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Abstract. Many partial order methods use some special condition for ensuring that the analysis

is not terminated prematurely. In the case of stubborn set methods for safety properties, imple-

mentation of the condition is usually based on recognizing the terminal strong components of the

reduced state space and, if necessary, expanding the stubborn sets used in their roots. In an earlier

study it was pointed out that if the system may execute a cycle consisting of only invisible actions

and that cycle is concurrent with the rest of the system in a non-obvious way, then the method

may be fooled to construct all states of the full parallel composition. This problem is solved in

this study by a method that “freezes” the actions in the cycle. The new method also preserves fair

testing equivalence, making it usable for the verification of many progress properties.

Keywords: partial order methods, stubborn sets, safety properties, ignoring problem, fair testing

1. Introduction

Ample set [1, 2, 3], persistent set [4, 5], and stubborn set [6, 7] methods, or aps set methods in brief,

alleviate state explosion by only firing a subset of enabled actions in each constructed state. Statically
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available information on generalized concurrency and causal dependency between actions is exploited

to choose the subsets so that correct answers to analysis questions are obtained. Also the class of

analysis questions affects the choice of the subsets. In general, the smaller the class is, the weaker

conditions the subsets must satisfy, the better are the chances of finding legal subsets with only few

enabled actions, and the better are the reduction results.

In this study we focus on safety properties, that is, properties whose counter-examples are fi-

nite sequences of actions. We use process-algebraic parlance and thus talk about preserving trace

equivalence, but that only means that counter-examples to all safety properties are preserved and fake

counter-examples are not introduced. (As almost always in partial order reduction, the set of so-called

visible actions must first be chosen appropriately.)

What is important, however, is that the method also preserves so-called fair testing equivalence [8,

9], and this came for free – we have added nothing to the method towards this end. It is widely known

that only verifying safety properties often falls short of sufficiently verifying a system, because it

fails to detect the errors where the system does not do something that it is expected to do. Therefore,

many partial order methods for so-called liveness properties have been developed. Unfortunately, they

suffer from some problems. Also fair testing equivalence is capable of revealing does-not-do errors.

Where its verdict differs from that by liveness, it is sometimes fair testing and not liveness that more

appropriately corresponds to the real-life requirement [10]. Therefore, fair testing equivalence is a

good addition to the toolbox and deserves at least the attention that has been given to it in the present

study. This issue will be discussed in some detail in the conclusions section.

Ample, persistent, and stubborn sets are based on the same overall idea, but differ significantly at

a more detailed level. They also differ in the mathematical language used to develop the methods and

prove them correct. The differences are discussed extensively in [11, 12].

Excluding the earliest publications, aps set methods are usually described using abstract condi-

tions. Theorems on the correctness of the methods rely on these conditions, instead of on information

about how the sets are actually constructed. Then zero or more algorithms are described and proven

correct that yield sets that obey the conditions in question. Usually more than one set satisfies the con-

ditions. In particular, usually the set of all (enabled) actions satisfies them. To obtain good reduction

results, the algorithms prefer sets with few enabled actions.

As illustrated in [11, 12], in most cases, ample and persistent set conditions are more straightfor-

ward and perhaps easier to understand but have less potential for state space reduction than stubborn

set conditions. In most cases, ample and persistent set algorithms are simpler than stubborn set algo-

rithms but take more enabled actions to the sets. An important difference is that ample and persistent

sets were defined as sets of enabled actions, while stubborn sets may also contain disabled actions.

This implies, among other things, that condition 1 of Theorem 8.1 of the present study cannot be ex-

pressed naturally in ample and persistent set terminology (even in the absence of the new ideas in the

present study). Indeed, the algorithm described after the theorem has only been used with stubborn

sets. A similar comment holds on the condition V in Section 3, which is provably better than the

corresponding ample set condition [11, 12].

Almost all aps set methods need a condition to solve the ignoring problem illustrated in Sections 2

and 4. The best conditions that are known to solve the ignoring problem in the case of safety properties

are implemented based on recognizing the terminal strong components of the reduced state space [13,
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14]. Recently, there has been significant advances in them [15, 16, 17, 11, 12]. Perhaps ironically,

when writing [10], it turned out that excluding a somewhat pathological situation, no such condition

is needed in the end; and in the pathological situation, even its recently improved forms suffer from a

problem. The goal of this study is to illustrate this background and solve the remaining problem.

Ample and persistent set methods do not use terminal strong component conditions, probably be-

cause of the following reason. A well-known example (e.g., [11, Fig. 5]) demonstrates that terminal

strong component conditions do not necessarily suffice for infinite counter-examples. As a conse-

quence, when the goal is to preserve liveness properties, a stricter condition called the cycle condition

is usually used. It has been described in [1] and elsewhere, together with a concrete implementation.

The cycle condition does not make the terminal strong component conditions useless, because it is

much stronger than the latter and thus has less potential for good reduction results. Furthermore, a

drawback has been found in its most widely known implementation [18]. It may make it investigate

the full state space in a situation that should be easy for aps set methods, that is, when processes do

not interact at all [11, 12].

It is perhaps appropriate to mention at this point that while the present submission was being

reviewed, an error was published concerning how ample sets are commonly combined to on-the-fly

verification [19]. A small counter-example demonstrates that the widely used SPIN model checking

tool [20] suffers from the error. Furthermore, a distinct error has been detected by Thomas Neele in

how stubborn sets are usually applied to linear temporal logic properties [21]. This error manifests it-

self only when pushing the limits of aps set methods beyond known algorithms, so it has little practical

significance. More detail will be given in Section 3. In both cases, two correct ideas were combined

without investigating their interplay carefully enough. Fortunately, neither of these errors affects the

present publication.

In this study we introduce a new notion of frozen actions. A frozen action is treated as if it does

not exist at all. An action is frozen only when it is certain that it is irrelevant for all counter-examples

to any safety property. Not all irrelevant actions are frozen, because recent stubborn set methods are

quite good in avoiding irrelevant actions in the first place. As will be proven in Section 4, a large

class of systems never needs freezing of actions. Unfortunately, as will be illustrated with Fig. 3, the

remaining systems may be able to fool earlier stubborn set methods to investigate the same irrelevant

actions again and again in subsequent states, with detrimental consequences to reduction. The method

in the present study detects this when it has been fooled for the first time. It freezes the corresponding

irrelevant actions, and thus does not fall in the same trap again in subsequent states. (It may, however,

be fooled again elsewhere in the reduced state space, that is, in states that are not reachable from where

the actions were frozen. If that happens, it again freezes actions.)

Unfortunately, the freezing of actions makes it necessary to develop stubborn set theory anew

from the beginning. Until now, it sufficed to talk about actions inside and outside a stubborn set. In

the present study, there are three kinds of actions: frozen, warm, and others. The stubborn set is the

union of the sets of frozen and warm actions. This makes it difficult to discuss earlier work in sufficient

detail, because there is a risk of confusion between the old and new notions of stubborn sets. For this

reason, even where the purpose is to illustrate or comment on earlier work, almost all definitions,

theorems, etc., are presented in the new framework. The few exceptions are clearly marked.

Section 2 introduces the necessary background concepts, including fair testing equivalence. It also
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informally explains the intuition behind stubborn sets in general, not yet using frozen actions. In Sec-

tion 3, the stubborn set method in the presence of frozen actions is developed up to but not including

conditions for solving the ignoring problem. The history, intuition, advantages, and disadvantages of

such conditions for safety properties is discussed with many examples in Section 4. Also the version

used in the present study is presented. It is called SF. Section 5 consists of the proofs that the new

conditions guarantee that trace quivalence and fair testing equivalence are preserved.

The validity of SF is ensured by constructing the reduced state space in a certain order and in-

vestigating its terminal strong components. An algorithm for this is presented and proven correct in

Section 6. Freezing of actions takes place in this algorithm. Section 7 is dedicated to the proof that

frozen actions have the properties that we claim they have. Until Section 8, stubborn and warm sets

have only been referred to via abstract conditions. This section presents and proves correct an algo-

rithm that constructs sets with the promised properties. The algorithm is old, but has been adapted to

the presence of frozen actions. The conclusions are in Section 9.

Frozen actions resemble the div-sets in [16], but also have important differences. In [16], the

goal was to improve the performance when preserving divergenge traces (a notion relevant to liveness

errors), and actions could be explicitly thawed when creating new states. The present study deals with

safety properties and does not explicitly thaw actions when creating new states. (In both [16] and the

present study, implicit thawing is possible in the following sense: action a is frozen in state s, and

firing some other action in s leads to a state s′ that has been constructed earlier and where a is not

frozen.)

This study is based on [17], but is rather a new study than a variant of [17]. This is obvious

already by comparing their lengths. In [17], the proofs were sketchy, the result only applied to trace

equivalence, and nondeterministic actions were dealt with using an inelegant trick that was designed

directly for the formalism in Section 8. This study presents detailed proofs, extends the result to fair

testing equivalence, treats nondeterministic actions as first-class citizens, and presents many examples

that illustrate the problems in earlier methods that motivated and were solved by the present study.

2. Background

Throughout most of this study, we will only need the following notions to describe systems under

model checking: visible actions, invisible actions, and state space. Formal definitions will be pre-

sented below, but let us first discuss the intuition.

An action is the name of a transition. Visible actions are those actions that are directly relevant

for the property under verification. For instance, in the case of mutual exclusion, there may be four

visible actions: enter1, leave1, enter2, and leave2, denoting entering and leaving the critical section by

clients 1 and 2. A trace is the sequence of visible actions arising from a finite (not necessarily com-

plete) execution. (This notion is not the same as Mazurkiewicz traces [22].) We expect all traces of

the mutual exclusion system to be prefixes of sequences of the form (enter1 leave1 | enter2 leave2)
∗.

In particular, if the system has a trace ending with enter1 enter2 or enter2 enter1, then mutual exclu-

sion is violated. Alternatively, the system may be equipped with an extra piece of code that detects

the simultaneous presence of both clients in their critical sections, and then executes a visible action

named error. In this case, error may be the only visible action.
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Invisible actions are those actions that are not visible. It is customary in process algebras to only

use one name τ for invisible actions, but our method will need more names. How to apply our method

in the traditional process-algebraic setting will be explained later in this section and in Section 8.

If it is not clear whether an action should be visible or invisible, then it should be declared visible.

Having too many visible actions does not endanger the correctness of our method. However, it may

be detrimental to reduction results.

Actions, state spaces, and executions. The sets of invisible and visible actions are denoted with

I and V , respectively. We have I ∩ V = ∅. The state space is a tuple (S, I, V,∆, ŝ), where S is

the set of states, ŝ ∈ S is the initial state, and ∆ ⊆ S × (I ∪ V ) × S is the set of transitions. It is

thus an edge-labelled directed graph with a distinguished state ŝ. We do not assume that all states are

reachable from ŝ (in the familiar sense defined below), because usually the set of reachable states is

not known before verification. Typically there are variables, program counters, etc., each of which has

a set of possible values; and the set of states is the Cartesian product of these sets.

A deadlock is a state that has no outgoing transitions. An action a is enabled in state s if and

only if there is s′ such that (s, a, s′) ∈ ∆; it is disabled otherwise. The set of enabled actions in s is

denoted with en(s). Therefore, s is a deadlock if and only if en(s) = ∅.

A state is stable if and only if it has no outgoing transition that is labelled with an invisible action.

By s0 −a1→ s1 −a2→ . . . −an→ sn we mean that for every 1 ≤ i ≤ n, (si−1, ai, si) ∈ ∆.

We call it a path or an execution that starts at s0. If we use the word “execution” without mentioning

the start state, we mean a path that starts at ŝ. We may also use the prefix “finite”, if there is risk

of confusion with infinite executions. An infinite execution is an infinite path that starts at the given

state or the initial state, if the start state is not mentioned. An execution is complete if and only if it

is infinite or ends in a deadlock. By s −a1 · · · an→ s′ we mean that there are s0, . . . , sn such that

s = s0, s0 −a1→ . . . −an→ sn, and sn = s′. If there is s′ such that s −a1 · · · an→ s′, we may also

write s −a1 · · · an→. Infinite paths are denoted with s0 −a1→ s1 −a2→ . . . or s0 −a1a2 · · ·→.

By |σ| we denote the length of the string σ. The empty string is denoted with ε, that is, |ε| = 0.

Therefore, for every state s we have s −ε→ s. To avoid confusion, we declare ε /∈ I ∪ V .

An action a is deterministic if and only if for all states s, s1, and s2 such that s −a→ s1 and

s −a→ s2 we have s1 = s2. The assumption that all actions are deterministic would simplify the

present study a lot. However, we will not make that assumption, because typically it does not hold in

process algebras.

