤ l ≤ k),
i.e. ∆ is an update set produced by AllRulesOf(J ′), which implies that the linearised run
S0,S1, . . . is a run ofMC . ✷

6 Related Work

The behavioural theory developed in this article contributes to answer the fundamental epis-
temological question “What is an algorithm?”. It has been inspired by Gurevich’s behavioural
theory of sequential algorithms [23], the ur-instance of a behavioural theory, and motivated by
Moschovakis’ claim that recursive algorithms, which obviously cannot be modeled ‘closely and
faithfully’ by sequential ASMs, can be ‘directly expressed’ by systems of recursive equations
(called ‘recursive programs’) [30, p.100].

In [30, p.99] Moschovakis places “the basic foundational problem of defining algorithms...
outside the scope of this book” and treats recursive algorithms as “faithfully expressed” (ibid.
p.101) by syntactically well defined recursive programs (read: systems of recursive equations)
which permit to compute (partial) functions from auxiliary (in ASM terminology background)
functions in whatever given structures. Besides restricting the attention to algorithms which
compute (partial) functions as least fixed point of a system of equations, such a definition is
fundamentally different from the behavioural theory approach to capture recursive algorithms
by a class of abstract machines which can be shown to satisfy an a priori given precise,
axiomatic, programming language independent characterization of recursion. Furthermore, we
use a class of machines which provide a general framework to characterize besides sequential
or recursive algorithms also other classes of algorithms, e.g. parallel, interactive or reflective
algorithms (see below), which are deliberately left out in [30].

Nevertheless, every function which is computable by a recursive program in the sense of
Moschovakis can be computed (in the standard meaning of the term) by a recursive ASM. This
can be shown easily, for example by using Moschovakis’ ‘recursive machine’ [30, Sect.2D], an
abstract machine which is considered by its author as “one of the classical implementations of
recursion” (ibid.p.74).44 Alternatively one can use sequential recursive ASMs to describe the
fixed point construction for systems of recursive equations. Apparently it can also be shown
that vice versa, every function which is computable by a recursive ASM can be computed by
a recursive program in the sense of Moschovakis (use an induction on the recursion depth of
recursive ASMs, with nd-seq ASMs at the basis of the induction).

44 As pointed out in [6] and also in [10], using the set of equations of a recursive program to compute a concrete
function value still requires a determination of control, i.e. in which way the recursion equations are to be
applied, a feature which is considered in [30] as implementation detail.
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As the sequential ASM thesis shows, the notion of sequential algorithm includes a form
of bounded parallelism, which is a priori defined by the algorithm and does not depend on
the actual state.45 However, parallel algorithms, e.g. for graph inversion or leader election,
require unbounded parallelism. A behavioural theory of synchronous parallel algorithms has
been first approached by Blass and Gurevich [7,8], but different from the sequential thesis
the theory was not accepted, not even by the ASM community despite its inherent proof that
ASMs [15] capture parallel algorithms. One reason is that the axiomatic definition exploits
non-logical concepts such as mailbox, display and ken, whereas the sequential thesis only used
logical concepts such as structures and sets of terms46.

In [19] an alternative behavioural theory of synchronous parallel algorithms (aka “simpli-
fied parallel ASM thesis”) was developed. It was inspired by previous research on a behavioural
theory for non-deterministic database transformations [33]. Largely following the careful mo-
tivation in [7] it was first conjectured in [34] that it should be sufficient to generalise bounded
exploration witnesses to sets of multiset comprehension terms47 and to make assumptions
about background domains, constructors and operations for truth values, records and finite
multisets explicit48. The formal proof of the simplified ASM thesis in [19] requires among
others an investigation in finite model theory.

At the same time another behavioural theory of parallel algorithms was developed in [16],
which is independent from the simplified parallel ASM thesis49, but refers also to previous
work by Blass and Gurevich. It is debatable, whether the criticism of the defining postulates
by Blass and Gurevich also applies to this work; a thorough comparison with the simplified
parallel ASM thesis has not yet been conducted.

There have been many attempts to capture asynchronous parallelism, as marked in the-
ories of concurrency as well as distribution (see [26] for a collection of many distributed or
concurrent algorithms). Commonly known approaches are among others the actor model [3],
Process Algebras [4], Petri nets [5], high-level Petri nets [20], and trace theory [28]. Gurevich’s
axiomatic definition of partial-order runs [22] tries to reduce the problem to families of se-
quential algorithms, but the theory is too strict. As shown in [12] it is easy to find concurrent
algorithms that satisfy sequential consistency [25], but their runs are not partial-order runs.
One problem is that the requirements for partial-order runs always lead to linearisability.

