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Abstract. Concolic testing is a well-known validation technique for imperative and object ori-
ented programs. In a previous paper, we have introduced an adaptation of this technique to logic
programming. At the heart of our framework lies a specific procedure that we call “selective
unification”. It is used to generate appropriate run-time goals by considering all possible ways
an atom can unify with the heads of some program clauses. In this paper, we show that the ex-
isting algorithm for selective unification is not complete in the presence of non-linear atoms. We
then prove soundness and completeness for a restricted version of the problem where some atoms
are required to be linear. We also consider concolic testing in the context of constraint logic
programming and extend the notion of selective unification accordingly.
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1. Introduction

Concolic testing is a well-known validation technique for imperative and object oriented programs.
Roughly speaking, concolic testing combines concrete and symbolic execution (called concolic ex-
ecution) in order to systematically produce test cases that aim at exploring all feasible execution
∗This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Ciencia, Innovación y
Universidades/AEI under grant TIN2016-76843-C4-1-R and by the Generalitat Valenciana under grant Prometeo/2019/098
(DeepTrust).
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paths of a program. Typically, one starts with an arbitrary concrete call, say main(i1, . . . , in) and
runs both concrete and symbolic execution on main(i1, . . . , in) and main(v1, . . . , vn), respectively,
where v1, . . . , vn are symbolic variables denoting unknown input values. In contrast to ordinary sym-
bolic execution, the symbolic component of concolic execution does not explore all possible execution
paths, but just mimics the steps of the concrete execution, gathering along the way constraints on the
symbolic variables to follow a particular path. Once a concolic execution terminates,1 one uses the
collected constraints to produce new concrete calls that will explore different paths. For instance, if
the collected constraints are c1, c2, c3, then by solving ¬c1 we get values for the symbolic variables
of main(v1, . . . , vn) so that the resulting concrete call will follow a different execution path. Other
alternative initial calls can be obtained by solving c1 ∧ ¬c2 and c1 ∧ c2 ∧ ¬c3.

We have introduced an adaptation of this technique to logic programming [1]. In contrast to the
case of imperative or object oriented programming, computing the alternatives of a given execution is
more complex in this setting. Consider for instance a predicate p/n defined by the set of clauses

{H1 ← B1, H2 ← B2, H3 ← B3}

and a goal where the selected atom, p(t1, . . . , tn), only unifies with H1. What are then the possible
alternatives? In principle, one could think that producing a goal where the selected atom only unifies
with H2 and another goal where the selected atom only unifies with H3 is enough. However, there
are five more possibilities: unifying with no clause, unifiying with both H1 and H2, unifying with
both H1 and H3, unifying with both H2 and H3, and unifying with all three atoms H1, H2 and H3.2

Moreover, we found in [1] that producing goals that satisfy each of these conditions is far from trivial.
This problem, that we call “selective unification”, can be roughly expressed as follows: given an atom
A, a set of positive atoms H+ and a set of negative atoms H−, we look for a substitution θ (if it
exists) for the variables of A such that Aθ unifies with every atom in H+ but it does not unify with
any atom in H−. Observe that we want Aθ to unify with each atom in H+ separately. To the best
of our knowledge, this problem has not been considered before in the literature. In order to produce
valid run time goals (i.e., appropriate test cases) we also consider a groundness condition i.e., a set G
of variables that we want to be ground by θ.

Let us illustrate the notion of selective unification with a simple example. Consider, e.g., an atom
p(X) and the sets H+ = {p(f(a)), p(f(Y ))}, H− = {p(b)} and G = {X}. A solution of this
selective unification problem is {X/f(a)}, since p(X){X/f(a)} = p(f(a)) unifies with p(f(a)) and
also with p(f(Y )) (with different unifiers, though), but it does not unify with p(b). Moreover, the
variable X ∈ G is ground. In contrast, the problem with atom p(X) and sets H+ = {p(a), p(b)} and
H− = {p(c)} is unfeasible since we need a renaming, e.g., θ = {X/Y }, in order for p(X)θ to unify
with both p(a) and p(b), but then p(X)θ would also unify with p(c).

In [1] we introduced a first algorithm for selective unification. Unfortunately, it was incomplete.
In this paper, we further analyze this problem (see Sect. 3), identifying the potential sources of incom-
pleteness, proving some properties, and introducing refined algorithms which are sound and complete
under some circumstances. In Sect. 4, we also consider concolic testing in the context of constraint

1Concrete executions are assumed terminating via termination analysis or timeouts or limits on the number of inferences.
2In general, though, not all possibilities are feasible.
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logic programming (CLP) [2, 3], and extend the notion of selective unification accordingly. Finally,
Sect. 5 discusses some related work and concludes the paper.

2. Preliminaries

We assume some familiarity with the standard definitions and notations for logic programming as
introduced in [4] and for constraint logic programming as introduced in [3, 5]. Nevertheless, in order
to make the paper as self-contained as possible, we present in this section the main concepts which
are needed to understand our development.

We denote by |S| the cardinality of the set S and by N the set of natural numbers. From now on,
we fix an infinite countable set V of variables together with a signature Σ, i.e., a pair 〈F,ΠC〉 where
F is a finite set of function symbols and ΠC is a finite set of predicate symbols with F ∩ ΠC = ∅ and
(F ∪ΠC) ∩ V = ∅. Every element of F ∪ΠC has an arity which is the number of its arguments. We
write f/n ∈ F (resp. p/n ∈ ΠC) to denote that f (resp. p) is an element of F (resp. ΠC) whose arity
is n ≥ 0. A constant symbol is an element of F whose arity is 0.

A term is a variable, a constant symbol or an entity f(t1, . . . , tn) where f/n ∈ F , n ≥ 1 and
t1, . . . , tn are terms. For any term t, we let Var(t) denote the set of variables occurring in t. This
notation is naturally extended to sets of terms. We say that t is ground when Var(t) = ∅. Positions
are used to address the nodes of a term viewed as a tree. A position p in t, in symbols p ∈ Pos(t),
is represented by a finite sequence of natural numbers, where ε denotes the root position. We let t|p
denote the subterm of t at position p and t[s]p the result of replacing the subterm t|p by the term s.
The depth depth(t) of t is defined as: depth(t) = 0 if t is a variable and depth(f(t1, . . . , tn)) =
1 +max(depth(t1), . . . , depth(tn)), otherwise. We say that t|p is a subterm of t at depth k if there are
k nested function symbols from the root of t to the root of t|p.

An atomic constraint is an element p/0 of ΠC or an entity p(t1, . . . , tn) where p/n ∈ ΠC , n ≥ 1
and t1, . . . , tn are terms. A first-order formula on Σ is built from atomic constraints in the usual way
using the logical connectives ∧, ∨, ¬, →, ↔ and the quantifiers ∃ and ∀. For any formula φ, we let
Var(φ) denote its set of free variables and ∃φ (resp. ∀φ) its existential (resp. universal) closure.

We fix a Σ-structure D, i.e., a pair 〈D, [·]〉 which is an interpretation of the symbols in Σ. The
set D is called the domain of D and [·] maps each f/0 ∈ F to an element of D, each f/n ∈ F with
n ≥ 1 to a function [f ] : Dn → D, each p/0 ∈ ΠC to an element of {0, 1}, and each p/n ∈ ΠC with
n ≥ 1 to a boolean function [p] : Dn → {0, 1}. We assume that the binary predicate symbol = is in Σ
and is interpreted as identity in D. A valuation is a mapping from V to D. Each valuation v extends
by morphism to terms. A valuation v induces a valuation [·]v of terms to D and of formulas to {0, 1}.

Given a formula φ and a valuation v, we write D |=v φ when [φ]v = 1. We write D |= φ when
D |=v φ for all valuations v. Notice that D |= ∀φ if and only if D |= φ, that D |= ∃φ if and only if
there exists a valuation v such that D |=v φ, and that D |= ¬∃φ if and only if D |= ¬φ. We say that a
formula φ is satisfiable (resp. unsatisfiable) in D when D |= ∃φ (resp. D |= ¬φ).

We fix a set L of admitted formulas, the elements of which are called constraints. We suppose that
L is closed under variable renaming, existential quantification and conjunction and that it contains all
the atomic constraints. We assume that there is a computable function solv which maps each c ∈ L
to one of true or false indicating whether c is satisfiable or unsatisfiable in D. We call solv the
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constraint solver.

