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Abstract. A marked Petri net is lucent if there are no two different reachable markings enabling
the same set of transitions, i.e., states are fully characterized by the transitions they enable. Char-
acterizing the class of systems that are lucent is a foundational and also challenging question.
However, little research has been done on the topic. In this paper, it is shown that all free-choice
nets having a home cluster are lucent. These nets have a so-called home marking such that it is
always possible to reach this marking again. Such a home marking can serve as a regeneration
point or as an end-point. The result is highly relevant because in many applications, we want
the system to be lucent and many “well-behaved” process models fall into the class identified in
this paper. Unlike previous work, we do not require the marked Petri net to be live and strongly-
connected. Most of the analysis techniques for free-choice nets are tailored towards well-formed
nets. The approach presented in this paper provides a novel perspective enabling new analysis
techniques for free-choice nets that do not need to be well-formed. Therefore, we can also model
systems and processes that are terminating and/or have an initialization phase.

Keywords: Petri nets, Free-Choice Nets, Lucent Process Models

1. Introduction

Petri nets can be used to model systems and processes. Many properties have been defined for Petri
nets that describe desirable characteristics of the modeled system or process [1, 2, 3]. Examples
include deadlock-freeness (the system is always able to perform an action), liveness (actions cannot
get disabled permanently), boundedness (the number is states is finite), safeness (objects cannot be
at the same location at the same time), soundness (a case can always terminate properly) [4], etc. In
this paper, we investigate another foundational property: lucency. A system is lucent if it does not
have different reachable states that enable the same actions, i.e., the set of enabled actions uniquely
characterizes the state of the system [5]. Think of an information system that has a user interface
showing what the user can do. In this example, lucency implies that the offered actions fully determine
the internal state and the system will behave consistently from the user’s viewpoint. If the information
system would not be lucent, the user could encounter situations where the set of offered actions is the
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same, but the behavior is very different. Another example is the worklist of a workflow management
system that shows the workitems that can or should be executed. Lucency implies that the state of a
case can be derived based on the workitems offered for it.

In a Petri net setting, lucency can be defined as follows. A marked Petri net is lucent if there
are no two different reachable markings enabling the same set of transitions, i.e., markings are fully
characterized by the transitions they enable.
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Figure 1. (N1,M1) is a free-choice net that is lucent, has a home cluster, but is not perpetual.

Figure 1 shows a marked Petri net that is lucent. Each of the four reachable markings has a
different set of enabled transitions. Figure 2 shows a marked Petri net that is not lucent. Initially, one
of the transitions t1 or t2 can occur, leading to two different states (the markings [p2, p5] and [p2, p6])
that cannot be distinguished. Only transition t3 is enabled, but the internal state matters. t1 is always
followed by t4 and t2 is always followed by t5.
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Figure 2. (N2,M2) is a non-free-choice net that is not lucent because the markings [p2, p5] and [p2, p6] enable
the same set of transitions (just t3), thereby hiding the internal state.

Although we focus on Petri nets, lucency is a general notion that is independent of the modeling
language used. Even though lucency is an easy to define and foundational property, it was not inves-
tigated until recently [5, 6]. As described in [6], lucent process models are easier to discover from
event data. When the underlying process has states that are different, but that enable the same set of
activities, then it is obviously not easy to learn these “hidden” states. Commercial process mining
systems mostly use the so-called Directly-Follows Graph (DFG) as a process model. Here the “state”
is considered to be the last activity executed. DFGs have problems dealing with concurrent processes
and tend to produce imprecise and “Spaghetti-like” models because of that. More advanced process
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discovery techniques are able to discover concurrent process models [7], but need to “guess” the state
of the process after each event. When using, for example, region theory, the state is often assumed
to be the prefix of activities (or the multiset of activities already executed), leading to overfitting and
incompleteness problems (one needs to see all possible prefixes). For lucent process models, this
problem is slightly easier because the state is fully determined by the set of enabled activities. See [6]
for more details about the discovery of lucent process models using translucent event logs.

Given the examples in Figures 1 and 2, there seems a natural connection between the well-known
free-choice property [8] and lucency. In a free-choice net, choice and synchronization can be sep-
arated. However, as illustrated by Figure 3, it is not enough to require that the net is free-choice.
(N3,M3) shown in Figure 3 is free-choice. It is actually a marked graph since there are no choices
(i.e., places with multiple output arcs). The model in Figure 3 satisfies most of the (often considered
desirable) properties defined for Petri nets. (N3,M3) is deadlock-free, live, bounded, safe, well-
formed, free-choice, all markings are home markings, etc. However, surprisingly (N3,M3) is not
lucent because the two reachable markings [p1, p3, p6] and [p1, p4, p6] enable the same set of transi-
tions (t1 and t4). This example shows that lucency does not coincide with any (or a combination) of
the properties normally considered.
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Figure 3. (N3,M3) is a marked graph that is not lucent because the markings [p1, p3, p6] and [p1, p4, p6]
enable the same set of transitions (t1 and t4), thereby hiding the internal state.

The notion of lucency was first introduced in [5]. The paper uses the example shown in Figure 3
to demonstrate that even nets that are free-choice, live, and safe may not be lucent. Therefore, an
additional requirement was added. In [5], the class of perpetual nets is introduced in an attempt to
relate well-known Petri net properties to lucency. Perpetual free-choice nets are free-choice Petri nets
that are live and bounded and have a home cluster, i.e., there is a cluster such that from any reachable
state, there is a reachable state marking the places of this cluster. Such a home cluster in a perpetual
net serves as a “regeneration point” of the process, e.g., to start a new process instance (case, job,
cycle, etc.). Any perpetual marked free-choice net is lucent. However, there are many lucent systems
that are not perpetual because they are terminating or have an initialization phase (and are therefore
not live).

This paper extends the work presented in [5] which focused exclusively on perpetual marked
free-choice nets. For example, (N1,M1) in Figure 1 is not perpetual. Actually, most of the work
done on free-choice nets is limited to well-formed nets, i.e., nets that have a marking that is live and
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bounded. This is a structural property allowing for many interesting and advanced forms of analysis
and reasoning [9, 2, 8]. Such nets are automatically strongly-connected and do not have source and
sink places to model the start and the end of the process.

However, in many applications, such nets are not suitable. For example, it is impossible to model
systems and processes that can terminate. In some cases, one can apply a trick and “short-circuit” the
actual net to make it well-formed (see, for example, the analysis of soundness for workflow nets [10]).
However, this distracts from the essence of the property being analyzed. This paper proves this point
by showing that liveness is irrelevant for ensuring lucency. For example, the Petri net in Figure 1 is
lucent, but not well-formed.

In this paper, we show that all free-choice nets having a home cluster are lucent. This significantly
extends the class perpetual marked free-choice nets and also includes non-well-formed nets such as
(N1,M1) in Figure 1.

To do this, we provide a direct proof that is not building on the traditional stack of results for well-
formed free-choice nets. In [5], we need to use the coverability theorem and the blocking marking
theorem. Moreover, the proof in [5] turned out to be incomplete and the repaired proof is even more
involved. The approach used to prove the correctness of the main result provides a novel perspective
enabling new analysis techniques for free-choice nets that do not need to be well-formed. Novel
concepts like “expediting transitions”, “rooted disentangled paths”, and “conflict-pairs” can be used
to prove many other properties free-choice nets having a home cluster. This paper also relates the
novel concepts and techniques presented in this paper to results based on short-circuiting nets that
are non-live and not strongly-connected (Section 6). This relation is used to show that we can check
whether there is home cluster in polynomial time for free-choice nets (whether they are live and
strongly-connected or not).

The remainder is organized as follows. Section 2 briefly discusses related work. Section 3 in-
troduces Petri nets and some of the basic notations. Lucent Petri nets are defined in Section 4. In
Section 5 we show that free-choice nets having a home cluster are indeed lucent. To do this, we intro-
duce new notions such as (rooted) disentangled paths and conflict-pairs. Section 6 relates the work to
perpetual marked free-choice nets and our earlier paper [5]. Section 7 concludes the paper.

2. Related Work

This paper extends the work presented in [5]. There are no other papers on the analysis of lucency
(which is surprising). Hence, we can only point to more indirectly related work.

For more information about Petri nets, we refer to [11, 3, 12, 1, 13]. Within the field of Petri nets
“structure theory” plays an important role [9, 2, 8]. Free-choice nets are well studied [14, 2, 15, 16].
The definite book on the structure theory of free-choice nets is [8]. Also, see [2] for pointers to
literature. Therefore, it is surprising that the question of whether markings are uniquely identified by
the set of enabled transitions (i.e., lucency) has not been explored in literature. Lucency is unrelated to
the so-called “frozen tokens” [17]. A Petri net has a frozen token if there exists an infinite occurrence
sequence never using the token. It is possible to construct live and bounded free-choice nets that are
lucent while having frozen tokens. Conversely, there are live and bounded free-choice nets that do not
have frozen tokens and are not lucent.
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The results presented in this paper are also related to the blocking theorem [18, 19]. Blocking
markings are reachable markings that enable transitions from only a single cluster. Removing the
cluster yields a dead marking. The blocking theorem states that in a bounded and live free-choice net
each cluster has a unique blocking marking. Lucency is broader than blocking markings since multiple
clusters and concurrent transitions are considered. Actually, lucency can be seen as a generalization
of unique blocking markings. Moreover, [18, 19] only consider live Petri nets.

In [20], we propose a framework based on sequences of t-induced T-nets and p-induced P-nets to
convert free-choice nets into T-nets and P-nets while preserving properties such as well-formedness,
liveness, lucency, pc-safety, and perpetuality. The framework allows for systematic proofs that “peel
off” non-trivial parts while retaining the essence of the problem (e.g., lifting properties from T-nets
and P-nets to free-choice nets).

A major difference between the work reported in this paper and the extensive body of knowledge
just mentioned is that we do not require the Petri net to be well-formed. Liveness assumes that the
system is cyclic and actions are always still possible in the future. This does not align well with
the standard “case notion” used in Business Process Management (BPM), Workflow Management
(WFM), and Process Mining (PM) [10, 7, 4]. Process instances have a clear start and end. For
example, process discovery algorithms from the field of PM all generate process models close to the
workflow nets. The languages used for BPM and WFM, e.g., BPMN and UML Activity Diagrams,
are very different from well-formed Petri nets and closer to workflow nets. The work presented in this
paper supports both views. The process models may be well-formed or not. Therefore, we significantly
generalize over the work presented in [5] and also present results that could be used for other questions.