State s is reachable from s′′ if and only if there is a finite path that starts at s′′ and ends at s. State

s is reachable if and only if it is reachable from ŝ. Transition s −a→ s′ is reachable (from s′′) if and

only if s is. Occurrence of a is reachable (from s′′) if and only if some s is reachable (from s′′) such

that s −a→. The reachable part of the state space (S, I, V,∆, ŝ) is (S′, I, V,∆′, ŝ), where S′ and ∆′

are the sets of the reachable states and reachable transitions. Usually it is not explicitly known before

verification. Instead, ŝ is explicitly known and there is a rule that, given an explicitly known state s
and an action a, produces all s′ such that s −a→ s′. (The “ ||” later in this section is an example.) The

reachable part can be constructed by letting initially S′ = {ŝ} and ∆′ = ∅. A reachable state s ∈ S′ is

expanded by finding all a and s′ such that s −a→ s′, inserting the triples (s, a, s′) to ∆′, and inserting

those of their s′ to S′ that are not already there. The algorithm expands once each state that is inserted
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to S′. To do so, it keeps track of the states that have been inserted to S′ but not yet expanded. The

state s is the parent of s′, if and only if s′ was first found by firing a transition s −a→ s′.

A strong component of a directed graph is a maximal set of vertices such that for any two vertices

u and v in the set, v is reachable from u. (Then also u is reachable from v.) Strong components

constitute a partitioning of the set of vertices. A strong component C is terminal if and only if for any

u ∈ C and any v that is reachable from u, also v ∈ C .

Parallel state spaces. Stubborn set ideas are not strictly tied to any particular formalism, but, to

present examples, it is useful to have some formalism. We consider systems of the form L1 || · · · ||LN ,

where L1, . . . , LN are state spaces (Si, Ii, Vi,∆i, ŝi). To keep it clear whether an action is visible or

invisible, we assume that for every 1 ≤ i ≤ N and 1 ≤ j ≤ N , Ii ∩ Vj = ∅. The states of the

system are of the form s = (s1, . . . , sN ). The system executes an action a such that every Li that has

a ∈ Ii ∪ Vi executes a, and the remaining Li stand still. More formally, we define L1 || · · · || LN as

the reachable part of (S, I, V,∆, ŝ), where S = S1×· · ·×SN , I = I1∪ · · ·∪ IN , V = V1∪ · · ·∪VN ,

ŝ = (ŝ1, . . . , ŝN ), and (s1, . . . , sN ) −a→ (s′1, . . . , s
′
N ) (where −a→ represents ∆) if and only if for

every 1 ≤ i ≤ N , either s′i = si and a /∈ Ii ∪ Vi, or si −a→ s′i (where −a→ represents ∆i).

We adopt the convention that if an action does not appear in a drawing representing Li, then, unless

otherwise mentioned, it is not in Ii∪Vi. Furthermore, in drawings, unless otherwise mentioned, a and

b are visible; and u, v, and so on are invisible.

The formalism is, in essence, the same as parallel composition of labelled transition systems in

process algebras, with different notation for invisible actions. To make the reading of examples easier,

we adopt the convention that τi denotes an invisible action executed solely by Li, that is, τi ∈ Ii and

τi /∈ Ij when j 6= i. This makes every τi behave similarly to the τ in process algebras, the only

difference being notational: the subscript records the component that executed the τ . Furthermore,

we may write (L1 || · · · || LN ) \ H , where H lists the remaining invisible actions, that is, H =
(I1∪· · ·∪IN )\{τ1, . . . , τN}. Then “\H” can be thought of as the familiar hiding operator in process

algebras. For more details on this formalism, please see [14, 16, 15, 10].

Although stubborn set theory does not rely on the notion of concurrent actions, such a notion is

useful in examples and when discussing the intuition. Therefore, we define that a and b are concurrent

if and only if {a, b} ⊆ I ∪ V but there is no 1 ≤ i ≤ N such that {a, b} ⊆ Ii ∪ Vi.

Stubborn set basics. What is explained in this subsection, applies to traditional stubborn set meth-

ods. The new idea of frozen actions of the present study will make things more complicated.

Reachable parts of state spaces are often huge. Stubborn set methods compute a reduced state

space (Sr, I, V,∆r, ŝ) similarly to the computation of the reachable part, but only expand a subset

of actions in each state. That is, in each found state s ∈ Sr, a stubborn set stubb(s) ⊆ I ∪ V
is computed, and only the transitions s −a→ s′ and their end states s′ are inserted to ∆r and Sr

that have a ∈ stubb(s). For convenience, we use the prefix r- or the subscript r to indicate that an

entity belongs to the reduced state space. For instance, an r-path is a path in the reduced state space.

Obviously enr(s) ⊆ en(s) but not necessarily vice versa, and every r-path is a path but not necessarily

vice versa. We have enr(s) = en(s) ∩ stubb(s). By definition, Vr = V , Ir = I , and ŝr = ŝ.
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The goal is to obtain a smaller state space that can be used for the verification of certain classes of

properties. More precisely, the reduced state space contains a counter-example to the property if and

only if also the reachable part contains one. In the present study we deal with stuttering-insensitive

safety properties. A safety property is a property whose counter-examples can always be expressed in

terms of finite executions. Stuttering-insensivity means that the number of invisible actions before the

first, after the last, and between any two visible actions does not matter. Most, if not all, properties of

interest in verification are stuttering-insensitive.

Stubborn set methods exploit the fact that if a and b are concurrent and both are enabled, then

they can be executed in either order and the result is the same. Assume that the goal is to check

whether from every reachable state, an occurrence of a is reachable. Consider τ1 a || τ2 a.

It executes first τ1 or τ2. Then it executes the other one of τ1 and τ2, and then a forever. Typical

stubborn set methods fire either only τ1 or only τ2 in its initial state, saving one state and two tran-

sitions. The above-mentioned property holds both on the full and on the reduced state space. With
τ1 a || τ2 a, similar saving is obtained. In this case, the property fails on both state spaces,

because the system deadlocks.

Now consider τ1 || a. Let ŝ denote its initial state. Because τ1 and a are concurrent, the

set {τ1} is treated as stubborn by most stubborn set methods. The choice stubb(ŝ) = {τ1} constructs

the r-transition ŝ −τ1→r
ŝ, after which all encountered states have been investigated. If the analysis

stops here, then a was never fired and the property fails on the reduced state space, although it holds

on the full state space. This is known as the ignoring problem [13, 18]. To solve it, many stubborn

set methods have a special requirement, with names such as “cycle condition” and “terminal strong

component condition”. We will discuss this issue extensively in Section 4. For that purpose, let

tsr-component stand for “terminal strong component in the reduced state space”.

Trace and fair testing equivalences. If α is a string and A is a set, then let α−A denote the result

of the removal of all elements of A from α. That is, ε − A = ε; and if a1 · · · an − A = σ, then

aa1 · · · an − A = σ if a ∈ A and aσ if a /∈ A. The trace of a finite sequence of actions a1 · · · an
is a1 · · · an − I , that is, it is obtained by removing the invisible actions. By s =σ⇒ s′ we mean that

there is ρ such that σ is its trace (that is, σ = ρ− I) and s −ρ→ s′. The notation s =σ⇒ denotes that

there is some s′ such that s =σ⇒ s′. A sequence σ is a trace of state s if and only if s =σ⇒. The set

of traces of a state space L is

Tr(L) = {σ | ŝ =σ⇒} .

Two state spaces L1 = (S1, I1, V1,∆1, ŝ1) and L2 = (S2, I2, V2,∆2, ŝ2) are trace equivalent if and

only if V1 = V2 and Tr(L1) = Tr(L2). The reason for the condition V1 = V2 is the fact that the

set of visible actions plays an important role in the definition of refusals and tree failures presented

later in this subsection. Trace equivalence only depends on the reachable parts of the state spaces. To

verify a stuttering-insensitive safety property it suffices to know the set of traces of the system. This

means that if the reduced state space is trace equivalent to the full state space, then it can be used

in the verification of all stuttering-insensitive safety properties. Of course, this nice fact is subject to

choosing the set of visible actions so that the property can be expressed in terms of them.

The set of stuttering-insensitive safety properties covers a very big class of properties, but also

suffers from one serious drawback: it does not suffice for verifying that the system does something
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good, it only suffices for verifying that the system does not do anything bad. Indeed, a system that

never executes any visible actions has {ε} as its set of traces, and, therefore, violates no non-trivial

safety property. (It does violate the property that says that the system must not have the trace ε, but

this is a useless property, because every system violates it.)

Fortunately, the method developed in this study preserves also so-called fair testing equivalence [8,

9] – as a welcome side-effect. This implies that it preserves properties of the form “in all futures al-

ways, there is a future where eventually a occurs”. As a matter of fact, fair testing equivalence is the

coarsest equivalence that preserves this property and has the property that if a sub-system is replaced

by a fair testing equivalent one, then the system as a whole remains fair testing equivalent [9]. Being

the coarsest means having the biggest possible equivalence classes and thus maximizing the possibil-

ities of reducing the state space. This is an advantage in compositional approaches to verification.

Fair testing equivalence can also be thought of as preserving progress properties under the as-

sumption that for every state s that is encountered infinitely many times in an infinite execution, every

outgoing transition of s is taken infinitely many times in the execution. Intuitively this means that

if we are happy with the assumption that in every choice situation that repeats infinitely often, every

possibility is eventually tried, then a full range of stuttering-insensitive progress properties can be ver-

ified with our method. This is a somewhat weaker notion of progress than traditionally used in linear

temporal logic [23], but is easier to use because the user need not formulate any so-called weak or

strong fairness assumptions. Definitely it is much better than no progress verification at all.

The downside is that the definition of fair testing equivalence is complicated. A state s refuses a

sequence σ of visible actions if and only if s does not have σ as a trace. A state s refuses K ⊆ V ∗

if and only if s refuses every element of K . The sequence ε cannot be refused, but the set ∅ can. A

tree failure is a pair (σ,K) ∈ V ∗ × 2V
∗

such that there is s for which ŝ =σ⇒ s and s refuses K . If

K ⊆ V ∗ and π ∈ V ∗, we define π−1K = {ρ | πρ ∈ K}. We say that π is a prefix of K if and only if

π−1K 6= ∅. Two systems L1 and L2 are fair testing equivalent if and only if the following hold:

1. V1 = V2.

2. For every tree failure (σ,K) of L1, either (σ,K) is also a tree failure of L2, or there is a prefix

π of K such that (σπ, π−1K) is a tree failure of L2.

3. For every tree failure (σ,K) of L2, either (σ,K) is also a tree failure of L1, or there is a prefix

π of K such that (σπ, π−1K) is a tree failure of L1.

If K 6= ∅, then (σ,K) can be represented in the form (σπ, π−1K) where π is a prefix of K , by

choosing π = ε. However, this does not work if K = ∅, because then ε is not a prefix of K . This is

why parts 2 and 3 have the either-part.

A system has the trace σ if and only if (σ, ∅) is its tree failure. As a consequence, fair testing

equivalence implies trace equivalence.

3. Local Conditions

Intuition of earlier methods. To understand the motivation of the definitions later in this section,

let us first discuss the intuition behind earlier stubborn set methods for trace equivalence, fair testing
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equivalence, and, indeed, most stubborn set methods.

Assume that s0 ∈ Sr and s0 =σ⇒. We want s0 =σ⇒r. If σ = ε, then obviously s0 =σ⇒r s0.

From now on we assume σ 6= ε. There is a path s0 −a1→ s1 −a2→ . . . −an→ sn such that

n > 0 and σ = a1 · · · an − I . Because we do not want to construct the full state space, we might

have a1 /∈ enr(s0). Earlier stubborn set methods deal with this problem with the following strategy.

The cases have been numbered in reverse order, to match the numbering of conditions that will be

presented later.

2. The set enr(s0) may contain an invisible action a that is concurrent with a1, . . . , an or commutes

with them for some other reason (for instance, a1 may read from and a write to a fifo that is

neither empty nor full in s0, and they do not access other variables in common). Then there

are s′0 and s′n such that s0 −a→ s′0, sn −a→ s′n, and s′0 −a1 · · · an→ s′n. We have s0 =ε⇒r

s′0 =σ⇒ s′n and sn =ε⇒ s′n. So we have constructed an invisible transition in the reduced state

space such that after it, the counter-example is still available. If the stubborn set method can

guarantee s′0 =σ⇒r (which it can), then we get s0 =σ⇒r. However, the path s′0 −a1 · · · an→
s′n is of the same length as the original path s0 −a1 · · · an→ sn, so we are not any closer to the

goal than we were originally.

