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Abstract

We address the safety verification and synthesis problems for real-time systems.
We introduce real-time programs that are made of instructions that can perform as-
signments to discrete and real-valued variables. They are general enough to capture
interesting classes of timed systems such as timed automata, stopwatch automata,
time(d) Petri nets and hybrid automata. We propose a semi-algorithm using refine-
ment of trace abstractions to solve both the reachability verification problem and the
parameter synthesis problem for real-time programs. All of the algorithms proposed
have been implemented and we have conducted a series of experiments, comparing
the performance of our new approach to state-of-the-art tools in classical reachabil-
ity, robustness analysis and parameter synthesis for timed systems. We show that
our new method provides solutions to problems which are unsolvable by the current
state-of-the-art tools.

1 Introduction

Model-checking is a widely used formal method to assist in verifying software systems. A
wide range of model-checking techniques and tools are available and there are numerous

∗A preliminary version of this work appeared in [13].
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successful applications in the safety-critical industry and the hardware industry – in ad-
dition the approach is seeing an increasing adoption in the general software engineering
community. The main limitation of this formal verification technique is the so-called state
explosion problem. Abstraction refinement techniques were introduced to overcome this
problem. The most well-known technique is probably the Counter Example Guided Ab-
straction Refinement (CEGAR) method pioneered by Clarke et al. [19]. In this method the
state space is abstracted with predicates on the concrete values of the program variables.
The (counter-example guided) trace abstraction refinement (TAR) method was proposed
later by Heizmann et al. [26, 27] and is based on abstracting the set of traces of a program
rather than the set of states. These two techniques have been widely used in the con-
text of software verification. Their effectiveness and versatility in verifying qualitative (or
functional) properties of C programs is reflected in the most recent Software Verification
competition results [8].

Analysis of timed systems. Reasoning about quantitative properties of programs re-
quires extended modeling features like real-time clocks. Timed Automata [2] (TA), intro-
duced by Alur and Dill in 1989, is a very popular formalism to model real-time systems with
dense-time clocks. Efficient symbolic model-checking techniques for TA are implemented in
the real-time model-checker Uppaal [5]. Extending TA, e.g., with the ability to stop and
resume clocks (stopwatches), leads to undecidability of the reachability problem [14, 29]
which is the basic verification problem. As a result, semi-algorithms have been designed to
verify extended classes of TA e.g., hybrid automata, and are implemented in a number of
dedicated tools [23, 25, 28]. However, a common difficulty with the analysis of quantitative
properties of timed automata and extensions thereof is that specialized data-structures are
needed for each extension and each type of problem. As a consequence, the analysis tools
have special-purpose efficient algorithms and data-structures suited and optimized only
towards their specific problem and extension.

In this work we aim to provide a uniform solution to the analysis of timed systems
by designing a generic semi-algorithm to analyze real-time programs which semantically
captures a wide range of specification formalisms, including hybrid automata. We demon-
strate that our new method provides solutions to problems which are unsolvable by the
current state-of-the-art tools. We also show that our technique can be extended to solve
specific problems like robustness and parameter synthesis.

Related work. The trace abstraction refinement (TAR) technique was proposed by Heiz-
mann et al. [26, 27]. Wang et al. [35] proposed the use of TAR for the analysis of timed
automata. However, their approach is based on the computation of the standard zones
which comes with usual limitations: it is not applicable to extensions of TA (e.g., stop-
watch automata) and can only discover predicates that are zones. Moreover, their approach
has not been implemented and it is not clear whether it can outperform state-of-the-art
techniques e.g., as implemented in Uppaal.

Several works have investigated CEGAR techniques in both timed and hybrid set-
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tings [1, 21, 24, 34]. The CEGAR technique has also been extended to parameter-synthesis [24].
As proved by Heizmann et al. [26], such methods are special cases of the TAR framework.

The IC3 [10] verification approach has also been deployed for the verification of hybrid
systems [9] but relies on a fix-point computation over a combined encoding of the transition-
function, rather than a trace-subtraction approach. IC3 approaches and the likes have also
been used for parameter synthesis [7, 9, 18]. While similar fundamental techniques are
leveraged in these approaches (e.g. [7] utilizes Fourier-Motzkin-elimination), we note that
our refinement method (TAR) is radically different in nature. IC3 is an iterative fix-point
computation over an up-front and complete encoding of the transition-function.

Since the publication of a preliminary version of this paper [13], Kafle et al. [31] have
demonstrated a novel method of parameter synthesis for timed systems via Constrained
Horn Clauses (CHC). While their approach shows promising results for the Fischers pa-
rameter synthesis examples from [13], it currently relies on manual translation of a given
problem into CHC format, hindering its applicability to large systems.

As mentioned earlier, our technique allows for a unique and logical (predicates) rep-
resentation of sets of states accross different models (timed, hybrid automata) and prob-
lems (reachability, robustness, parameter synthesis), which is in contrast to state-of-the-art
tools such as Uppaal [5], SpaceEx [25], HyTech [28], PHAver [23], verifix [32], sym-
rob [33] and Imitator [3] that rely on special-purpose polyhedra libraries to realize their
computation.

We propose a new technique which is radically different to previous approaches and
leverages the power of SMT-solvers to discover non-trivial invariants for a large class of
real-time systems including the class of hybrid automata. All the previous analysis tech-
niques compute, reduce and check the state-space either up-front or on-the-fly, leading
to the construction of significant parts of the state-space. In contrast our approach is
an abstraction refinement method and the refinements are built by discovering non-trivial
program invariants that are not always expressible using zones, or polyehdra. For instance
they can express constraints that combine discrete and continuous variables of the system.
This enables us to use our algorithm on non-decidable classes like stopwatch automata,
and successfully (i.e., the algorithm terminates) check instances of these classes. A simple
example is discussed in Section 2.

Our contribution. We propose a variant of the trace abstractions refinement (TAR)
technique to solve the reachability problem and the parameter synthesis problem for real-
time programs. Our approach combines an automata-theoretic framework and state-of-
the-art Satisfiability Modulo Theory (SMT) techniques for discovering program invariants.
We demonstrate on a number of case-studies that this new approach can compute answers
to problems unsolvable by special-purpose tools and algorithms in their respective domain.

This paper is an extended version of [13] in which we first introduced TAR for real-time
programs. In this extended version, we provide a comprehensive introduction illustrated by
more examples, extensions of the original algorithms from [13] and the proofs of theorems
and lemmas.
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2 Motivations

Real-Time Programs. Figure 1 is an example of a real-time program P1. It is defined
by a finite automaton A1 (Figure 1, top) which is the control flow graph (CFG) of P1, and
some continuous and discrete instructions (bottom). The control flow graph A1 accepts
the regular language L(A1) = i.t0.t

∗
1.t2: the program starts in (control) location ι and is

completed when `2 (accepting location) is reached. The program variables are x, y, z which
are real numbers. This real-time program is the specification of a stopwatch automaton
with 2 clocks, x and z, and one stopwatch y. The variables are updated according to the
following rules:

• Each edge’s label defines a guard g (a condition on the variables) for which the edge
is enabled, and an update u which is an assignment to the variables when the edge
is taken. For instance the edge t1 can be taken when the valuation of the variable x
is 1 and when it is taken, x is reset. This corresponds to a discrete transition of the
program.

• Each location is associated with a rate vector r that defines the derivatives of the
variables. The default derivative for a variable is 1 (we omit the rates for x, z in
the Figure). For instance in location `0 the derivatives are (1, 0, 1) (order is x, y, z).
When the program is in location `0 the variables x, y, z increase at a rate defined
by their respective derivatives: x, z increase by 1 each time unit, and y is frozen
(derivative is 0). This corresponds to a continuous transition of the program.