3. Preliminaries

This section introduces concepts related to Petri nets and some basic notations.

3.1. Multisets, Sequences, and Functions

B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A), b(a) denotes the
number of times element a ∈ A appears in b. Some examples: b1 = [ ], b2 = [x, x, y], b3 = [x, y, z],
b4 = [x, x, y, x, y, z], and b5 = [x3, y2, z] are multisets over A = {x, y, z}. b1 is the empty multiset,
b2 and b3 both consist of three elements, and b4 = b5, i.e., the ordering of elements is irrelevant
and a more compact notation may be used for repeating elements. The standard set operators can be
extended to multisets, e.g., x ∈ b2, b2 ] b3 = b4, b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set
with all elements a for which b(a) ≥ 1. b(X) =

∑
a∈X b(x) is the number of elements in b belonging

to set X , e.g., b5({x, y}) = 3 + 2 = 5. b ≤ b′ if b(a) ≤ b′(a) for all a ∈ A. Hence, b3 ≤ b4 and
b2 6≤ b3 (because b2 has two x’s). b < b′ if b ≤ b′ and b 6= b′. Hence, b3 < b4 and b4 6< b5 (because
b4 = b5).

σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length |σ| = n. σi = ai for 1 ≤
i ≤ |σ|. 〈 〉 is the empty sequence. σ1 · σ2 is the concatenation of two sentences, e.g., 〈x, x, y〉 ·
〈x, z〉 = 〈x, x, y, x, z〉. The notation [a ∈ σ] can be used to convert a sequence into a multiset.
[a ∈ 〈x, x, y, x, z〉] = [x3, y2, z].
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3.2. Petri Nets

Figures 1, 2, and 3 already showed examples of marked Petri nets. To reason about such processes
and to formalize lucency, we now provide the basic formalizations [11, 3, 12, 1, 13].

Definition 3.1. (Petri Net)
A Petri net is a tuple N = (P, T, F ) with P the non-empty set of places, T the non-empty set of
transitions such that P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) the flow relation such that the graph
(P ∪ T, F ) is (weakly) connected.

Figure 1 has four places (p1, p2, p3, p4), five transitions (t1, t2, t3, t4, t5), and ten arcs. The initial
marking contains just one token located in place p1.

Definition 3.2. (Marking)
Let N = (P, T, F ) be a Petri net. A marking M is a multiset of places, i.e., M ∈ B(P ). (N,M) is a
marked net.

A Petri net N = (P, T, F ) defines a directed graph with nodes P ∪ T and edges F . For any
x ∈ P ∪ T , •x = {y | (y, x) ∈ F} denotes the set of input nodes and x• = {y | (x, y) ∈ F} denotes
the set of output nodes. The notation can be generalized to sets: •X = {y | ∃x∈X (y, x) ∈ F} and
X• = {y | ∃x∈X (x, y) ∈ F} for any X ⊆ P ∪ T .

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉, if each of its input
places •t contains at least one token. en(N,M) = {t ∈ T | (N,M)[t〉} is the set of enabled
transitions.

An enabled transition t may fire, i.e., one token is removed from each of the input places •t and
one token is produced for each of the output places t•. Formally: M ′ = (M \ •t) ] t• is the marking
resulting from firing enabled transition t in marking M of Petri net N . (N,M)[t〉(N,M ′) denotes
that t is enabled in M and firing t results in marking M ′.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′) denotes that
there is a set of markings M1,M2, . . . ,Mn+1 (n ≥ 0) such that M1 = M , Mn+1 = M ′, and
(N,Mi)[ti〉(N,Mi+1) for 1 ≤ i ≤ n. A marking M ′ is reachable from M if there exists a firing
sequence σ such that (N,M)[σ〉(N,M ′). R(N,M) = {M ′ ∈ B(P ) | ∃σ∈T ∗ (N,M)[σ〉(N,M ′)} is
the set of all reachable markings. (N,M)[σ〉 denotes that the sequence σ is enabled when starting in
marking M (without specifying the resulting marking).

For the marked net in Figure 2: R(N2,M2) = {[p1], [p2, p5], [p2, p6], [p3, p5], [p3, p6], [p4]}.
Note that en(N2, [p2, p5]) = en(N2, [p2, p6]) = {t3}.

3.3. Liveness, Boundedness, and Home Markings

Next, we define some of the standard behavioral properties for Petri nets: liveness, boundedness, and
the presence of home markings.

Definition 3.3. (Live, Bounded, Safe, Dead, Deadlock-free, Well-Formed)
A marked net (N,M) is live if for every reachable marking M ′ ∈ R(N,M) and for every transition
t ∈ T there exists a marking M ′′ ∈ R(N,M ′) that enables t. A marked net (N,M) is k-bounded if
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for every reachable marking M ′ ∈ R(N,M) and every p ∈ P : M ′(p) ≤ k. A marked net (N,M)
is bounded if there exists a k such that (N,M) is k-bounded. A 1-bounded marked net is called safe.
A place p ∈ P is dead in (N,M) when it can never be marked (no reachable marking marks p). A
transition t ∈ T is dead in (N,M) when it can never be enabled (no reachable marking enables t). A
marked net (N,M) is deadlock-free if each reachable marking enables at least one transition. A Petri
net N is structurally bounded if (N,M) is bounded for any marking M . A Petri net N is structurally
live if there exists a marking M such that (N,M) is live. A Petri net N is well-formed if there exists
a marking M such that (N,M) is live and bounded.

Definition 3.4. (Home Marking)
Let (N,M) be a marked net. A marking MH is a home marking if for every reachable marking
M ′ ∈ R(N,M): MH ∈ R(N,M ′).

Note that home markings do not imply liveness or boundedness, i.e., a Petri net may be non-well-
formed and still have home markings. (N1,M1) in Figure 1 is not live and has one home marking
[p4]. (N3,M3) in Figure 3 is live and all of its reachable markings are home markings.

3.4. Clusters

Clusters play a major role in this paper. A cluster is a maximal set of connected nodes, only considering
arcs connecting places to transitions.

Definition 3.5. (Cluster)
Let N = (P, T, F ) be a Petri net and x ∈ P ∪ T . The cluster of node x, denoted [x]c is the smallest
set such that (1) x ∈ [x]c, (2) if p ∈ [x]c ∩ P , then p• ⊆ [x]c, and (3) if t ∈ [x]c ∩ T , then •t ⊆ [x]c.
[N ]c = {[x]c | x ∈ P ∪ T} is the set of clusters of N .

Note that [N ]c partitions the nodes in N . The Petri net in Figure 1 has four clusters: C1 =
{p1, t1, t2}, C2 = {p2, t3}, C3 = {p3, t4, t5}, and C4 = {p4}. The Petri net in Figure 3 also has
four clusters: C1 = {p1, t1}, C2 = {p2, p3, t2}, C3 = {p4, p5, t3}, and C4 = {p6, t4}.

Definition 3.6. (Cluster Notations)
Let N = (P, T, F ) be a Petri net and C ∈ [N ]c a cluster. Pl(C) = P ∩ C are the places in C,
Tr(C) = T ∩ C are the transitions in C, and Mrk(C) = [p ∈ Pl(C)] is the smallest marking fully
enabling the cluster.

3.5. Structural Properties

As defined before, we require Petri nets to be weakly connected. N is strongly connected if the graph
(P ∪ T, F ) is strongly-connected, i.e., for any two nodes x and y there is a path leading from x to y.

Various subclasses of Petri nets have been defined based on the network structures they allow.
State machines, also called P-nets, do not allow for transitions with multiple input or output places.
Marked graphs, also called T-nets, do not allow for places with multiple input or output transitions. In
this paper, we focus on free-choice nets that are proper.
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Definition 3.7. (Free-choice Net)
LetN = (P, T, F ) be a Petri net. N is free-choice net if for any t1, t2 ∈ T : •t1 = •t2 or •t1∩•t2 = ∅.

In free-choice nets, choice and synchronization can be separated. (N2,M2) in Figure 2 is not a
free-choice net, because the choice between t4 and t5 is controlled by the places p5 and p6.

Definition 3.8. (Proper Petri Net)
A Petri net N = (P, T, F ) is proper if all transitions have input and output places, i.e., for all t ∈ T :
•t 6= ∅ and t• 6= ∅.

Well-formed Petri nets are strongly-connected and therefore also proper. Workflow nets are
not strongly-connected, but by definition proper. For the main results in this paper, we consider
proper Petri nets instead of enforcing stronger structural or behavioral requirements such as strongly-
connectedness, liveness, and boundedness.

4. Lucent Petri Nets

This paper focuses on lucent process models whose states are uniquely identified based on the activ-
ities they enable. Lucency is a generic property that can be formulated in the context of Petri nets.
Given a marked Petri net, we would like to know whether each reachable marking has a unique “foot-
print” in terms of the transitions it enables. If this is the case, then the Petri net is lucent.

Definition 4.1. (Lucent Petri nets)
Let (N,M) be a marked Petri net. (N,M) is lucent if and only if for any M1,M2 ∈ R(N,M):
en(N,M1) = en(N,M2) implies M1 =M2.

(N1,M1) depicted in Figure 1 is lucent. (N2,M2) and (N3,M3) in Figures 2 and 3 are not lucent.
(N4,M4) depicted in Figure 4 is also not lucent. Both [p3, p5, p7] and [p3, p7, p8] are reachable from
the initial marking and enable the same set of transitions.

Unbounded marked Petri nets are, by definition, not lucent. However, the examples illustrate that
the reverse does not hold.

Proposition 4.2. (Boundedness of Lucent Petri Nets)
Any lucent marked Petri net is bounded.

Proof:
A marked net with n = |T | transitions cannot have more than 2n possible sets of enabled transitions.
Lucency implies that each set of enabled transitions corresponds to a unique marking. Hence, there
cannot be more than 2n reachable markings (implying boundedness). ut

We would like to find subclasses of nets that are guaranteed to be lucent based on their structure.
At first, one is tempted to think that bounded free-choice nets are lucent. However, as Figure 3 and
Figure 4 show, this is not sufficient.

Lucency is related to the notion of transparency, i.e., all tokens are in the input places of enabled
transitions and therefore not “hidden”.
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Figure 4. (N4,M4) is a marked free-choice Petri net that is not lucent: [p3, p5, p7] and [p3, p7, p8] enable t1
and t4.

Definition 4.3. (Transparent Marking)
Let (N,M) be a marked Petri net. Marking M is a transparent marking of N if and only if M =
[p ∈ P | ∃t∈en(N,M) p ∈ •t]. (N,M) is fully transparent if and only if each reachable marking is
transparent.

