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Abstract. In reversible computations one is interested in the development of mechanisms allow-
ing to undo the effects of executed actions. The past research has been concerned mainly with
reversing single actions. In this paper, we consider the problem of reversing the effect of the
execution of groups of actions (steps).

Using Petri nets as a system model, we introduce concepts related to this new scenario, generalis-
ing notions used in the single action case. We then present properties arising when reverse actions
are allowed in place/transition nets (PT-nets). We obtain both positive and negative results, show-
ing that allowing steps makes reversibility more problematic than in the interleaving/sequential
case. In particular, we demonstrate that there is a crucial difference between reversing steps which
are sets and those which are true multisets. Moreover, in contrast to sequential semantics, split-
ting reverses does not lead to a general method for reversing bounded PT-nets. We then show that
a suitable solution can be obtained by combining split reverses with weighted read arcs.
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1. Introduction

Reversibility of (partial) computations has been extensively studied during the past years, looking for
mechanisms that allow to (partially) undo some actions executed during a computational process, that
for some reason one needs to cancel. As a result, the execution can then continue from a consistent
state as if that suppressed action had not been executed at all. In particular, these mechanisms allow
for the correct implementation of transactions [1, 2], that are partial computations which either are
totally executed or not executed at all. This includes updating in databases, so that one never commits
an ‘incomplete’ set of related updates that might produce an inconsistent state (in which one could
infer contradictory facts). Another example would be money transfers between banks, or modern
e-commerce platforms, where the payments received should match the goods distributed [3].

Within Formal Methods, reversibility has been investigated, for instance, in the framework of pro-
cess calculi [4, 5], event structures [6], DNA-computing [7], category theory [8], and quantum com-
puting [9]. In the latter case, it plays a central role due to the inherent reversibility of the mechanisms
on which quantum computing is based. This paper is concerned with reversibility in place/transition
nets (PT-nets), which are a fundamental class of Petri nets, operating according to the step semantics
in which multisets of actions (steps) are executed simultaneously.

In Petri nets, reversibility is usually understood as a global property resembling cyclicity. It was
also considered in a manner closer to its process calculi meaning using symmetric nets [10] (sym-
metric nets have later been used to study structural symmetries of state spaces [11]). Locally defined
reversibility has not yet been extensively studied within the Petri net framework. This is rather sur-
prising as the formalisation of an action by means of a pair of pre-places and post-places provides an
immediate way of defining the reverse of the actions simply by interchanging these two sets of places.
There are, however, some more recent works in which reversibility is understood as cyclicity (i.e., an
ability to return to the initial state from any reachable state). They are usually based on the structure
theory of Petri nets [12], or an algebraic study by means of invariants [13].

From the operational point of view, one can distinguish three essential ways of reversing compu-
tational processes: backtracking, causal reversibility, and out of causal reversibility. For concurrent
systems, the backtracking mode was considered, for example, in [1], where the RCCS process alge-
bra is introduced. An investigation of causal reversibility in the Petri net context can be found, for
example, in [14], where it was implemented using occurrence nets. All three ways of reversing com-
putations were studied in [15], where biologically motivated reversing Petri nets were introduced. In
all these works, one needs to enrich the original model by additional annotations or constructs. It is
the memory of monitored processes for RCCS, the computation stack encoded through colours for
folded occurrence nets, and atoms and bonds together with the history function for reversing Petri
nets. In our approach, we are interested in studying the possibility of reversing computations in step
semantics emphasizing reversing the effects, and avoiding the reachability of new states. The latter
ensures that one can reach only states that are reachable by forward computations, which differentiates
our approach from the out of causal reversibility discussed in [15]. We also do not equip our nets with
additional external monitors which help to ensure causality. As a result, it may happen that reverses
of actions that were not yet executed become enabled. This inconvenience can, however, be easily
removed by suitably augmenting a PT-net being reversed to yield another net, as described in [16].
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The approach presented in this paper is closer to inverse nets presented in [17], and so more oper-

ational. It extends the study of reversing (sequential) transition systems initiated in [16], where it was
shown that the apparent simplicity of this approach is far from trivial, mainly due to the difficulty of
avoiding situations where an added reverse action is executed in an inconsistent manner. Further in-
vestigation of this problem can be found in [18], while [19] considers bounded PT-nets, distinguishing
between the strict reverses and effect reverses of actions. The latter deliver the effect of reversing the
original actions, but possibly with a change in the way action enabling is carried out. It was shown
that some transition systems which can be solved by bounded nets allow the reversal of their actions
by means of single reverse actions, while in other cases the reversal is only possible if splitting of re-
verses is allowed (i.e., each action has a set of reverses which collectively provide means of reversing
the original action).