ι `0 `1 `2

A1

Edge Guard Update
i True x:=y:=z:=0

t0 True z:=0

t1 x==1 x:=0

t2 x-y>=1 and z<1 -

Discrete Instructions

Location Rate
ι dy/dt=1

`0 dy/dt=1

`1 dy/dt=0

`2 dy/dt=0

Continuous Instructions

i t0

t1

t2

Figure 1: Real-time program P1: CFG A1 of P1 (top) with the accepting location `2 and
its instructions (bottom).

A sequence of program instructions w = a0.a1. · · · .an ∈ L(A1) defines a (possibly
empty) set of timed words, τ(w), of the form (a0, δ0). · · · (an, δn) where δi ≥ 0, i ∈ [0..n] is
the time elapsed between two discrete transitions. For instance, the timed words associated
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with i.t0.t2 are of the form (i, δ0).(t0, δ1).(t2, δ2), for all δi ∈ R≥0, i ∈ {0, 1, 2} such that the
following constraints (predicates that define that each transition can be fired after δi time
units) can be satisfied1:

x0 = y0 = z0 = δ0 ∧ δ0 ≥ 0︸ ︷︷ ︸
Time elapsing δ0 in ι

∧ True︸ ︷︷ ︸
Guard of i

(C0)

x1 = y1 = z1 = 0 + δ1 ∧ δ1 ≥ 0︸ ︷︷ ︸
Update of i and time elapsing δ1 in `0

∧ True︸ ︷︷ ︸
Guard of t0

(C1)

x2 = x1 + δ2 ∧ y2 = y1 ∧ z2 = 0 + δ2 ∧ δ2 ≥ 0︸ ︷︷ ︸
Update of t0 and time elapsing δ2 in `1

∧ x2 − y2 ≥ 1 ∧ z2 < 1︸ ︷︷ ︸
Guard of t2

(C2)

These constraints encode the following semantics: i is taken after δ0 time units and at
that time x, y, z are equal to δ0 and hence x0, y0, z0 are the values of the variables when
location `0 is entered. The program remains in `0 for δ1 time units. When t0 is taken after
δ1 time units, the values of x, y, z is given by x1, y1, z1. Finally the program remains δ2
time units in `1 and t2 is taken to reach `2 which is the end of the program. It follows that
the program can execute i.t0.t2 (or in other words, i.t0.t2 is feasible) if and only if we can
find δ0, δ1, δ2 such that C0 ∧C1 ∧C2 is satisfiable. Hence the set of timed words associated
with i.t0.t2 is not empty iff C0 ∧ C1 ∧ C2 is satisfiable.

Language Emptiness Problem. The timed language, T L(P1), accepted by P1 is the
set of timed words associated with all the (untimed) words w accepted by A1 i.e., T L(P1) =
∪w∈L(A1)τ(w).

The language emptiness problem is a standard problem in Timed Automata theory [2]
and is stated as follows for real-time programs:

given a real-time program P , is T L(P ) empty?

It is known that the emptiness problem is decidable for some classes of real-time pro-
grams like Timed Automata [2], but undecidable for more expressive classes like Stopwatch
Automata [29]. It is usually possible to compute symbolic representations of sets of reach-
able valuations after a sequence of transitions. However, to compute the set of reachable
valuations we may need to explore an arbitrary and unbounded number of sequences. Hence
only semi-algorithms exist to compute the set of reachable valuations. For instance, using
PHAver to compute the set of reachable valuations for P1 does not terminate (Table 1).
To force termination, we can compute an over-approximation of the set of reachable val-
uations. Computing an over-approximation is sound (if we declare an over-approximation
of a timed language to be empty the timed language is empty) but incomplete i.e., it may
result in false positives (we declare a timed language non empty whereas it is empty).
This is witnessed by the column “Uppaal” in Table 1 where Uppaal over-approximates
sets of valuations in the program P1 using DBMs. After i.t0, the over-approximation is
0 ≤ y ≤ x∧0 ≤ z ≤ x (this is the smallest DBMs that contains the actual set of valuations

1We assume the program starts in ι and all the variables are initially zero.
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reachable after i.t0). This over-approximation intersects the guard x− y ≥ 1 ∧ z < 1 of t2
which enables t2. Using this over-approximate set of valuations we would declare that `2
is reachable in P1 but this is an artifact of the over-approximation.2 Neither Uppaal nor
PHAver can prove that T L(P1) = ∅.

Sequence PHAver Uppaal
i.t0 z = x− y ∧ 0 ≤ z ≤ x 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x
i.t0.t1 z = x− y + 1 ∧ 0 ≤ x ≤ z ≤ x+ 1 0 ≤ z − x ≤ 1 ∧ 0 ≤ y
i.t0.(t1)

2 z = x− y + 2 ∧ 0 ≤ x ≤ z − 1 ≤ x+ 1 1 ≤ z − x ≤ 2 ∧ 0 ≤ y
i.t0.(t1)

3 z = x− y + 3 ∧ 0 ≤ x ≤ z − 2 ≤ x+ 1 2 ≤ z − x ≤ 3 ∧ 0 ≤ y
. . . . . . . . .
i.t0.(t1)

k z = x− y + k ∧ 0 ≤ x ≤ z − k + 1 ≤ x+ 1 k − 1 ≤ z − x ≤ k ∧ 0 ≤ y
. . . . . . . . .

Table 1: Symbolic representation of reachable states after a sequence of instructions. Up-
paal concludes that T L(A1) 6= ∅ due to the over-approximation using DBMs. PHAver
does not terminate.

Trace Abstraction Refinement for Real-Time Programs. The technique we in-
troduce can discover arbitrary abstractions and invariants that enable us to prove T L(P1) =
∅. Our method is a version of the trace abstraction refinement (TAR) technique introduced
in [26] and is depicted in Figure 2.

L = ∅? Is τ(w) non empty?

T L(P ) = ∅ T L(P ) 6= ∅

L := L(CFG(P ))

Yes

No, let w ∈ L
Yes

L := L \ InFeasible(w)
No

Figure 2: Trace Abstraction Refinement Loop for Real-Time Programs

Let us first introduce how the trace abstraction refinement algorithm (Figure 2) operates
on a real-time program P :

1. the algorithm starts using the control flow graph of P , CFG(P ), and initially L =
L(CFG(P )).

2. if L = ∅ then T L(P ) is empty and the algorithm terminates (green block).

2Uppaal terminates with the result “the language may not be empty”.
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3. otherwise, there is w ∈ L. We check whether τ(w) is empty or not:

• If it is not empty then T L(P ) is not empty and the algorithm terminates (red
block).

• Otherwise, we can find3 a regular language over the alphabet of CFG(P ),
InFeasible(w), that satisfies: 1) w ∈ InFeasible(w) and 2) ∀v ∈ InFeasible(w),
T L(v) = ∅. In the next iteration of the algorithm, we look for a candidate
trace in L \ InFeasible(w), i.e., we refine the trace abstraction L by subtracting
InFeasible(w) from it.

Assume the algorithm terminates after k iterations. In this case we were able to build
a finite number of regular languages L1 = InFeasible(w1), L2 = InFeasible(w2), · · · , Lk =
InFeasible(wk) such that ∀1 ≤ i ≤ k, T L(Li) = ∅. If we terminate with T L(P ) = ∅ then
L(CFG(P )) ⊆ ∪ki=1Li. Otherwise if we terminate with τ(wk+1) 6= ∅ we found a witness
trace wk+1 ∈ L(CFG(P )) \ ∪ki=1Li such that τ(wk+1) 6= ∅ i.e., a feasible timed trace.