The lack of a convincing definition of asynchronous parallel algorithms was overcome by
the work on concurrent algorithms in [12], in which a concurrent algorithm is defined by a
family of agents, each equipped with a sequential algorithm, possibly with shared locations.
While each individual sequential algorithm in the family is defined by the postulates for
sequential algorithms50, the family as a whole is subject to a concurrency postulate requiring
that in a concurrent run, a successor state of the global state of the concurrent algorithm
results from simultaneously applying update sets of finitely many agents that have been built

45 Note that by their definition, Moschovakis’ recursive programs satisfy the bounded exploration postulate
and their non-deterministic version [30, Sect. 2E] is carefully restricted to bounded choice.

46 Even the background, that is left implicit in the sequential thesis, only refers to truth values and operations
on them.

47 The rationale behind this conjecture is that in a particular state the multiset comprehension terms give
rise to multisets, and selecting one value out each of these multisets defines the proclets used by Blass and
Gurevich.

48 The latter aspect was already part of the thesis by Blass and Gurevich.
49 Apparently, authors of [19] and [16] seemed not to be aware of each others’ research.
50 A remark in [12] states that the restriction to sequential algorithms is not really needed. An extension to

concurrent algorithms covering families of parallel algorithms is handled in [32].
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on some previous states (not necessarily the current one). The theory shows that concurrent
algorithms are captured by concurrent ASMs. Given the fact that in concurrent algorithms,
in particular in case of distribution, message passing between agents is more common than
shared locations, it has further been shown in [13] that message passing can be captured
by regarding mailboxes as shared locations, which leads to communicating concurrent ASMs
capturing concurrent algorithms with message passing. In [17] it has been shown how the
popular bulk synchronous parallel bridging model can be captured by a specialised behavioural
theory that builds on top of the concurrent ASM thesis in [12].

Recently, there is an increased interest in distributed adaptive systems. Adaptivity refers
to the ability of an algorithm to modify itself, which is known as linguistic reflection. A
behavioural theory of reflective sequential algorithms has been developed in [31].51 Again
the key aspect is the generalisation of bounded exploration witnesses, which for reflective
algorithms comprise terms that can be evaluated to terms and these to values in the base set,
so coincidence after double evaluation is required for the equality of update sets in states.
The integration of the behavioural theories for parallelism, concurrency and reflection has
been sketched in [32], but a more detailed presentation of the combined theory still has to be
written up.

7 Conclusion

The main contribution of this article is a behavioural theory of sequential recursive algorithms,
providing a) a purely logical definition of this notion, which is independent from any particular
abstract machine or programming model, b) a natural extension of nd-seq ASMs to recursive
ASMs, and c) a proof that recursive ASMs capture sequential recursive algorithms. The
resulting recursive ASM thesis shows (together with the sequential and the concurrent ASM
thesis) that the class of recursive algorithms is strictly larger and more expressive than the
class of nd-seq algorithms and strictly smaller and less expressive than the class of concurrent
algorithms.

As an application of this theory we add to the observation in [22]—namely that recursive
algorithms give rise to partial-order runs—a proof that conversely, every finitely composed
concurrent algorithm with only partial-order runs is equivalent to a recursive algorithm. This
corrects the criticism formulated in [10] that the answer given by Blass and Gurevich in [6]
is an “overkill”, as partial-order runs capture only a restricted concept of concurrency. On
the other hand, it underlines also the need for a much more general theory of concurrent
algorithms, which is provided by the behavioural theory of concurrent algorithms [12].

The debate about “What is an algorithm?” is not yet finished, as only an integration of
all partial behavioural theories of sequential, recursive, parallel, concurrent, reflective, etc.
algorithms52 will provide a final answer to the question. A comprehensive definition of the
notion of algorithm will require all the known particular classes of algorithms to be integrated
in such a way that the specific subclasses arise as special cases of the general definition.
However, given that in all the behavioural theories we mentioned above the postulates always
concern sequential or branching time, abstract state, background and bounded exploration,

51 A preliminary version of this theory appeared in [18].
52 This list is not yet complete, as in most of the related work mentioned above the aspect of non-determinism

as well as randomness is not yet included. However, non-determinism is covered in ASMs [15] and is crucial
for their applications in system design and analysis.
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the perspective of such an integration looks promising. We invite the reader to contribute to
this endeavor.
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