In [19] only the sequential (interleaving) semantics of nets was considered and, in fact, several
of the presented examples were just (finite) linear transition systems, taking advantage of the results
presented in [20, 21], where binary words representable by Petri net were characterised. The latter
problem and its consequences for reversibility has been further investigated in [22].

About this paper We consolidate and extend the results of [23], where the study of step reversing

in PT-nets and (step) transition systems was initiated. We assume that the transition systems to be
synthesized include information about the multisets of actions (steps) that should be executed in par-
allel. Reversing of the actions should preserve this step information so that the simultaneous firing of
several reverse actions should correspond to the original steps at the system represented by a PT-net.

We introduce several concepts related to this new scenario, generalising notions used in the single
action case. A number of straightforward definition which worked in the sequential case are no longer
adequate. When looking for their adequate generalisations, we identify two ‘natural’ notions of step
reversibility. The former (direct reversibility) only allows steps which comprise either the original
actions, or the reverse actions. The latter (mixed reversibility) allows also mixing of the original and
reverse actions. It turns out that these two ways of interpreting step reversibility are fundamentally
different. Crucially, the direct reversibility cannot be implemented for steps which are true multisets,
and so in such cases one has to look for mixed reversibility solutions. In this way, we identified a
striking difference between reversing steps which are sets and those which are true multisets (when
autoconcurrency of actions in system executions is allowed). However, there is still a general positive
result which basically applies whenever sequential reversing is possible and the original steps can be
be satisfactorily represented.

We also adapt split reverses introduced in [19]. Unfortunately, splitting is not enough to deal with
all bounded PT-nets (also adding inhibitor arcs to the PT-net model does not always help). A general
solution we propose uses weighted read arcs [24] (the further development of this model is out of the
scope of this paper, and is left as a topic for the future work).

The paper is organised as follows. Section 2 recalls notions and notations used throughout the
paper. Moreover, some basic results concerning the step transition model are given. Section 3 in-
troduces four different ways of defining reversibility in step transition systems, including direct step
reversibility and mixed step reversibility, as well as set reversibility (where a true multiset of actions is
reversed in stages) and split reversibility. Section 4 demonstrates that the direct reversibility cannot be
achieved in the presence of autoconcurrency. Moreover, it characterises cases where mixed reversibil-
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ity can be replaced by (more desirable) direct reversibility or set reversibility. Section 5 provides result
allowing one to deal with mixed reversibility and step reversibility in an effective way, by reducing
the reversibility problem to the net synthesis problem. This approach is further continued Section 6,
where lifting of sequential reversibility to step reversibility is discussed. Section 7 proposes a general
solution to the step reversibility of bounded PT-nets which relies on the weighted read arcs. Finally,
Section 8 contains concluding remarks.

2. Preliminaries

Vectors, multisets and actions An X-vector over a set X is a mapping α : X → Z, where Z is
the set of all integers. For two X-vectors, α and β, the sum (α + β), difference (α − β), and less-

than-or-equal relationship (α ≤ β) are defined component-wise. The support of an X-vector α is the
set supp(α) = {x ∈ X | α(x) 6= 0}. The empty X-vector has the empty support and is denoted by
∅X or simply by ∅, and −α denotes ∅X − α. The union of an X-vector α and a Y -vector β, where
X ∩ Y = ∅, is the (X ∪ Y )-vector α ⊔ β such that α ⊔ β|X = α and α ⊔ β|Y = β.

Multisets over X are X-vectors returning non-negative integers in N, the subsets of X can be
identified with multisets returning 0 or 1, and the elements of X with singleton sets. The set of all
multisets over X is denoted by mult(X). The size of α ∈ mult(X) is given by |α| =

∑
x∈X α(x).

For x ∈ X, we denote x ∈ α whenever α(x) ≥ 1.
In what follows, e.g., (xxz) denotes a multiset α with the support {x, z} satisfying α(x) = 2 and

α(z) = 1. Moreover, xk denotes a multiset α with the support {x} satisfying α(x) = k.
Throughout the paper, A denotes an infinite set actions, including the reverse actions and indexed

reverse actions introduced in Section 3, used in step transition systems and PT-nets to model events
occurring in concurrent behaviours. To simplify the presentation, we will treat a vector or multiset α
over T ⊆ A as a vector or multiset over A, assuming that α|A\T = ∅A\T .