Example 1: Stopwatch Automaton. We illustrate the algorithm using our program
P1:

• we initially let L = L(CFG(P1)). Since w1 = i.t0.t2 ∈ L(CFG(P1)) and thus w1 ∈ L
the check L = ∅ fails. We therefore check whether τ(w1) = ∅ which can be done by
encoding the corresponding set of timed traces as described by Equations (C0)–(C2)
and then check whether C0∧C1∧C2 is satisfiable (e.g., using an SMT-solver and the
theory of Linear Real Arithmetic). C0∧C1∧C2 is not satisfiable and this establishes
τ(w1) = ∅.

• from the proof that C0 ∧ C1 ∧ C2 is not satisfiable, we can obtain an inductive
interpolant that comprises of two predicates I0, I1 – one for each conjunction – over
the variables x, y, z. An example of an inductive interpolant4 is I0 = x ≤ y and
I1 = x − y ≤ z. These predicates are invariants of any timed word of the untimed
word w1, and can be used to annotate the sequence of transitions w1 with pre- and
post-conditions (Equation 1), which are Hoare triples of the form {C} a {D}:

{True} i {I0} t0 {I1} t2 {False} (1)

A triple {C} a {D} is valid if whenever we start in a state s satisfying C, and execute
instruction a, the resulting new state s′ is in D. {C} a {False} means that no state
exists after executing a from C, i.e., the trace a is infeasible. The inductiveness of
the interpolants is due to the fact that each triple {C} a {D} in the sequence (1) is a
valid Hoare triple. Hoare triples (and validity) generalise to sequences of instructions
σ in the form {C} σ {D}.

3How this language is built is defined in Section 4.
4This is the pair returned by Z3 for C0 ∧ C1 ∧ C2.
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Because we can also prove that {I1} (t1)
∗ {I1} is a valid Hoare triple, if we combine

this fact with Equation 1 we obtain a regular set of traces annotated with pre/post-
conditions as per Equation 2.

{True} i {I0} t0 {I1}{I1}{I1} (t1)
∗(t1)
∗(t1)
∗ {I1}{I1}{I1} t2 {False} (2)

This implies that the regular set of traces i.t0.(t1)
∗.t2 does not have any associated

timed traces: for each word w ∈ i.t0.(t1)
∗.t2, τ(w) = ∅ and as L(CFG(P1)) ⊆

i.t0.(t1)
∗.t2 we can conclude that T L(A1) = ∅.

Example 2: Extended Timed Automaton. The following example (Figure 3) il-
lustrates how extensions of timed automata with constraints that mix discrete and real
variables can be analyzed. The real-time program P2 (Figure 3) is given by the CFG
(left) and the instructions5 (right): it specifies a timed automaton with 2 clocks x, y (real
variables) and one integer variable i. This is an extended version of timed automata as

ι `0 `1

A2

Edge Guard Update
t0 x ≥ 1 -
t1 True x:= 0; i := i + 1

t2 y < i -

Discrete Instructions

t0

t1

t2

Figure 3: Real-time program P2: CFG A2 of P2 (left) with accepting location `1 and its
instructions (right).

the constraint y < i mixes integer and real variables (clocks) and this is not permitted
in the standard definition of timed automata. Initially all the variables are set to 0. The
objective is to prove that location `1 is unreachable and thus that T L(P2) = ∅. Note that
Uppaal does allow this specification but is unable to prove that `1 is unreachable because
i is unbounded.

Our method is able to discover invariants that mix integer and real variables and can
prove that `1 is unreachable as follows:

1. the first iteration of the TAR algorithm starts with L = L(CFG(P2)). The check
L = ∅ is negative as w1 = t0.t2 ∈ L. However every timed word in τ(w1) must satisfy
the following constraints that correspond to taking t0 and then t2:

x0 = y0 = δ0 ∧ δ0 ≥ 0 ∧ i0 = 0︸ ︷︷ ︸
Time elapsing δ0 in ι

∧ x0 ≥ 1︸ ︷︷ ︸
Guard of t0

(C ′0)

x1 = x0 + δ1 ∧ y1 = y0 + δ1 ∧ i1 = i0 ∧ δ1 ≥ 0︸ ︷︷ ︸
Update of t0 and time elapsing δ1 in `0

∧ y1 < i1︸ ︷︷ ︸
Guard of t2

(C ′1)

5The rates table is omitted as all the variables are clocks with rate 1.
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C ′0 ∧ C ′1 is not satisfiable and hence T L(t0.t2) = ∅ and thus we can safely remove
w1 from L. We can extract interpolants from the proof of unsatisfiability of C ′0 ∧ C ′1
and we establish the following sequence of valid Hoare triples:

{x = y = i = 0} t0 {x = y ∧ x ≥ i} t2 {False} (3)

2. the second iteration of the TAR algorithm starts with an updated L = L(CFG(P2))\
{w1}. Again L is not empty and for instance w2 = t0.t1.t0.t2 is in L. The encoding
for checking the emptiness of τ(w2) is:

x0 = y0 = δ0 ∧ δ0 ≥ 0 ∧ i0 = 0︸ ︷︷ ︸
Time elapsing δ0 in ι

∧ x0 ≥ 1︸ ︷︷ ︸
Guard of t0

(C ′′0 )

x1 = x0 + δ1 ∧ y1 = y0 + δ1 ∧ i1 = i0 ∧ δ1 ≥ 0︸ ︷︷ ︸
Update of t0 and time elspsing δ1 in `0

∧ True︸ ︷︷ ︸
Guard of t1

(C ′′1 )

x2 = 0 + δ2 ∧ y2 = y1 + δ2 ∧ i2 = i1 + 1 ∧ δ2 ≥ 0︸ ︷︷ ︸
Time elapsing δ2 in ι

∧ x2 ≥ 1︸ ︷︷ ︸
Guard of t0

(C ′′2 )

x3 = x2 + δ3 ∧ y3 = y2 + δ3 ∧ i3 = i2 ∧ δ3 ≥ 0︸ ︷︷ ︸
Time elapsing δ3 in `0

∧ y3 < i3︸ ︷︷ ︸
Guard of t2

(C ′′3 )

C ′′0 ∧ C ′′1 ∧ C ′′2 ∧ C ′′3 is unsatisfiable and hence T L(t0.t1.t0.t2) = ∅. We can extract
interpolants from the proof of unsatisfiability and we establish the following sequence
of valid Hoare triples.

{x = y = i = 0} t0 {y ≥ i} t1.t0 {y ≥ i} t2 {False} (4)

As can be seen as {y ≥ i} t1.t0 {y ≥ i} holds we can generalize this sequence to an
arbitrary number of iterations of t0.t1:

{x = y = i = 0} t0 {y ≥ i}{y ≥ i}{y ≥ i} (t1.t0)
+(t1.t0)
+(t1.t0)
+ {y ≥ i}{y ≥ i}{y ≥ i} t2 {False} (5)

which entails that T L(t0.(t1.t0)
+.t2) = ∅. This implies that we can remove t0.(t1.t0)

+.t2
from L.

3. observe that L = ∅ in the next iteration of TAR as L(CFG(P2)) \ ({t0.t2} ∪
t0.(t1.t0)

+.t2) = ∅ given that L(CFG(P2)) = t0.(t1.t0)
∗.t2. We have thus proved

that T L(P2) = ∅ as any word of instructions in L(CFG(P2)) induces an infeasible
trace and the algorithm terminates.

In the rest of the paper, we provide a formal development of the methods we have intro-
duced so far.
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3 Real-Time Programs

Our approach is general enough and applicable to a wide range of timed systems called
real-time programs. As an example, timed, stopwatch, hybrid automata and time Petri
nets are special cases of real-time programs.

In this section we formally define real-time programs. Real-time programs specify the
control flow of instructions, just as standard imperative programs do. The instructions can
update variables by assigning new values to them. Each instruction has a semantics and
together with the control flow this precisely defines the semantics of real-time programs.