Full transparency implies lucency, but the reverse does not hold. Actually, full transparency does
not allow for synchronization and concurrency and is therefore very limiting.

Proposition 4.4. Let (N,M) be a marked Petri net. If (N,M) is fully transparent, then (N,M) is
lucent. The reverse does not hold.

Figure 5 shows a marked free-choice Petri net that is lucent but not fully transparent. Consider,
for example, the reachable marking [p4, p7] enabling t5. There is only one reachable marking which
enables only t5. However, marking [p4, p7] is not transparent since the token in p7 is “hidden”.

5. Free-Choice Nets With Home Clusters Are Lucent

In [5], we defined the class of perpetual nets in an attempt to identify a large class of lucent Petri nets.
Here, we aim to substantially extend the class of Petri nets that is guaranteed to be lucent. Like in [5]
we use the notion of home clusters, but drop the liveness and boundedness requirements. Actually,
none of the Petri nets shown in this paper is perpetual, including the two lucent nets (N1,M1) and
(N5,M5).

Definition 5.1. (Home Clusters)
Let (N,M) be marked Petri net. C is a home cluster of (N,M) if and only if C ∈ [N ]c (i.e., C is
a cluster) and Mrk(C) is a home marking of (N,M). If such a C exists, we say that (N,M) has a
home cluster.
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p7p1
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t2

Figure 5. (N5,M5) is a marked free-choice Petri net that is lucent but not fully transparent.

Note that a home marking may be dead, but then it should be unique, i.e., a clear termination point.
If the initial marking is a home marking, it can be seen as a regeneration point.

A mentioned before, the key results in this paper apply only to proper Petri nets where all transi-
tions have input and output places. It is always possible to add a self-loop place to ensure this (without
changing the behavior). Moreover, a Petri net having a transition without any input places and at least
one output place, is unbounded for any initial marking and therefore non-lucent. Transitions without
output places make most sense in unbounded nets (which are non-lucent). Adding a self-loop place to
make the Petri net proper, typically results in a model that has no home cluster. However, such models
tend to be unbounded and therefore non-lucent anyway.

Note that in literature most authors consider well-formed Petri nets. These are strongly-connected
and therefore also proper. Here, we consider a substantially larger class of models. For example, the
marked nets (N1,M1), (N2,M3), (N4,M4), and (N5,M5) are not well-formed, but proper. Actually,
(N3,M3) in Figure 3 is the only well-formed net in this paper (and therefore also proper). This paper
shows that we can drop the well-formedness requirement and still ensure lucency.

5.1. Properties of Home Clusters

We first explore some of the essential properties of home clusters in marked proper free-choice nets.
First, we show that there are two types of clusters: (1) just an isolated end place or (2) a set of places
sharing one or more output transitions.

Proposition 5.2. (Two Types Of Clusters)
Let (N,M) be a marked proper Petri net having a home cluster C. If there is a reachable marking
M ′ ∈ R(N,M) that is dead, then M ′ = Mrk(C), |Pl(C)| = 1, and Tr(C) = ∅. If (N,M) is
deadlock-free, then Tr(C) 6= ∅.

Proof:
From any reachable marking, one can reach Mrk(C). Hence, if there is a dead marking, then Mrk(C)
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can be the only reachable dead marking. If not, Mrk(C) would not be reachable from this alternative
dead marking. If all places in Pl(C) are marked, all transitions Tr(C) must be enabled. Hence,
Tr(C) = ∅ (otherwise Pl(C) cannot be dead). If Tr(C) = ∅, then the cluster must be a singleton, i.e.,
C = {pC} (transitions are needed to enlarge the cluster, see Definition 3.5). If (N,M) is deadlock-
free, Mrk(C) can be reached and should not be dead. Hence, Tr(C) 6= ∅. ut

Most of the results for home markings only apply to well-formed free-choice nets, e.g., S-Coverability
Theorem, T-Coverability Theorem, Rank Theorem, Duality Theorem, Completeness of Reduction
Rules Theorem, Existence of Home Markings Theorem, Blocking Marking Theorem, and Home
Marking Theorem [9, 2, 8]. We focus on proper free-choice nets and do not require liveness to ensure
boundedness, as is shown next.

Definition 5.3. (Expedite a Transition in a Transition Sequence)
Let N = (P, T, F ) be a free-choice net, M ∈ B(P ), σ = 〈t1, t2, . . . , ti, . . . , tj , . . . , tn〉 ∈ T ∗,
(N,M)[σ〉 (i.e., the sequence σ is enabled), and 1 ≤ i < j ≤ n. exp(N,M)(σ, i, j) = true if and only
if

• (N,M)[〈t1, t2, . . . , ti−1, tj〉〉 (i.e., it is possible to execute the prefix involving the first i − 1
transitions followed by tj), and

• [tk]c 6= [tj ]c for all k ∈ {i, . . . , j− 1} (i.e., tj is the first transition of the respective cluster after
ti−1).

exp(N,M)(σ, i, j) denotes that the j-th transition can be expedited by moving tj to position i. σi←j =
〈t1, t2, . . . , ti−1, tj , ti, . . . , tj−1, tj+1 . . . , tn〉 is the corresponding transition sequence where the j-th
transition is moved to the i-th position.

Exp(N,M)(σ) ⊆ T ∗ is the subset of all transition sequences that can be obtained by repeatedly
expediting transitions, i.e., Exp(N,M)(σ) is the smallest set such that:

• σ ∈ Exp(N,M)(σ) and
• σ′i←j ∈ Exp(N,M)(σ) if σ′ ∈ Exp(N,M)(σ), 1 ≤ i < j ≤ |σ′|, and exp(N,M)(σ

′, i, j).

Any σ′ ∈ Exp(N,M)(σ) is a permutation of σ and, as we will show next, is enabled if σ is enabled.
σi←j moves the j-th transition to the i-th position and is enabled at that position. Consider (N5,M5) in
Figure 5 and σ = 〈t2, t5, t6, t8, t8〉, σ2←3 = 〈t2, t6, t5, t8, t8〉 and σ2←4 = σ2←5 = 〈t2, t8, t5, t6, t8〉.
σ2←3 ∈ Exp(N5,M5)(σ), because 〈t2, t6〉 is possible and t6 is the first transition of the respective
cluster. σ2←4 6∈ Exp(N5,M5)(σ), because 〈t2, t8〉 is not possible (t8 is not enabled yet). Next, we show
that expediting transitions is possible and leads to the same marking.

Lemma 5.4. (Expediting Transitions Is Safe)
Let N = (P, T, F ) be a free-choice net, M,M ′ ∈ B(P ), and σ ∈ T ∗ such that (N,M)[σ〉(N,M ′).
For any σ′ ∈ Exp(N,M)(σ): (N,M)[σ′〉(N,M ′).

Proof:
Assume N = (P, T, F ) is a free-choice net and M , M ′, and σ are such that (N,M)[σ〉(N,M ′).
Exp(N,M)(σ) is defined as the smallest set such that (1) σ ∈ Exp(N,M)(σ) and (2) σ′i←j ∈ Exp(N,M)(σ)
if σ′ ∈ Exp(N,M)(σ), 1 ≤ i < j ≤ |σ|, and exp(N,M)(σ

′, i, j). We provide a proof using induction
based on the iterative construction of Exp(N,M)(σ).
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(1) The base step σ′ = σ obviously holds, because σ ∈ Exp(N,M)(σ) and (N,M)[σ〉(N,M ′).
(2) For the inductive step, it suffices to prove that (N,M)[σ′i←j〉(N,M ′) assuming that σ′ =

〈t1, . . . , tn〉 ∈ Exp(N,M)(σ), 1 ≤ i < j ≤ n, exp(N,M)(σ
′, i, j), and (N,M)[σ′〉(N,M ′). We need

to prove that σ′i←j = 〈t1, t2, . . . , ti−1, tj , ti, . . . , tj−1, tj+1 . . . , tn〉 is indeed enabled and leads to the
same final marking, i.e., (N,M)[σ′i←j〉(N,M ′). Let M ′′ be the marking after firing the first i − 1
transitions, i.e., (N,M)[〈t1, t2, . . . , ti−1〉〉(N,M ′′). tj ∈ en(N,M ′′) because exp(N,M)(σ

′, i, j) (see
first condition). The transitions ti, . . . , tj−1 do not consume any tokens from [tj ]c (use the second
condition in exp(N,M)(σ

′, i, j) stating that [tk]c 6= [tj ]c for all k ∈ {i, . . . , j − 1}) and therefore
can still be executed (tj only consumed tokens from places in [tj ]c). The marking reached after
〈t1, t2, . . . , ti−1, tj , ti, . . . , tj−1〉 is the same as reached after prefix 〈t1, t2, . . . , ti−1, ti, . . . , tj−1, tj〉.
Moreover, the same subsequence of transitions 〈tj+1 . . . , tn〉 remains. Hence, (N,M)[σ′i←j〉(N,M ′)
thus completing the proof. ut

Note that for any σ′ ∈ Exp(N,M)(σ): [t ∈ σ′] = [t ∈ σ] (i.e., σ′ and σ are permutations of the same
multiset) and the order per cluster does not change, i.e., transitions can only “overtake” transitions of
other clusters. Lemma 5.4 shows that expediting transitions does not jeopardize the ability to execute
the remainder of an enabled firing sequence. This can be used to show that it is impossible to have a
marking dominating the home marking (i.e., one cannot reach a strictly larger marking).

Theorem 5.5. (No Dominating Markings in Free-Choice Nets With a Home Cluster)
Let (N,M) be a marked proper free-choice net having a home cluster C. For all M ′ ∈ R(N,M): if
M ′ ≥ Mrk(C), then M ′ = Mrk(C).

Proof:
Consider a marked proper free-choice net (N,M) having a home cluster C. Assume there exists a
reachable markingM ′ ∈ R(N,M) such thatM ′ > Mrk(C). We show that this is impossible, thereby
proving the theorem.

First, we assume that (N,M) has a deadlock and show that this leads to a contradiction. Using
Proposition 5.2, we know that Mrk(C) is the only reachable dead marking and Tr(C) = ∅. However,
M ′ > Mrk(C) is reachable and the token in C cannot be removed anymore if Tr(C) = ∅. Since
the net is proper, any marking reachable from M ′ will have at least one extra token next to the token
in Mrk(C). Therefore, Mrk(C) cannot be reached, contradicting that C is a home cluster. Hence,
(N,M) must be deadlock-free.