Step transition systems A step transition system is a tuple STS = (S, T,→, s0) such that S is a
nonempty set of states, T is a finite set of actions, →⊆ S × mult(T ) × S is the set of transitions,
and s0 ∈ S is the initial state. The transition labels in mult(T ) represent simultaneous executions of
groups of actions, called steps. Rather than (s, α, r) ∈ →, we can denote s

α
−−→STS r. Moreover,

s
α
−−→STS means that there is some r such that s

α
−−→STS r. STS is:

• a set transition system if α is a set, for every transition (s, α, r); and

• state-finite if S is finite, step-finite if {α | s
α
−−→STS} is finite, and finite if it is both state-

and step-finite (and so → is finite).

In the diagrams, step transition systems are depicted as labelled directed graphs. Arcs labelled by the
empty multiset are omitted.

A state r is reachable from state s if there are steps α1, . . . , αk (k ≥ 0) and states s1, . . . , sk+1

such that (s =)s1
α1−−→STS s2 . . . sk

αk−−→STS sk+1(= r). We denote this by s
α1···αk−−−−−→STS r.

The set of all states from which a state s is reachable is denoted by predSTS (s), s is a home state

if predSTS (s) = S, and R ⊆ S is a home cover of STS if S =
⋃
s∈R predSTS (s).
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An (undirected) path from a source state s to target state r is a sequence π = τ1 . . . τk (k ≥ 0),
where each τi is a pair ((si, αi, ri), ζi) ∈ (→ ×{+,−}) such that either k = 0 and s = r, or k ≥ 1 and
s = ŝ1, r̂1 = ŝ2, . . . , r̂k−1 = ŝk, r̂k = r, assuming that ŝi = si and r̂i = ri if ζi = +, and otherwise
ŝi = ri and r̂i = si, for every 1 ≤ i ≤ k. We denote this by π ∈ pathsSTS (s, r). The signature

of π is the A-vector sign(π) = ∅Aζ1α1 . . . ζkαk, where the ζi’s are being treated as addition and
subtraction operations. For example, if π = ((s′, α, s),−)((s′, β, s′′),+) ∈ pathsSTS (s, s

′′), then
sign(π) = ∅A − α+ β = β − α.

Intuitively, sign(π) records the ‘net contribution (or effect)’ made by each action along the path
π, with a ∈ αi making a ‘positive’ contribution if the transition (si, αi, ri) agrees with the direction
of the path, and otherwise making a ‘negative’ contribution. Note that r is reachable from s iff there
is π ∈ pathsSTS (s, r) with all the ζi’s being equal to +.

In this paper, step transition systems are intended to capture (step) reachability graphs of PT-
nets. We will now introduce a property of step transition systems which is motivated by the state

equation which holds, in particular, for PT-nets. The basic idea is that the effect of executing an action
is fixed, and so does not depend on the global state in which this happens (we will make this more
precise later). Capturing such a constant effect is straightforward for PT-nets, but not for step transition
systems. One can, however, approximate the concept of having ‘the same effect’ by considering as
equivalent all undirected paths with the same source and target states.

Let ⊲⊳STS be the least equivalence relation on the set of all A-vectors such that: (i) sign(π) ⊲⊳STS

sign(π′), for all s, r ∈ S and π, π′ ∈ pathsSTS (s, r); and (ii) α ⊲⊳STS β and α′ ⊲⊳STS β′ imply
α + α′ ⊲⊳STS β + β′, for all A-vectors α, α′, β, and β′. Intuitively, α ⊲⊳STS β means that executing
α has the same effect as executing β. This leads to the following property of a step transition STS :

CE sign(π) ⊲⊳STS sign(π′) implies r = r′, for all s, r, r′ ∈ S, π ∈ pathsSTS (s, r), and
π′ ∈ pathsSTS (s, r

′). (constant effect)

It is the case that α ⊲⊳STS β implies −α ⊲⊳STS −β since π ∈ pathsSTS (s, r) means that there is
π′ ∈ pathsSTS (r, s) such that sign(π′) = − sign(π). Hence we also have the following ‘backward’
version of the ‘forward’ constant effect property CE: sign(π) ⊲⊳STS sign(π′) implies s = s′, for all
s, s′, r ∈ S, π ∈ pathsSTS (s, r), and π′ ∈ pathsSTS (s

′, r).