Example 2.1. (CLP(Qlin ))
The constraint domain Qlin has <, ≤, =, ≥, > as predicate symbols, +, −, ∗, / as function sym-
bols and sequences of digits as constant symbols. L is the set of conjunctions of linear atomic con-
straints. The domain of computation is the structure with the set of rationals, denoted by Q, as domain
and where the predicate symbols and the function symbols are interpreted as the usual relations and
functions over the rationals. A constraint solver for Qlin always returning either true or false is
described in [6]. �

Example 2.2. (Logic Programming)
The constraint domain Term has “=” as predicate symbol and strings of alphanumeric characters
as function symbols. The domain of computation is the set of finite trees (or, equivalently, of finite
terms), Tree . The interpretation of a constant is a tree with a single node labeled with the constant.
The interpretation of an n-ary function symbol f is the function fTree : Treen → Tree mapping the
trees T1, . . . , Tn to a new tree with root labeled with f and with T1, . . . , Tn as child nodes. A constraint
solver always returning either true or false is provided by the unification algorithm. �

Sequences of distinct variables are denoted by
#»

X ,
#»

Y or
#»

Z and are sometimes considered as sets of
variables: we may write ∀ #»

X , ∃ #»
X or

#»

X ∪ #»

Y . Sequences of (not necessarily distinct) terms are denoted
by #»s , #»

t or #»u . Given two sequences of n terms #»s := (s1, . . . , sn) and #»
t := (t1, . . . , tn), we write

#»s =
#»
t to denote the constraint s1 = t1 ∧ · · · ∧ sn = tn.

A structure D admits quantifier elimination if for each first-order formula φ there exists a quanti-
fier-free formula ψ such that D |= φ ↔ ψ. D admits variable elimination if for each quantifier-free
formula φ(

#»

X,Y ) there exists a quantifier-free formula ψ(
#»

X) such that D |= ∃Y φ(
#»

X,Y ) ↔ ψ(
#»

X).
For instance, Qlin admits variable elimination via the Fourier-Motzkin algorithm (see e.g., [7]).

The signature in which all programs and queries under consideration are included is ΣL :=
〈F,ΠC ∪ ΠP 〉 where ΠP is the set of predicate symbols that can be defined in programs, with
ΠC ∩ ΠP = ∅. An atom has the form p(t1, . . . , tn) where p/n ∈ ΠP and t1, . . . , tn are terms.
The definitions and notations on terms (Var, depth , ground,. . . ) are extended to atoms in the natural
way. A rule has the form H ← c∧ #»

B where H is an atom called the head of the rule, c is a satisfiable
constraint, and

#»

B is a finite sequence of atoms. A program is a finite set of rules. A state has the form
〈d | #»

B〉 where
#»

B is a sequence of atoms and d is a satisfiable constraint. A constraint atom is a state
of the form 〈d | p( #»

t )〉. A constraint atom of the form 〈c | p( #»

X)〉 is projected when Var(c) ⊆ { #»

X}.
We consider the usual operational semantics given in terms of derivations from states to states. Let

〈d | p( #»u ),
#»

B〉 be a state and p( #»s )← c∧
# »

B′ be a fresh copy of a rule r. When solv( #»s = #»u ∧ c∧ d) =
true then

〈d | p( #»u ),
#»

B〉=⇒
r
〈 #»s = #»u ∧ c ∧ d |

# »

B′,
#»

B〉

is a derivation step of 〈d | p( #»u ),
#»

B〉 with respect to r with p( #»s ) ← c ∧
# »

B′ as its input rule. Let S
be the state 〈d | #»

B〉. S is failed if
#»

B is not empty and no derivation step is possible. S is successful
if

#»

B is empty. We write S +
=⇒
P
S′ to summarize a finite number (> 0) of derivation steps from S to

S′ where each input rule comes from program P . Let S0 be a state. A sequence of derivation steps
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S0 =⇒
r1

S1 =⇒
r2
· · · of maximal length is called a derivation of P ∪{S0} when r1, r2, . . . are rules from

P and the standardization apart condition holds, i.e., each input rule used is variable disjoint from the
initial state S0 and from the input rules used at earlier steps.

Substitutions (denoted as θ, σ . . .) and their operations are defined as usual. In particular, for any
substitution θ := {X1/t1, . . . , Xn/tn}, the set Dom(θ) = {X1, . . . , Xn} is called the domain of θ
and Ran(θ) is the set of variables appearing in t1, . . . , tn. We let id denote the empty substitution.
The application of θ to a syntactic object s (a term or an atom) is usually denoted by sθ rather than
θ(s). The composition of θ and σ, written as θσ, is defined as: X(θσ) = (Xθ)σ for any variable
X . We say that θ is idempotent when θθ = θ. We write θ ≤ σ iff σ = θη for some substitution
η. The restriction θ |̀V of θ to a set of variables V is defined as follows: Xθ |̀V = Xθ if X ∈ V
and Xθ |̀V = X otherwise. A syntactic object s1 is more general than a syntactic object s2, denoted
s1 ≤ s2, if there exists a substitution θ such that s2 = s1θ. A variable renaming is a substitution
that is a bijection on V . We write s1 ∼ s2 iff s1 = s2ρ for some variable renaming ρ. A substitution
θ is a unifier of s1 and s2 iff s1θ = s2θ; furthermore, θ is the most general unifier of s1 and s2,
denoted by mgu(s1, s2) if, for every other unifier σ of s1 and s2, we have that θ ≤ σ. By abuse of
notation, we also use mgu on a conjunction of equations, i.e., mgu(s1 = t1 ∧ . . . ∧ sn = tn) = θ
if siθ = tiθ for all i = 1, . . . , n and for every other unifier σ of si and ti, i = 1, . . . , n, we have
θ ≤ σ. A syntactic object is linear if it does not contain multiple occurrences of the same variable.
A substitution {X1/t1, . . . , Xn/tn} is linear if t1, . . . , tn are linear and, moreover, they do not share
variables.

3. Selective Unification in Logic Programming

In this section, we consider concolic testing and selective unification in the context of logic program-
ming. In this setting, a goal is a finite sequence of atoms and the empty goal is denoted by true.
Moreover, a rule has the form H ← #»

B and is rather called a clause. Note that we only consider
definite clauses i.e., clauses whose head consists precisely of one atom.

3.1. Concolic Testing in Logic Programming

We first summarize the framework for concolic testing of logic programs introduced in [1]. On the
positive side, in logic programming, the same principle for standard execution, SLD resolution, can
also be used for symbolic execution. On the negative side, computing alternative test cases is way more
complex than in the traditional setting (e.g., for imperative programs) due to the non-deterministic
nature of logic programming computations.

Concolic execution combines both concrete and symbolic execution. However, despite the fact that
the concrete and symbolic execution mechanisms are the same, one still needs to consider concolic
states that combine both a concrete and a symbolic (less instantiated) goal. Our concolic execution
semantics deals with non-determinism and backtracking explicitly, similarly to the linear operational
semantics of [8] for Prolog. In this context, rather than considering a goal, the semantics considers a
sequence of goals that, roughly, represents a frontier of the execution tree built so far. To be precise,
concolic states have the form 〈S ][ S′〉, where S and S′ are sequences of (possibly labeled) concrete
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(success) 〈trueδ |S ][ trueθ |S′〉 � 〈SUCCESSδ ][ SUCCESSθ〉

(failure)
〈(fail, #»

B)δ ][ (fail,
# »

B′)θ〉 � 〈FAILδ ][ FAILθ〉

(backtrack)
S 6= ε

〈(fail, #»
B)δ |S ][ (fail,

# »

B′)θ |S′〉 � 〈S ][ S′〉

(choice)
clauses(A,P ) = #»c ∧ #»c = {c1, . . . , cn} ∧ n > 0 ∧ clauses(A′, P ) =

#»

d

〈(A, #»
B)δ |S ][ (A′,

# »

B′)θ |S′〉 c(`( #»c ),`(
#»
d )) 〈(A,

#»
B)c1δ | . . . |(A,

#»
B)cnδ |S

][ (A′,
# »

B′)c1θ | . . . |(A
′,

# »

B′)cnθ |S
′〉

(choice fail)
clauses(A,P ) = ∅ ∧ clauses(A′, P ) = #»c

〈(A, #»
B)δ |S ][ (A′,

# »

B′)θ |S′〉 c(∅,`( #»c )) 〈(fail,
#»
B)δ |S ][ (fail,

# »

B′)θ |S′〉

(unfold)
mgu(A,H1) = σ ∧mgu(A′, H1) = σ′

〈(A, #»
B)H1←

# »
B1

δ |S ][ (A′,
# »

B′)H1←
# »
B1

θ |S′〉 � 〈(
#  »
B1σ,

#»
Bσ)δσ |S ][ (

#  »
B1σ′,

# »

B′σ′)θσ′ |S′〉

Figure 1. Concolic execution semantics

and symbolic goals, respectively. The structure of S and S′ is identical, the only difference being
that the atoms in S′ might be less instantiated. Here, we use the vertical bar “|” as a delimiter for
sequence elements. For instance, (A,

#»

B)cδ |S denotes a sequence of goals ending with the sequence S
and starting with the goal (A,

#»

B)cδ, which itself starts with the atom A, ends with the sequence
#»

B and
is labeled with the substitution δ and the clause c. Given an arbitrary atom p( #»u ), an initial concolic
state has the form 〈p( #»u )id ][ p(

#»

X)id 〉, where
#»

X are different fresh variables and the labels id denote
an initial (empty) computed substitution. Here, p( #»u ) can be considered a test case (a concrete goal),
while p(

#»

X) is the corresponding call with unknown, symbolic arguments, that we use to collect the
constraints (here: substitutions for

#»

X) using symbolic execution.