1. Stubborn set construction algorithms are designed so that if (but not necessarily only if) the

previous case does not apply, then for some 1 ≤ i ≤ n, ai ∈ enr(s0) and ai commutes with

a1, . . . , ai−1. (How this is obtained will be discussed in Section 8.) In this case there is s′0 such

that s0 −ai→r
s′0 −a1 · · · ai−1→ si −ai+1 · · · an→ sn. If ai ∈ I , then s0 =ε⇒r s

′
0 =σ⇒ sn.

Stubborn set construction algorithms may be designed to also guarantee that if ai ∈ V , then a1,

. . . , ai−1 are invisible. Then s0 =ai⇒r
s′0 =ε⇒ si =ρ⇒ sn, where ρ is the string such that

σ = aiρ. So in both cases we would get s0 =σ⇒r, if we could guarantee s′0 =σ′⇒r, where

σ′ = σ if ai ∈ I and σ′ = ρ otherwise. What is more, the path that yields s′0 =σ′⇒ is shorter

than the original path s0 −a1 · · · an→. We say that this case consumed ai.

That is, in each r-state, either case 1 or case 2 is available. Case 2 brings us neither closer to nor

further from the goal s0 =σ⇒r, while case 1 brings us closer to it. As a consequence, if we somehow

ensure that case 1 always eventually applies, we get an induction proof that s0 =σ⇒r. Unfortunately,

ensuring this is far from trivial. The possibility of having an infinite sequence of case 2 without case 1

is how the ignoring problem that was mentioned in Section 2 emerges in proofs. This problem will be

solved in Sections 4 and 6.

To prove that the reduced state space is fair testing equivalent to the full state space, proving just

s0 =σ⇒r s
′ for some s′ does not suffice. In the proof, we will also need sn =ε⇒ s′. Fortunately, the

above construction has this property, because in case 1 s′0 =σ′⇒ sn, and in case 2 sn −a→ s′n with

a ∈ I .

Frozen actions. In the new stubborn set method of the present study, each r-state s has an associated

set frozen(s) of frozen actions. We will define stubborn sets such that for every s ∈ Sr, frozen(s) ⊆
stubb(s), and define warm(s) = stubb(s) \ frozen(s). Only the elements in warm(s) are used for

constructing transitions in the reduced state space. That is, frozen actions are not taken into account
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when constructing reduced state spaces. However, the sets stubb(s) and frozen(s) may grow, as

will be described in Section 6. (They may not shrink.) If frozen(s) grows, then a new warm(s) is

immediately computed, yielding a new stubb(s). Therefore, frozen(s) ⊆ stubb(s) always holds,

although the values of stubb(s) and frozen(s) may change. Note that, after they have changed, the

reduced state space may contain some transitions s −a→r s′ such that a ∈ frozen(s). In such a

situation, a was warm at some earlier time. At the end of the construction of the reduced state space,

warm(s) ∩ en(s) ⊆ enr(s) ⊆ stubb(s) ∩ en(s) holds for every s ∈ Sr.

The set of frozen actions of the initial state ŝ is originally empty. When a new r-state s′ 6=
ŝ is constructed, it inherits the currently frozen actions of its parent state. However, this does not

necessarily imply frozen(s) ⊆ frozen(s′) for every s −a→r s
′, because s′ may have been first found

via some other transition or may be ŝ, and because frozen(s) may grow afterwards.

We will prove in Section 7 that frozen(s) (both the final one and every earlier version) has the

following two properties. As we will see later in detail, they imply that if s ∈ Sr and s =σ⇒ s′,
frozen actions are not needed to obtain an r-path s =σ⇒r s

′′ such that s′ =ε⇒ s′′. F1 says that for

every path that starts at s, there is a path with the same start state and sequence of unfrozen (in s)

actions, that has no frozen (in s) actions. Furthermore, the end state of the latter path can be reached

from the end state of the former path via frozen (in s) actions. F2 says that frozen visible actions

cannot become enabled.

F1 If s ∈ Sr, s −a1 · · · an→ s′, and b1 · · · bm = a1 · · · an − frozen(s), then there are s′′ ∈ S and

γ ∈ frozen(s)∗ such that s −b1 · · · bm→ s′′ and s′ −γ→ s′′.

F2 If s ∈ Sr, s −a1 · · · an→ s′, and an ∈ frozen(s), then an ∈ I .

These conditions were designed so that they can be implemented as will be discussed in Section 6,

and that they yield the following lemma.

Lemma 3.1. Assume F1 and F2. If s ∈ Sr and s =σ⇒ z, then there is z′ such that s =σ⇒ z′,
z =ε⇒ z′, and the path that yields s =σ⇒ z′ contains no actions from frozen(s) and is either shorter

than or the same path as the path that yields s =σ⇒ z.

Proof:

If s =σ⇒ z contains no frozen actions, then the claim holds trivially with z′ = z. Otherwise F1 gives

most of the claim. We still have to show that the elements of γ and {a1, . . . , an} \ {b1, . . . , bm} are

invisible. This follows from F2, because s −a1 · · · an→ s′ −γ→. ⊓⊔

We say that the actions in frozen(s) were consumed from the action sequence a1 · · · an of the path

s =σ⇒ z. We now have two notions of consuming actions. They will be used in induction proofs,

to demonstrate that excluding the base case of the induction, given a path with certain properties, a

shorter path with the mentioned properties exists.

New local stubborn set conditions. Traditional stubborn set methods rely on conditions called D1

and D2 that facilitate reasoning of the kind in cases 1 and 2 of the above strategy. They describe
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how generalized concurrency and independency relations are exploited. We replace them by slightly

more complicated conditions D1F and D2F that take frozen actions into account. There also is a third

condition D3F that will be used in the correctness proof of the algorithm that guarantees F1 and F2.

The implementation of D1F, D2F, and D3F will be discussed in Section 8. In all of the following

conditions, we assume that

stubb(s0) ⊆ I ∪ V , a ∈ warm(s0), and a1, . . . , an are not in stubb(s0).

D1F If s0 −a1→ s1 −a2→ . . . −an→ sn −a→ s′n, then there are s′0, . . . , s′n−1 such that s′0 −a1→
s′1 −a2→ . . . −an→ s′n and for 0 ≤ i < n we have si −a→ s′i.

D2F If s0 −a1→ s1 −a2→ . . . −an→ sn and s0 −a→ s′0, then there are s′1, . . . , s′n such that

s′0 −a1→ s′1 −a2→ . . . −an→ s′n and for 1 ≤ i ≤ n we have si −a→ s′i.

D3F If s0 −a1 · · · an→ sn −a→ s′n, s0 −a1 · · · an→ zn −a→ z′n, and sn 6= zn, then s′n 6= z′n.

If all actions are deterministic, then D3F can be forgotten since it holds vacuously, and D1F and

D2F can be replaced by much simpler conditions given in the following theorem:

Theorem 3.2. If all actions are deterministic, then the following conditions imply D1F and D2F.

• If s0 −a1 · · · ana→ s′n, then s0 −aa1 · · · an→ s′n.

• If s0 −a1 · · · an→ sn and s0 −a→, then sn −a→.

Proof:

Assume the if-part of D2F. For each 0 ≤ i ≤ n, an application of the second condition to s0 −a1 · · · ai→
si yields an s′′i such that si −a→ s′′i . Then the first condition yields s0 −aa1 · · · ai→ s′′i . Let

zn = s′′n. An application of the first condition to s0 −a1 · · · ana→ zn yields z0, . . . , zn−1 such that

s0 −a→ z0 −a1→ z1 −a2→ . . . −an→ zn, implying s0 −aa1 · · · ai→ zi. Because both s′′i and zi
are reachable from s0 via aa1 · · · ai, by determinism s′′i = zi and z0 = s′0. Therefore, the then-part of

D2F holds.

Now assume the if-part of D1F. An application of the first condition to s0 −a1 · · · ana→ s′n yields

s0 −a→, returning the situation to the previous case. By determinism, the s′n provided by D2F is the

same state as the s′n assumed by D1F. ⊓⊔

The traditional D1 and D2 are obtained by choosing frozen(s0) = ∅ and dropping the requirement

si −a→ s′i for 0 < i < n. In Section 7 an example will be presented that illustrates the necessity

of this requirement in the presence of frozen actions. That this requirement is needed is not a big

drawback, because the previous theorem tells that if all actions are deterministic, then the issue does

not make a difference; and the standard approach to constructing stubborn sets of nondeterministic

actions (Theorem 8.1) automatically guarantees si −a→ s′i for 0 < i < n.

Thomas Neele observed recently that si −a→ s′i for 0 < i < n is also needed when stubborn sets

are applied to linear temporal logic [21]. There is a set of atomic propositions and a mapping that,

for each state, tells which atomic propositions hold and which do not hold on the state. When moving
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from a state to the next, zero or more atomic propositions change their truth values. Methods for linear

temporal logic aim at preserving the sequences of these changes, except that empty sets of changes

play the role of the invisible actions and may be added or removed at will during the reduction. Neele

pointed out that if si −a→ s′i for 0 < i < n is not assumed, then the sequence of changes caused by

a pair a1a2 of visible actions may depend on whether the pair is executed before or after an invisible

action a. He constructed a counter-example together with Valmari.

The distinction between invisible and visible actions is taken care of by a condition that says that

if the stubborn set contains an unfrozen enabled visible action, then it must contain all visible actions.

VF If warm(s) ∩ en(s) ∩ V 6= ∅, then V ⊆ stubb(s).

The traditional V says that if stubb(s) ∩ en(s) ∩ V 6= ∅, then V ⊆ stubb(s). (Please see [11, 12]

for why V has potential for better reduction results than the corresponding condition C2 in ample set

theory.)

All the conditions discussed above are satisfied by the choice warm(s) = ∅ (that is, stubb(s) =
frozen(s)). However, using ∅ as warm(ŝ) results in a reduced state space that consists of one state

and no transitions. Although it sometimes does preserve trace and fair testing equivalences, usually it

does not. We will introduce in Section 4 a condition called SF that solves this problem. We will also

discuss another, simpler condition that often but not always obtains the same goal. It is called D0VF.

D0VF For every s ∈ Sr, either warm(s) ∩ en(s) 6= ∅ or V ⊆ stubb(s).

We will later prove that if V ⊆ stubb(s) and warm(s) ∩ en(s) = ∅, then occurrences of visible

actions cannot be reached from s. Therefore, D0VF ensures that either s has outgoing transitions in

the reduced state space, or the future of s is certainly irrelevant from the point of view of trace and fair

testing equivalences.

We call D0VF, D1F, D2F, D3F, and VF local conditions, because they are of the form ∀s ∈ Sr :
ϕ(s), where ϕ(s) refers to only one r-state. The condition SF that we will introduce in the next section

is not local.

The next lemma says that there always is a set that satisfies these conditions.

Lemma 3.3. The set stubb(s) = I ∪ V satisfies D0VF, D1F, D2F, D3F, and VF in s.

Proof:

D1F, D2F, and D3F hold, because the set from which their a1, . . . , an must be picked is empty,

forcing n = 0. The then-part of VF and latter part of D0VF hold trivially. ⊓⊔

A subset of the conditions allows us to prove also the following two lemmas.

Lemma 3.4. Assume F1, F2, D1F, D2F, and VF. Assume that σ 6= ε, s0 =σ⇒ z0, s0 −b1→r

s1 −b2→r
. . . −bm→

r
sm, and V ⊆ stubb(sm). Then there is i such that 0 ≤ i ≤ m, {b1, . . . , bi} ⊆

I , and there are s′i, z
′
i, b, and σ′ such that si −b→r s

′
i =σ′⇒ z′i, z0 =ε⇒ z′i, and the path that yields

s′i =σ′⇒ z′i is shorter than the path that yields s0 =σ⇒ z0, where either b ∈ I and σ′ = σ or b ∈ V
and bσ′ = σ.
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Figure 1. (left) Illustrating Lemma 3.4 and its proof. D2F is applied to s0 −b1→r
s1 and D1F is applied to

si −ai+1,1 · · ·ai+1,ni+1
→ z′i (right) Illustrating Lemma 3.5 and its proof. D1F is applied on top and Lemma 3.1

is applied at bottom. States and transitions on yellow background are in the reduced state space

Proof:

Let s0 −a0,1 · · · a0,n0
→ z0 be the path causing s0 =σ⇒ z0. The proof applies induction along the

path s0 −b1→r
s1 −b2→r

. . . −bm→
r
sm as long as possible. At each step we have b1 · · · bi ∈ I∗,

z0 =ε⇒ z1 =ε⇒ . . . =ε⇒ zi, and si −ai,1 · · · ai,ni
→ zi, where ni ≤ ni−1 ≤ . . . ≤ n0 and

ai,1 · · · ai,ni
− I = σ.