3.1 Notations

A finite automaton over an alphabet Σ is a tuple A = (Q, ι,Σ, ∆, F ) where Q is a finite
set of locations s.t. ι ∈ Q is the initial location, Σ is a finite alphabet of actions, ∆ ⊆
(Q×Σ×Q) is a finite transition relation, F ⊆ Q is the set of accepting locations. A word
w = α0.α1. · · · .αn is a finite sequence of letters from Σ; we let w[i] = αi be the i-th letter
of w, |w| be the length of w which is n + 1. Let ε be the empty word and |ε| = 0, and let
Σ∗ be the set of finite words over Σ. The language, L(A), accepted by A is defined in the
usual manner as the set of words that can lead to F from ι.

Let V be a finite set of real-valued variables. A valuation is a function ν : V → R. The
set of valuations is [V → R].

We denote by β(V ) the set of constraints (or Boolean predicates) over V and given ϕ ∈
β(V ), we let Vars(ϕ) be the set of unconstrained variables in ϕ. Given a valuation, we let
the truth value of a constraint (Boolean predicate) ϕ be denoted by ϕ(ν) ∈ {True,False},
and write ν |= ϕ when ϕ(ν) = True and let JϕK = {ν | ν |= ϕ}.

An update µ ⊆ [V → R] × [V → R] is a binary relation over valuations. Given an
update µ and a set of valuations V , we let µ(V) = {ν ′ | ∃ν ∈ V and (ν, ν ′) ∈ µ}. We let
U(V ) be the set of updates on the variables in V .

Similar to the update relation, we define a rate function ρ : V → R (rates can be
negative), i.e., a function from a variable to a real number6. A rate is then a vector
ρ ∈ RV . Given a valuation ν and a timestep δ ∈ R≥0 the valuation ν + (ρ, δ) is defined by:
(ν + (ρ, δ))(v) = ν(v) + ρ(v)× δ for v ∈ V .

3.2 Real-Time Instructions

Let Σ = β(V )×U(V )×R(V ) be a countable set of instructions – and intentionally also the
alphabet of the CFG. Each α ∈ Σ is a tuple (guard, update, rates) denoted by (γα, µα, ρα).
Let ν : V → R and ν ′ : V → R be two valuations. For each pair (α, δ) ∈ Σ×R≥0 we define

6We can allow rates to be arbitrary terms but in this paper we restrict to deterministic rates or bounded
intervals.
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the following transition relation
α,δ−−−→:

ν
α,δ−−−→ ν ′ ⇐⇒


1. ν |= γα (guard of α is satisfied in ν),

2. ∃ν ′′ s.t. (ν, ν ′′) ∈ µα (discrete update allowed by α) and

3. ν ′ = ν ′′ + (ρα, δ) (continuous update as defined by α).

The semantics of α ∈ Σ is a mapping JαK : [V → R]→ 2[V→R] and for ν ∈ [V → R]

JαK(ν) = {ν ′ | ∃δ ≥ 0, ν
α,δ−−−→ ν ′}. (6)

It follows that:

Fact 1 ∃δ ≥ 0, ν
α,δ−−−→ ν ′ ⇐⇒ ν ′ ∈ JαK(ν).

This mapping can be straightforwardly extended to sets of valuations K ⊆ [V → R] as
follows:

JαK(K) =
⋃
ν∈K

JαK(ν). (7)

3.3 Post Operator

Let K be a set of valuations and w ∈ Σ∗. We inductively define the (strongest) post
operator Post(K,w) as follows:

Post(K, ε) = K

Post(K,α.w) = Post(JαK(K), w)

The post operator extends to logical constraints ϕ ∈ β(V ) by defining Post(ϕ,w) =
Post(JϕK, w). In the sequel, we assume that, when ϕ ∈ β(V ), then JαK(JϕK) is also definable
as a constraint in β(V ). This inductively implies that Post(ϕ,w) can also be expressed as
a constraint in β(V ) for sequences of instructions w ∈ Σ∗.

3.4 Timed Words and Feasible Words

A timed word (over alphabet Σ) is a finite sequence σ = (α0, δ0).(α1, δ1). · · · .(αn, δn) such
that for each 0 ≤ i ≤ n, δi ∈ R≥0 and αi ∈ Σ. The timed word σ is feasible if and only if
there exists a set of valuations {ν0, . . . , νn+1} ⊆ [V → R] such that:

ν0
α0,δ0−−−−→ ν1

α1,δ1−−−−→ ν2 · · · νn
αn,δn−−−−→ νn+1.

We let Unt(σ) = α0.α1. · · · .αn be the untimed version of σ. We extend the notion feasible
to an untimed word w ∈ Σ∗: w is feasible iff w = Unt(σ) for some feasible timed word σ.

Lemma 1 An untimed word w ∈ Σ∗ is feasible iff Post(True, w) 6= False.
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Proof 1 We prove this Lemma by induction on the length of w. The induction hypothesis
is:

ν0
α0,δ0−−−−→ ν1

α1,δ1−−−−→ ν2 · · · νn
αn,δn−−−−→ νn+1 ⇐⇒ νn+1 ∈ Post({ν0}, α0.α1. · · · .αn)

which is enough to prove the Lemma.
Base step. If w = ε, then Post({ν0}, ε) = {ν0}.
Inductive step. Assume ν0

α0,δ0−−−−→ ν1
α1,δ1−−−−→ ν2 · · · νn

αn,δn−−−−→ νn+1
αn+1,δn+1−−−−−−→ νn+2.

By induction hypothesis, νn+1 ∈ Post({ν0}, α0.α1. · · · .αn), and νn+2 ∈ Jαn+1K(νn+1). By
definition of Post this implies that νn+2 ∈ Post({ν0}, α0.α1. · · · .αn.αn+1).

3.5 Real-Time Programs

The specification of a real-time program decouples the control (e.g., for Timed Automata,
the locations) and the data (the clocks or integer variables). A real-time program is a pair
P = (AP , J·K) where AP is a finite automaton AP = (Q, ι,Σ,∆, F ) over the alphabet7 Σ,
∆ defines the control-flow graph of the program and J·K provides the semantics of each
instruction.
A timed word σ is accepted by P if and only if:

1. Unt(σ) is accepted by AP and,

2. σ is feasible.

The timed language, T L(P ), of a real-time program P is the set of timed words accepted
by P , i.e., σ ∈ T L(P ) if and only if Unt(σ) ∈ L(AP ) and σ is feasible.

Remark 1 We do not assume any particular values initially for the variables of a real-time
program (the variables that appear in I). This is reflected by the definition of feasibility
that only requires the existence of valuations without containing the initial one ν0. When
specifying a real-time program, initial values can be explicitly set by regular instructions
at the beginning of the program. This is similar to standard programs where the first
instructions can set the values of some variables.

3.6 Timed Language Emptiness Problem

The (timed) language emptiness problem asks the following:

Given a real-time program P , is T L(P ) empty?

Theorem 1 T L(P ) 6= ∅ iff ∃w ∈ L(AP ) such that Post(True, w) 6⊆ False.

Proof 2 T L(P ) 6= ∅ iff there exists a feasible timed word σ such that Unt(σ) is accepted
by AP . This is equivalent to the existence of a feasible word w ∈ L(AP ), and by Lemma 1,
feasibility of w is equivalent to Post(True, w) 6⊆ False.

7Σ can be infinite but we require the control-flow graph ∆ (transition relation) of AP to be finite.
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3.7 Useful Classes of Real-Time Programs

Timed Automata are a special case of real-time programs. The variables are called clocks.
β(V ) is restricted to constraints on individual clocks or difference constraints generated by
the grammar:

b1, b2 ::= True | False | x− y 1 k | x 1 k | b1 ∧ b2 (8)

where x, y ∈ V , k ∈ Q≥0 and 1∈ {<,≤,=,≥, >}8. We note that wlog. we omit location
invariants as for the language emptiness problem, these can be implemented as guards.
An update in µ ∈ U(V ) is defined by a set of clocks to be reset. Each pair (ν, ν ′) ∈ µ is
such that ν ′(x) = ν(x) or ν ′(x) = 0 for each x ∈ V . The valid rates are fixed to 1, and
thus R(V ) = {1}V .