Example 3.1. Given a concrete (atomic) goal, p(f(X)), the corresponding initial concolic state has
the form 〈p(f(X))id ][ p(N)id 〉, where N is a fresh variable. �

In the following, we assume that every clause c has a corresponding unique label, which we
denote by `(c). By abuse of notation, we denote by `( #»c ) the set of labels {`(c1), . . . , `(cn)}, where
#»c = c1, . . . , cn. Also, given an atom A and a logic program P , clauses(A,P ) returns the sequence of
renamed apart program clauses of P whose head unifies with A. The concolic execution semantics is
given by the rules of the labeled transition relation shown in Fig. 1. Some additional notations will
be explained with the corresponding rules.

• The first rules, success and failure, use fresh constants labeled with a computed substitution
to denote a final state: SUCCESSδ and FAILδ, respectively.3 Note that we are interested in both

3We note that the semantics only considers the computation of the first solution for the initial goal. This is the way most



F. Mesnard, É. Payet, G. Vidal / Selective Unification 7

〈p(f(X))id ][ p(N)id 〉

 choice
c({`1,`2},{`1,`2,`3}) 〈p(f(X))`1id |p(f(X))`2id ][ p(N)`1id |p(N)`2id 〉

 unfold
� 〈true{X/a} |p(f(X))`2id ][ true{N/f(a)} |p(N)`2id 〉

 success
� 〈SUCCESS{X/a} ][ SUCCESS{N/f(a)}〉

Figure 2. Concolic execution for 〈p(f(X))id ][ p(N)id〉

sucessful and (finitely) failing derivations. Rule backtrack applies when the first goal in the
sequence finitely fails, but there is at least one alternative choice. In these three rules, we deal
with the concrete and symbolic components of the concolic state in much the same way. Also,
the steps are labeled with an empty label “�”.

• Rule choice represents the first stage of an SLD resolution step. If there is at least one clause
whose head unifies with the leftmost atom of the concrete goal, this rule introduces as many
copies of a goal as clauses returned by function clauses. Moreover, we label each copy of
the goal (A,

#»

B) with a matching clause. If there is at least one matching clause, unfolding is
then performed by rule unfold using the clause labeling the goal. Otherwise, if there is no
matching clause, rule choice fail returns fail so that either rule failure or backtrack applies
next. A relevant point here is that the steps with rules choice and choice fail are labeled with
a term of the form c(L1, L2), where L1 are the labels of the clauses matching the selected atom
in the concrete goal and L2 are the labels of the clauses matching the selected atom in the
corresponding symbolic goal. Note that L1 ⊆ L2 since the concrete goal is always an instance
of the symbolic goal. These labels are essential to compute alternative test cases during concolic
testing, as we will see below.

• Essentially, one can say that the application of rules choice and unfold amounts to an unfolding
step with plain SLD resolution. However, this is only true for the concrete component of the
concolic state. Note that regarding the symbolic component, we do not consider all matching
clauses,

#»

d , but only the clauses matching the concrete goal (i.e., #»c ). This is a well known
behavior in concolic execution: symbolic execution is restricted to only mimic the steps of the
corresponding concrete execution.

Example 3.2. Consider the following logic program:

(`1) p(f(a))← true. (`2) p(f(b))← true. (`3) p(c)← true.

and the initial state 〈p(f(X))id ][ p(N)id 〉. Concolic execution proceeds as shown in Fig. 2. �

Prolog applications are used and, thus, the semantics models this behaviour in order to consider a realistic scenario. But if
one wish to test a non-deterministic predicate p, one can add a clause top← p(

#»
X), fail. and start a concolic execution with

the initial state 〈topid ][ topid〉.
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Concolic testing aims at computing “test cases” (concrete atomic goals in our context) that cover all
execution paths. Of course, since the number of paths is often infinite, one should consider a timeout
or some other method to ensure the termination of the process. Note that concolic testing methods are
typically incomplete. A concolic testing algorithm should follow these steps:

1. Given a concrete goal, we construct the associated initial concolic state and run concolic execu-
tion. We assume that concrete goals are terminating and, thus, this step is always finite too.

2. Then, we consider each application of rule choice in this concolic execution. Consider that the
step is labeled with c(L1, L2). Here, we are interested in looking for instances of the symbolic
goal that match the clauses of every set in ℘(L2) \ L1 since the set L1 is already considered by
the current execution.4

3. Checking the feasibility for each set in℘(L2)\L1 is done as follows. LetA be the selected atom
in the symbolic goal and let L ∈ ℘(L2) \ L1 be the considered set of clauses. Let H+ be the
atoms in the heads of the clauses in L (i.e., the clauses we want to unify with) and letH− be the
atoms in the heads of the clauses in L2 \L (i.e., the clauses we do not want to unify with). Then,
we are looking for a substitution, θ, such that Aθ unifies with each atom in H+ but it does not
unify with any atom inH−. This is what we call a selective unification problem (see Sect. 3.2).
As mentioned before, this is the first time such a unification problem has been considered in the
literature. Usually, we also add another constraint: some variables must become ground by θ.
This last requirement is needed to ensure that Aθ is indeed a valid concrete (run time) goal and,
thus, its execution terminates.5

4. Finally, for each selective unification problem which is solvable, we have a new concrete goal
(i.e., a new test case) and the process starts again. Moreover, one should keep track of the
concrete goals already considered and the paths already explored in order to avoid computing
the same test case once and again.

Let us now illustrate the concolic testing procedure with a simple example.

Example 3.3. Consider again the program of Ex. 3.2, together with the initial goal p(f(X)). For
simplicity, we will not consider a groundness condition in this example. Let us start with the concolic
execution shown in Fig. 2. Given the label c({`1, `2}, {`1, `2, `3}), we have to consider the sets in
℘({`1, `2, `3}) \ {`1, `2}, i.e.,

{∅, {`1}, {`2}, {`3}, {`1, `3}, {`2, `3}, {`1, `2, `3}} .

Therefore, our first selective unification problem, associated to the empty set, considers the atom
p(N) and the sets H+ = ∅ and H− = {p(f(a)), p(f(b)), p(c)}. A solution is, e.g., {N/a} and, thus,
p(N){N/a} = p(a) is another test case to consider.
4Here, we denote by ℘(S) the powerset of a set S. Moreover, for simplicity, we often use the label of a clause to refer to
the clause itself.
5Which variables should be ground can be selected by instantiation mode declarations or by termination analysis, as some
analysers for logic programming can infer subsets of argument positions such that if these arguments are ground, the com-
putation is finite.
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As for the second set, {`1}, the selective unification problem considers the atom p(N) and the
setsH+ = {p(f(a))} andH− = {p(f(b)), p(c)}. Here, the only solution is {N/f(a)} and, thus, the
atom p(N){X/f(a)} = p(f(a)) is another test case to consider.

The process goes on producing the test cases p(f(b)) (for the set {`2}), p(c) (for the set {`3}), and
p(N) (for the set {`1, `2, `3}), the remaining problems being unfeasible. �

3.2. The Selective Unification Problem (SUP)

We write A1 ≈ A2 to denote that the atoms A1 and A2 unify for some substitution.

Definition 3.4. (Selective Unification Problem, P)
Let A be an atom, G be a set of variables with G ⊆ Var(A) and H+ and H− be finite sets of
atoms such that: the elements of A ∪ H+ ∪ H− are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪ H−. The selective unification problem for A with respect to H+, H− and G consists in
determining whether the following set of substitutions is empty:

P(A,H+,H−, G) =

σ|̀Var(A)
∣∣∣∣∣∣∣
∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)

∧ Gσ is ground

 .