Since (N,M) is deadlock-free, Tr(C) 6= ∅ (use Proposition 5.2), i.e., the home cluster has at least
one transition. All transitions in Tr(C) live, because we can always reach the home marking Mrk(C)
again and again.

Without loss of generality, we can assume that M ′ ∈ R(N,M) is such that the distance to the
home marking Mrk(C) is minimal. Let σs be a shortest path from M ′ to Mrk(C) having length |σs|.
In other words, (N,M ′)[σs〉(N,Mrk(C)), and for all Malt ∈ R(N,M) and σalt ∈ T ∗ such that
Malt > Mrk(C) and (N,Malt)[σalt〉(N,Mrk(C)): |σalt | ≥ |σs|. Obviously, |σs| ≥ 1 (otherwise
M ′ = Mrk(C) contradicting our initial assumption).

Exp(N,M ′)(σs) contains all permutations of the shortest sequence σs that are obtained by expedit-
ing transitions. Let σ1 and σ2 be such that σ1 · σ2 ∈ Exp(N,M ′)(σs), (N,Mrk(C))[σ1〉(N,M ′′), and
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en(N,M ′′) ∩ {t ∈ σ2} = ∅. σ1 contains the transitions in σs that can also be executed starting from
the home marking. This leads to markingM ′′. In this marking, none of the remaining transitions in σs
(i.e., the transitions in σ2) can be executed. In other words, starting from we Mrk(C), we try to exe-
cute as much of σs as possible by expediting transitions (as described in Definition 5.3). σ1 is the part
that can be executed (leading to M ′′) and σ2 is the remaining part of σs. σ2 only contains transitions
that are not enabled in M ′′. Obviously, there always exist σ1 and σ2 such that these requirements are
met (Exp(N,M ′)(σs) 6= ∅ and we can add transitions to σ1 until this is no longer possible). Moreover,
σ1 can also be executed starting in M ′ because it is the prefix of an expedited sequence. Let M ′′′ be
the corresponding marking, i.e., (N,M ′)[σ1〉(N,M ′′′). From this marking, we can reach the home
marking by executing σ2 (because σ1 · σ2 ∈ Exp(N,M ′)(σs) and Lemma 5.4).

Figure 6. Sketch of the construction used in Theorem 5.5. The solid arrows denote firing sequences and the
dashed lines indicate multiset domination. σs is a firing sequence of minimal length leading from a marking
M ′ (which is larger than Mrk(C)) to Mrk(C). Firing sequence σ1 · σ2 is a permutation of σs such that the
transitions also enabled when starting from Mrk(C) are expedited leading to firing sequence σ1. The remaining
transitions in σ2 are not enabled when starting from Mrk(C).

To summarize, σ1 · σ2 ∈ Exp(N,M ′)(σs), (N,Mrk(C))[σ1〉(N,M ′′), (N,M ′)[σ1〉(N,M ′′′),
(N,M ′′′)[σ2〉(N,Mrk(C)), and en(N,M ′′) ∩ {t ∈ σ2} = ∅. Moreover, because M ′ > Mrk(C)
also M ′′′ > M ′′ and |σs| ≥ 1. Figure 6 shows the relations between the different markings. To
complete the proof we consider two cases (σ1 = 〈 〉 and σ1 6= 〈 〉):

• Assume σ1 = 〈 〉. This implies that M ′′′ = M ′, M ′′ = Mrk(C), σ2 = σs, en(N,M ′′) =
Tr(C), and Tr(C) ∩ {t ∈ σs} = ∅. Hence, when executing σs starting from M ′ the home
cluster remains fully marked. However, there is at least one additional token in M ′ that cannot
“disappear” when executing σs (the net is proper) leading to a contradiction.

• Assume σ1 6= 〈 〉. This implies that M ′′′ 6> Mrk(C), otherwise there would be a shorter
sequence than σs, namely σ2. (Recall that we selected M ′ and σs such that there is no shorter
sequence leading to the home marking.) There must exist an enabled cluster Ce in M ′′ (the
net cannot be dead), i.e., Tr(Ce) ⊆ en(N,M ′′). Tr(Ce) ∩ {t ∈ σ2} = ∅. If Ce = C,
then we find a contradiction because this implies M ′′′ > Mrk(C). If Ce 6= C, then there is
a place pe ∈ Pl(Ce) outside of the home cluster C that is marked in M ′′ and also M ′′′, but
pe 6∈ Mrk(C). The token in pe is never removed by the transitions in σ2. However, after
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executing σ2, place pe should be empty because only places in C are marked, thus leading to a
contradiction.

Hence, in all cases we find a contradiction, proving that M ′ ≤ Mrk(C). ut

Theorem 5.5 implies boundedness. Later, we show that marked proper free-choice nets having a
home cluster are also safe.

Corollary 5.6. (Boundedness)
Let (N,M) be a marked proper free-choice net having a home clusterC. For allM1,M2 ∈ R(N,M):
M1 6> M2. Hence, (N,M) is also bounded.

Proof:
Assume M1,M2 ∈ R(N,M) such that M1 > M2 (first marking is strictly larger). There exists a σ
such that (N,M2)[σ〉(N,Mrk(C)). Since M1 > M2 there must be another reachable marking M3

such that (N,M1)[σ〉(N,M3) and M3 > Mrk(C). However, Theorem 5.5 says this is impossible,
leading to a contradiction. ut

5.2. Rooted Disentangled Paths

We will now reason about the numbers of tokens on specific paths in the Petri net. Therefore, we first
provide some standard definitions and then introduce the new notion of rooted disentangled paths.

Definition 5.7. (Elementary Paths and Circuits)
A path in a Petri net N = (P, T, F ) is a non-empty sequence of nodes ρ = 〈x1, x2, . . . , xn〉 such that
(xi, xi+1) ∈ F for 1 ≤ i < n. Hence, xi−1 ∈ •xi for 1 < i ≤ n and xi+1 ∈ xi• for 1 ≤ i < n.
paths(N) is the set of all paths in N . ρ is an elementary path if xi 6= xj for 1 ≤ i < j ≤ n (i.e., no
element occurs more than once). An elementary path is called is a circuit if x1 ∈ xn•.

Next, we focus on paths that start and end with a place and that visit a cluster at most once.
Consider (N5,M5) in Figure 5. 〈t8, p7, t8, p8〉 is a path that is not elementary. This implies that also
a cluster is visited multiple times. 〈p1, t1, p3, t4, p7〉 is a so-called disentangled path since each place
on the path belongs to a different cluster.

Definition 5.8. ((Rooted) Disentangled Paths)
Let N = (P, T, F ) be a Petri net. ρ = 〈p1, t1, p2, . . . , tn−1, pn〉 is a disentangled path of N if and
only if ρ is a path of N (ρ ∈ paths(N)), p1 ∈ P , pn ∈ P , and for all 1 ≤ i < j ≤ n: [pi]c 6= [pj ]c
(i.e., ρ starts and ends with a place and does not contain elements that belong to the same cluster). A
disentangled path is Q-rooted if pn ∈ Q.

Disentangled paths are elementary, but not all elementary paths are disentangled. Consider N3

in Figure 3. ρ1 = 〈p5, t3, p3, t2, p4〉 is elementary, but not disentangled because [p5]c = [p4]c.
ρ2 = 〈p5, t3, p3, t2, p1〉 is elementary and disentangled. ρ2 is Q-rooted where Q can be any subset of
places that includes p1.

In the remainder of this subsection, we reason about the existence of disentangled paths and the
number of tokens on them.



W.M.P. van der Aalst / Free-Choice Nets With Home Clusters Are Lucent 15

Lemma 5.9. (Existence of Rooted Disentangled Paths)
Let N = (P, T, F ) be a free-choice net, C a cluster of N , p ∈ P , and q ∈ C ∩ P . If N has a path
ρ ∈ paths(N) starting in p and ending in q, then there also exists aC-rooted disentangled path starting
in p.

Proof:
Let ρ = 〈p1, t1, p2, . . . , tn−1, pn〉 ∈ paths(N) be the path connecting p = p1 and q = pn. ρ can be
converted into a Q-rooted disentangled path starting in p. This is done by removing parts of the path
through shortcuts that can be taken when the same cluster is visited multiple times. Let i ∈ {1, . . . , n}
be a pointer pointing to place pi in ρ. We start with i = 1 (i.e., i points to the first place p1) and move
towards the end of the path i = n.

• If pointer i points to place pi and pi ∈ C, we can ignore the rest of the sequence because we
already reached C via a unique sequence of clusters. (Note that if p = p1 is already in C, we
have a sequence of length 1.)

• If pi 6∈ C, then i < n because q = pn ∈ C. Hence, there still exists an output transition ti with
output place pi+1 in ρ.

– If none of the pj with j > i is in the same cluster as pi, then we keep pi and ti, and
continue with pi+1 (i.e, increment i).

– If there is a pj with j > i that is in the same cluster as pi, then we take the largest j
for which this holds. Also j < n, because pj 6∈ C (here pi and pj are in the same clus-
ter). Hence, there exists a tj and pj+1. pi and pj may refer to the same place or not.
However, {pi, pj} ⊆ •tj (both are in the same cluster and all transitions in the cluster
consume from all places in the cluster). Since pi ∈ •tj , we can remove the subsequence
〈ti, pi+1, . . . , tj−1, pj〉 and directly connect pi to tj . Sequence 〈. . . , pi, tj , pj+1, . . . , tn−1,
pn〉 constitutes a path in the Petri net and we continue with pj+1 (i.e, set i = j+1). In sum-
mary, 〈p1, . . . , pi, ti, ti+1, . . . , pj , tj , pj+1, . . . , tn−1, pn〉 is transformed into 〈p1, . . . , pi,
ti, ti+1, . . . , pj , tj , pj+1, . . . , tn−1, pn〉 and continues with i = j + 1.

We repeat this process until we reach C. Each of the elements in the resulting path is connected to the
previous one and we never visit the same cluster twice. We also keep the initial place p. Therefore,
the resulting path is a C-rooted disentangled path starting in p. ut

Consider the path ρ = 〈p6, t4, p5, t3, p3, t2, p4, t3, p3, t2, p1〉 in Figure 3. the path ends in the
cluster C = {p1, t1}. Using the approach used in the proof of Lemma 5.9, this path is converted into
the C-rooted disentangled path 〈p6, t4, p5, t3, p3, t2, p4, t3, p3, t2, p1〉 = 〈p6, t4, p5, t3, p3, t2, p1〉.
We can construct a C-rooted disentangled path starting in any place p that is not dead, i.e., a place
marked in at least one of reachable markings.