Stopwatch Automata can also be defined as a special case of real-time programs. As
defined in [14], Stopwatch Automata are Timed Automata extended with stopwatches
which are clocks that can be stopped. β(V ) and U(V ) are the same as for Timed Automata
but the set of valid rates is defined by the functions of the form R(V ) = {0, 1}V (the clock
rates can be either 0 or 1). An example of a Stopwatch Automaton is given by the timed
system A1 in Figure 1.

As there exists syntactic translations (preserving timed languages or reachability) that
map hybrid automata to stopwatch automata [14], and translations that map time Petri
nets [6, 16] and extensions [12, 11] thereof to timed automata, it follows that time Petri
nets and hybrid automata are also special cases of real-time programs. This shows that
the method we present in the next section is applicable to a wide range of timed systems.
What is remarkable as well, is that it is not restricted to timed systems that have a finite
number of discrete states but can also accommodate infinite discrete state spaces. For
example, the real-time program P2 in Figure 3, page 8 has two clocks x and y and an
unbounded integer variable i. Even though i is unbounded, our technique discovers the
loop invariant y ≥ i of the ι and `0 locations – an invariant is over a real-time clock y and
the integer variable i. It allows us to prove that T L(P2) = ∅ as the guard of t2 never can
be satisfied (y < i).

4 Trace Abstraction Refinement for Real-Time Pro-

grams

In this section we give a formal description of a semi-algorithm to solve the language empti-
ness problem for real-time programs. The semi-algorithm is a version of the refinement of
trace abstractions (TAR) approach [26] for timed systems.

8 While difference constraints are strictly disallowed in most definitions of Timed Automata, the method
we propose retain its properties regardless of their presence.
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4.1 Refinement of Trace Abstraction for Real-Time Programs

We have already introduced our algorithm in Figure 2, page 6. We now give a precise
formulation of the TAR semi-algorithm for real-time programs, in Algorithm 1. It is essen-
tially the same as the semi-algorithm as introduced in [26] – we therefore omit theorems
of completeness and soundness as these will be equivalent to the theorems in [26] and are
proved in the exact same manner.

Algorithm 1: RTTAR – Trace Abstraction Refinement for Real-Time Programs

Input : A real-time program P = (AP , J·K).
Result: (True,−) if T L(P ) = ∅, and otherwise (False, w) if T L(P ) 6= ∅ with w ∈ L(AP )

and Post(True, w) 6⊆ False – or non-termination.
Var : R: a regular language, initially R = ∅.

w: a word in L(AP ), initially w = ε.
T : A finite automaton, initially empty.

1 while L(AP ) 6⊆ R do
2 Let w ∈ L(AP ) \R;
3 if Post(True, w) 6⊆ False then

/* w is feasible and w is a counter-example */

4 return (False, w);

5 else
/* w is infeasible, compute an interpolant automaton based on w */

6 Let T = ITA(w);
/* Add T to refinement and continue */

7 Let R := R ∪ L(T );

8 return (True,−);

The input to the semi-algorithm TAR-RT is a real-time program P = (AP , J·K). An
invariant of the semi-algorithm is that the refinement R, which is subtracted to the initial
set of traces, is either empty or containing infeasible traces only. In the coarsets, initial
abstraction, all the words L(AP ) are potentially feasible. In each iteration of the algorithm,
we then chip away infeasible behaviour (via the set R) of AP , making the set difference
L(AP )\R move closer to the set of feasible traces, thereby shrinking the overapproximation
of feasible traces (L(AP ) \R).

Initially the refinement R is the empty set. The semi-algorithm works as follows:

Step 1 line 1, check whether all the (untimed) traces in L(AP ) are in R. If this is the
case, T L(P ) is empty and the semi-algorithm terminates (line 8). Otherwise (line 2),
there is a sequence w ∈ L(AP ) \R, goto Step 2;

Step 2 if w is feasible (line 3) i.e., there is a feasible timed word σ such that Unt(σ) =
w, then σ ∈ T L(P ) and T L(P ) 6= ∅ and the semi-algorithm terminates (line 4).
Otherwise w is not feasible, goto Step 3;
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Step 3 w is infeasible and given the reason for infeasibility we can construct (line 6)
a finite interpolant automaton, ITA(w), that accepts w and other words that are
infeasible for the same reason. How ITA(w) is computed is addressed in the sequel.
The automaton ITA(w) is added (line 7) to the previous refinement R and the semi-
algorithm starts a new round at Step 1 (line 1).

In the next paragraphs we explain the main steps of the algorithms: how to check feasibility
of a sequence of instructions and how to build ITA(w).

4.2 Checking Feasibility

Given a arbitrary word w ∈ Σ∗, we can check whether w is feasible by encoding the side-
effects of each instruction in w using linear arithmetic as demonstrated in Examples 1
and 2.

We now define a function Enc for constructing such a constraint-system characterizing
the feasibility of a given trace. We first show how to encode the side-effects and feasibility
of a single instruction α ∈ Σ. Recall that α = (γ, µ, ρ) where the three components are
respectively the guard, the update, and the rates. Assume that the variables9 in α are
X = {x1, x2, · · · , xk}. We can define the semantics of α using the standard unprimed10

and primed variables (X ′). We assume that the guard and the updates can be defined by
predicates and write α = (ϕ(x), µ(x, x′), ρ(x)) with:

• ϕ(x) ∈ β(X) is the guard of the instruction,

• µ(x, x′) a set of constraints in β(X ∪X ′),

• ρ : X → Q defines the rates of the variables.

The effect of α from a valuation x′′, which is composed of 1) discrete step if the guard is
true followed by the updates leading to a new valuation x′, and 2) continuous step i.e., time
elapsing δ, leading to a new valuation x, can be encoded as follows:

Enc(α, x′′, x′, x, δ) = ϕ(x′′) ∧ µ(x′′, x′) ∧ x = x′ + (ρ, δ) ∧ δ ≥ 0 (9)

Let K(x) be a set of valuations that can be defined as constraint in β(X). It follows that
JαK(K(x)) is defined by:

∃δ, x′′, x′ such that K(x′′) ∧ Enc(α, x′′, x′, x, δ) (10)

In other terms, JαK(K(x)) is not empty iff K(x′′) ∧ Enc(α, x′′, x′, x, δ) is satisfiable.

We can now define the encoding of a sequence of instructions w = α0.α1. · · · .αn ∈ Σ∗.
Given a set of variables W , we define the corresponding set of super-scripted variables
W k = {wj, w ∈ W, 0 ≤ j ≤ k}. Instead of using x, x′, x′′ we use super-scripted variables

9The union of the variables in γ, µ, ρ.
10x denotes the vector of variables {x1, x2, · · · , xk}.

15



xk (and yk for the intermediate variables x′) to encode the side-effect of each instruction
in the trace:

Enc(w) =
n∧
i=0

Enc(αi, x
i, yi, xi+1, δi)

It is straighgforward to prove that the function Enc : Σ∗ → β(Xn+1 ∪ Y n ∪ {δ}n)
constructs a constraint-system characterizing exactly the feasibility of a word w:

Fact 2 For each w ∈ Σ∗, Post(True, w) 6⊆ False iff Enc(w) is satisfiable.

If the terms we build are in a logic supported by SMT-solvers (e.g., Linear Real Arithmetic)
we can automatically check satisfiability. If Enc(w) is satisfiable we can even collect some
model which provides witness values for the δk. Otherwise, if Enc(w) is unsatisfiable, there
are some options to collect some reasons for unsatisfiability : unsat cores or interpolants.
The latter is discussed in the next section.