The substitutions in P(A,H+,H−, G) (if any) are the solutions of the problem. We say that the
problem is satisfiable when it has a solution, i.e., P(A,H+,H−, G) 6= ∅.

Example 3.5. We illustrate the notion of selective unification with several examples below.

• Let A = p(X), H+ = {p(a), p(b)}, H− = ∅ and G = ∅. Then, the empty substitution is a
solution, i.e., id ∈ P(A,H+,H−, G), as p(X) unifies with p(a) and p(b).

• Let A = p(X), H+ = {p(a), p(b)}, H− = {p(f(Z))} and G = ∅. This problem has no
solution, i.e., P(A,H+,H−, G) = ∅. Indeed, one cannot find an instance of A that unifies with
both atoms inH+ and does not unify with p(f(Z)).

• Let A = p(X), H+ = {p(s(Y ))}, H− = {p(s(0))} and G = {X}. There are infinitely
many solutions, among them we find {X/sn+2(0)} for n ∈ N. For instance, let us check that
σ = {X/s(s(0))} is a solution. We have Aσ = p(s(s(0))). Moreover, Aσ and p(s(Y )) unify
while Aσ and p(s(0)) do not unify, and Xσ is ground.

• Let A = p(X,Y ), H+ = {p(a, b), p(Z,Z)} and H− = ∅ = G. Then, id , {X/a} and {Y/b}
are solutions. For instance, let us check that σ = {X/a} is a solution. We have Aσ = p(a, Y ),
henceAσ unifies with p(a, b) and with p(Z,Z). Moreover, asH− andG are empty, the last two
conditions of P(A,H+,H−, G) are trivially true. �
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3.3. A Sound Algorithm for the SUP

When the considered signature is finite, the following algorithm is sound and complete for solving
a selective unification problem for an atom A with respect to H+, H− and G: first, bind the vari-
ables of A with all the terms of depth 0. If all the corresponding substitutions are not members of
P(A,H+,H−, G), then try with all the terms of depth 1. We keep increasing the considered term
depth until a solution is found. Here, we prove that there exists a finite number n such that, if a
solution has not been found when considering the terms of depth n, then the problem is not satisfiable.

For simplicity, in the next result we consider that both A andH+ are linear.

Theorem 3.6. (Decidability)
Let A be a linear atom with G ⊆ Var(A), H+ be a finite set of linear atoms and H− be a finite set
of atoms such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then,
checking that P(A,H+,H−, G) 6= ∅ is decidable.

Proof:
Here, we assume the naive algorithm sketched above. Let us first consider that all atoms in {A} ∪
H+ ∪H− are linear. Let k be the maximum depth of the atoms in {A} ∪H+ ∪H−. Consider the set

Θ′ = {θ | Dom(θ) ⊆ Var(A), depth(Aθ) ≤ k + 1} .

On Θ′, we define the binary relation θ1 ' θ2 iff Aθ1 ∼ Aθ2. The relation ' is an equivalence
relation. Let Θ = Θ′/'. The set Θ is usually large but finite. Now, we proceed by contradiction and
assume that the problem is satisfiable but there is no solution in Θ i.e., P(A,H+,H−, G) 6= ∅ and
P(A,H+,H−, G) ∩Θ = ∅.

Let σ be one of such solutions i.e., σ ∈ P(A,H+,H−, G) and σ 6∈ Θ. Let k′ be the maximum
depth of the atoms in H+. We have k′ ≤ k. Let s1, . . . , sn be the non-variable terms at depth
k′ + 1 or higher in Aσ and let p1, . . . , pn be their respective position. Trivially, all atoms in H+

should have a variable at depth k′ or lesser in order to still unify with Aσ. Therefore, replacing
s1, . . . , sn by any term in Aσ, one gets and an atom that still unifies with all atoms in H+. Formally,
(. . . (Aσ[t1]p1) . . .)[tn]pn ≈ H for all H ∈ H+ and for all terms t1, . . . , tn.

Now, let us consider the negative atoms. Let us focus on the worst case, where the maximum depth
of the atoms inH− is k ≥ k′. Since ¬(Aσ ≈ H) for all H ∈ H− and (. . . (Aσ[t1]p1) . . .)[tn]pn ≈ H
for all H ∈ H+ and for all terms t1, . . . , tn, let us choose terms

t′1, . . . , t
′
n such that

{
¬((. . . (Aσ[t′1]p1) . . .)[t′n]pn ≈ H) for all H ∈ H− and
(. . . (Aσ[t′1]p1) . . .)[t′n]pn has depth k + 1.

Note that this is always possible since, in the worst case, for each term in the atoms of H− at depth
k, we might need a term at depth k + 1 (when the term in the atom of H− is the only constant of the
signature, so we need to introduce a function symbol and another constant if the argument should be
ground). Let σ′ be a substitution such that Dom(σ′) ⊆ Var(A) and Aσ′ = (. . . (Aσ[t′1]p1) . . .)[t′n]pn .
Then, σ′ ∈ P(A,H+,H−, G) with σ′ ∈ Θ and, thus, we get a contradiction. ut
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Extending the above result to non-linear atoms is not difficult but it is tedious since we have to consider
a higher depth that may depend on the multiple occurrences of the same variables. For instance, given a
non-linear atom A = p(X, f(f(X))) withH+ = {p(f(a), f(Y ))}, considering solutions up to depth
2 (the maximum depth of the considered atoms) is not enough. Here, one would need a substitution
σ = {X/f(a)} so that the depth of p(X, f(X))σ = p(f(a), f(f(f(a)))) is 4. In general, when
considering non-linear atoms, there still exists a finite depth k such that the set Θ (as in the proof
above) is finite, but the considered depth might be higher. On the other hand, we conjecture that the
above naive algorithm would also be complete for infinite signatures (e.g., integers) since the number
of symbols in the considered atoms is finite. Nonetheless, such algorithms may be so inefficient that
they are impractical in the context of concolic testing.

We note that the set P(A,H+,H−, G) is usually infinite. Moreover, even when considering only
the most general solutions in this set, there may still exist more than one.

Example 3.7. Consider A = p(X,Y ), H+ = {p(Z,Z), p(a, b)}, H− = {p(c, c)} and G = ∅. Then,
both substitutions {X/a, Y/U} and {X/U, Y/b} are most general solutions in P(A,H+,H−, G). In
principle, any of them is equally good in our context. �

In [1], we have introduced a stepwise method that, intuitively speaking, proceeds as follows:

• First, we produce some “maximal” substitutions θ forA such thatAθ still unifies with the atoms
in H+. Here, we use a special set U of fresh variables with Var({A} ∪ H+ ∪ H−) ∩ U = ∅.
The elements of U are denoted by U , U ′, U1. . . Then, in θ, the variables from U (if any) denote
positions where further binding might prevent Aθ from unifying with some atom inH+.

• In a second stage, we look for another substitution η such that θη is a solution of the selective
unification problem, i.e., θη ∈ P(A,H+,H−, G). Here, we basically follow a generate and test
algorithm (as in the naive algorithm above), but it is now much more restricted thanks to the
bindings in θ and the fact that binding variables from U is not allowed.

In the following, we recall the selective unification algorithm from [1] that was conjectured to be
complete. Here, we prove that it is indeed incomplete and we identify the two sources of incomplete-
ness.

3.3.1. Dealing with the Positive Atoms

In the first stage, we use the variables from the special set U to replace disagreement pairs (see [4]
p. 27). Roughly speaking, given terms s and t, a subterm s′ of s and a subterm t′ of t form a disagree-
ment pair if the root symbols of s′ and t′ are different, but the symbols from s′ up to the root of s and
from t′ up to the root of t are the same. For instance, X, g(a) and b, h(Y ) are disagreement pairs of
the terms f(X, g(b)) and f(g(a), g(h(Y ))). A disagreement pair t, t′ is called simple if one of the
terms is a variable that does not occur in the other term and no variable of U occurs in t, t′.

Definition 3.8. (Positive Unification Algorithm, SU+)
Input: an atomA and a set of atomsH+ such that all atoms are pairwise variable disjoint andA ≈ B

for all B ∈ H+.
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Output: a substitution θ.

1. Let B := {A} ∪ H+.

2. While simple disagreement pairs occur in B do

(a) non-deterministically choose a simple disagreement pair X, t (respectively, t,X) in B;

(b) B := Bη, where η = {X/t}.6

3. While |B| 6= 1 do

(a) non-deterministically choose a disagreement pair t, t′ in B;

(b) replace t, t′ with a fresh variable from U .