Corollary 5.10. (Existence of Rooted Disentangled Paths from Marked Places)
Let (N,M) be a marked proper free-choice net having a home cluster C. For any non-dead place
p ∈ P , there exists a C-rooted disentangled path starting in p.

Proof:
Take an arbitrary place p that can be marked in some reachable marking M ′. If p ∈ C, then ρ = 〈p〉
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is a C-rooted disentangled path. If p 6∈ C, then there must be a path from p to one of the places in
C (say q). This follows from the fact that the net is proper, i.e., for all t ∈ T : •t 6= ∅ and t• 6= ∅.
Therefore, a token can not simply disappear and must end up in C. To see this, color the token in p
red and then execute a firing sequence ending in Mrk(C). When executing a transition with at least
one red token, make all produced tokens also red. Because we cannot consume a red token without
producing at least one new red token, we know that at least one red token will end up in Mrk(C). This
proves that there is a path ρ starting in p and ending in some q ∈ C ∩ P (follow back one red token
in Mrk(C)). Since there is such a path ρ, there also exists a C-rooted disentangled path starting in p
(apply Lemma 5.9). ut

Dead places do not change the behavior and can be removed together with the output transitions
if desired (but do not have to be removed, since they remain empty anyway). The next lemma plays a
key role in our analysis of nets having a home cluster C: C-rooted disentangled paths are safe, i.e., at
any time all places on a C-rooted disentangled path together contain at most one token.

Lemma 5.11. (Rooted Disentangled Paths Are Safe)
Let (N,M) be a marked proper free-choice net having a home cluster C. For any reachable marking,
M ′ ∈ R(N,M) and C-rooted disentangled path ρ = 〈p1, t1, p2, . . . , tn−1, pn〉: M ′({p1, p2, . . . , pn})
≤ 1.

Proof:
Assume (N,M) is a marked proper free-choice net,C is a home cluster, and ρ = 〈p1, t1, p2, . . . , tn−1,
pn〉 is a C-rooted disentangled path. Let Pρ = {p1, p2, . . . , pn} and Tρ = {t1, t2, . . . , tn−1}.

Assume that the lemma does not hold, i.e., ρ is not safe andM ′(Pρ) > 1 for someM ′ ∈ R(N,M).
We show that this leads to a contradiction.

Consider the tokens (at least two) in the places Pρ. We try to move these tokens towards pn ∈ C.
Each place pi ∈ Pρ corresponds to a unique clusterCi because the path is disentangled. This combined
with the free-choice property, allows us to fully control the trajectories of the tokens in Pρ.

First, we look a the case where C has a transition, say tC (i.e., there are no dead markings, see
Proposition 5.2). We start in marking Mc = M ′. If one of the transitions in Tρ is enabled, then we
fire this transition (in any order and perhaps also multiple times) and update the current marking Mc.
This cannot decrease the number of tokens, i.e., we still have Mc(Pρ) > 1. Note that a transition
in Tρ consumes precisely one token “from the path” and produces at least one token “on the path”
(disentangled paths are elementary). If tC is enabled, then Mc ≥ Mrk(C). However, given the
second token in Pρ this implies Mc > Mrk(C). This leads to a contradiction using Theorem 5.5. If
none of the transitions in Tρ ∪ {tC} is enabled in Mc, then we must be able to fire a sequence of other
transitions enabling a transition in Tρ ∪ {tC}. C is a home cluster and there are no deadlocks, so we
can always walk towards a marking enabling one of the transitions in Tρ ∪ {tC}. The moment one of
the transitions in Tρ is enabled, we can again control the choices involved. Hence, we can continue to
move tokens along the path until we find a contradiction.

Next, we look a the case whereC does not have a transition (i.e., the home marking is is a deadlock,
see Proposition 5.2). We can use exactly the same strategy to move the tokens towards pn (there one
case less to consider). The moment a token reaches pn there is at least one additional token in Pρ and
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this one can also be moved to pn leading to a contradiction (apply Theorem 5.5 to show that there
cannot be two tokens in pn). ut

The previous results can be combined to show that the class of marked Petri nets considered is
safe.

Corollary 5.12. (Marked Proper Free-Choice Net Having a Home Cluster Are Safe)
Let (N,M) be a marked proper free-choice net having a home cluster C. (N,M) is safe.

Proof:
Follows directly from Lemma 5.11 and Corollary 5.10. If a place p is dead, then it will never have a
token and thus safe. If a place p is not dead, then there exists a C-rooted disentangled path (Corol-
lary 5.10) starting in p, and this path must be safe due to Lemma 5.11. Hence, all places are safe. ut

5.3. Conflict-Pairs

If a marked Petri net is not lucent, then there must be two different markings enabling the same set of
transitions. We will convert such a pair of markings into a conflict-pair. By showing that these do not
exist, we can prove lucency.

Definition 5.13. (Conflict-Pair)
Let (N,M) be a marked Petri net. (M1,M2) is called a conflict-pair for (N,M) if and only if

• M1 and M2 are reachable markings of (N,M) (i.e., M1,M2 ∈ R(N,M)),
• M1 and M2 are not dead (i.e., en(N,M1) 6= ∅ and en(N,M2) 6= ∅),
• en(N,M1) ∩ en(N,M2) = ∅ (no transition is enabled in both markings),
• for all t ∈ en(N,M1): M2(•t) ≥ 1, and
• for all t ∈ en(N,M2): M1(•t) ≥ 1.

Consider (N3,M3) Figure 3 and markings M1 = [p2, p3, p5] and M2 = [p2, p4, p5]. M1 can be
reached by firing t1 and t4. M2 can be reached by firing t1, t2, t1, and t4. en(N,M1) = {t2},
en(N,M2) = {t3}, en(N,M1) ∩ en(N,M2) = ∅, M2(•t2) = 1 ≥ 1, and M1(•t3) = 1 ≥ 1.

To better understand the above definition, let us split each of the two markings in the conflict-
pair (M1,M2) in an “agreement” and a “disagreement” part. Magree is the maximal marking such
that Magree ≤ M1 and Magree ≤ M2. Now we can write M1 = Magree ]Mdisagree

1 and M2 =

Magree ] Mdisagree
2 . Obviously, all three submarkings Magree , Mdisagree

1 , and Mdisagree
2 are non-

empty. This allows us to speak about “agreement tokens” (tokens in Magree ) and “disagreement
tokens” (tokens in Mdisagree

1 or Mdisagree
2 ). For M1 = [p2, p3, p5] and M2 = [p2, p4, p5], we have

Magree = [p2, p5], Mdisagree
1 = [p3], and Mdisagree

2 = [p4].
Both M1 and M2 should enable at least one transition, but there cannot be a transition enabled by

both. This means that en(N,Magree) = ∅. The last two requirements in Definition 5.13 state that
transitions enabled in M1 and M2 should also consume at least one agreement token. Hence, for any
t1 ∈ en(N,M1): t1 6∈ en(N,M2), t1 6∈ en(N,Magree), Magree(•t1) ≥ 1, and Mdisagree

1 (•t1) ≥ 1.
Similarly, for any t2 ∈ en(N,M2): t2 6∈ en(N,M1), t2 6∈ en(N,Magree), Magree(•t2) ≥ 1, and
Mdisagree

2 (•t2) ≥ 1.
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Next, we show that the absence of conflict-pairs implies lucency. Later, we show that a marked
proper free-choice net with a home cluster cannot have a conflict-pair. Hence, such nets are guaranteed
to be lucent.
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Figure 7. Example showing how two markings that have the same “footprint” (left) in terms of enabling can
be converted into a conflict-pair (right). The left-hand side shows markings M1 = [p1, p3, p6] and M2 =
[p1, p4, p6]. The right-hand side shows markings M ′1 = [p2, p3, p5] and M ′2 = [p2, p4, p5]. The “agreement
tokens” are depicted as black dots (denoted by •), the “disagreement tokens” are shown as 1© (only in M1 and
M ′1) or 2© (only in M2 and M ′2).

To show that the absence of conflict-pairs implies lucency for free-choice nets having a home
cluster, Lemma 5.14 shows that it is possible to convert two markings M1 and M2 that have the same
“footprint” in terms of enabling (i.e., en(N,M1) = en(N,M2)) into a conflict-pair (M ′1,M

′
2). To

illustrate the construction, we consider the free-choice net N3 in Figure 3 which does not have a home
cluster (we can find two markings having the same “footprint” because of this). The left-hand side
of Figure 7 shows the markings M1 = [p1, p3, p6] and M2 = [p1, p4, p6]. M1 is the initial marking
and M2 can be reached by firing t1 and t2. Tokens in M1 but not in M2 are represented by 1© and
tokens in M2 but not in M1 are represented by 2©. Tokens in both markings are denoted by •. M1

and M2 demonstrate that the net is not lucent because en(N3,M1) = en(N3,M2) = {t1, t4}. To
move to the conflict-pair (M ′1,M

′
2) with M ′1 = [p2, p3, p5] and M ′2 = [p2, p4, p5] on the right-hand

side of Figure 7, we do not “touch” the disagreement tokens denoted by 1© and 2©. This implies
that no transitions in the corresponding clusters can fire and that these disagreement tokens do not
move. Hence, we can only fire transitions that only consume agreement tokens. These are depicted
as normal black dots • in Figure 7. In the example, we can fire t1 and t4 involving only agreement
tokens. Such transitions consume and produce agreement tokens. Since the net is guaranteed to be
safe, no agreement tokens can be produced for places that have disagreement tokens (i.e., p3 and p4
in Figure 7). Hence, the 1© and 2© tokens cannot disappear in the process.

The main idea of Lemma 5.14 is to fire transitions that are enabled by agreement tokens until
this is no longer possible. This leads to markings like M ′1 = [p2, p3, p5] and M ′2 = [p2, p4, p5] in
Figure 7. In such markings, all enabled transitions have a mix of agreement and disagreement tokens
in their input places. For example, t2 is enabled in M ′1 by a • token in p2 and a 1© token in p3, and t3
is enabled in M ′2 by a • token in p5 and a 2© token in p4. Lemma 5.14 shows that it is always possible
to reach such markings using the fact that the home marking Mrk(C) is always reachable. Later, we
will show that free-choice nets having a home cluster cannot have conflict-pairs. Therefore, Figure 7
need to use an example that does not have a home cluster.
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The proof of Lemma 5.14 can be summarized as follows. Start from two different markings M1

and M2 that enable the same set of transitions. The tokens of both markings are split into “agreement
tokens” denoted by • and “disagreement tokens” marked by 1© or 2© (as shown in Figure 7). Next,
we fire transitions that consume only • tokens. It is possible to do this in such a way that the process
stops and there are no such transitions enabled anymore (just try to move tokens closer to the home
marking, this must stop at some stage because the disagreement tokens are needed). The 1© and 2©
tokens do not move and enabled transitions require at least one “disagreement token” (•). This way
we can construct a conflict-pair (M ′1,M

′
2). Hence, if there are no conflict-pairs, there cannot be two

markings M1 and M2 that enable the same set of transitions, thus proving lucency.