If i < m, we use the values of warm(si) and frozen(si) at the time when si −bi+1→r
si+1 was

constructed, and otherwise we use the final values of warm(sm) and frozen(sm). By Lemma 3.1 there

are z′i and a path si −ai+1,1 · · · ai+1,ni+1
→ z′i such that ni+1 ≤ ni, ai+1,1 · · · ai+1,ni+1

− I = σ,

zi =ε⇒ z′i, and {ai+1,1, . . . , ai+1,ni+1
} ∩ frozen(si) = ∅.

Let first {ai+1,1, . . . , ai+1,ni+1
} ∩ warm(si) = ∅. Because none of the ai+1,j is in frozen(si),

none of them is in stubb(si). By σ 6= ε at least one of them is visible, so V 6⊆ stubb(si), implying

i < m. Therefore, D2F can be applied to si −bi+1→r
si+1, yielding zi+1 such that z′i −bi+1→ zi+1

and si+1 −ai+1,1 · · · ai+1,ni+1
→ zi+1. VF and V 6⊆ stubb(si) imply bi+1 /∈ V . So zi =ε⇒ z′i =ε⇒

zi+1. We have taken a step along the path s0 −b1→r
s1 −b2→r

. . . −bm→
r
sm.

Otherwise {ai+1,1, . . . , ai+1,ni+1
} ∩ warm(si) 6= ∅. This happens at the latest when i = m. We

let j be the smallest such that ai+1,j ∈ warm(si) and choose b = ai+1,j . Then D1F yields an s′i such

that

si −b→r s
′
i −ai+1,1 · · · ai+1,j−1ai+1,j+1 · · · ai+1,ni+1

→ z′i .

Let σ′ = ai+1,1 · · · ai+1,j−1ai+1,j+1 · · · ai+1,ni+1
−I . If b ∈ I we have σ′ = σ. Otherwise VF implies

V ⊆ stubb(si) = warm(si) ∪ frozen(si), implying ai+1,1 · · · ai+1,j−1 ∈ I∗, because by the choice of
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j, these actions are not in warm(si), and we already saw that they are not in frozen(si) either. In this

case, b ∈ V and bσ′ = σ. Everything that was promised in the claim has been justified above. ⊓⊔

Lemma 3.5. Assume F1, F2, D1F, and D2F. Assume that s ∈ Sr, s =ε⇒ z, and z refuses K . Either

s r-refuses K , or there are s′, z′, and a prefix ρ of K such that s =ρ⇒
r
s′ =ε⇒ z′, z =ρ⇒ z′, and

the path that yields s′ =ε⇒ z′ is shorter than the path that yields s =ε⇒ z.

Proof:

Let s0 = s, z0 = z, and s0 −a1 · · · an→ z0 be the path that yields s =ε⇒ z. If s does not r-

refuse K , then there is a κ ∈ K such that s =κ⇒r. Let s = s0 −b1→r
. . . −bm→

r
sm be the

corresponding r-path. We apply D2F along this path for i = 0, i = 1, . . . as long as i < m and

{a1, . . . , an} ∩ stubb(si) = ∅. D2F is applied to si −a1 · · · an→ zi and si −bi+1→r
si+1, and it

yields a zi+1 such that si+1 −a1 · · · an→ zi+1 and zi −bi+1→ zi+1. Because z0 refuses κ, we cannot

have z0 −b1 · · · bm→ zm. Therefore, for some 0 ≤ i < m, {a1, . . . , an} ∩ stubb(si) 6= ∅.

If {a1, . . . , an}∩ frozen(si) = ∅, then let z′ = zi. Because some aj is in stubb(si) and no aj is in

frozen(si), some aj is in warm(si). An application of D1F using the smallest such j yields an s′ such

that si −aj→
r
s′ =ε⇒ z′. This reasoning step consumes aj .

If {a1, . . . , an}∩ frozen(si) 6= ∅, then let s′ = si. Lemma 3.1 yields a z′ such that si =ε⇒ z′ and

zi =ε⇒ z′. This reasoning step consumes at least one frozen action.

In both cases, s −b1 · · · bi→r
si =ε⇒r s′, z −b1 · · · bi→ zi =ε⇒ z′, the path that yields

s′ =ε⇒ z′ is of length less than n, and the choice ρ = b1 · · · bi − I gives the claim. ⊓⊔

4. Driving Force

We pointed out in the previous section that a condition is needed that forces the stubborn set method

to fire actions whenever it is necessary for verification. Such a condition may be nick-named “driving

force”. In this section we discuss the properties of various such conditions, including D0VF.

Early stubborn set methods contained the condition D0 saying that if s ∈ Sr and en(s) 6= ∅, then

stubb(s) ∩ en(s) 6= ∅. In the presence of frozen actions, the corresponding condition would say that

if s ∈ Sr and en(s) 6⊆ frozen(s), then warm(s) ∩ en(s) 6= ∅. This condition does, however, force

the firing of actions also when it is easy to see that it is unnecessary, making the reduced state space

grow. For instance, consider the following system with V = {a}. The last component blocks a and

the second last blocks v, so a (and v) cannot ever occur. The algorithms presented in this study detect

this and fire nothing in the initial state, resulting in a reduced state space that consists of one state

and zero transitions. (In this case, it is a correct reduced state space.) D0, on the other hand, forces

something to be fired in the initial state. Because no τi is concurrent with u, a typical stubborn set

implementation that obeys D0 would fire all enabled actions in each r-state, resulting in 2n states and

(n+ 2)2n−1 transitions.

τ1
uu

|| · · · || τn
uu

|| a v || v a

What is worse, although D0 forces firing some action, it does not necessarily force ever firing any

action that makes progress towards s =σ⇒r when s ∈ Sr and s =σ⇒. We have already seen an
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example of this: τ1 || a, with V = {a}. The conditions that have been presented this far allow

choosing stubb(ŝ) = {τ1}, resulting in a reduced state space that does not preserve the trace a. This

is an instance of the ignoring problem.

These problems could be easily solved by, instead of D0, requiring V ⊆ stubb(s) for every s ∈ Sr.

In the example above with τ1, . . . , τn, we could choose stubb(ŝ) = {a, v}, and thus fire nothing in the

initial state. In general, assume that s =a⇒. We have s −a1 · · · an→ where an = a ∈ V and no other

ai is in V . By Lemma 3.1 we can assume that none of the ai is in frozen(s). If V ⊆ stubb(s), then

an ∈ warm(s). So there is a smallest 1 ≤ i ≤ n such that ai ∈ warm(s). By D1F, there is s′ such

that s −ai→r
s′ −a1 · · · ai−1ai+1 · · · an→. So, in each r-state, progress towards s =a⇒r is certainly

made.

Unfortunately, this very property makes the reduction results bad. Assume that D1F always ap-

plies, that is, assume that for each r-state s and each trace σ of s, there is an r-transition that makes

progress towards s =σ⇒r. Consider

τ1 τ1 a || τ2 τ2 b

where V = {a, b}. In each r-state where τ1 or a is enabled, the method has to fire τ1 or a to make

progress towards s =a⇒r, and in each r-state where τ2 or b is enabled, the method has to fire τ2 or b
to make progress towards s =b⇒r. This results in constructing the full state space. Therefore, we do

not ensure that V ⊆ stubb(s) for every s ∈ Sr.

Earlier terminal strong component conditions. The first better solution to the ignoring problem

was a method that guarantees that for every s ∈ Sr and a ∈ en(s), there are sa and an r-path from s
to it such that a ∈ stubb(sa) [13]. A result resembling Lemma 3.4 or 3.5 was proven that said that if

s −ρa→ and we start following the r-path from s to sa, then either D1 applies at some point along the

path, consuming an action from ρa; or sa is reached. In the latter case, D1 applies at sa, consuming

an action from ρa.

To implement the condition, it suffices to focus on tsr-components, because from every r-state, a

tsr-component is reachable. Using Tarjan’s algorithm [24] similarly to Section 6, the method guaran-

tees that for every tsr-component C and for every a that is enabled in some state of C , C contains a

state sa with a ∈ stubb(sa). When Tarjan’s algorithm has completed a tsr-component C , the method

checks whether any a is ignored in C . If a is ignored, then by D2 and D1 it is enabled in every state

of C but r-occurs in none of them. To check whether a r-occurs in none of them, it suffices to know C
and ∆r. If a is ignored, the stubborn set of the current state is extended to also contain some ignored

action.

The drawback of this solution is that similarly to D0, it may fire obviously unnecessary actions.

An alternative is to guarantee that for every s ∈ Sr and a ∈ V , there are sa and an r-path from

s to it such that a ∈ stubb(sa) [14]. This method does not fire obviously unnecessary actions in the

same sense as the method in [13]. If the tsr-component happens to contain an r-occurrence s −a→r

of a visible action a, then by V, V ⊆ stubb(s). So the remaining problem is, what to do with tsr-

components that do not contain r-occurrences of visible actions. A technically simple possibility is

to choose one state s in it and ensure V ⊆ stubb(s). Requiring V ⊆ stubb(s) for one r-state in

each tsr-component is much better than requiring it for every s ∈ Sr, but, even if |V | = 1, it still
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Figure 2. An example where the methods in both [13] and [14] yield unnecessarily bad reduction; V = {a}

sometimes fires concurrent actions in the same state, while the method in [13] fires them in different

states, yielding better reduction.

Figure 2 shows an example. In it, to enable a, it is necessary and sufficient to fire either u′ or v′.
Synchronization has been designed so that u′ and v′ cannot ever occur. We assume below that the

algorithm for constructing stubborn sets is good but not miraculous; for instance, the one in Section 8

would do. The methods in both [13] and [14] would first fire, for instance, the cycle ŝ −uuvvw→r ŝ.

Then the method in [13] would detect that en(ŝ) = {u, v, τ6} and both u and v occur in the cycle, but

τ6 does not. So it would fire τ6 in ŝ. In the resulting state it would either fire τ6 again, leading back to

ŝ; or fire u or v, constructing even more r-states. In the former case, it would terminate, because now

the reduced state space consists of precisely one tsr-component; both u, v, and τ6 r-occur in it; and no

other actions are enabled in ŝ.

A good implementation of the method in [14] would never fire τ6. On the other hand, because no

visible action occurs in the cycle ŝ −uuvvw→r ŝ, it would try to ensure that a ∈ stubb(ŝ). Most

stubborn set algorithms would not realize that u′ and v′ are permanently disabled. Therefore, they

would put also u′ and v′ into stubb(ŝ). Then they would put u into stubb(ŝ), because u′ is disabled by

the second component, and this fact will remain valid until the second component executes u. They

would put also v into stubb(ŝ), because v′ is disabled by the fourth component, and this fact will

remain valid until the fourth component executes v. So they would fire both u and v in ŝ.

Two decades later, the good reduction properties of the above solutions were combined by intro-

ducing a complicated method that in one state of the tsr-component chooses a set of enabled actions

such that each of them should be fired in some state of the tsr-component, but the states need not be

the same [11, 12]. In the case of Fig. 2, this method would choose {u, v} in ŝ, construct (for instance)

ŝ −uuvvw→r ŝ, detect that both u and v occur in it, and terminate.

All visible or at least one enabled. Recently it turned out that a simple condition solves the ignoring

problem in many, although not all, cases [10, 16]. This condition is what D0VF reduces to in the

absence of frozen actions. The next theorem characterizes a subset of systems such that D0VF suffices

to guarantee that all traces are preserved. The theorem can replace Lemma 5.1 in the next section,

yielding a proof that also fair testing equivalence is preserved.

Theorem 4.1. Assume that D0VF, D1F, D2F, VF, F1, and F2 are obeyed. At the end of the con-

struction of the reduced state space, if s is an r-state, z is stable, and s =σ⇒ z, then there is an r-path
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s =σ⇒r s
′ that is at most as long as the path that yields s =σ⇒ z. Furthermore, s′ is r-stable and

s′ =ε⇒ z.

Proof:

Consider all paths of the form s −b1 · · · bm→
r
s′ −a1 · · · an→ z, where the trace of b1 · · · bma1 · · · an

is σ and m + n is at most the length of the path that yields s =σ⇒ z. At least one such path exists,

because we may choose m = 0. We prove that any such path with a minimal n has the promised

properties.

To prove that none of the ai is in frozen(s′), we apply Lemma 3.1. It provides a z′ such that

s′ =ρ⇒ z′ and z =ε⇒ z′, where ρ is the trace of a1 · · · an. Because z is stable we have z′ = z. If

any of the ai is in frozen(s′), then the path s′ =ρ⇒ z′ is of smaller length than n, contradicting the

choice of n.