4. Return θγ, where B = {B}, Aθ = B, Dom(θ) ⊆ Var(A), and γ is a variable renaming for the
variables of Var(Aθ)\U with fresh variables from V\U .

We denote by SU+(A,H+) the set of non-deterministic substitutions computed by this algorithm.

Observe that the step (2a) involves two types of non-determinism:

• Don’t care non-determinism, when there are several disagreement pairs X, t (or t,X) for dif-
ferent variables. In this case, we can select any of them and continue with the next step. The
final solution would be the same no matter the selection. This is also true for step (3a), since the
order in which the non-simple disagreement pairs are selected will not affect the final result.

• Don’t know non-determinism, when there are several disagreement pairs X, t (or t,X) for the
same variable X . In this case, we should consider all possibilities since they may give rise to
different solutions.

Example 3.9. Let A = p(X,Y ) and H+ = {p(a, b), p(Z,Z)}. Therefore, we start with B :=
{p(X,Y ), p(a, b), p(Z,Z)}. The algorithm then considers the simple disagreement pairs in B. From
X, a, we get η1 := {X/a} and the action (2b) sets B to Bη1 = {p(a, Y ), p(a, b), p(Z,Z)}. The
substitution η2 := {Y/b} results from Y, b and the action (2b) sets B to Bη2 = {p(a, b), p(Z,Z)}.
Now, we have two don’t know non-deterministic possibilities:

• If we consider the disagreement pair a, Z, we have a substitution η3 := {Z/a} and action (2b)
then sets B to Bη3 = {p(a, b), p(a, a)}. Now, no simple disagreement pair occurs in B, hence
the algorithm jumps to the loop at line 3. Action (3b) replaces the disagreement pair b, a with
a fresh variable U ∈ U , hence B is set to {p(a, U)}. As |B| = 1 the while loop of line 3 stops
and the algorithm returns the substitution {X/a, Y/U}.

• If we consider the disagreement pair b, Z instead, we have a substitution η′3 := {Z/b}, and
action (2b) sets B to Bη′3 = {p(a, b), p(b, b)}. Now, by proceeding as in the previous case, the
algorithm returns {X/U ′, Y/b}.

6I.e., we construct a new set by applying η to each atom of B and we assign this new set to B.
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Therefore, SU+(A,H+) = {{X/a, Y/U}, {X/U ′, Y/b}}. �

We note that the algorithm in Def. 3.8 assumes that the input atom A is always more general than
the final atom B so that the last step (line 4) is well defined. An invariant proving that this is indeed
the case can be stated as follows:

Proposition 3.10. The following statement is an invariant of the loops at lines 2 and 3 of the algo-
rithm: A ≈ B for all B ∈ B and A ≤ B′ for some B′ ∈ B.

Proof:
By induction on the iteration n of each loop. ut

Now we prove termination and soundness of the algorithm. To this end, we prove termination
of each loop together with some invariants, see Prop. 3.12 and Prop. 3.13 below. The proof of these
propositions relies on the following technical result.

Lemma 3.11. Suppose that Aθ = Bθ for some atoms A and B and some substitution θ. Then we
have Aθη = Bηθη for any substitution η with [Dom(η) ∩ Var(B)] ∩ Dom(θ) = ∅ and Ran(η) ∩
Dom(θη) = ∅.

Proof:
For any X ∈ Var(B),

• either X 6∈ Dom(η) and then Xηθη = Xθη

• or X ∈ Dom(η) and then Xηθη = (Xη)θη = Xη because Ran(η) ∩ Dom(θη) = ∅. More-
over, X 6∈ Dom(θ) because [Dom(η) ∩ Var(B)] ∩ Dom(θ) = ∅, so Xθη = Xη. Finally,
Xηθη = Xθη.

Consequently, Bηθη = Bθη. As Aθ = Bθ, we have Aθη = Bθη i.e., Aθη = Bηθη. ut

Proposition 3.12. The loop at line 2 always terminates and the following statement is an invariant
for it: for each A′ ∈ {A} ∪ H+ there exists B ∈ B and a substitution θ such that A′θ = Bθ and
Var(B) ∩ Dom(θ) = ∅.

Proof:
Action (2b) reduces the number of simple disagreement pairs in B, which implies termination. The
invariant can be proved by induction on the iteration n of the loop using Lemma 3.11. ut

Proposition 3.13. The loop at line 3 always terminates and the following statement is an invariant
for it: for each A′ ∈ {A} ∪ H+ there exists B ∈ B and a substitution θ such that A′θ = Bθ,
Dom(θ) ⊆ (Var(H+ ∪ {A}) ∪ U) and Var(B) ∩ Dom(θ) ⊆ U .

Proof:
Action (3b) reduces the number of disagreement pairs in B, which implies termination. The invariant
can be proved by induction on the iteration n of the loop using Prop. 3.12 in the base case. ut
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The next theorem states termination and soundness of the Positive Unification Algorithm 3.8. Note
that this result was incomplete in [1] since the condition onRan(η) was missing.

Theorem 3.14. Let A be an atom and H+ be a set of atoms such that all atoms are pairwise variable
disjoint and A ≈ B for all B ∈ H+. The algorithm in Def. 3.8 with input A and H+ always
terminates. Moreover, for all θ ∈ SU+(A,H+), we have that Aθη ≈ H for all H ∈ H+ and for any
idempotent substitution η with Dom(η) ⊆ Var(Aθ)\U andRan(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅.

Proof:
Termination of the algorithm results from Prop. 3.12 and Prop. 3.13.

Upon termination of the loop at line 3 we have |B| = 1. Let B be the element of B with Aθ = B
and let θ′ ∈ SU+(A,H+) be a renaming of θ for the variables of Aθ\U . By Prop. 3.13, we have that
for all H ∈ H+ there exists a substitution µ such that Aθµ = Hµ and the following conditions hold:

• Dom(µ) ⊆ (Var(H+ ∪ {A}) ∪ U) and

• Var(Aθ) ∩ Dom(µ) ⊆ U .

Trivially, there exists a unifier µ′ for Aθ′ and H too, and the same conditions hold: Dom(µ′) ⊆
(Var(H+ ∪ {A}) ∪ U) and Var(Aθ′) ∩ Dom(µ′) ⊆ U .

Now, in order to apply Lemma 3.11, we need to prove the following conditions:

• [Dom(η) ∩ Var(Aθ′)] ∩ Dom(µ′) = ∅. This is trivially implied by the fact that Dom(η) ⊆
Var(Aθ′)\U and Var(Aθ′) ∩ Dom(µ′) ⊆ U .

• Ran(η)∩Dom(µ′η) = ∅. First, since Dom(µ′η) ⊆ Dom(µ′)∪Dom(η), we prove a stronger
claim: Ran(η) ∩ Dom(µ′) = ∅ andRan(η) ∩ Dom(η) = ∅. The second condition is trivially
implied by the idempotency of η. Regarding the first condition, it is implied by Ran(η) ∩
(Var(H+ ∪ {A}) ∪ U) = ∅ since Dom(µ′) ⊆ (Var(H+ ∪ {A}) ∪ U), which is true.

Therefore, by Lemma 3.11, we have that Aθ′ηµ′η = Hµ′η and, thus, Aθ′η unifies with H . Hence,
we have proved that Aθ′η unifies with every atom inH+. ut

3.3.2. Dealing with the Negative Atoms

Now we deal with the negative atoms and the groundness constraints.

Definition 3.15. (Selective Unification Algorithm, SU)
Input: an atom A with G ⊆ Var(A) a set of variables, and two finite sets H+ and H− such that all

atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Generate – using a fair algorithm – pairs (θ, η) with θ ∈ SU+(A,H+) and η an idempotent
substitution such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U and Ran(η) ∩ (Var(H+ ∪
{A}) ∪ U) = ∅; otherwise, return fail.
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2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−); otherwise, return fail.

3. Return θηγ (restricted to the variables of A), where γ is a variable renaming for Aθη with fresh
variables from V\U .

We denote by SU(A,H+,H−, G) the set of non-deterministic (non-failing) substitutions computed
by the above algorithm.

Note that step (1) above is don’t know non-deterministic and, thus, all substitutions in SU+(A,H+)
should in principle be considered. On the other hand, computing the first solution of the above algo-
rithm is enough for concolic testing.