We are now in a position to introduce a class of step transition systems used throughout the rest
of this paper. A step transition system STS = (S, T,→, s0) is a constant effect step transition system

(or CEST-system) if it satisfies CE as well as the following three properties, for every s ∈ S:

REA s0 ∈ predSTS (s). (reachability)

EL s
∅
−−→STS s. (empty loops)

SEQ s
α+β
−−−−→STS implies s

αβ
−−→STS . (sequentialisability)

We then obtain two immediate properties of CEST-systems.

Proposition 2.1. Let STS be a CEST-system.

1. r = r′ whenever s
α
−−→STS r and s

α
−−→STS r

′.
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2. s = r whenever s
∅
−−→STS r.

Proof:

Part (1) follows from CE, and part (2) follows from part (1) and EL. ⊓⊔

Proposition 2.1(1) captures the property of forward determinism (FD) which allows one to unambigu-
ously denote s⊕STS α, or s⊕α if STS is clear from the context, as the state r satisfying s

α
−−→STS r

whenever s
α
−−→STS .

Being a CEST-system still does not mean that it can be generated by a PT-net. A complete charac-
terisation can be obtained using, e.g., theory of regions [25, 26].

Proposition 2.2. Let s be a state of a CEST-system STS . If s ⊕ α is defined and β + γ ≤ α, then
s⊕ β, s⊕ (β + γ) and (s⊕ β)⊕ γ are also defined, and (s⊕ β)⊕ γ = s⊕ (β + γ).

Proof:

By s
α
−−→STS as well as SEQ and CE, we have s

β
−−→STS s ⊕ β

γ
−→STS (s ⊕ β) ⊕ γ as well as

s
β+γ
−−−→STS s ⊕ (β + γ). We therefore have π = ((s, β, s ⊕ β),+)((s ⊕ β, γ, (s ⊕ β) ⊕ γ),+) ∈

pathsSTS (s, (s⊕β)⊕γ) and π′ = ((s, β+γ, s⊕(β+γ)),+) ∈ pathsSTS (s, s⊕(β+γ)). Moreover,
sign(π) = β + γ = sign(π′). Hence, by CE, (s⊕ β)⊕ γ = s⊕ (β + γ). ⊓⊔

We use different ways of removing transitions from a step transition system STS = (S, T,→, s0):

STS
seq = (S, T, {(s, α, r) ∈ → | |α| ≤ 1}, s0)

STS
set = (S, T, {(s, α, r) ∈ → | supp(α) = α}, s0)

STS
spike = (S, T, {(s, α, r) ∈ → | | supp(α)| ≤ 1}, s0)

STS |T ′ = (S, T ′, {(s, α, r) ∈ → | α ∈ mult(T ′)}, s0) (for T ′ ⊆ T ) .

That is, STS seq is obtained by only retaining singleton steps and ∅-labelled steps, STS set by only
retaining steps which are sets, and STS

spike by removing all steps which use more than one action.
Moreover, STS is a sequential / set / spiking step transition system if respectively STS = STS

seq /
STS = STS

set / STS = STS
spike .1

For step transition systems satisfying SEQ, checking the satisfaction of the constant effect property
can be done by restricting oneself to the sequential steps.

Proposition 2.3. Let STS be a step transition system satisfying SEQ. Then STS satisfies CE if and
only if STS seq satisfies CE.

Proof:

We first observe that from SEQ for STS it follows that, for every π ∈ pathsSTS (s, r), there is π′ ∈
pathsSTS seq (s, r) such that sign(π′) = sign(π) (*). Hence, we also have ⊲⊳STS = ⊲⊳STS seq (**).

(=⇒) Follows from (**) and π ∈ pathsSTS seq (s, r) ⊆ π ∈ pathsSTS (s, r).
(⇐=) Follows from (*) and (**). ⊓⊔

1If STS is a CEST-system, then STS
seq , STS set , and STS

spike satisfy REA since STS satisfies REA and SEQ.
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The essence of the next result is that adding reverses of some transitions labelled by the same
action in a sequential step transition system preserves the constant effect property.