If any ai is in warm(s′), then D1F is applicable to the first such ai, yielding an s′′ such that

s′ −ai→r
s′′ −a1 · · · ai−1ai+1 · · · an→ z. The trace is not changed because of the following. If

ai ∈ I , this is obvious. If ai ∈ V , then V ⊆ stubb(s′) by VF; so a1, . . . , ai−1 are not in V since they

are not in stubb(s′) by the choice of i. Also this contradicts the choice of n.

So none of the ai is in stubb(s′). If s′ is not r-stable, then there is an a ∈ I such that s′ −a→r.

When that transition was constructed, D2F yielded z −a→r, contradicting the stability of z. So s′ is

r-stable.

Therefore, if s′ −a→r, then a ∈ V . By VF V ⊆ stubb(s′) held when that transition was

constructed, after which stubb(s′) has not shrunk. If s′ has no outgoing r-transitions, then V ⊆
stubb(s′) by D0VF.

Because V ⊆ stubb(s′) and none of the ai is in it, the ai are invisible. As a consequence, the trace

of a1 · · · an is ε and the trace of b1 · · · bm is σ. ⊓⊔

This means that every trace leading to a stable state is preserved, even if the simple condition D0VF is

used instead of the complicated tsr-component conditions discussed above. That is, if the system has

the property that from every reachable state, a stable state is reachable, then the complicated conditions

are not needed. Furthermore, thanks to the following theorem, the user need not know in advance that

the system has this property.

Theorem 4.2. Assume that D0VF, D1F, D2F, VF, F1, and F2 are obeyed. At the end of the construc-

tion of the reduced state space, if s is an r-state and has the trace σ in the full but not in the reduced

state space, then some prefix of σ that s has in the reduced state space leads to an r-state s′ such that

all r-states that are r-reachable from s′ are r-unstable and have no visible outgoing r-transitions.

Proof:

There are s′ ∈ Sr and some prefix ρa of σ such that s =ρ⇒
r
s′ =a⇒ but not s′ =a⇒r. We choose

s′ such that the path s′ −a1 · · · an→ that yields s′ =a⇒ is as short as possible. So an = a. None of

the aj is in frozen(s′), because otherwise Lemma 3.1 would provide a shorter path. None of the aj
is in warm(s′), because otherwise, using the smallest possible value of j, D1F would provide either

s′ −an→r
, yielding s′ =a⇒r; or s′ −aj→

r
z =a⇒, where z =a⇒ arises from a shorter path than

s′ =a⇒. So no aj is in stubb(s′).
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Figure 3. A system with V = {a, b} where after s3, every state has an invisible transition [10]

Because an = a ∈ V , we have V 6⊆ stubb(s′). From it D0VF implies that warm(s′)∩ en(s′) 6= ∅
and VF implies that warm(s′) ∩ en(s′) ∩ V = ∅. So s′ has outgoing r-transitions, but none of them

is labelled with a visible action. Let s′ −b→r s
′′ be any of them. An application of D2F to it yields

s′′ −a1 · · · an→, that is, an as short as possible path that yields s′′ =a⇒. Clearly s =ρ⇒
r
s′′.

Therefore, the reasoning applies also to s′′ and, by induction, to every r-state that is r-reachable from

s′. ⊓⊔

As a consequence, if the reduced state space obeys D0VF, D1F, D2F, VF, F1, and F2, then either

the trace and fair testing equivalences are preserved, or the reduced state space exhibits pathological

behaviour: it contains a state from which neither a stable state nor any visible activity is reachable.

This pathological property can be detected from the reduced state space with well-known linear-time

algorithms, by performing a graph search using the edges in reverse and using the deadlocks and tail

states of visible transitions as the starting points.

That the reduced state space has this property does not prove that traces are lost. However, by

Theorem 4.1, it does prove that the original system cannot reach a stable state from the states in

question. If this is considered as sufficient reason for declaring the original system incorrect, then the

freezing technique presented in this study is not needed. Instead, the easily implementable conditions

D0V, D1, D2, and V suffice. (The proofs of Theorems 4.1 and 4.2 do not use the property that D1F

and D2F with empty frozen sets add to D1 and D2, that is, si −a→ s′i holds also when 1 ≤ i < n.)

A nasty example. We may, however, want to preserve the traces even when the system can no longer

reach a stable state. Then, assuming that actions are never frozen, we run the risk of the problem that

is illustrated with Fig. 3. The actions u and τ2 are invisible. Originally only b is enabled, then only

τ2, and then only u and τ2. After firing s2 −τ2→r
s12 −τ2→r

s1, the algorithm backtracks to s2.

After firing s2 −u→r s3, the τ2-cycle of L2 and the aa-sequence of L4 are concurrent, and b and u
are permanently disabled.

Assume that in s3, the construction of stubborn sets is started with a. Because a is enabled and

visible, VF forces to also take b into warm(s3), if a is taken. However, b is disabled because of L2.

If the stubborn set construction algorithm is good enough, it detects that b is permanently disabled,

chooses stubb(s3) = {a, b}, and only fires a in s3. However, detecting that an action is permanently
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disabled is PSPACE-hard in general. So it is not realistic to assume that a stubborn set construction

algorithm can always detect that an action is permanently disabled. For the sake of an example, we

assume that the algorithm in Section 8 is used without any advanced features. It fails to detect that b
is permanently disabled.

Because b is disabled by L2 and only by it, the algorithm in Section 8 focuses on what L2 can do

next, that is, τ2. Because τ2 is enabled, invisible, not synchronized to by any other component, and its

start state has no other outgoing transitions, {τ2} qualifies as warm(s3). Also {a, b, τ2} qualifies as

warm(s3), but {τ2} has fewer enabled actions, so the algorithm chooses warm(s3) = {τ2}. That is,

the method constructs the r-transition s3 −τ2→r
s4. In the resulting state s4 the situation is similar to

s3, so the r-transition s4 −τ2→r
s5 is constructed.

The situation is only slightly more complicated in s5. Because u is an alternative for τ2, the

algorithm takes also u into stubb(s5). The algorithm detects that u is disabled by L3 which is in

a deadlock, so it does not continue analysis further from u. Thus the method constructs (only) the

r-transition s5 −τ2→r
s3. In conclusion, the cycle s3 −τ2→r

s4 −τ2→r
s5 −τ2→r

s3 is constructed.

At this point, simple methods backtrack from s5, s4, and s3, losing the traces ba and baa. In

agreement with Theorem 4.1, every state that is reachable from s3 (that is, s3, . . . , s11) is unstable. In

harmony with Theorem 4.2, every r-state that is r-reachable from s3 (that is, s3, s4, and s5) is unstable

and no occurrences of visible actions are r-reachable from s3.

Instead of giving up in s3, earlier methods based on tsr-components fire a in it, constructing

s3 −a→r s6. The same behaviour repeats in s6 and finally in s9 (except that a is found disabled

in s9). The method constructed all states of the full state space, although the τ2τ2τ2-cycle and aa-

sequence are concurrent.

In conclusion, recovery based on tsr-components is actually seldom needed, but when it is needed,

then the method is likely to fire the same unnecessary actions again and again (in this case τ2), making

the reduced state space grow. The idea of frozen actions was introduced to fix this problem [17]. That

publication made the idea work for deterministic actions. Furthermore, because of lack of space, the

proofs were sketchy. In the present study we make the idea work also with nondeterministic actions,

and present detailed proofs.

Tsr-condition with frozen actions. The following condition is used in the present study. Unlike the

very similar condition mentioned above, it does not suffer from the problem of firing in the same state

actions that could otherwise be fired in different states. The condition puts all of them in stubb(s′),
but thanks to freezing, this is not the same thing as firing them all in s′. The implementation of the

condition will be discussed in Section 6, and the condition will be used in Section 5 to prove that trace

and fair testing equivalences are preserved.

SF At the end of the construction of the reduced state space, for every s ∈ Sr there is s′ ∈ Sr such

that s =ε⇒r s
′ and V ⊆ stubb(s′) holds with the final value of stubb(s′).

To see that SF implies D0VF, assume that s obeys SF but has no outgoing r-transitions. Then the

s′ can only be s itself. So V ⊆ stubb(s).
Similarly to D0VF, SF does not necessarily force firing any enabled unfrozen actions, and this

can only happen if firing any would be futile. This is because SF allows enr(s
′) = ∅ even if en(s′) 6⊆
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frozen(s′), provided that V ⊆ stubb(s′). In that case, no occurrences of visible actions are reachable

from s′. To see this, let s′ =a⇒ where a ∈ V . The elements of frozen(s′) can be consumed with

Lemma 3.1, resulting in s′ −a1 · · · ana→ with a ∈ warm(s′). Then D1F can be applied either to a or

to some ai, implying enr(s
′) 6= ∅.

5. Preservation of Trace and Fair Testing Equivalences

Throughout this section, we assume that F1, F2, D1F, D2F, VF, and SF are obeyed, and the situation is

at the end of the construction of the reduced state space. (D3F is not needed. D0VF is not mentioned,

because it follows from SF.) Based on these assumptions, we prove that trace equivalence and fair

testing equivalence are preserved.

Lemma 5.1. If s ∈ Sr and s =σ⇒ z, then there are s′ and z′ such that s =σ⇒r s′ =ε⇒ z′ and

z =ε⇒ z′.

Proof:

We prove the claim by induction on the length of the path that yields s =σ⇒ z.

In the base case the length is 0, so σ = ε and s = z. The claim is obtained by choosing s′ = s = z′.
Assume now that the path is of positive length. If σ = ε, the claim can be obtained by choosing

s′ = s and z′ = z. Otherwise σ 6= ε. By SF there is sV such that s =ε⇒r sV and V ⊆ stubb(sV ).
We apply Lemma 3.4 to this r-path with s0 = s =σ⇒ z = z0. The lemma yields i, s′i, z

′
i, b, and σ′.

Let β = b if b ∈ V and β = ε otherwise, so that σ = βσ′. Let s′ = s′i and z′ = z′i. By the lemma,

there is an si such that s =ε⇒r si =β⇒
r
s′ =σ′⇒ z′ and z =ε⇒ z′. Furthermore, the path that

yields s′ =σ′⇒ z′ is shorter than the path that yields s =σ⇒ z. By induction, there are s′′ and z′′

such that s′ =σ′⇒r s
′′ =ε⇒ z′′ and z′ =ε⇒ z′′. We have s =βσ′⇒

r
s′′ and z =ε⇒ z′′, giving the

claim. ⊓⊔

Theorem 5.2. For every s ∈ Sr and σ ∈ V ∗, s =σ⇒ if and only if s =σ⇒r.

Proof:

One direction follows from Lemma 5.1, and the other direction from the fact that every transition of

the reduced state space is also a transition of the full state space. ⊓⊔

Lemma 5.3. If s ∈ Sr, s =ε⇒ z, and z refuses K , then s r-refuses K or there are s′ and π such that

π is a prefix of K , s =π⇒r s
′, and s′ r-refuses π−1K .

Proof:

We prove the claim by induction on the length of the path that yields s =ε⇒ z.

In the base case the length is 0, so s = z. If s =κ⇒r for some κ ∈ K , then z = s =κ⇒,

contradicting z refuses K . Therefore, s r-refuses K .

Assume now that the path is of positive length. If s does not r-refuse K , then by Lemma 3.5 there

are s′, z′, and a prefix π of K such that s =π⇒r s′ =ε⇒ z′, z =π⇒ z′, and the path that yields

s′ =ε⇒ z′ is shorter than the path that yields s =ε⇒ z. Because z refuses K , z′ refuses π−1K .
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By induction, either s′ r-refuses π−1K; or there are s′′ and µ such that s′ =µ⇒
r
s′′, µ is a prefix of

π−1K , and s′′ r-refuses µ−1(π−1K) = (πµ)−1K . So we have the claim with s′′ and πµ. ⊓⊔

Theorem 5.4. The reduced state space is fair testing equivalent to the full state space.

Proof:

Assume that (σ,K) is an r-tree failure. There is s such that ŝ =σ⇒r s and s r-refuses K . Clearly

ŝ =σ⇒ s. By Theorem 5.2, s refuses K . So (σ,K) is a tree failure.