Lemma 5.14. (Nets Without Conflict-Pairs Are Lucent)
Let (N,M) be a marked proper free-choice net having a home cluster. If (N,M) has no conflict-pairs,
then (N,M) is lucent.

Proof:
Let (N,M) be a marked proper free-choice net having a home cluster C. We need to prove that if
N = (P, T, F ) has no conflict-pairs, thenN is lucent. This can be rewritten to the logically equivalent
contrapositive “if N is not lucent, then N has a conflict-pair”. We will construct such a conflict-pair.

AssumeN is not lucent. There must be two markingsM1,M2 ∈ R(N,M) such that en(N,M1) =
en(N,M2) and M1 6= M2. We will show that, based on these markings, we can construct a conflict-
pair (M ′1,M

′
2).

The only dead reachable marking is Mrk(C). Since en(N,M1) = en(N,M2) and M1 6= M2,
we conclude that en(N,M1) = en(N,M2) 6= ∅, M1 6= Mrk(C), and M2 6= Mrk(C) (use see
Proposition 5.2).

Since (N,M) is safe (see Corollary 5.12), we can partition the tokens into three groups based on
the places where they reside: P• = {p ∈ P | p ∈M1 ∧ p ∈M2}, P1 = {p ∈ P | p ∈M1 ∧ p 6∈M2},
and P2 = {p ∈ P | p 6∈ M1 ∧ p ∈ M2}. Tokens in P• are shared by both markings (i.e., the
“agreement tokens” mentioned before). Tokens in P1 and P2 exist in only one of the two markings
(i.e., the “disagreement tokens” mentioned before). None of these three sets can be empty. Because
en(N,M1) = en(N,M2) 6= ∅, transitions enabled in both markings must agree on the marked input
places. Hence, P• 6= ∅. Because M1 6= M2 and one cannot be strictly larger than the other one
(Corollary 5.6), P1 6= ∅ and P2 6= ∅. We also create three groups of transitions: T1 = {t ∈ T |
•t∩P1 6= ∅}, T2 = {t ∈ T | •t∩P2 6= ∅}, and Trest = T \ (T1∪T2) = {t ∈ T | •t∩ (P1∪P2) = ∅}.
Note that T1 and T2 may overlap in principle, but do not overlap with Trest i.e., (T1 ∪ T2) and Trest
partition T . Each subset (i.e., T1, T2 or T ) includes all transitions of a cluster or none (i.e., clusters
agree on membership).

After introducing these notations, we pick a firing sequence σ starting in M1 and ending in the
home marking, i.e., (N,M1)[σ〉(N,Mrk(C)). Such a σ exists, because C is a home cluster.

Like in the proof of Theorem 5.5 we split σ into σ1 and σ2. Exp(N,M1)(σ) contains all per-
mutations of firing sequence σ that are obtained by expediting transitions. Let σ1 and σ2 be such that
σ1 ·σ2 ∈ Exp(N,M1)(σ), (N,M1)[σ1〉(N,M ′1), σ1 ∈ Trest∗, and en(N,M ′1)∩Trest∩{t ∈ σ2} = ∅. In
other words, we expedite transitions from Trest , until this is no longer possible. Given Exp(N,M1)(σ)
it is always possible to find such σ1, σ2, and M ′1. Suppose that en(N,M ′1) ∩ Trest ∩ {t ∈ σ2} 6= ∅,
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then we take the first transition in σ2 that is in this set and move it to σ1 (see construction in Def-
inition 5.3). Since σ1 does not fire transitions possibly consuming disagreement tokens (recall that
Trest = {t ∈ T | •t ∩ (P1 ∪ P2) = ∅}), σ1 is also enabled in M2. Let M ′2 be the marking
reached after firing σ1 in M2, i.e., (N,M2)[σ1〉(N,M ′2). Also, (N,M ′1)[σ2〉(N,Mrk(C)) (because
σ1 · σ2 ∈ Exp(N,M1)(σ) and Lemma 5.4). Figure 8 summarizes the different entities involved and
their relationships.

Figure 8. Sketch of the construction used in Lemma 5.14. The elements satisfy the following rela-
tions: (N,M1)[σ〉(N,Mrk(C)), σ1 · σ2 ∈ Exp(N,M1)(σ), (N,M1)[σ1〉(N,M ′1), (N,M2)[σ1〉(N,M ′2),
(N,M ′1)[σ2〉(N,Mrk(C)), σ1 ∈ Trest∗, and en(N,M ′1) ∩ Trest ∩ {t ∈ σ2} = ∅.

M1(p) = M ′1(p) and M2(p) = M ′2(p) for any p ∈ P1 ∪ P2, i.e., the disagreement places are
unaffected by σ1 because the T1 and T2 transitions did not fire and σ1 cannot add tokens to P1 or P2,
because the net is safe (see Corollary 5.12). σ1 only produces “agreement tokens” and putting such a
token in a disagreement place violates the safety property in the sequence starting in M1 or M2. Also
M1(p) = M2(p) and M ′1(p) = M ′2(p) for any p ∈ P \ (P1 ∪ P2). This also holds for intermediate
markings when firing the transitions in σ1. Hence, the collection of 1© and 2© tokens does not change
(no disagreement tokens are removed and no new disagreement tokens are created). Moreover, there
is a non-empty set of agreement tokens (denoted by •) because the net is proper (M ′1 and M ′2 agree on
these and each transition in σ1 produces at least one such token).

Next, we prove that (M ′1,M
′
2) is indeed a conflict-pair for N . We check the required properties

listed in Definition 5.13:
• M ′1 and M ′2 are indeed reachable markings of (N,M) because M1,M2 ∈ R(N,M), (N,M1)
[σ1〉(N,M ′1) and (N,M2)[σ1〉(N,M ′2),

• M ′1 contains at least one “disagreement token” 1© and one “agreement token” • (see above).
M ′1 cannot be dead, because the only reachable marking that may be dead is Mrk(C) having a
single token (apply again Proposition 5.2). M ′2 also contains at least one “disagreement token”
2© and one “agreement token” •. Hence, neither M ′1 nor M ′2 can be dead.

• Next, we show that T ′ = en(N,M ′1) ∩ en(N,M ′2) = ∅ using the following observations:
– T ′ ⊆ Trest , because the transitions in T1 and T2 cannot be enabled in both M ′1 and M ′2 (no

tokens were added to a place in P1 ∪ P2 by σ1).
– en(N,M ′1) ∩ Trest ∩ {t ∈ σ2} = ∅ was used as a criterion when splitting σ into σ1 and
σ2.

– Combining the above implies T ′∩{t ∈ σ2} = ∅. Hence, the input places of the transitions
in T ′ are still marked after executing σ2 in M ′1.
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– Since (N,M ′1)[σ2〉(N,Mrk(C)), the input places of T ′ must be marked in Mrk(C).
Hence, T ′ ⊆ C.

– This implies that the transitions in the home cluster are enabled in both M ′1 and M ′2. This
is only possible ifM ′1 =M ′2 leading to a contradiction, i.e., en(N,M ′1)∩en(N,M ′2) = ∅.

Note that in M ′1 and M ′2 all enabled transitions need to consume at least one “disagreement
token”. Hence, no transition can be enabled in both M ′1 and M ′2. If a transition would be
enabled in both, then σ1 could have been extended.

• For all t ∈ en(N,M ′1): M
′
2(•t) ≥ 1, because each transition enabled in M ′1 must have an

“agreement token” produced by σ1 and a “disagreement token” in P1. If a transition t would
be enabled based on “disagreement tokens” only, these would have been there in M1 already
(recall that M1(p) = M ′1(p) for any p ∈ P1) leading to a contradiction because en(N,M1) =
en(N,M2). Hence, any transition t enabled in M ′1 must have an “agreement token” produced
by σ1 on one of it input places. This token is also there in M ′2. Hence, M ′2(•t) ≥ 1.

• For all t ∈ en(N,M ′2): M
′
1(•t) ≥ 1. Here the same arguments apply. A transition cannot be

enabled based on “disagreement tokens” only, since these would have been there in M2 already
(M2(p) =M ′2(p) for any p ∈ P2).

Hence, (M ′1,M
′
2) is indeed a conflict-pair and thus completes the contrapositive proof. ut

5.4. Home Clusters Ensure Lucency in Free-Choice Nets

Now we can prove the main result of this paper: Marked proper free-choice nets having a home cluster
are lucent. We use the notions of rooted disentangled paths and conflict-pairs. The basic idea is to
show that a conflict-pair implies that there is an unsafe rooted disentangled path which is impossible.
The absence of conflict-pairs implies lucency.
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into a C1-rooted 
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Path connecting  C1 and 
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into a C-rooted 
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Figure 9. Visualization of the three clusters considered in the proof of Theorem 5.15. C is the home cluster.
C1 is a cluster enabled in M1 but not in M2. C2 is a cluster enabled in M2 but not in M1. The places labeled
1© or 2© contain a token in the respective marking (just in M1 or just in M2). The paths connecting C2 and
C1 and C1 and C are converted into rooted disentangled paths. These two rooted disentangled paths can be
concatenated to create a C-rooted disentangled path starting in pmrk. The proof shows that at least one of these
rooted disentangled paths is not safe, proving that the net has no conflict-pairs and thus must be lucent.

Theorem 5.15 shows that there cannot be a conflict-pair (M1,M2) in a marked proper free-choice
net having a home cluster. Figure 9 sketches the main idea of the proof. First, we assume that there
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exist a conflict-pair (M1,M2). We identify, next to the home cluster C, two additional clusters C1 and
C2 based on the conflict-pair (M1,M2). C1 is enabled in marking M1 and C2 is enabled in marking
M2. C1 can be any cluster enabled in marking M1. C2 is a cluster enabled in marking M2 that
contributes to the enabling of cluster C1 which is disabled in marking M2. As Figure 9 shows C1 has
a 1© input token and C2 has a 2© input token.