The soundness of the selective unification algorithm is a straightforward consequence of Theo-
rem 3.14 and the fact that the algorithm in Def. 3.15 is basically a fair generate-and-test procedure.
Unfortunately, the selective unification algorithm is not complete in general, as illustrated below.
Ex. 3.16 shows that the algorithm cannot always compute all the solutions while Ex. 3.17 shows that
it may even find no solution at all for a satisfiable instance of the problem.

Example 3.16. Consider the atom A = p(X1, X2) with G = {X1} and the sets

H+ = {p(X, g(X)), p(Z,Z)} and H− = {p(g(b),W )} .

Here, we have
SU+(A,H+) = {{X1/X

′, X2/U}︸ ︷︷ ︸
θ1

, {X1/U,X2/g(X ′)}︸ ︷︷ ︸
θ2

} .

The algorithm is able to compute the solution {X1/g(a), X2/U} from θ1, η = {X ′/g(a)} and γ = id .
However, it cannot compute {X1/g(a), X2/g(X ′)} ∈ P(A,H+,H−, G). �

The algorithm fails here because the instantiation of variables from U is not allowed. In [1], it was
incorrectly assumed that any binding of a variable from U will result in a substitution θ′ such that
Aθ′ does not unify will all the atoms in H+ anymore. However, the universal quantification was not
right. For each variable from U , we can only ensure that there exists some term t such that binding
this variable to t will result in a substitution that prevents A from unifying with some atom in H+.
Therefore, since the algorithm of Def. 3.15 forbids the bindings of the variables in U , completeness is
lost. We will propose a solution to this problem in the next section.

Example 3.17. Consider A = p(X1, X2), H+ = {p(X, a), p(b, Y )}, H− = {p(b, a)} and G = ∅.
Here, we have SU+(A,H+) = {{X1/b,X2/a}} so the algorithm in Def. 3.15 fails. However, the
following substitution {X1/Z,X2/Z} is a solution, i.e., {X1/Z,X2/Z} ∈ P(A,H+,H−, G). �

Unfortunately, we do not know how to generate such non-linear solutions except with the naive semi-
algorithm mentioned at the beginning of this section, which is not generally useful in practice. There-
fore, in the next section we will rule out these solutions.



16 F. Mesnard, É. Payet, G. Vidal / Selective Unification

3.4. The Linear Case

In this section, we introduce an alternative to recover the completeness of the selective unification
algorithm. In the following, we only consider a subset of the solutions, namely those which are linear:

Plin(A,H+,H−, G) = {σ ∈ P(A,H+,H−, G) | σ is linear} .

Hence, we rule out solutions like those in Ex. 3.17 since we do not know how to produce them using
a constructive algorithm. We refer to Plin(A,H+,H−, G) as the solutions to the linear selective
unification problem. Below, we introduce an algorithm for solving the linear problem which is sound
and complete when the atoms in A andH+ are linear.

3.4.1. Dealing with the Positive Atoms

Formally, we are concerned with the following unification problem:

Definition 3.18. (Positive Linear Unification Problem, P+
lin)

Let A be a linear atom and let H+ be a finite set of linear atoms such that all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+. Then, the positive linear unification problem for A with
respect toH+ consists in determining whether the following set is empty:

P+
lin(A,H+) = {σ|̀Var(A)| (∀H ∈ H

+ : Aσ ≈ H) and σ is linear} .

Let us recall that we do not want to find a unifier betweenA and all the atoms inH+, but a substitution
θ such that Aθ still unifies with each atom inH+ independently. So this problem is different from the
usual unification problems found in the literature.

Clearly, |P+
lin(A,H+)| ≥ 1 since the identity substitution is always a solution to the positive linear

unification problem. In general, though, the set P+
lin(A,H+) is infinite.

Example 3.19. Let us consider A = p(X) and H+ = {p(f(Y )), p(f(g(Z)))}. Then, we have
{id , {X/f(X ′)}, {X/f(g(X ′))}, {X/f(g(a))}, {X/f(g(f(X ′)))}, . . .}} ⊆ P+

lin(A,H+), which is
clearly infinite. �

Therefore, in the following, we restrict our attention to so called maximal solutions:

Definition 3.20. (Maximal Solution)
Let A be a linear atom andH+ be a finite set of linear atoms such that all atoms are pairwise variable
disjoint and A ≈ B for all B ∈ H+. We say that a substitution θ ∈ P+

lin(A,H+) is maximal when the
following conditions hold:

1. for any idempotent substitution γ with Dom(γ) ⊆ Var(Aθ) \ U and Ran(γ) ∩ (Var(H+ ∪
{A}) ∪ U) = ∅, (θγ) |̀Var(A) is still an element of P+

lin(A,H+),

2. for any variable U ∈ Var(Aθ) ∩ U , we have that (θ{U/t}) |̀Var(A) is not an element of
P+
lin(A,H+) for all non-variable term t, and
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3. for any X/t ∈ θ and for all non-variable term t|p, replacing it by a non-variable term rooted by
a different symbol will result in a substitution which is not an element of P+

lin(A,H+) anymore.

We let max (A,H+) denote the set of maximal solutions in P+
lin(A,H+).

Intuitively speaking, given a maximal solution θ, the first condition implies that (θγ) |̀Var(A) is still
a solution of the positive linear unification problem as long as no variables from U are bound. The
second and third conditions mean that the rest of the symbols in θ cannot be changed, i.e., binding a
variable from U with a non-variable term or changing any constant or function symbol by a different
one will always result in a substitution which is not a solution anymore.

Example 3.21. Consider, e.g., A = p(X1, X2) and H+ = {p(f(Y ), a), p(f(g(Z)), b)}. Here, we
have {X1/X

′, X2/X
′′} ∈ P+

lin(A,H+) but it is not a maximal solution, i.e., {X1/X
′, X2/X

′′} 6∈
max (A,H+) since binding X ′′ to, e.g., a, will result in a substitution which is not in P+

lin(A,H+).
In contrast, {X1/f(g(Z ′)), X2/U} is a maximal solution. However, any substitution of the form
{X1/f(g(t)), X2/U} for any non-variable term t is not a maximal solution since the third condi-
tion will not hold anymore (one can change the symbols introduced by t and still get a solution in
P+
lin(A,H+)). The substitution {X1/f(Y ′), X2/U} is not a maximal solution as well since binding

Y ′ to, e.g., a, will result in a substitution which is not in P+
lin(A,H+), hence the first condition does

not hold. And the same applies to {X1/f(U ′), X2/U}, which is not a maximal solution either since
we can bind U ′ to g(X ′) and still get a substitution in P+

lin(A,H+). �

In contrast to P+
lin(A,H+), the set max (A,H+) is finite, since it is bounded by the depth of the terms

inH+. Actually, for linear atoms in {A} ∪ H+, there is only one maximal solution.

Proposition 3.22. Let A be a linear atom and H+ be a finite set of linear atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+. Then, the set max (A,H+) is a singleton
(up to variable renaming).

Proof:
We proceed by contradiction. Assume that there are two maximal solutions σ, θ ∈ max (A,H+),
where X/s ∈ σ and X/t ∈ θ for some variable X ∈ Var(A). Consider that s and t differ at position
p such that s|p and t|p are rooted by a different symbol. We distinguish the following cases:

• If s|p and t|p are rooted by different constant or function symbols, we get a contradiction by
condition (3) of maximal solution.

• If s|p is rooted by a constant or function symbol, while t|p is rooted by a variable from U (or
viceversa), we get a contradiction by condition (2) of maximal solution.

• If s|p is rooted by a constant or function symbol, while t|p is rooted by a variable from V\U (or
viceversa), we get a contradiction either by condition (1) or (3) of maximal solution.

• Finally, if s|p is rooted by a variable from U , while t|p is rooted by a variable from V\U (or
viceversa), we get a contradiction either by condition (1) or (2) of maximal solution.
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Therefore, the set max (A,H+) is necessarily a singleton. ut

Moreover, the following key property holds: a maximal solution can always be completed in order to
get a solution to the linear unification problem when it is satisfiable. In order to prove this result, we
need to recall the definition of parallel composition of substitutions, denoted by ⇑ in [9].

Definition 3.23. (Parallel Composition [9])
Let θ1 and θ2 be two idempotent substitutions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =

{
mgu(θ̂1 ∧ θ̂2) if θ̂1 ∧ θ̂2 has a solution (a unifier)
fail otherwise

where θ̂ denotes the equational representation of a substitution θ, i.e., if θ = {X1/t1, . . . , Xn/tn}
then θ̂ = (X1 = t1 ∧ · · · ∧Xn = tn).