Proposition 2.4. Let STS = (S, T,→, s0) be a sequential step transition system satisfying CE and
STS

′ = (S, T ∪{ã},→ ∪ →′, s0), where →′⊆ {(r, ã, s) | (s, a, r) ∈→} for some a ∈ T and ã /∈ T .
Then STS

′ satisfies CE.

Proof:

The result clearly holds when →′ is empty. Otherwise, we have a ⊲⊳STS ′ −ã. For every A-vector α,
let α̂ be the A-vector such that α̂|A\{a,ã} = α|A\{a,ã}, α̂(a) = α(a)− α(ã), and α̂(ã) = 0.

We observe that, for all s, r ∈ S and π ∈ pathsSTS ′(s, r), there is π′ ∈ pathsSTS (s, r) such that

sign(π′) = ̂sign(π) (*). Hence, we also have that α ⊲⊳STS ′ β iff α̂ ⊲⊳STS β̂, for all A-vectors α and
β (**). The result then follows from CE for STS together with (*) and (**). ⊓⊔

Let STS = (S, T,→, s0) and STS
′ = (S′, T ′,→′, s′0) be two step transition systems such that

T ⊆ T ′. Then STS is included in STS
′ if there is a bijection ψ : S → S′ such that ψ(s0) = s′0 and

{(ψ(s), α, ψ(s′)) | s
α
−−→STS s′} ⊆ →′.2 This is denoted by STS ✁ψ STS

′ or STS ✁ STS
′, and

if ψ is the identity on S, we denote STS ◭ STS
′. Also, STS is isomorphic with STS

′ if there is ψ
such that STS ✁ψ STS

′ and STS
′
✁ψ−1 STS . This is denoted by STS ≃ψ STS

′ or STS ≃ STS
′.

PT-nets A PT-net (short for place/transition net [27]) is a tuple N = (P, T, F,M0), where P is a
finite set of places, T ⊆ A is a disjoint finite set of actions,3 F is the flow function F : (P × T ) ∪
(T × P ) → N specifying the arc weights between places and actions, and M0 is the initial marking

(markings are multisets over P representing global states). It is assumed that, for every a ∈ T , there
is p ∈ P such that F (p, a) > 0.

The triple (P, T, F ) is an unmarked PT-net, and N |T ′ = (P, T ′, F |(P×T ′)∪(T ′×P ),M0) is the
subnet of N induced by T ′ ⊆ T .

In the diagrams, PT-nets are depicted as labelled directed graphs, with circles representing places
and boxes to representing actions. Markings are represented by black tokens or numbers drawn inside
the circles, the arc weight of 1 is omitted, and the 0-weight arcs are not drawn.

Multisets over T , again called steps, represent executions of groups of actions. The effect of a step
α ∈ mult(T ) (and, in general, a T -vector α) is the P -vector effN (α) = postN (α)− preN (α), where
preN (α) and postN (α) are multisets of places such that, for every p ∈ P :

preN (α)(p) =
∑

a∈T

α(a) · F (p, a) and postN (α)(p) =
∑

a∈T

α(a) · F (a, p) .

A step α is enabled at a marking M if preN (α) ≤ M , and the firing of such a step leads to
the marking M ′ = M + effN (α).4 This is respectively denoted by M [α〉N and M [α〉N M

′. Note

2If STS and STS
′ are CEST-systems, then ψ is unique due to REA and FD.

3We use the term ‘actions’ rather than ‘transitions’ when referring to the elements of T , in order to avoid confusion with the
triples (s, α, r) used in the definition of step transition systems.
4M ′ is a multiset due to preN(α) ≤M .
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that it is always the case that M [∅〉NM , and that M [α + β〉N implies M [α〉NM
′[β〉N , where

M ′ = M + effN (α). These two facts motivated the inclusion of EL and SEQ in the definition of
CEST-systems.

The reachable markings of N are the smallest set of markings reachN such that M0 ∈ reachN
and if M ∈ reachN and M [α〉N , then M + effN (α) ∈ reachN . N is bounded if the set reachN of
all the reachable markings is finite.

The overall behaviour of N can be captured by its concurrent reachability graph which is the step
transition system CRGN = (reachN , T, {(M,α,M ′) | M ∈ reachN ∧M [α〉NM

′},M0). In what

follows, M
α
−−→N M ′ denotes M

α
−−→CRGN

M ′. Note that the concurrent reachability graphs of
bounded PT-nets are finite.