Based on the selected C1 and C2 clusters, we create two rooted disentangled paths: ρ′ is a C1-
rooted disentangled path connecting C2 to C1 and ρ′′ is a C-rooted disentangled path connecting C1

to C. These two rooted disentangled paths are combined into a path ρ′′′ running from C2 to C via
C1. If ρ′′′ is not a C-rooted disentangled path (i.e., the same cluster is visited multiple times along
the path), then it is possible to reach a marking starting from M2 which puts a token on ρ′′ (the path
connecting C1 to C) while having an agreement token in C1. Hence, there is a C-rooted disentangled
path connecting C1 to C having at least two tokens (see proof for details). Using Lemma 5.11 this
leads to a contradiction. Hence, ρ′′′ must be a C-rooted disentangled path. However, considering
M1 (rather than a marking reached from M2) path ρ′′′ has at least two tokens. This also leads to a
contradiction using Lemma 5.11. Therefore, there cannot be a conflict-pair (M1,M2). The approach
presented using Figure 9 is detailed in the proof below.

Theorem 5.15. (Home Clusters Ensure Absence of Conflict-Pairs)
Let (N,M) be a marked proper free-choice net having a home cluster. (N,M) has no conflict-pairs.

Proof:
Let (N,M) be a marked proper free-choice net having a home cluster C. We assume that (N,M) has
a conflict-pair (M1,M2) and show that this leads to a contradiction.

Useful notations: P•, P∅, P1, and P2. Based on the conflict-pair (M1,M2), we partition the set
of places P into four sets P• = {p ∈ P | p ∈M1 ∧ p ∈M2}, P∅ = {p ∈ P | p 6∈M1 ∧ p 6∈M2},
P1 = {p ∈ P | p ∈ M1 ∧ p 6∈ M2}, and P2 = {p ∈ P | p 6∈ M1 ∧ p ∈ M2}. Transitions
enabled in M1 have input places from P• and P1. en(N,M1) = {t ∈ T | •t ∩ P• 6= ∅ ∧ •t ∩ P∅ =
∅ ∧ •t ∩ P1 6= ∅ ∧ •t ∩ P2 = ∅}. Transitions enabled in M2 have input places from P• and P2.
en(N,M2) = {t ∈ T | •t ∩ P• 6= ∅ ∧ •t ∩ P∅ = ∅ ∧ •t ∩ P1 = ∅ ∧ •t ∩ P2 6= ∅}. This follows
directly from Definition 5.13.

Selecting clusters C1 and C2. Pick an arbitrary transition enabled in M1: tpick1 ∈ en(N,M1).
Call the corresponding cluster C1 (i.e., tpick1 ∈ C1). Cluster C1 is fully marked in M1, but has at least
one unmarked place in M2. P unmrk = C1 ∩ P1 is the non-empty set of such places. To reach the
home marking from M2, we need to execute a transition in cluster C1 because it is partially enabled.
Hence, there needs to be a firing sequence that marks the places in P unmrk. Let σen be a shortest firing
sequence starting in M2 and marking a place in P unmrk. σen starts with a transition enabled in M2

and ends with a transition putting the first token in P unmrk (the transition may also mark other places
in P unmrk). Let tpick2 ∈ en(N,M2) be the first transition in this shortest sequence σen. Given this
firing sequence we can “follow a token” from tpick2 to a place in P unmrk. This provides a path starting
in tpick2 and ending in the first place marked in P unmrk. This path contains a subset of transitions in
σen. Obviously, such a path must exist, but there may be many candidates. The cluster where this path
starts is called C2 (i.e., tpick2 ∈ C2). There exists a place pmrk ∈ C2 ∩P• in this cluster that is marked
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in both M1 and M2 (tpick2 is enabled in M2 and at least of the input places must also have a token in
M1, since (M1,M2) is a conflict pair).

Selecting two rooted disentangled paths ρ′ and ρ′′. We use the three clusters C, C1, and C2 to
prove the contradiction. There is a path from C2 to C1 and a path from C1 to C. Note that C1 and
C2 need to be different due to the disagreement tokens. Also C is different from both C1 and C2,
since it is not possible to mark the home cluster completely and still have tokens in other places (use
Corollary 5.6). Due to Lemma 5.9 there must be a C1-rooted disentangled path starting in pmrk. Let
us call this path ρ′ = 〈p′1, t′1, p′2, . . . , t′n−1, p′n〉. p′1 = pmrk and p′n is a place in cluster C1. Assume
that the construction described in Lemma 5.9 is used, i.e., all transitions in ρ′ also appear in σen (but
the reverse does not need to hold since we follow a token and take shortcuts to ensure that each cluster
appears only once). For clarity, we refer to the end place of ρ′ as pconn, i.e., pconn = p′n. Due to
Corollary 5.10 there must also be a C-rooted disentangled path starting in pconn (pconn is non-dead
in (N,M)). Let us call this path ρ′′ = 〈p′′1, t′′1, p′′2, . . . , t′′m−1, p′′m〉. p′′1 = pconn and p′′m is a place in
cluster C. For clarity, we refer to this place as pend, i.e., pend = p′′m.

Hence, we have a C1-rooted disentangled path ρ′ starting in pmrk and ending in pconn and a C-
rooted disentangled path ρ′′ starting in pconn and ending in pend.

Creating another rooted disentangled path ρ′′′ by combining ρ′ and ρ′′. Consider now the path
ρ′′′ = 〈pmrk, t′1, p′2, . . . , t′n−1, pconn, t′′1, p′′2, . . . , t′′m−1, pend〉, i.e., the concatenation of the paths ρ′ and
ρ′′. We will show that ρ′′′ is a C-rooted disentangled path starting in pmrk and ending in pend.

Obviously, ρ′′′ is also a path of N . However, we also need to show that ρ′′′ does not contain
elements that belong to the same cluster. If this is not the case there must be a place p′i in ρ′ with
1 ≤ i < n and a place p′′j in ρ′′ with 1 ≤ j ≤ m that belong to the same cluster. (Note that ρ′ and
ρ′′ do not visit the same cluster twice when considered separately, and p′n = pconn = p′′1 is in both so
should not be compared with itself.) However, this is impossible. Assume there would be a cluster
C ′ with p′i ∈ C ′ and p′′j ∈ C ′. Then a transition of this cluster should appear in σen. Recall that we
assume that the construction described in Lemma 5.9 is used to create ρ′, i.e., all transitions in ρ′ also
appear in σen. t′ ∈ C ′ is such a transition appearing in σen and ρ′ and consuming tokens from both
p′i and p′′j . When starting in marking M2 and executing σen, transition t′ occurs before any transition
in C1. Consider the marking M ′ just before t′ occurs, i.e., starting in M2 a prefix of σen is executed
enabling t′ without executing any transition in C1. There exists a place palt ∈ C1 ∩ P•, because C1 is
fully marked in M1 and partially marked in M2. In marking M ′, both p′′j and palt are marked. p′′j is
marked because t′ is enabled. palt is marked because no transition in C1 fired yet. However, there is
also a C-rooted disentangled path starting in palt, namely ρalt = 〈palt, t′′1, p′′2, . . . , p′′j , . . . t′′m−1, pend〉
(we can start in an arbitrary place in C1 and still meet all requirements, note that compared to ρ′′,
pconn is replaced by palt). Lemma 5.11 shows that it is impossible to have two marked places p′′j and
palt in the C-rooted disentangled path ρalt, leading to a contradiction. Therefore, ρ′′′ does not visit
the same cluster multiple times (if so, ρ′′ would not be a C-rooted disentangled path). Hence, ρ′′′ is a
C-rooted disentangled path starting in pmrk and ending in pend.

The combined rooted disentangled path ρ′′′ is not safe leading to a contradiction. Now con-
sider the just constructed C-rooted disentangled path ρ′′′ and marking M1. The places pmrk and pconn

are both marked in M1 and must be different. Recall that pmrk ∈ C2 ∩ P• (i.e., also marked in M1)
and pconn ∈ C1 (all places in C1 are marked in M1). Again we apply Lemma 5.11, which shows that
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it is impossible to have two marked places in the C-rooted disentangled path ρ′′′. Therefore, we find
another contradiction, showing that the conflict-pair (M1,M2) cannot exist. ut

Our goal was to show that marked proper free-choice nets having a home cluster are lucent and
this follows directly from the previous results.

Corollary 5.16. (Home Clusters Ensure Lucency)
Let (N,M) be a marked proper free-choice net having a home cluster. (N,M) is lucent.

Proof:
This follows directly from Lemma 5.14 and Theorem 5.15. A marked proper free-choice net having a
home cluster has no conflict-pairs (Theorem 5.15) and, therefore, must be lucent (Lemma 5.14). ut

(N1,M1) in Figure 1 and (N5,M5) in Figure 5 are examples of free-choice nets having a home
cluster and these are indeed lucent. (N4,M4) depicted in Figure 4 is not lucent and indeed has no
home cluster.

6. Relation To Perpetual Nets

This paper significantly extends the results for perpetual marked free-choice nets presented in [5].
These nets need to be live, bounded, and have a home cluster, whereas in this paper, we only require
the latter (but boundedness is implied). Moreover, unlike [5] the setting is not limited to strongly-
connected nets, e.g., we allow for workflow nets and other types of Petri nets typically used in process
mining, workflow management, and business process management.

Definition 6.1. (Perpetual Marked Nets [5])
A marked Petri net (N,M) is perpetual net if and only if it is live, bounded, and has a home cluster.

In this paper, we focus on marked proper free-choice nets having a home cluster. Since bound-
edness is implied, the essential difference is the liveness requirement that we dropped. None of the
lucent Petri nets shown in this paper is live, showing that this is a substantial generalization. For
example, (N1,M1) in Figure 1 and (N5,M5) in Figure 5 are lucent but not perpetual. Lemma 5.14
and Theorem 5.15 (combined in Corollary 5.16) can be used to show that (N1,M1) and (N5,M5) are
lucent.

Theorem 3 in [5] states that any perpetual marked free-choice net is lucent. Corollary 5.16 gener-
alizes this statement, as shown in Table 1. In the remainder of this section, we relate both settings.

Proposition 6.2. (Perpetual Nets Are a Subclass of Free-Choice Nets Having a Home Cluster)
Let (N,M) be a marked free-choice net. If (N,M) is perpetual, then (N,M) is proper and has a
home cluster.

Proof:
A marked free-choice net (N,M) is a perpetual net if and only if it is live, bounded, and has a home
cluster. Hence, we only need to show that (N,M) is proper. This follows directly from the fact that
well-formed nets are strongly-connected (Theorem 2.25 in [8]). ut
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class of nets for which lucency
is proven to hold

marked proper free-
choice nets having a
home cluster (this paper)

perpetual nets (free-
choice, live, bounded, and
having home cluster) [5]

structural proper X X (implied)
properties strongly-connected - X (implied)

dynamic bounded X (implied) X

properties live - X

Table 1. Corollary 5.16 extends the results in [5] to nets that may be non-live and not strongly-connected
(requirements are denoted by X).