An example of an encoding for the real-time program P1 (Figure 1) and the sequence
w1 = i.t0.t2 is given by the predicates in Equation (C0)–(C2). Hence the sequence w1 =
i.t0.t2 is feasible iff Enc(w1) = C0 ∧ C1 ∧ C2 is satisfiable. Using a SMT-solver, e.g., with
Z3, we can confirm that Enc(w1) is unsatisfiable. The interpolating11 solver Z3 can also
generate a sequence of interpolants, I0 = x ≤ y and I1 = x− y ≤ z, that provide a general
reason for unsatisfiability and satisfy:

{True} i {I0} t0 {I1} t2 {False}.

We can use the interpolants to build interpolant automata as described in the next section.

4.3 Construction of Interpolant Automata

4.3.1 Inductive Interpolant

When it is determined that a trace w is infeasible, we can easily discard such a single trace
and continue searching for a different one. However, the power of the TAR method is to
generalize the infeasibility of a single trace w into a family (regular set) of traces. This
regular set of infeasible traces is computed from a reason of infeasibility of w and is formally
specified by an interpolant automaton, ITA(w). The reason for infeasibility itself can be
the predicates obtained by computing strongest post-conditions or weakest-preconditions
or anything in between but it must be an inductive interpolant12.

Given a conjunctive formula f = C0 ∧ · · · ∧ Cm, if f is unsatisfiable, an inductive
interpolant is a sequence of predicates I0, . . . , Im−1 s.t:

• True ∧ C0 =⇒ I0,

11The interpolating feature of Z3 has been phased out from version 4.6.x. However, there are alternative
techniques to obtain inductive interpolants e.g., using unsat cores [22].

12Strongest post-conditions and weakest pre-conditions can provide inductive interpolants
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Figure 4: Interpolant automaton for L(ITA(w1)) ∪ L(ITA(w2)).

• Im−1 ∧ Cm =⇒ False,

• For each 0 ≤ n < m− 1, In ∧Cn+1 =⇒ In+1, and the variables in In appear in both
Cn and Cn+1 i.e., Vars(In) ⊆ Vars(Cn) ∩ Vars(Cn+1).

If the predicates C0, C1, · · · , Cm encode the side effects of a sequence of instructions
α0.α1. · · · , αm, then one can intuitively think of each interpolant as a sufficient condi-
tion for infeasibility of the post-fix of the trace and this can be represented by a sequence
of valid Hoare triples of the form {C} a {D}:

{True} α0 {I0} α1 {I1} · · · {Im−1} αm {False}

Consider the real-time program P3 of Figure 3 and the two infeasible untimed words w1 =
i.t0.t2 and w2 = i.t0.t1.t0.t2. Some inductive interpolants for w1 and w2 can be given by:
I0 = y0 ≥ x0∧(k0 = 0), I1 = y1 ≥ k1 for w1 and I ′0 = y0 ≥ x0∧k0 ≤ 0, I ′1 = y1 ≥ 1∧k1 ≤ 0,
I ′2 = y2 ≥ k2 + x2, I

′
3 = y3 ≥ k3 + 1 for w2. From the inductive interpolants one can obtain

valid Hoare triples by de-indexing the predicates in the inductive interpolants13 as shown
in Equations 11-12:

{True} i {π(I0)} t0 {π(I1)} t2 {False} (11)

{True} i {π(I ′0)} t0 {π(I ′1)} t1 {π(I ′2)} t0 {π(I ′3)} t2 {False} (12)

where π(Ik) is the same as Ik where each indexed variable xj replaced by x. As can be
seen in Equation 12, the sequence contains two occurrences of t0: this suggests that a
loop occurs in the program, and this loop may be infeasible as well. Formally, because
Post(π(I ′2), t0) ⊆ I ′1, any trace of the form i.t0.t1.(t0.t1)

∗.t0.t2 is infeasible. This enables
us to construct an interpolant automaton ITA(w2) accepting the regular set of infeasible
traces i.t0.t1.(t0.t1)

∗.t0.t2. Overall, because w1 is also infeasible, the union of the languages
accepted by ITA(w2) and ITA(w1) is a set of infeasible traces as defined by the finite
automaton in Figure 4.

Given w such that Enc(w) is unsatisfiable we can always find an inductive interpolant:
the strongest post-conditions Post(True, w[i]) or (the weakest pre-conditions from False)
defines an inductive interpolant. More generally, we have:

13This is a direct result of the encoding function Enc. The interpolants can only contain at most one
version of each indexed variables.
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Lemma 2 Let w = α0.α1. · · · .αm ∈ Σ∗. If Enc(w) = C0 ∧ C1 ∧ · · · ∧ Cm is unsatisfiable
and I0, · · · , Im−1 is an inductive interpolant for Enc(w), the following sequence of Hoare
triples

{True} α0 {π(I0)} α1 {π(I1)} · · · αm−1 {π(Im−1)} αm {False}

is valid.

Proof 3 The proof follows from the encoding Enc(w) and the fact that each Ik is included
in the weakest pre-condition wp(False, αk+1.αm) which can be proved by induction using the
property of inductive interpolants.

4.3.2 Interpolant Automata

Let us formalize the interpolant-automata construction. Let w = α0.α1. · · · .αm ∈ Σ∗,
Enc(w) = C0 ∧ · · · ∧ Cm and assume Post(True, w) ⊆ False i.e., Enc(w) is unsatisfiable
(Fact 2).

Let I0, . . . Im−1 be an inductive interpolant for C0 ∧ · · · ∧ Cm. We can construct an
interpolant automaton for w, ITA(w) = (Qw, qw0 ,Σ

w,∆w, Fw) as follows:

• Qw = {True,False, π(I0), · · · , π(Im−1)}, (note that if two de-indexed interpolants are
the same they account for one state only),

• Σw = {α0, α1, · · · , αm},

• Fw = {False},

• ∆w satisfies following conditions:

1. (True, α0, π(I0)) ∈ ∆w,

2. (π(Im−1), αm,False) ∈ ∆w,

3. ∀a ∈ Σw,∀0 ≤ k, j ≤ m−1, if Post(π(Ik), a) ⊆ π(Ij) then (π(Ik), a, π(Ij)) ∈ ∆w.

Notice that as Post(π(Ik), αk+1) ⊆ π(Ik+1) the word w itself is accepted by ITA(w) and
ITA(w) is never empty.

Theorem 2 (Interpolant Automata) Let w be an infeasible word over P , then for all
w′ ∈ L(ITA(w)), w′ is infeasible.

Proof 4 This proof is essentially the same as the original one in [26]. The proof uses rule 3
in the construction of ITA(w): every word accepted by ITA(w) goes through a sequence of
states that form a sequence of valid Hoare triples and end up in False. It follows that if
w′ ∈ ITA(w), Post(True, w′) ⊆ False.
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4.4 Union of Interpolant Automata

In the TAR algorithm we construct interpolant automata at each iteration and the current
refinement R is the union of the regular languages L(ITA(wk)) for each infeasible wk. The
union can be computed using standard automata-theoretic operations. This assumes that
we somehow forget the predicates associated with each state of an interpolant automaton.

In this section we introduce a new technique to re-use the information computed in
each ITA(wk) and obtain larger refinements.

Let A = (Q, q0,Σ,∆, F ) be a finite automaton such that each q ∈ Q is a predicate in
ϕ(X). We say that A is sound if the transition relation ∆ satisfies: (I, α, J) ∈ ∆ implies
that JαK(I) ⊆ J (or Post(I, α) ⊆ J).