Proposition 3.24. Let A be a linear atom and H+ be a finite set of linear atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+. Let θ ∈ max (A,H+) be the maximal
solution for A and H+. If Plin(A,H+,H−, G) 6= ∅ then there exists some substitution γ such that
θγ ∈ Plin(A,H+,H−, G).

Proof:
For simplicity, we consider thatA = p(X),H+ = {p(t1), . . . , p(tn)} andH− = {p(s1), . . . , p(sm)}.
Since the atoms are linear, the claim would follow by a similar argument. Let θ = {X/t} ∈
max (A,H+) be the maximal solution. Hence, we have t ≈ ti for all i = 1, . . . , n. Let σ ∈
Plin(A,H+,H−, G) be a solution to the selective unification problem. By definition of maximal so-
lution, there may be other solutions to the positive unification problem, but every introduced symbol
cannot be different if we want to still unify with all terms t1, . . . , tn by condition (3) in the definition
of maximal solution. Therefore, both substitutions must be compatible, i.e., we have θ ⇑ σ = δ 6= fail.
Furthermore, taking into account the negative atoms inH− as well as the groundness constraints with
respect to G, δ can only introduce further bindings, but would never require to generalize any term
introduced by θ and, thus, δ can be decomposed as θγ, with θγ ∈ Plin(A,H+,H−, G). ut

Therefore, computing the maximal solution suffices to check for satisfiability. Here, we use again
the algorithm in Def. 3.8 for computing the maximal solution, with the following differences: i) first,
both A and the atoms in H+ are now linear; ii) step (2a) is now don’t care non-deterministic, so the
algorithm will return a single solution, which we denote by SU+

lin(A,H+).

Proposition 3.25. Let A be a linear atom and H+ be a finite set of linear atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+. Then, SU+

lin(A,H+) = max (A,H+).

Proof:
The fact that SU+

lin(A,H+) returns a singleton is trivial by definition, since the algorithm has no don’t
know non-determinism and no step admits a failure.



F. Mesnard, É. Payet, G. Vidal / Selective Unification 19

Regarding the fact that θ is a maximal solution, let us prove that all three conditions in Def. 3.20
hold. The first condition of maximal solution follows by Theorem 3.14, which is proved for the more
general case of arbitrary (possibly non-linear) atoms. The third condition holds from the fact that
in step (2) of SU+

lin only symbols from the atoms A and H+ are introduced following a mgu-like
algorithm; therefore they are possibly not necessary, but cannot be replaced by different symbols and
still unify with all the atoms inH+. Finally, the second condition derives from step (3) of SU+

lin where
non-simple disagreement pairs are replaced by fresh variables from U and, thus, any binding to a non-
variable term would result in Aθ not unifying with some atom ofH+. ut

3.4.2. Dealing with the Negative Atoms

The algorithm SU in Def. 3.15 is now redefined as follows.

Definition 3.26. (Linear Selective Unification Algorithm, SU lin)
Input: a linear atom A with G ⊆ Var(A) a set of variables, and two finite sets H+ and H− such

that the atoms in H+ are linear and all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Let {θ} = SU+
lin(A,H+). Generate – using a fair algorithm – linear idempotent substitutions η

such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U and Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅,
otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.

3. Return θηγ (restricted to the variables of A), where γ is a variable renaming for Aθη with fresh
variables from V\U .

We denote by SU lin(A,H+,H−, G) the set of non-deterministic (non-failing) substitutions computed
by the above algorithm.

Example 3.27. Consider again A = p(X1, X2) and H+ = {p(f(Y ), a), p(f(g(Z)), b)}, together
with H− = {p(f(g(a)), c)} and G = {X1}. The algorithm for linear positive unification re-
turns the maximal substitution {X1/f(g(Z ′)), X2/U}. Therefore, the algorithm for linear selec-
tive unification would eventually produce a solution of the form θ = {X1/f(g(b)), X2/X

′} since
Aθ = p(f(g(b)), X ′) unifies with p(f(Y ), a) and p(f(g(Z)), b) but not with p(f(g(a)), c) and, more-
over, X1 is ground. However, if we consider a non-maximal solution, the algorithm in Def. 3.15 may
fail, even if there exists some solution to the linear selective unification problem. This is the case, e.g.,
if we consider the non-maximal solution {X1/f(g(a)), X2/U}. �

Theorem 3.28. (Soundness)
Let A be a linear atom with G ⊆ Var(A),H+ be a finite set of linear atoms andH− be a finite set of
atoms such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, we
have SU lin(A,H+,H−, G) ⊆ Plin(A,H+,H−, G).
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Proof:
The claim follows from Prop. 3.25 by assuming that the don’t know non-deterministic substitutions
considered in step (1) of the algorithm of Def. 3.26 are obtained by a fair generate-and-test algorithm
which produces substitutions systematically starting with terms of depth 0, then depth 1, etc., as in the
naive algorithm described at the beginning of Sect. 3.3. ut

The following result states the completeness of our algorithm. In principle, we do not guarantee that
all solutions are computed using our algorithms, even for the linear case. However, we can ensure that
if the linear selective unification problem is satisfiable, our algorithm will find at least one solution
(which is sufficient in the context of concolic testing).

Theorem 3.29. (Completeness)
Let A be a linear atom with G ⊆ Var(A), H+ be a finite set of linear atoms and H− be a finite set
of atoms such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. If
Plin(A,H+,H−, G) 6= ∅ then SU lin(A,H+,H−, G) 6= ∅.

Proof:
By Prop. 3.24, if Plin(A,H+,H−, G) 6= ∅ and θ is the computed maximal solution, then there exists
a substitution γ such that (θγ) |̀Var(A)∈ Plin(A,H+,H−, G). Moreover, such a substitution γ can be
obtained by a fair generate-and-test algorithm such as that considered in Def. 3.26. Finally, the claim
follows by Prop. 3.25 which ensures that the algorithm in Def. 3.8 will always produce the maximal
solution for A andH+. ut

Example 3.30. Consider again A = p(X1, X2) and H+ = {p(f(Y ), a), p(f(g(Z)), b)}, together
with H− = {p(g(W ), c)} and G = ∅. The algorithm for linear positive unification returns the max-
imal substitution {X1/f(g(Z ′)), X2/U}. Therefore, it is impossible that the algorithm in Def. 3.15
could produce a solution like {X1/f(X ′), X2/X

′′} ∈ Plin(A,H+,H−, G). �

In the next section, we extend the notion of selective unification to constraint logic programs.

4. Selective Unification in Constraint Logic Programming

4.1. Concolic Testing in Constraint Logic Programming

Extending the concolic testing framework from logic programs to CLP is not difficult. In this section,
we focus on the main differences and also show an example that illustrates the technique in this setting.

First, the concolic execution semantics for the CLP case is basically equivalent to that in Fig. 1
by replacing goals with states of the form 〈c | #»

B〉 and by considering the usual unfolding rule for CLP
programs. Furthermore, the function clauses is now redefined as follows. Given a state 〈d | p( #»u )〉 and
a set of rules P , we have

clauses(〈d | p( #»u )〉, P ) = {p( #»s )← c ∧ #»

B ∈ P | solv( #»s = #»u ∧ c ∧ d) = true} .

Concolic testing then proceeds basically as in the logic programming case. The main difference,
though, is that the selective unification problems now deal with states and CLP programs rather than
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goals and logic programs. Let us consider a choice step labeled with c(L1, L2). Here, given a set
L ∈ ℘(L2) \ L1, the setsH+ andH− are built as follows:

H+ = {〈c |H〉 | H ← c ∧ #»

B ∈ L}
H− = {〈c |H〉 | H ← c ∧ #»

B ∈ L2 \ L} .

The groundness condition, if any, will now require some variables to have a fixed value in a given
constraint (see Sect. 4.2).

Example 4.1. Consider the following CLP(Qlin ) program:

(`1) p(X)← X ≤ 0. (`2) p(X)← X ≥ 0 ∧X < 10.

and a choice step labeled with c({`1}, {`1, `2}), where the symbolic state is 〈true | p(N)〉. Hence, we
have to consider the sets in ℘({`1, `2}) \ {`1} = {∅, {`2}, {`1, `2}}.

Our first selective unification problem, associated to the empty set, considers the state 〈true | p(N)〉
and the sets H+ = ∅ and H− = {〈X ≤ 0 | p(X)〉, 〈X ≥ 0 ∧X < 10 | p(X)〉}. A solution is, e.g.,
N ≥ 10 . Thus, 〈N ≥ 10 | p(N)〉 is another test case to consider.