Assume that (σ,K) is a tree failure. There is z such that ŝ =σ⇒ z and z refuses K . By Lemma 5.1

there are s′ and z′ such that ŝ =σ⇒r s
′ =ε⇒ z′ and z =ε⇒ z′. Also z′ refuses K . By Lemma 5.3

either s′ r-refuses K , implying that (σ,K) is an r-tree failure; or there are s′′ and π such that π is a

prefix of K , s′ =π⇒r s
′′ and s′′ r-refuses π−1K . So (σπ, π−1K) is an r-tree failure. ⊓⊔

6. Implementation of SF and Freezing

In this section we present and prove correct an algorithm that guarantees SF, assuming that all stub-

born sets obey D0VF and VF. The algorithm also contains the freezing of actions. We will prove in

Section 7 that F2 and a strengthened version of F1 are invariant properties of the algorithm. (There

we will also assume D1F, D2F, and D3F.) In principle, we should first prove this fact and only after

that prove SF. However, both proofs require that the algorithm has been described, and not much is

needed on top of the description to prove SF. Therefore, we present the material in “wrong” order.

This is correct, because we do not appeal to F1 and F2 in this section.

The algorithm is based on the following observation.

Lemma 6.1. At the end of the construction of the reduced state space, SF holds if and only if every

tsr-component contains a state s such that V ⊆ stubb(s).

Proof:

Assume that every tsr-component C contains a state sC such that V ⊆ stubb(sC). Let s ∈ Sr. Some

tsr-component C is r-reachable from s and some state sC in it has V ⊆ stubb(sC). If the r-path

from s to sC contains only invisible actions, then sC plays the role of s′ of SF for s. Otherwise

the path contains an r-transition s′ −a→r s′′ such that a ∈ V . When it was constructed, we had

a ∈ warm(s′) ∩ en(s′). At that time, VF implied V ⊆ stubb(s′). Because stubb(s′) does not shrink

and V does not change at all, V ⊆ stubb(s′) has held since then. So s′ plays the role of s′ of SF for s.

Assume now that some tsr-component C does not have such a state. Then its states violate SF. ⊓⊔

As a consequence, SF can be implemented by recognizing the tsr-components, and ensuring that

each of them contains a state s such that V ⊆ stubb(s). Fig. 4 shows both how this can be done and

how actions are frozen. The algorithm is based on the well-known recursive method for constructing

(Sr, I, V,∆r, ŝ) in depth-first order. It is initially called with DFS(ŝ, ∅). To recognize tsr-components

efficiently, Tarjan’s algorithm [24] is applied on top of the depth-first search, although its details are

not shown in the figure. (A good practical improvement to Tarjan’s algorithm has been presented

in [25]. It was re-invented and slightly modified in [26].) The root of a strong r-component is the
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DFS(s, old frozen)

1 Sr := Sr ∪ {s}
2 frozen(s) := old frozen

3 done := false

4 while ¬ done do

5 warm(s) := compute stubborn(s, frozen(s))
6 for a ∈ warm(s) ∩ en(s) do

7 for s′ such that s −a→ s′ do

8 ∆r := ∆r ∪ {(s, a, s′)}
9 if s′ /∈ Sr then DFS(s′, frozen(s))
10 if warm(s) ∩ en(s) = ∅
11 ∨ s is not the root of a terminal strong component of (Sr, I, V,∆r, ŝ)
12 ∨ ∃s′ ∈ Rr(s) : ∃a ∈ V : s′ −a→r

13 then done := true

14 else frozen(s) :=
⋃

z∈Rr(s)

stubb(z)

Figure 4. Implementation of SF and freezing. In the figure, Rr(s) = {s′ | s′ is r-reachable from s}

r-state in it that depth-first search found first and thus backtracks from last. The algorithm performs

special activity towards ensuring SF only when the current state s is the root of a tsr-component.

In the algorithm, the parameter s is a pointer to or index number of a global state. The parameter

old frozen is a pointer to or index number of a set of actions. The algorithm does not change the

values of any of its parameters. The variables Sr and ∆r are global.

When an r-state s is constructed, it inherits the current frozen set of its parent state. That it obeys

F1 and F2 in s will be proven in Section 7. The algorithm enters the while-loop. In each iteration, it

computes a new warm set. By Lemma 3.3, the set of all actions, that is, I ∪ V , satisfies the conditions

listed towards the beginning of this section. However, I ∪ V is usually the worst possible from the

point of view of reduction results. How a usually better set is found will be described in Section 8.

The algorithm executes all enabled actions in the warm set in all possible ways, storing the re-

sulting r-transitions and entering those of the resulting r-states that have not yet been entered. After

the warm set has been processed, several things are possible. The options have been designed so that

when the algorithm backtracks from any tsr-component C , there is s′ ∈ C such that V ⊆ stubb(s′).
If s is not the root of a tsr-component, then backtracking from it does not mean backtracking from a

tsr-component. The algorithm treats s as ready and backtracks from it. Otherwise, if the tsr-component

contains an r-occurrence s′ −a→r of a visible action a, then, similarly to the proof of Lemma 6.1,

V ⊆ stubb(s′) by VF. Again, the algorithm backtracks from s. If warm(s) does not contain enabled

actions, then V ⊆ stubb(s), because warm(s) obeys D0VF for s. Also this is sufficient justification

for backtracking.

In the remaining case, on line 14 the algorithm freezes all actions in the stubborn sets of every

state in the tsr-component, resulting in a new frozen set. That it obeys F1 and F2 will be proven in



A. Valmari, W. Vogler / Stubborn Sets, Frozen Actions, and Fair Testing 23

Section 7. Then the algorithm starts a new iteration of the while-loop. This may result in firing new

actions in s. The strong r-component that contains s may grow and may cease from being terminal,

and s may cease from being its root. Fortunately, for the reason discussed soon, Tarjan’s algorithm is

not confused. Eventually the algorithm is back on line 10. It checks whether s is still the root of a

tsr-component. If it is, the algorithm checks whether the tsr-component now contains an occurrence

of a visible action, or whether the new warm set lacks enabled actions. If neither of these holds and s
is still the root of a tsr-component, the algorithm again freezes actions and computes a warm set.

That is, the algorithm does not backtrack from s until either s is no longer the root of a tsr-

component, or it is but the component contains an s′ such that V ⊆ stubb(s′). As a consequence,

the algorithm does not backtrack from a tsr-component until the component contains an s′ such that

V ⊆ stubb(s′). On the other hand, the algorithm does backtrack from each r-state and thus from each

tsr-component for the following reason. Each frozen(s) is bigger than the previous frozen(s), because

by line 14 it has the previous one as a subset, by line 10 it is not computed unless it contains a new

action, and the only assignments to frozen(s) are those on lines 2 and 14. Therefore, the while-loop

will terminate at the latest when frozen(s) = I ∪ V .

In conclusion, the algorithm terminates, and then every tsr-component contains a state s′ such that

V ⊆ stubb(s′). So SF holds by Lemma 6.1. We have proven the following.

Theorem 6.2. SF holds at the end of the execution of the algorithm in Fig. 4.

The algorithm tries to compute new warm sets for s one at a time, instead of establishing V ⊆
stubb(s) early on. This is to benefit from the possibility that something else than V ⊆ stubb(s) stops

stubb(s) from growing, so that fewer actions would be fired in s. We saw in Section 4 that unnecessary

V ⊆ stubb(s) can be detrimental to reduction results.

Interaction with Tarjan’s algorithm. Tarjan’s algorithm recognizes strong components in depth-

first order, with deepest first. It maintains a component stack that consists of the states that have been

found but whose strong component has not yet been completed. A state is pushed to this stack when it

is entered during depth-first search. Each state in the component stack has two numbers called index

and low-link. The index does not change. The index of any state other than ŝ is bigger than the index

of its parent. When s has not yet been backtracked from, its low-link is the smallest index of any state

in the component stack to which there is a path from s via the edges that Tarjan’s algorithm has so

far traversed. After investigating all outgoing edges of s, Tarjan’s algorithm tests whether s is the root

of a strong component by testing whether its low-link is not smaller than its index. If the answer is

yes, Tarjan’s algorithm marks all states of the component as fully processed and pops them from the

component stack.

To facilitate testing whether or not the component is terminal, a bit may be backward-propagated

during the traversal that tells whether a state in another strong component is known to be reachable

from the current state. In the case of the root (but not necessarily all other states of the same compo-

nent) this bit tells reliably whether the component is actually terminal.

To implement line 11 in Fig. 4, these tests are performed outside Tarjan’s algorithm, before inform-

ing Tarjan’s algorithm whether or not the current state has more outgoing edges. The data structures
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of Tarjan’s algorithm are read, but this does not affect Tarjan’s algorithm, because they are not mod-

ified. If more outgoing edges are added by lines 14 and 4 to 9, from the point of view of Tarjan’s

algorithm the situation is not different from what it would have been if the added edges had always

been there. Therefore, Tarjan’s algorithm operates on the final reduced state space, unaffected by the

fact that some edges were inserted just before it would have become aware of their non-existence, and

the insertion was based on the contents of its data structures.

Examples. In all these examples, a and b are visible and u, v, and so on are not.

Consider again Fig. 3. We already saw that the algorithm constructs the cycle s3 −τ2→r
s4 −τ2→r

s5 −τ2→r
s3. When it has done so and is about to backtrack from s3, it freezes u and τ2, and com-

putes a new warm(s3). This computation returns {a, b}, because now a is the only unfrozen enabled

action, and by D0VF, either such an action must be returned or the result must contain V as a subset.

So the algorithm constructs s3 −a→r s6. In s6 it again only fires a, for the same reason. In the next

state s9 compute stubborn again returns {a, b} but the while-loop fires nothing, because now both a
and b are disabled. D0VF holds because V ⊆ warm(s9) ∪ frozen(s9) = {a, b} ∪ {τ2, u}.

The example also illustrates that freezing an action prematurely may cause an erroneous result. If

τ2 is frozen already in the initial state, the trace ba is lost.

In general, what happens with an example may depend on the details of the implementation of

compute stubborn . The implementation in Section 8 is good in the sense used in this subsection.

Consider τ1 || a. A good implementation of compute stubborn returns initially {a}, re-

sulting in only constructing ŝ −a→r ŝ. Then the algorithm terminates. A bad implementation may

return initially {τ1}. If that happens, the algorithm in Fig. 4 constructs ŝ −τ1→r
ŝ, then freezes τ1,

and finally constructs ŝ −a→r ŝ.

In the case of τ1 a || τ2 a and τ1 a || τ2 a, a good implementation fires

first one and in the next state the other of τ1 and τ2, after which it fires a. With the following system,

it constructs ŝ −σ→r s where σ is some permutation of τ1τ1τ2τ2, and then fires both a and b in s.

τ1 τ1 a || τ2 τ2 b

A good implementation fires nothing in the initial state of the following system, because {a, v}
satisfies V ⊆ {a, v}, D1F, D2F, D3F, and VF:

τ1
uu

|| · · · || τn
uu

|| a v || v a

In the case of Fig. 2, a good implementation first constructs ŝ −σw→r ŝ where σ is a permutation

of uuvv. Then it freezes u, v, w, u′, and v′, tries the warm set {a} in vain, and terminates. A bad

implementation might first construct ŝ −τ6τ6→r
ŝ, then freeze τ6, and then continue like the good

implementation.

7. Validity of F1 and F2

In this section we assume that the stubborn sets obey D1F, D2F, and D3F. We prove that both the

original frozen(s) and its later versions satisfy F1 and F2. We first prove that the following strength-
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ened variant of F1 is an invariant property of the algorithm, that is, every operation that modifies any

frozen(s) keeps it valid, assuming it was valid before the operation:

F1’ If s0 ∈ Sr, s0 −a1 · · · an→ s′0 −b1 · · · bm→ s′′0, and c1 · · · ck = b1 · · · bm − frozen(s0),
where none of a1, . . . , an is in frozen(s0), then there are z0 and γ ∈ frozen(s0)

∗ such that

s′0 −c1 · · · ck→ z0 and s′′0 −γ→ z0.

We first deal with the initial frozen sets of newly created r-states, that is, those assigned on line 2.

The initial call DFS(ŝ, ∅) makes frozen(ŝ) = ∅, so F1’ clearly holds with z0 = s′′0 and γ = ε. The

initial frozen sets of the remaining r-states are dealt with by the following lemma.

Lemma 7.1. The call DFS(s′, frozen(s)) on line 9 does not invalidate F1’.

Proof:

Let s0 = s′. The call makes frozen(s0) = frozen(s) and does not modify any other frozen set.

The call was made after constructing s −a→r s
′. Because this transition was constructed, we had a /∈

frozen(s). Because F1’ held for frozen(s), we can apply it to s −a→ s′ −a1 · · · an→ s′0 −b1 · · · bm→
s′′0. Doing so immediately gives z0 and γ with the promised properties. ⊓⊔

The only remaining place where any frozen set changes is line 14. It is much more difficult to deal

with.

Lemma 7.2. Line 14 does not invalidate F1’.