Let R = (QR, {True},ΣR,∆R, {False}) be a sound finite automaton that accepts only
infeasible traces. Let w ∈ Σ∗ with w infeasible. The automaton ITA(w) = (Qw, {True},Σw,∆w, {False})
built as described in section 4.3 is sound. We can define an extended union, R] ITA(w) =
(QR ∪Qw, {True},ΣR ∪ Σw,∆R]ITA(w), {False}) of R and ITA(w) with:

∆R]ITA(w) = {(p, α, p′)} | ∃(q, α, q′) ∈ ∆R ∪∆w s.t.p ⊆ q and p′ ⊇ q′}.

It is easy to see that L(R ] ITA(w)) ⊇ L(R) ∪ L(ITA(w)) but also:

Theorem 3 Let w′ ∈ L(R ] ITA(w)). Then Post(True, w′) ⊆ False.

Proof 5 Each transition (p, α, p′) in R] ITA(w) corresponds to a valid Hoare triple. It is
either in ∆R or ∆w and then is valid by construction or it is weaker than an established
Hoare triple in ∆R or ∆w.

This theorem allows us to use the ] operator in Algorithm 1 instead of the standard union
of regular languages. The advantage is that we re-use already established Hoare triples to
build a larger refinement at each iteration.

4.5 Feasibility Beyond Timed Automata

Satisfiability can be checked with an SMT-solver (and decision procedures exist for useful
theories). In the case of timed automata and stopwatch automata, the feasibility of a trace
can be encoded in linear arithmetic. The corresponding theory, Linear Real Arithmetic
(LRA) is decidable and supported by most SMT-solvers. It is also possible to encode
non-linear constraints (non-linear guards and assignments). In the latter cases, the SMT-
solver may not be able to provide an answer to the SAT problem as non-linear theories are
undecidable. However, we can still build on a semi-decision procedure of the SMT-solver,
and if it provides an answer, get the status of a trace (feasible or not).

4.6 Sufficient Conditions for Termination

Let us now construct a set of criteria on a real-time program P = ((Q, q0,Σ,∆, F ), J·K) s.t.
our proposed method is guaranteed to terminate.
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Lemma 3 Termination The algorithm presented in Figure 2 terminates if the following
three conditions hold.

1. For any word σ ∈ Σ∗, then JσK is expressible within a decidable theory (supported by
the solver), and

2. the statespace of P has a finite representation, and

3. the solver used returns interpolants within the finite statespace representation.

Proof 6 First consider the algorithm presented in Figure 2, then we can initially state that
for each iteration of the loop R grows and thus the NFA representing R (AR) must also. As
per the construction presented in Section 4.4 we can observe that the transition-function
of AR will increase by at least one in each iteration in Step 3. If not, the selection of σ
between step 1 and step 2 is surely violated or the construction of ITA in step 3 is.

From Conditions 2 and 3 we have that the statespace is finitely representable and that
these representatives are used by the solver. Thus we know that the interpolant automata
also has a finite set of states as per the construction of Section 4.4. Together with the finite-
ness of the set of instructions, this implies that the transition-function of the interpolant
automata must also be finite. Hence, the algorithm can (at most) introduce a transition
between each pair of states with each instruction, but must at least introduce a new one in
every iteration.

As this termination condition relies on the solver, it is heavily dependent on the con-
struction of the solver. However, if we consider the class of real-time programs captured
by Timed Automata, we know that condition 1 is satisfied (in fact it is Linear Real Arith-
metic), condition 2 is satisfied via the region-graph construction. This leaves the con-
struction of a solver satisfying condition 3, which in turn should be feasible already from
condition 2, but is practically achievable for TA via extrapolation-techniques and differ-
ence bound matrices (or for systems with only non-strict guards; timed-darts or integer
representatives).

5 Parameter Synthesis for Real-Time Programs

In this section we show how to use the trace abstraction refinement semi-algorithm pre-
sented in Section 4 to synthesize good initial values for some of the program variables,
and to check robustness of timed automata. We first define the Maximal Safe Initial State
problem and then show how to reduce parameter synthesis and robustness to special cases
of this problem.

5.1 Maximal Safe Initial Set Problem

Given a real-time program P , the objective is to determine a set of initial valuations
I ⊆ [V → R] such that, when we start the program in I, T L(P ) is empty.

20



Given a constraint I ∈ β(V ), we define the corresponding assume instruction by:
Assume(I) = (I, Id, 0). This instruction leaves all the variables unchanged (discrete update
is the identity function and the rate vector is 0) and this acts as a guard only.

Let P = (Q, q0,Σ,∆, F ) be a real-time program and I ∈ β(V ). We define the real-time
program Assume(I).P = (Q, {ι},Σ ∪ {Assume(I)},∆ ∪ {(ι,Assume(I), q0)}, F ).

The maximal safe initial state problem asks the following:

Given a real-time program P , find a maximal I ∈ β(V ) s.t. T L(Assume(I).P ) =
∅.

5.2 Semi-Algorithm for the Maximal Safe Initial State Problem

Let w ∈ L(Assume(I).P ) be a feasible word. It follows that Enc(w) must be satisfi-
able. We can define the set of initial values for which Enc(w) is satisfiable by project-
ing away all the variables in the encoding Enc(w) except the ones indexed by 0. Let
I0 = ∃(Vars(Enc(w)) \ X0).Enc(w) be the resulting (existentially quantified) predicate
and π(I0) be the corresponding constraint on the program variables without indices. We
let ∃i(w) = π(I0). It follows that ∃i(w) is the maximal set of valuations for which w is
feasible. Note that existential quantification for the theory of Linear Real Arithmetic is
within the theory via Fourier–Motzkin-elimination – hence the computation of ∃i(w) by
an SMT-solver only needs support for Linear Real Arithmetic when P encodes a linear
hybrid, stopwatch or timed automaton.14

The TAR-based semi-algorithm for the maximal safe initial state problem is presented
in Figure 5. The semi-algorithm in Figure 5 works as follows:

1: T L(Assume(I).P ) = ∅?

Maximal safe init is I

I := True

2: I := I ∧ ¬∃i(Unt(σ))

Yes

No

Let σ ∈ T L(Assume(I).P )

Figure 5: Semi-algorithm SafeInit .

1. initially I = True

2. using the semi-algorithm 1, check whether T L(Assume(I).P ) is empty

3. if so P does not accept any timed word when we start from JIK;
14This idea of using Fourier-Motzkin elimination has already been proposed [7] in the context of timed

Petri nets.
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4. Otherwise, there is a witness word σ ∈ T L(Assume(I).P ), implying that I∧Enc(Unt(σ))
is satisfiable. It follows that ∃i.Enc(Unt(σ)) cannot be part of the maximal set. It is
used to strengthen I and repeating from step 2.

If the semi-algorithm terminates, it computes exactly the maximal set of values for
which the system is safe (I), captured formally by Theorem 4.

Theorem 4 If the semi-algorithm SafeInit terminates and outputs I, then:

1. T L(Assume(I).P ) = ∅ and

2. for any I ′ ∈ β(V ), T L(Assume(I ′).P ) = ∅ implies I ′ ⊆ I.

Proof 7 The fact that T L(Assume(I).P ) = ∅ follows from termination.
The fact that I is maximal is an invariant of the semi-algorithm: at the beginning, I =

True and is clearly maximal. At each iteration, we may subtract a set of valuations K from
the previously computed I, but these valuations are all such that T L(Assume(ν).P ) 6= ∅
for any ν ∈ K by definition of existential quantification.

Hence every time a set of valuations is removed by strengthening I only unsafe initial
valuations are removed. It follows that if safeInit terminates, I is maximal.

5.3 Parameter Synthesis

Let P = (Q, q0,Σ,∆, F ) be a real-time program over a set of variables X ∪ U such that:
∀u ∈ U,∀(g, µ, ρ) ∈ ∆, (ν, ν ′) ∈ µ =⇒ ν(u) = ν ′(u) and ρ(u) = 0. In words, variables in
U are constant variables. Note that they can appear in the guard g.