As for the second set, {`2}, the selective unification problem considers the state 〈true | p(N)〉 and
the sets H+ = {〈X ≥ 0 ∧X < 10 | p(X)〉} and H− = {〈X ≤ 0 | p(X)〉}. Here, a possible solution
is N > 0 ∧N < 10. Thus, the state 〈N > 0 ∧N < 10 | p(N)〉 is another test case to consider.

Finally, for the set {`1, `2}, the selective unification problem considers the state 〈true | p(N)〉 and
the setsH+ = {〈X ≤ 0 | p(X)〉, 〈X ≥ 0 ∧X < 10 | p(X)〉} andH− = ∅, where the only solution is
N = 0. Thus, our final alternative test case is the state 〈N = 0 | p(N)〉. �

4.2. The Constraint Selective Unification Problem (CSUP)

In this section, we generalize Def. 3.4 to CLP. Let A1 = 〈c1 | p( #»u )〉 and A2 = 〈c2 | p( #»s )〉 be two
constraint atoms with no common variable. We write A1 ≈ A2 or A1 unifies with A2 to denote that
D |= ∃( #»u = #»s ∧ c1 ∧ c2). For simplicity, in the following definition, we consider that the constraint
atom has the form 〈cA | p(

#»

X)〉. There is no loss of generality since any arbitrary constraint atom
〈c | p( #»u )〉 can be trivially transformed into 〈 #»u =

#»

X ∧ c | p( #»

X)〉.

Definition 4.2. (Constraint Selective Unification Problem, P)
Let A be a constraint atom of the form 〈cA | p(

#»

X)〉 with G ⊆ Var(A). Let H+ and H− be finite
sets of constraint atoms such that all constraint atoms, including A, are pairwise variable disjoint and
A ≈ B for all B ∈ H+ ∪ H−. Then, the constraint selective unification problem for A with respect
toH+,H− and G consists in determining whether the following set of constraints is empty:

P(A,H+,H−, G) =


cA ∧ c

∣∣∣∣∣∣∣∣∣∣∣∣

cA ∧ c is satisfiable
∧ c is variable disjoint withH+ ∪H−

∧ ∀H ∈ H+ : 〈cA ∧ c | p(
#»

X)〉 ≈ H
∧ ∀H ∈ H− : ¬(〈cA ∧ c | p(

#»

X)〉 ≈ H)

∧ each X ∈ G is fixed within cA ∧ c


.
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The constraints c in P(A,H+,H−, G) (if any) are the solutions of the problem.

Intuitively, to solve a CSUP, we consider any constraint c such that 〈cA ∧ c | p(
#»

X)〉 still unifies
with all the positive constraint atoms while preventing any unification with the negative constraint
atoms and ensuring that the variables in G have a fixed value.

Note thatX ∈ G is fixed within cA∧c is the equivalent of the groundness condition of the LP case
and we keep calling it the groundness condition in the CLP case. Some constraint solvers might give
to X the required value, but it is not mandatory as it can be expressed in first order logic by stating
that, within cA ∧ c, X has exactly one value. For instance, X is fixed within c(X,

#»

X) is equivalent to
D |= ∃X

(
∃ #»

Xc(X,
#»

X) ∧ ∀Y ∀ #»

Y
(
c(Y,

#»

Y )→ X = Y
))

.

Example 4.3. (CLP(Qlin ))
We illustrate the notion of selective unification in the context of CLP(Qlin ) with the next examples.

• Let A := 〈0 ≤ X ∧X ≤ 5 | p(X)〉, H+ := {〈4 ≤ Y | p(Y )〉}, H− := {〈Z < 2 | p(Z)〉} and
G = {X}. There is an infinite number of solutions, among which one can find the constraint
c ≡ (X = 9/2). It is equivalent to the satisfiable constraint (0 ≤ X ∧X ≤ 5 ∧X = 9/2) and
it entails that X is ground. Moreover, the constraint (X = Y ∧ 4 ≤ Y ∧X = 9/2) is satisfiable
while (X = Z ∧ Z < 2 ∧X = 9/2) is unsatisfiable.

• Let A := 〈0 ≤ X ∧X ≤ 5 | p(X)〉, H+ := {〈4 ≤ Y1 | p(Y1)〉, 〈Y2 ≤ 1 | p(Y2)〉}, H− :=
{〈2 < Z ∧ Z < 3 | p(Z)〉} and G = ∅. There is no solution here. Intuitively, if there is a
solution on the left of 2, then it excludes the first positive atom or if there is a solution to the
right of 3, then it excludes the second positive atom. So one cannot find a conjunction of atomic
constraints that include the elements of H+ and exclude the element of H− because the set of
points described by such a conjunction is convex. �

The following general result holds in CLP.

Theorem 4.4. (Undecidability)
It is undecidable whether an arbitrary instance of the CSUP has a solution.

Proof:
We provide a complete proof in [10] which can be summarized as follows. We consider any Turing
machine M and any word w and we define an instance PM,w of the generic CSUP in a constraint
logic programming language CLP(A), the class of constraints of which is a strict subclass of the array
property fragment introduced in [11]. We encode the tape of M as an array and we define PM,w so
that M accepts w if and only if PM,w has a solution. Then the theorem results from the fact that it is
undecidable whether an arbitrary Turing machine accepts an arbitrary word. ut

However, we have identified some decidable classes of CSUP instances. Their definition rely on
the next two properties of the constraint structure D under consideration.

Definition 4.5. We let (A1) and (A2) denote the following properties of D.
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• (A1) D admits variable elimination.

• (A2) The negation of any atomic constraint is equivalent to a finite disjunction of atomic con-
straints.

Example 4.6. Qlin satisfies these properties. It admits variable elimination. The set of predefined
predicate symbols is ΠC = {</2,≤/2,=/2,≥/2, >/2}. The negation of each atomic constraint is
an atomic constraint, except for =/2 whose negation is defined by a disjunction of atomic constraints,
i.e., ¬(X = Y ) ≡ (X < Y ∨X > Y ). �

(A1) and (A2) are sufficient conditions on the constraint domain to solve the CSUP without the
groundness condition (i.e., when G = ∅). The following results can be found in [10]:

Theorem 4.7. If (A1) and (A2) hold, then it is decidable whether an arbitrary instance of the CSUP
with G = ∅ has a solution.

By relying on specific properties of CLP(Qlin ) which allow to pick a ground value satisfying a
constraint, one can even extend Theorem 4.7 to any instance of the CSUP (i.e., when G 6= ∅):

Theorem 4.8. In CLP(Qlin ), it is decidable whether an arbitrary instance of the CSUP has a solution.

5. Related Work and Conclusion

In this paper, we have studied the soundness and completeness of selective unification, a relevant
operation in the context of concolic testing of logic programs. We have reconsidered the algorithm
provided in [1]: we have improved its correctness result (a condition was missing in [1]) and we have
identified its main sources of incompleteness. Then, we have introduced several refinements so that
the procedure is now sound and complete with respect to linear solutions. For the non-linear case, the
decidability of the selective unification problem is an open problem.

We are not aware of any other work that deals with the kind of unification problems that we
study in this paper. We have also considered concolic testing in the framework of constraint logic
programming. We have extended the notion of selective unification accordingly and we have sketched
that the selective unification problem is generally undecidable for CLP. This paper is both an extended
version of [12] and a summary of [10], where the extension to CLP is fully described. We have
included all the proofs that were missing in [12] about soundness and termination of the algorithm for
positive unification ([12] only provides a portion of the soundness proof).

Constructive negation in LP [13] and CLP [14] is related to our work. Its starting point stems
from the desire to extract constructive information from the proof of a negative subgoal, in contrast
to the usual negation as failure rule. In [14], Stuckey introduced admissible closedness as a suffi-
cient condition over constraint structures for a practical use of constructive negation. This property is
weaker than quantifier elimination. Stuckey showed that properties (A1) and (A2) of Sect. 4.2 imply
admissible closedness. Moreover, CLP(H) (the constraint domain of finite trees with equality and
quantified disequality) does not admit quantifier elimination but is admissible closed. More recently,
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Dovier et al. proved that admissible closedness was also a necessary condition for constructive nega-
tion in CLP [15]. So this concept could be a promising tool for studying concolic testing for logic
programming from a CLP perspective.

Finally, we are also working on an improved concolic testing scheme [16] which supports negative
constraints and defines selective unification problems as constraints on Herbrand terms. This approach
opens the door to an SMT-based implementation of a concolic testing tool that, hopefully, will scale
better to larger applications.
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