The reverse does not need to hold, as is demonstrated by figures 1 and 5. The proof of Theorem 3
in [5] is also incomplete. The proof in [5] can be repaired, but this requires reasoning over a stacked
array of P-components, making things overly complicated. It is also possible to use a different ap-
proach using a so-called T-reduction showing the absence of conflict pairs, see Theorem 6 in [20].
In a T-reduction proper t-induced T-nets are “peeled off” until a T-net (i.e., marked graph) remains
(this is related to the notion of CP-nets used in [8]). The reduction preserves liveness, boundedness,
perpetuality, pc-safeness, and other properties. Starting from a perpetual well-formed free-choice net
and a T-reduction, it can be shown that lucency is preserved in the “upstream” direction. Since for
marked graphs it is easy to show lucency, this implies that any perpetual marked free-choice net is
lucent.

Selected results from Section 5 can also be used to repair the proof in [5] in a more direct man-
ner without using existing results for well-formed free-choice nets. In this more limited setting, our
approach can be further simplified by exploiting safeness and liveness.

For strongly-connected marked free-choice nets, having a home cluster implies perpetuality (i.e.,
liveness and boundedness are implied). Moreover, such nets are also safe.

Proposition 6.3. (Properties of Strongly-Connected Free-Choice Nets Having a Home Cluster)
A strongly-connected marked free-choice net (N,M) having a home clusterC is live, safe, and lucent.

Proof:
Let (N,M) be a strongly-connected marked free-choice net having a home cluster C. N is proper
because N is strongly-connected. Hence, we can apply Corollary 5.12 to show that (N,M) is safe.
Corollary 5.16 can be used to show that (N,M) is lucent. Any transition t is on a path from starting
in C. It is possible to create a firing sequence starting in Mrk(C) enabling t by following this path.
This is due to the free-choice property and the fact that we cannot “get stuck on the way” (it is always
possible to return to Mrk(C)). See the proof of Lemma 5.11 for a similar reasoning. Hence, (N,M)
is live. ut

To explore the relationship between both settings in more detail, we take a proper Petri net with a
safe initial marking M and a selected cluster C. We add a transition tC that extends the cluster and
that marks all places in M , i.e., •tC = C ∩ P and tC• = {p ∈ M}. tC short-circuits the original
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net in an attempt to make it strongly-connected. To achieve this, we also need to remove the nodes for
which there is no path from the initially marked places.

Definition 6.4. (Short-Circuited Cleaned Nets)
Let N = (P, T, F ) be proper Petri net having a cluster C and an initial marking M that is safe.

• conn(N,M) = {xn | 〈x1, x2, . . . , xn〉 ∈ paths(N) ∧ x1 ∈ M} are all nodes that are on a
path starting in an initially marked place.

• clean(N,M) = (P ′, T ′, F ′ ∩ ((P ′ × T ′) ∪ (T ′ × P ′))) with P ′ = P ∩ conn(N,M), and
T ′ = T ∩ conn(N,M) is the net containing all places and transitions on paths starting in an
initially marked place.

• short circ(N,C,M) = (P, T ∪{tC}, F ∪ (Pl(C)×{tC})∪ ({tC}× {p ∈M})) is the short-
circuited net (adding a “fresh” transition tC 6∈ T with •tC = C ∩ P and tC• = {p ∈M}).

• NC,M = short circ(clean(N,M), C,M) applies the two operations in sequence.
• Ĉ = C ∩ {tc} is used to denote the extended cluster (note that this is only a cluster of NC,M if
C ⊆ conn(N,M)).

In an attempt to create a strongly-connected net, we first remove all “dead nodes” and then short-
circuit the net by connecting a selected cluster to the initially marked places. If all nodes of C are on
a path starting in an initially marked place, then Ĉ = C ∩ {tc} is indeed a cluster of NC,M (otherwise
not).

Proposition 6.5. (Short-Circuited Cleaned Nets Are Strongly-Connected)
Let (N,M) be a safely marked proper free-choice net having a cluster C such that C ⊆ conn(N,M).
The short-circuited cleaned net NC,M = short circ(clean(N,M), C,M) is strongly-connected and
free-choice, and Ĉ = C ∩ {tc} ∈ [NC,M ]c (i.e., Ĉ is indeed a cluster of NC,M ).

Proof:
All nodes in clean(N,M) are reachable from an initially marked place (including the nodes in C
because C ⊆ conn(N,M)). Hence, tc is also reachable from an initially marked place and tc is
connected to this place. Therefore, the net is strongly-connected. Adding tc cannot destroy the free-
choice property. If there is a transition t ∈ C, then •t = •tc. If not, then C has just one place.
Therefore, NC,M is free-choice and has a new cluster Ĉ = C ∩ {tc}. ut

Under the assumption that clusterC is preserved when short-circuiting the net, C is a home cluster
of (N,M) if and only if Ĉ is a home cluster of (NC,M ,M). Moreover, this is equivalent to (NC,M ,M)
being live and bounded, and can be used to decide whether a free-choice net has a home cluster in
polynomial time.

Theorem 6.6. (Relating Both Settings)
Let (N,M) be a safely marked proper free-choice net having a cluster C such that C ⊆ conn(N,M).
The following three statements are equivalent:

(1) C is a home cluster of (N,M),
(2) Ĉ is a home cluster of (NC,M ,M), and
(3) (NC,M ,M) is live and bounded.
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Proof:
Let N = (P, T, F ) be a proper free-choice net having a cluster C and an initial marking M that
is safe. NC,M = short circ(clean(N,M), C,M) and tC is the short-circuiting transition. C ⊆
conn(N,M), i.e., all cluster nodes are reachable from an initially marked place.

First, we show that (1)⇒ (2). Assume that C is a home cluster of (N,M). Under this assumption,
we consider the reachable markings of (NC,M ,M). These include the markings of (N,M), but
nothing more. The moment all places in C are marked, the other places are empty. In (NC,M ,M)

there is an additional transition tC that is enabled if all places in Ĉ are enabled. If tC fires in Mrk(C) =
Mrk(Ĉ), then we reach the initial state M again. Hence, the set of reachable markings is the same
and Ĉ is a home cluster of (NC,M ,M).

Second, we show that (2)⇒ (3). Ĉ be a home cluster of (NC,M ,M). Proposition 6.5 shows that
NC,M is strongly-connected and free-choice. Using Proposition 6.3 this implies that (NC,M ,M) is
live and safe (i.e., also bounded).

Finally, we show that (3)⇒ (1). Let (NC,M ,M) be live and bounded. This implies that also tC
is live and can be repeatedly be enabled. When tC is enabled, the places in Ĉ are marked, i.e., tC can
only be enabled in a marking M ′ such that M ′ ≥ Mrk(C). It is impossible that M ′ > Mrk(C). If
so, it would be possible to reach a marking larger than the initial marking yielding an unbounded net
by firing tC . Hence, M ′ = Mrk(C) is the only reachable marking enabling tC . Therefore, the set
of reachable markings of (NC,M ,M) and (N,M) are the same. As a result, Mrk(C) can be reached
from any reachable marking starting in (N,M). This implies that C is a home cluster of (N,M).

Combining (1)⇒ (2), (2)⇒ (3), and (3)⇒ (1) shows that the three statements are equivalent. ut

We can apply Theorem 6.6 to all clusters of the net. Therefore, the problem of deciding whether
marked proper free-choice net has a home cluster can be converted into a liveness and boundedness
question, allowing us to solve the problem in polynomial time.

Corollary 6.7. (Complexity of Home Cluster Detection)
The following problem is solvable in polynomial time: Given a marked proper free-choice net, to
decide whether there is a home cluster.

Proof:
Let (N,M) be a marked proper free-choice net with N = (P, T, F ). There are at most |P | clusters.
For each cluster C, we check whether C is a home cluster of (N,M). This is the same as checking
whether C ⊆ conn(N,M) and (NC,M ,M) is live and bounded. The former requirement is merely
a syntactical check to ensure that cluster C is preserved when short-circuiting the net. The latter
requirement is known to be solvable in polynomial time (see, for example, Corollary 6.18 in [8]).
Hence, deciding whether there is a home cluster can also be solved in polynomial time. ut

The above result is remarkable because it also applies to non-well-formed nets.

7. Conclusion

This paper shows that marked proper free-choice nets having a home cluster are lucent.
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A system is lucent if the set of enabled actions uniquely characterizes the state of the system. The
user interface of an information system or the worklist provided by a workflow management system
offers possible actions to its users. If the system is not lucent, the system may behave differently in
seemingly identical situations. The notion of lucency was introduced in [5] and, given its foundational
nature, it is surprising that this was not investigated before.

The paper focuses on marked proper free-choice nets having a home cluster and uses novel con-
cepts such as rooted disentangled paths and conflict-pairs to reason about the behavior of such models.
Most of the work on free-choice nets is restricted to well-formed nets. However, the liveness require-
ment is unsuitable for many application domains. Many systems and processes are terminating and/or
have an initialization phase. These are excluded by most of the existing work. As shown in this paper,
we can often short-circuit the net and apply existing techniques. However, the approach used in this
paper is direct without using any results for well-formed free-choice nets.

Future work aims to extend the class of systems for which lucency can be proven. However, this
will not be easy since unbounded nets or nets with long-term dependencies are inherently non-lucent.
More promising is the further investigation of Petri nets with home clusters. Ideas such as rooted
disentangled paths and conflict-pairs have a broader applicability and may be used to generalize some
of the results known for well-formed (free-choice) Petri nets. For example, is it possible to create
reduction and synthesis rules?

The idea to look into lucency originated from challenges in the field of process mining (where
observed behavior without state information is converted into process models that have states). What
if event logs would not only show the actions executed, but also what was possible, but did not happen?
In [6] the notion of translucent event logs is introduced, and a baseline discovery algorithm is given.
Given such information, it is much easier to discover process models. Another direction for future
research is to create process mining techniques tailored towards discovering a marked proper free-
choice net having a home cluster from a standard event log. Current approaches often aim to discover
workflow nets that are (relaxed) sound. Heuristic approaches do not ensure soundness. Region-based
techniques tend to create unreadable models. Inductive mining techniques tend to produce underfitting
models. Therefore, there is room for exploring alternative representational biases in process mining.
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