Proof:

Let the current state be denoted with s0, and assume that the execution is currently immediately before

the assignment on line 14. This fixes the meaning of all sets whose contents may change. Because the

algorithm is on line 14, s0 is the root of a tsr-component C . Let frozen′(s0) =
⋃

s∈C stubb(s), that is,

frozen
′(s0) denotes the value that the frozen set of s0 will get due to line 14. We have frozen(s0) ⊆

stubb(s0) ⊆ frozen
′(s0). We may assume that for every s ∈ Sr, F1’ currently holds for frozen(s), and

we must show that it also holds for frozen′(s0). That is, we assume the if-part of F1’ using frozen
′(s0),

and prove its then-part. Let β0 = b1 · · · bm. If β0 − frozen
′(s0) = β0 − frozen(s0), then the claim

follows immediately. So from now on we assume that β0 − frozen
′(s0) 6= β0 − frozen(s0).

Please see Fig. 5. Our next goal is to demonstrate the existence of an r-path s0 −u1→r
s1 −u2→r

. . . −uℓ→r
sℓ, a path s′0 −u1→ s′1 −u2→ . . . −uℓ→ s′ℓ, states s′′1, . . . , s′′ℓ , and strings β1, γ1, . . . ,

βℓ, γℓ such that sℓ = s0, βℓ = β0 − frozen
′(s0), and, for 1 ≤ i ≤ ℓ, si −a1 · · · an→ s′i −βi→ s′′i ,

s′′i−1 −γi→ s′′i , and γi ∈ frozen
′(s0)

∗. In terms of Fig. 5, γi is either γ′i (then zi = s′′i ) or γ′iui.

Because s0 ∈ C and C is a tsr-component, each si belongs to C , implying stubb(si) ⊆ frozen
′(s0).

By the if-part of F1’, none of a1, . . . , an is in frozen
′(s0).

The path s0 −a1 · · · an→ s′0 −β0→ s′′0 was given in the if-part of F1’. Assume that the paths

have been constructed up to si−1 −a1 · · · an→ s′i−1 −βi−1→ s′′i−1. Because all frozen sets satisfied

F1’ beforehand, there are zi, β
′
i = βi−1 − frozen(si−1), and γ′i ∈ frozen(si−1)

∗ ⊆ stubb(si−1)
∗ ⊆

frozen
′(s0)

∗ such that s′i−1 −β′
i→ zi and s′′i−1 −γ′i→ zi. There are now four cases.
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a1 · · ·
an β0

u1 u1 γ′1
...

...
...

ui−1 ui−1 nothing or ui−1
a1 · · ·

an βi−1

β′
i γ′i

nothing or ui

ui ui

a1 · · ·
an βi

ui+1 ui+1 γ′i+1

...
...

...

uℓ uℓ nothing or uℓ
a1 · · ·

an βℓ

s0 s′0
s′′0

si−1 s′i−1

s′′i−1

zi

si s′i
s′′i

sℓ s′ℓ
s′′ℓ

γi

Figure 5. Illustrating the proof of Lemma 7.2

1. If β′
i has an element in common with warm(si−1), then, by letting ui be the first such element of

β′
i, we get δi and ρi such that β′

i = δiuiρi and δi has no element in common with warm(si−1).
Because β′

i has no element in common with frozen(si−1), this implies that δi has no element in

common with stubb(si−1). Because none of aj is in frozen
′(s0) and stubb(si−1) ⊆ frozen

′(s0),
none of aj is in stubb(si−1). So D1F can be applied to si−1 −a1 · · · an→ s′i−1 −δiuiρi→ zi,
yielding si and s′i such that si−1 −ui→r

si −a1 · · · an→ s′i −δiρi→ zi and s′i−1 −ui→ s′i. We

choose βi = δiρi, s
′′
i = zi, and γi = γ′i. Because |βi| < |β′

i| ≤ |βi−1|, this case can only arise a

finite number of times.

2. If case 1 does not apply, β′
i has no element in common with warm(si−1). Because β′

i has no

element in common with frozen(si−1), β
′
i has no element in common with stubb(si−1). Assume

that β′
i has an element b in common with frozen

′(s0).

There is sb ∈ C such that b ∈ stubb(sb). Because C is a tsr-component, there is an r-path from

si−1 to sb. We choose b and sb so that the r-path is as short as possible. We choose ui and

si so that si−1 −ui→r
si is the first step of this r-path. So ui ∈ stubb(si−1) ⊆ frozen

′(s0)
and thus ui does not occur in a1 · · · anβ

′
i. Although ui may now be frozen, it was warm when

si−1 −ui→r
si was constructed. Therefore, D2F can be applied, yielding s′i and s′′i such that

si −a1 · · · an→ s′i −β′
i→ s′′i , s′i−1 −ui→ s′i, and zi −ui→ s′′i . We choose βi = β′

i and

γi = γ′iui. So s′′i−1 −γi→ s′′i .

Clearly |βi| ≤ |βi−1|. If β′
i 6= βi−1, then |βi| < |βi−1|. Otherwise βi = β′

i = βi−1, and b occurs

in all of them. The shortest r-path from si to sb is shorter than the shortest r-path from si−1 to
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a b
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Figure 6. Illustrating the necessity of (left) D3F and (middle) si −a→ s′i for 0 < i < n in D1F and D2F; and

(right) that s′ℓ = s′0 does not necessarily hold

sb. Therefore, this subcase can repeat only a finite number of times in a row. Eventually case 1

or the first subcase of case 2 applies, shortening βi.

3. If cases 1 and 2 do not apply, β′
i has no element in common with frozen

′(s0). Because all

elements removed from βi−1 or β′
i during earlier steps belong to frozen(si−1) or warm(si−1)

and thus to frozen
′(s0), we have β′

i = β0 − frozen
′(s0) = c1 · · · ck. Because C is a tsr-

component, there is an r-path from si−1 to s0. If si−1 6= s0, then we choose as short such an

r-path as possible, and choose ui and si so that si−1 −ui→r
si is the first step of this r-path.

Let βi = β′
i and γi = γ′iui. Similarly to case 2, an application of D2F yields s′i and s′′i such that

si −a1 · · · an→ s′i −βi→ s′′i , s′i−1 −ui→ s′i, and s′′i−1 −γi→ s′′i . If also si 6= s0, we will have

β′
i+1 = βi = β′

i = β0− frozen
′(s0) and thus get back to this case. Furthermore, we may choose

γ′i+1 = ε and zi+1 = s′′i .

4. Repetition of case 3 ends when si−1 = s0. Then the construction of the paths is complete and

we let ℓ = i − 1. So sℓ = s0. Because β′
ℓ+1 = β0 − frozen

′(s0) 6= β0 − frozen(s0) = β′
1, we

have ℓ > 0. Therefore, frozen(sℓ) = frozen(s0) was removed from β0 when i was 1, implying

βℓ = β′
ℓ+1 = β0 − frozen

′(s0) = c1 · · · ck.

If we had s′ℓ = s′0, we would have the claim. Unfortunately, as we will demonstrate later with an

example, it does not necessarily hold. So we need a more complicated argument.

We have now gone once around s0 −u1 · · · uℓ→r
s0. We have ui ∈ stubb(si−1) ⊆ frozen

′(s0),
and a1 · · · anc1 · · · ck has no elements in common with frozen

′(s0). Therefore, we can go around

s0 −u1 · · · uℓ→r
s0 a second time, then a third time and so on, repeatedly applying D2F to yield

s′ℓ+1, s′′ℓ+1, s′ℓ+2, s′′ℓ+2, . . . , s′2ℓ, s
′′
2ℓ, s

′
2ℓ+1, s′′2ℓ+1, and so on. More formally, for every 1 ≤ i ≤ ℓ and

j ≥ 1, D2F can be applied to si−1 −a1 · · · an→ s′jℓ+i−1 −c1 · · · ck→ s′′jℓ+i−1 and si−1 −ui→r
si, to

obtain s′jℓ+i and s′′jℓ+i such that si −a1 · · · an→ s′jℓ+i −c1 · · · ck→ s′′jℓ+i, s
′
jℓ+i−1 −ui→ s′jℓ+i, and

s′′jℓ+i−1 −ui→ s′′jℓ+i. We have shown s′jℓ −c1 · · · ck→ s′′jℓ for every j > 0, but not yet for j = 0.

For every j ≥ 0 we have s0 = sjℓ −a1 · · · an→ s′jℓ. Because the reduced state space is finite,

there are i and j such that i < j and s′iℓ = s′jℓ. Let i be the smallest possible. If i > 0, then

s′(i−1)ℓ 6= s′(j−1)ℓ but s′iℓ = s′jℓ, contradicting D3F. Therefore, i = 0. Because j > i, we have

s′jℓ −c1 · · · ck→ s′′jℓ. By i = 0 and s′iℓ = s′jℓ we conclude s′0 −c1 · · · ck→ s′′jℓ. We choose z0 = s′′jℓ
and γ = γ1 · · · γℓ(u1 · · · uℓ)

j−1 and have the then-part of F1’. ⊓⊔

Figure 6 left shows an example where D1F, D2F, VF, and SF hold, but D3F does not and F1

becomes invalid by the algorithm in Fig. 4. In it, I = {u}, V = {a, b}, and originally all frozen sets
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are empty. The set {u} satisfies D1F, D2F, and VF in the initial state. The algorithm may try it first,

resulting in the freezing of u. The algorithm then constructs ŝ −a→r s, where s is the topmost state

in the figure. This makes frozen(s) = {u}. As a consequence, although s −ub→, s =b⇒r does not

hold, making (a, {b}) a fake tree failure. This illustrates the necessity of an extra condition, which in

our case is D3F.

F1 becomes invalid also in Fig. 6 middle. The example violates the requirement in D1F and D2F

that si −a→ s′i also when 0 < i < n.

In Fig. 6 right, D1F, D2F, D3F, VF, and SF hold, and F1’ is not invalidated. The example

demonstrates that in the proof of Lemma 7.2, s′ℓ may be different from s′0. The algorithm first executes

ŝ −uv→r ŝ, then freezes u and v, and finally executes ŝ −a→r in both ways.

Let us now deal with F2.

Lemma 7.3. Neither the initial call DFS(ŝ, ∅), the call on line 9, nor line 14 invalidates F2.

Proof:

The initial call makes frozen(ŝ) = ∅. F2 holds vacuously, because ∅ cannot contain an.

Now consider the call on line 9 that corresponds to s −a→r s
′. If s′ −a1 · · · an→ is a counter-

example after line 2, then s −aa1 · · · an→ was a counter-example beforehand, contradicting the as-

sumption that F2 held before the call.

Finally consider line 14. Let s be the current state, C be the tsr-component whose root is s, a ∈ V ,

and s −a1 · · · ana→. Let us say that s′ ∈ C is near a if and only if s′ −αa→ and α is as short as

possible. At least some s′ ∈ C is near a. Because F2 held beforehand, a /∈ frozen(s′). No element of

α is in frozen(s′), because otherwise by F1, α would not be a shortest. No element of α is in warm(s′),
because otherwise D1F would yield an r-transition s′ −u→r s

′′ and an α′ such that s′′ −α′a→ and

|α′| < |α|. So no element of α is in stubb(s′). Also a /∈ stubb(s′), because otherwise D1F would

yield s′ −a→r, contradicting line 12.

So D2F can be applied to each s′ −u→r s
′′, yielding s′′ −αa→. Also s′′ is near a. Repeating

this argument reveals that every s ∈ C is near a. So a /∈
⋃

s′∈C stubb(s′) and the algorithm does not

freeze a. ⊓⊔

By the above lemmas, and because F1’ implies F1, we have the following.

Theorem 7.4. F1 and F2 hold throughout the execution of the algorithm in Fig. 4.

8. Construction of Warm Sets

The only remaining task is to describe how warm sets can be constructed such that together with

the frozen sets they satisfy the local conditions D0VF, D1F, D2F, D3F, and VF. The sets should

preferably yield good reduction results. Although the ideas are largely independent of the formalism

used for representing systems, for concreteness, we will use the parallel state spaces formalism in

Section 2. Let L = (S, I, V,∆, ŝ) = L1 || · · · || LN .

By eni(si) we mean the actions that Li is ready to execute when it is in its local state si. That is,

eni(si) = {a | ∃s′i : (si, a, s
′
i) ∈ ∆i}. It is the set of the labels of the edges of Li whose tail is si. The
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proof of the following theorem has been developed from [15] and earlier work. The key idea is that in

case 1, Li keeps a disabled until an element of warm(s) occurs, and in case 2, a is concurrent with all

actions that are not in stubb(s).