The parameter synthesis problem asks the following:

Given a real-time program P , find a maximal set I ∈ β(U) s.t. T L(Assume(I).P ) =
∅.

The parameter synthesis problem is a special case of the maximal safe initial state problem.
Indeed, solving the maximal safe initial state problem allows us to find the maximal set
of parameters such that T L(P ) = ∅. Let I be a solution15 to the maximal safe initial
state problem. Then ∃(Vars(P ) \ U).I is a maximal set of parameter values such that
T L(P ) = ∅.

5.4 Robustness Checking

Another remarkable feature of our technique is that it can readily be used to check robust-
ness of real-time programs and hence timed automata. In essence, checking robustness
amounts to enlarging the guards of a real-time program P by an ε > 0. The resulting
program is Pε.

The robustness problem asks the following:

15For now assume there is a unique maximal solution.
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Given a real-time program P , is there some ε > 0, s.t. T L(Pε) = ∅.

Using our method we can solve the robustness synthesis problem which asks the
following:

Given a real-time program P , find a maximal ε > 0, s.t. T L(Pε) = ∅.

This problem asks for a witness (maximal) value for ε.
The robustness synthesis is a special case of the parameter synthesis problem where ε

is a parameter of the program P .
Note that in our experiments (next section), we assume that P is robust and in this

case we can compute a maximal value for ε. Proving that a program is non-robust re-
quires proving feasibility of infinite traces for ever decreasing ε. We have developed some
techniques (similar to proving termination for standard programs) to do so but this is still
under development.

6 Experiments

We have conducted three sets of experiments, each testing the applicability of our pro-
posed method (denoted by rttar) compared to state-of-the-art tools with specialized
data-structures and algorithms for the given setting. All experiments were conducted on
AMD EPYC 7551 Processors and limited to 1 hour of computation. The rttar tool uses
the Uppaal parsing-library, but relies on Z3 [20] for the interpolant computation. Our
experimental setup is available online [30].

6.1 Verification of Timed and Stopwatch Automata

The real-time programs, P1 of Figure 1 and P2 of Figure 3 can be analyzed with our
technique. The analysis (rttar algorithm 1) terminates in two iterations for the program
P1, a stopwatch automaton. As emphasized in the introduction, neither Uppaal (over-
approximation with DBMs) nor PHAver can provide the correct answer to the reachability
problem for P1.

To prove that location 2 is unreachable in program P2 requires to discover an invariant
that mixes integers (discrete part of the state) and clocks (continuous part). Our technique
successfully discovers the program invariants. As a result the refinement depicted in Fig-
ure 4 is constructed and as it contains L(AP2) the refinement algorithm RTTAR terminates
and proves that 2 is not reachable. AP2 can only be analyzed in Uppaal with significant
computational effort and bounded integers.
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imitator-2.12 rttar
A1 DNF 0.08
Sched2.100.0 7.16 492.73
Sched2.50.0 4.95 273.36
fischer_2 DNF 0.26
fischer_2_robust DNF 0.25
fischer_4 DNF 47.96
fischer_4_robust DNF 50.26

Table 2: Results for parameter-synthesis comparing rttar with Imitator. Time is given
in seconds. DNF marks that the tool did not complete the computation within an hour.

Figure 6: A Uppaal template for a single process in Fischers Algorithm. The variables e,
a and b are parameters for ε, lower and upper bounds for clock-values respectively.

6.2 Parametric Stopwatch Automata

We compare the rttar tool to Imitator [3] – the state-of-the-art parameter synthesis
tool for reachability16. We shall here use the semi-algorithm presented in Section 5 For the
test-cases we use the gadget presented initially in Figure 1, a few of the test-cases used
in [4], as well as two modified versions of Fischers Protocol, shown in Figure 6. In the
first version we replace the constants in the model with parameters. In the second version
(marked by robust), we wish to compute an expression, that given an arbitrary upper and
lower bound yields the robustness of the system – in the same style as the experiments
presented in Section 6.3, but here for arbitrary guard-values.

As illustrated by Table 2 the performance of rttar is slower than Imitator when
Imitator is able to compute the results. On the other hand, when using Imitator to
verify our motivating example from Figure 1, we observe that Imitator never terminates,
due to the divergence of the polyhedra-computation. This is the effect illustrated in Table 1.

When trying to synthesize the parameters for Fischers algorithm, in all cases, Imitator

16We compare with the EFSynth-algorithm in the Imitator tool as this yielded the lowest computation
time in the two terminating instances.
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rttar robust symrob
csma_05 32.38 1/3 0.51 1/3

csma_06 87.55 1/3 1.91 1/3

csma_07 294.30 1/3 7.37 1/3

fischer_04 17.64 1/2 0.19 1/2

fischer_05 102.50 1/2 0.77 1/2

fischer_06 519.41 1/2 2.83 1/2

M3 17.14 ∞ N/A N/A
M3c 17.72 ∞ 3.91 250/3

a 3470.95 1/2 19.66 1/4

Table 3: Results for robustness analysis comparing rttar with symrob. Time is given in
seconds. N/A indicates that symrob was unable to compute the robustness for the given
model.

times out and never computes a result. For both two and four processes in Fischers
algorithm, our tool detects that the system is safe if and only if a < 0 ∨ b < 0 ∨ b− a > 0.
Notice that a < 0∨b < 0 is a trivial constraint preventing the system from doing anything.
The constraint b − a > 0 is the only useful one. Our technique provides a formal proof
that the algorithm is correct for b− a > 0.

In the same manner, our technique can compute the most general constraint ensuring
that Fischers algorithm is robust. The result of rttar algorithm is that the system is
robust iff ε ≤ 0 ∨ a < 0 ∨ b < 0 ∨ b − a − 2ε > 0 – which for ε = 0 (modulo the initial
non-zero constraint on ε) reduces to the constraint-system obtained in the non-robust case.

6.3 Robustness of Timed Automata

To address the robustness problem for a real-time program P , we use the semi-algorithm
presented in Section 5 and reduce the robustness-checking problem to that of parameter-
synthesis. Notice the delimitation of the input-problems to robust-only instances from
Section 5.4.

As Table 3 demonstrates, symrob [33] and rttar do not always agree on the results.
Notably, since the TA M3 contains strict guards, symrob is unable to compute the ro-
bustness of it. Furthermore, symrob under-approximates ε, an artifact of the so-called
“loop-acceleration”-technique and the polyhedra-based algorithm. This can be observed in
the modified model M3c, which is now analyzable by symrob, but differs in results com-
pared to rttar. This is the same case with the model denoted a. We experimented with
ε-values to confirm that M3 is safe for all the values tested – while a is safe only for values
tested respecting ε < 1

2
. We can also see that our proposed method is significantly slower

than the special-purpose algorithms deployed by symrob, but in contrast to symrob, it
computes the maximal set of good paramaters.

25



7 Conclusion

We have proposed a version of the trace abstraction refinement approach to real-time pro-
grams. We have demonstrated that our semi-algorithm can be used to solve the reachability
problem for instances which are not solvable by state-of-the-art analysis tools.

Our algorithms can handle the general class of real-time programs that comprises of
classical models for real-time systems including timed automata, stopwatch automata,
hybrid automata and time(d) Petri nets.

As demonstrated in Section 6, our tool is capable of solving instances of reachability
problems, robustness, parameter synthesis, that current tools are incapable of handling.

For future work we would like to improve the scalability of the proposed method,
utilizing well known techniques such as extrapolations, partial order reduction [17] and
compositional verification [15]. Another short-term improvement is to use unsat cores to
compute interpolant automata as proposed in [22]. Furthermore, we would like to extend
our approach from reachability to more expressive temporal logics.
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Dominique Méry, editors, FM 2012: Formal Methods: 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, pages 33–36, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.
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