Theorem 8.1. Assume that the following hold for s = (s1, . . . , sN ) and for every a ∈ warm(s):

1. If a /∈ en(s), then there is i such that 1 ≤ i ≤ N , a ∈ Ii ∪ Vi, and a /∈ eni(si) ⊆ stubb(s).

2. If a ∈ en(s), then for every i such that 1 ≤ i ≤ N and a ∈ Ii ∪ Vi we have eni(si) ⊆ stubb(s).

Then warm(s) and stubb(s) satisfy D1F, D2F, and D3F.

Proof:

Let a1 /∈ stubb(s), . . . , an /∈ stubb(s).

Let first a /∈ en(s). Obviously s −a→ does not hold, so D2F is vacuously true. We prove

now that D1F and D3F are vacuously true as well. By condition 1, there is i such that Li disables

a and eni(si) ⊆ stubb(s). To enable a, it is necessary that Li changes its state, which requires

that some action in eni(si) occurs. These are all in stubb(s) and thus distinct from a1, . . . , an. So

s −a1 · · · ana→ cannot hold.

Let now a ∈ en(s). Our next goal is to show that there are no 1 ≤ j ≤ N and 1 ≤ k ≤ n
such that both a and ak are in Ij ∪ Vj . To derive a contradiction, consider a counter-example where k
has the smallest possible value. So none of a1, . . . , ak−1 is in Ij ∪ Vj . If s −a1 · · · an→, then there

is s′ such that s −a1 · · · ak−1→ s′ −ak→. Obviously ak ∈ enj(s
′
j). This implies ak ∈ enj(sj),

because Lj does not move between s and s′ since none of a1, . . . , ak−1 is in Ij ∪ Vj . By condition 2,

enj(sj) ⊆ stubb(s). This contradicts ak /∈ stubb(s).

This means that the Lj that participate in a are disjoint from the Lj that participate in a1 · · · an.

From this D1F and D2F follow by well-known properties of the parallel composition operator. Re-

garding D3F, let sn = (sn,1, . . . , sn,N ) and similarly with s′n, zn, and z′n. Then sn 6= zn implies

sn,j 6= zn,j for some Lj that participates in a1 · · · an. Because Lj does not participate in a, we have

s′n,j = sn,j 6= zn,j = z′n,j , yielding s′n 6= z′n. ⊓⊔

Let b /∈ frozen(s). Cases 1 and 2 can be interpreted as spanning rules of the form a s b for each b
in eni(si), meaning that if a ∈ warm(s), then b must be in stubb(s). We do this only if b /∈ frozen(s),
because such a rule is unnecessary if b ∈ frozen(s), because frozen(s) ⊆ stubb(s) by definition. So

a  s b actually says that if a ∈ warm(s), then also b must be in warm(s). In case 1, there may be

more than one i that satisfies the condition. Although each choice of such an i is correct, we artificially

assumed in the examples earlier in this study that the smallest one is chosen, to avoid ambiguity.

To deal with VF, we also add the rule a  s b for every a ∈ (en(s) ∩ V ) \ frozen(s) and b ∈
V \ frozen(s). (This is equivalent to adding yet another parallel component ({ŝ}, ∅, V,∆, ŝ) with

∆ = {(ŝ, a, ŝ) | a ∈ V }.)

Whether or not a s b, usually depends on the state s.

If A ⊆ I ∪ V , let clsrs(A) (the closure of A) denote the smallest set such that A \ frozen(s) ⊆
clsrs(A) and for every a and b, if a ∈ clsrs(A) and a s b, then also b ∈ clsrs(A). By the definitions,
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clsrs(A) contains no frozen actions. Furthermore, it satisfies D1F, D2F, D3F, and VF in s in the role

of warm(s) (with, as always, stubb(s) = warm(s) ∪ frozen(s)).

If s −a1 · · · an→ where an ∈ V and {a1, . . . , an} ∩ frozen(s) = ∅, then an ∈ clsrs(V ). By D1F,

{a1, . . . , an} ∩ clsrs(V ) ∩ en(s) 6= ∅. Therefore, to focus efforts on actions that are important for

preserving all traces, it is reasonable to only use subsets of clsrs(V ) as the warm sets. In Section 6 we

assumed that compute stubborn(s, frozen(s)) returns a warm set warm(s) that obeys D0VF, that is,

either V ⊆ warm(s) ∪ frozen(s) or warm(s) ∩ en(s) 6= ∅. If clsrs(V ) contains no enabled actions,

this is achieved by returning clsrs(V ), because always V ⊆ clsrs(V ) ∪ frozen(s).

To guarantee D0VF in the opposite case, clsrs({a}) could be returned for an arbitrary a ∈
clsrs(V ) ∩ en(s). To reduce the number of enabled actions in the resulting set, Tarjan’s algorithm

may be used to find a strong component of the graph spanned by “ s” such that it contains an en-

abled action but no other strong component reachable from it contains enabled actions. This has been

a standard approach in stubborn sets [7, 14, 11, 12], and a very efficient implementation exists in

the tool described in [27] (using a “ s”-relation derived from another formalism than the one in the

present study). The “ s” relation is not presented as an explicit directed graph; instead, it is derived

as needed similarly to how we derived it from Theorem 8.1.

When the algorithm in Fig. 4 calls compute stubborn again on the same state, the actions in the

previous reply have been frozen. Therefore, clsrs(V ) has become smaller and compute stubborn will

return a new answer.

To improve reduction results, one may make “ s” smaller as long as the property remains valid

that every clsrs(A) satisfies D1F, D2F, D3F, and VF. (Because of anomalic counter-examples, that

this improves reduction is only a heuristic, not a theorem.) For instance, the purpose of the rules

introduced by case 1 of Theorem 8.1 is to ensure that if a is put into the warm set, then it cannot

become enabled without some action in the warm set occurring first. However, if Li has no path from

si to a state s′i such that a ∈ eni(s
′
i), then a cannot become enabled at all. This is the case with b

and L2 in Fig. 3, if b has already been executed. In such a situation, no rule of the form a  s x is

needed, although case 1 implies that such a rule should be added for every x ∈ eni(si) \ frozen(s). If

Li models a fifo queue, a is enabled, one of a and b reads from and the other writes to the fifo, and Li

is their only shared component, then a s b is not needed, despite case 2.

9. Conclusions

We presented a major improvement to partial order reduction methods for safety properties. Our

method also covers a subset of branching time liveness properties including “in all futures always,

there is a future where eventually a occurs”.

Because of concurrency and other phenomena that make actions commutative (such as writing

to and reading from a non-empty non-full fifo), if there is a counter-example to the property under

verification, there often are many related counter-examples. To yield correct results, partial order

reduction methods preserve at least one of them, and to obtain good reduction, they try to preserve

as few additional instances as they can. As was illustrated with the example τ1 τ1 a ||

τ2 τ2 b in Section 4, together these have the consequence that the preserved counter-



A. Valmari, W. Vogler / Stubborn Sets, Frozen Actions, and Fair Testing 31

example cannot always be a shortest possible. Instead, the preserved counter-example may contain

actions that are irrelevant for it, but were fired because when they were fired, it was not certain that

they are not relevant for any counter-example. In the example, firing initially only τ1 lengthens the

shortest preserved counter-example to “b never occurs”, firing initially only τ2 has the same effect to

“a never occurs”, and firing both would be bad for reduction.

Unless special precaution is taken, this leads to the following possibility. Assume that we want

to check that a never occurs. Consider τ1 || τ2 a . The method may initially choose to

focus on (in this case non-existent) counter-examples for which τ1 is relevant, postponing the devel-

opment of the other counter-examples to later r-states. However, the firing of τ1 brings the system

back to an r-state that has already been processed, so in the end τ2 was investigated in no r-state and

all counter-examples were lost. This is the ignoring problem. It has forced the introduction of addi-

tional conditions to partial order reduction methods, most importantly the cycle condition for liveness

properties and terminal strong component conditions for safety properties. They solve the ignoring

problem in the sense of guaranteeing correctness. Unfortunately, there are examples showing that they

are sometimes very detrimental to reduction results, please see Section 4 and, e.g., [11, 12]. Little is

known about how they affect reduction results in typical cases.

The major new contribution of [17] and the present study is the freezing of actions. Actions

are frozen when they have been investigated but they proved irrelevant for all counter-examples and

constituted a futile cycle. Thanks to the use of D0VF, most of the time (and, by Theorem 4.1, for

a major class of systems all of the time) the method succeeds in avoiding such actions in the first

place. However, because stubborn set construction algorithms cannot always determine whether or

not an action is relevant, and because failure to pick a relevant action may compromise correctness,

the methods sometimes pick irrelevant actions to be on the safe side. The example in Fig. 3 illustrates

that when this happens and the irrelevant actions introduce a cycle in the reduced state space, the

phenomenon tends to repeat in subsequent states, with bad consequences to reduction. The freezing

of actions is a powerful solution to this problem. Frozen actions are treated as if they did not exist at

all, preventing the repetition of the cycle.

Two decades ago, there were two different terminal strong component conditions. As was illus-

trated with Fig. 2, each of them suffers from a problem that the other one solves. To combine the

good parts of both conditions, a complicated condition was employed in [11, 12] that in the root of

a tsr-component selects a set X of enabled actions, each of which must be fired in some state of the

tsr-component. To obtain good reduction results, if such an action has been fired elsewhere in the tsr-

component, then, if possible, it should not be fired again in the root. The freezing of actions removes

from consideration those actions that have been fired in the tsr-component, automatically ensuring

that they are not fired again in the root. So the set X need not be implemented and discussed in the

correctness proof.

Let us illustrate another problem that has not received sufficient attention. Consider L1 ||L2, where

each Li consists of a cycle of i+1 τi-transitions preceded by an a-transition, and we want to verify that

the system lacks the trace aa. Assuming that the stubborn set construction favours τ1, the method in the

present study constructs ŝ −a→r s −τ1τ1→r
s, freezes τ1, constructs s −τ2τ2τ2→r

s, freezes τ2, and

terminates. However, if the algorithm alternates between favouring τ1 and τ2, it constructs ŝ −a→r

s −τ1τ2τ1τ2τ1τ2→r
s, freezes both τ1 and τ2, and terminates, resulting in a bigger reduced state
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space. In the absence of freezing, if the method favours τ1, after constructing ŝ −a→r s −τ1τ1→r
s

it would continue by constructing s −τ2→r
s′ −τ1τ1→r

s′ −τ2→r
s′′ −τ1τ1→r

s′′ −τ2→r
s.

Freezing of actions prevents this last scenario, but not the previous one. Further research is needed.

Our hypothesis is that the method should favour actions that belong to the same component as the

action whose firing led to the creation of the current state.

Another apparently natural topic for further research would be to extend the method to linear time

liveness properties. They are currently dealt with by the so-called cycle condition. However, this topic

might be less fruitful than it seems, because linear time liveness properties tend to rely on so-called

fairness assumptions, and, as was discussed in detail in [28], nobody has so far been able to reasonably

combine them to partial order reduction. (For instance, fairness is not mentioned in the partial order

reduction chapter of [1].)

On the other hand, a big subset of liveness properties is preserved by fair testing equivalence. This

is the reason for giving it lots of attention in the present study. It preserves a representative for each

counter-example that goes via a state after which the desired activity cannot happen. What it may lose

is counter-examples where the only reason for the desired activity not happening is the scheduling

of actions. That is, the system infinitely many times chooses an action (like loss of a message, or

executing an irrelevant component) that does not make progress towards the desired thing, while an

action that does make progress (delivery of the message, executing another component) would have

been available. Although linear time liveness with fairness assumptions is the standard approach,

we believe that it is less reliable than generally thought and alternative approaches may be worth

consideration [29].

Of course, implementing the frozen action method and experimenting with it would be an impor-

tant topic for future research. Among other things, a data structure for maintaining the frozen sets is

needed. It may exploit the fact that only the r-states in the depth-first stack need a frozen set, and the

frozen set of an r-state (other than ŝ) is always a superset of the frozen set of its parent.
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Sievi-Korte O, Mäkinen E (eds.), Proceedings of the 14th Symposium on Programming Languages and

Software Tools (SPLST’15), Tampere, Finland, October 9-10, 2015, volume 1525 of CEUR Workshop

Proceedings. CEUR-WS.org, 2015 pp. 91–105.

[28] Valmari A. Stop It, and Be Stubborn! ACM Trans. Embedded Comput. Syst., 2017. 16(2):46:1–46:26.

doi:10.1145/3012279.

[29] Valmari A, Hansen H. Progress Checking for Dummies. In: Howar F, Barnat J (eds.), Proceedings of

Formal Methods for Industrial Critical Systems, volume 11119 of Lecture Notes in Computer Science.

Springer, 2018 pp. 115–130. doi:10.1007/978-3-030-00244-2 8.