The concept of marking equation can be explained in the following way. Suppose that a marking
M ′ can be reached from marking M by firing a sequence of steps, e.g., M

α1···αn−−−−−→CRGN
M ′. Then

M ′ =M + effN (α) M =M ′ − effN (α) effN (α) =M ′ −M , (1)

where α = α1 + · · · + αn. This means that the effect of executing a multiset of actions α is constant,
as it does not depend on the starting marking nor the ending marking nor any particular way in which
the actions making up α were fired. Moreover, the effect of actions fired along any path from M to
M ′ is constant. This motivated the inclusion of CE in the definition of CEST-systems.

It is straightforward to see that CRGN is a CEST-system. In particular, by Eq.(1), we have
effN (sign(π)) = M ′ −M , for every π ∈ pathsCRGN

(M,M ′). Hence, in particular, α ⊲⊳CRGN
β

implies effN (α) = effN (β). As a result, CE holds.

Solving step transition systems A step transition system STS is solvable if there is a PT-net N
such that STS ≃ CRGN . This is the standard definition used in several works concerned with the
synthesis of Petri nets from transition systems. In this paper, we will also use a more general notion
of solvability, defined for step transition systems with multiple initial states.

A step transition system with multiple initial states is a tuple STS = (S, T,→, S0) such that the
first three components are as in the definition of a step transition system, and S0 ⊆ S is a nonempty
set of initial states. Moreover, for every r ∈ S0, STS r = (Sr, T,→r, r) is the step transition system
such that Sr = {s ∈ S | r ∈ predSTS (s)} and →r=→ ∩ (Sr × mult(T ) × Sr). That is, STS r is
STS restricted to those states which are reachable from r.

A step transition system with multiple initial states STS is solvable if there is an unmarked PT-
net (P, T, F ) and a mapping ψ : S → mult(P ) such that STS r ≃ψ|Sr

CRG(P,T,F,ψ(r)), for every
r ∈ S0. That is, a solution in this case is an unmarked PT-net which can be ‘started’ in different initial
markings, each such initial marking solving one of the step transition systems which make up STS .

Example 2.5. Let us consider STS = ({q1, . . . , q6}, {a, b, c},→, {q1 , q2}), a step transition system
with multiple initial states depicted in Figure 1(a) (for simplicity, all nonempty steps are singletons).

The step transition system STS q2 , depicted on Figure 1(b), is obtained from STS by removing
all the states which are not reachable from q2. STS q1 is constructed in similar way. The PT-net
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N = (P, T, F, (p1p4)) solving STS q1 is depicted on Figure 1(c). As N = (P, T, F, p42 + p4) is a
solution for STS q2 , it follows that STS is solvable. ♦

(a)

•

q1

•
q2

• • • •

a

b

c a b

(b)

•
q2

• • • •
b

c a b
(c)

•

p1

•

p4

p2

p3

a b

c

3

Figure 1. A step transition system with multiple initial states STS (a); step transition system STS q2 (b); and
Petri net solving STS q1 (c).

3. Reversing steps

The reverse action of an action a in a step transition system STS or a PT-net N will be denoted by a.
Intuitively, a cancels the effect of a which corresponds to a+ a ⊲⊳STS ∅ and effN (a) + effN (a) = 0,
respectively.

We consider four ways of modifying step transition systems to capture the effect of reversing
actions. In the first three, each action a has a unique reverse action a. Moreover, the reverse α
of a multiset α of actions is obtained by replacing each action occurrence in α by its reverse. In
the fourth one, an action a has possibly multiple unique indexed reverse actions a〈idx〉. The index-

free version noidx(α) of a multiset α is obtained by replacing each a〈idx〉 in α by a. For example,

noidx(( a〈7〉 b〈s,w〉 b a〈f〉)) = ( a b b a) = (abba).

In the domain of step transition systems, reversing is introduced at the behavioural level. The
direct / set / mixed reverse of a CEST-system STS = (S, T,→, s0) is respectively given by:

STS
rev =(S, T ⊎ T ,→ ∪ →rev , s0) with →rev = {(s ⊕ α,α, s) | s

α
−−→STS}

STS
srev =(S, T ⊎ T ,→ ∪ →srev , s0) with →srev = {(s ⊕ α,α, s) | s

α
−−→STS ∧ supp(α) = α}

STS
mrev =(S, T ⊎ T ,→mrev , s0) with →mrev = {(s ⊕ α,α+ β, s ⊕ β) | s

α+β
−−−−→STS} .

That is, →rev reverses all the (original) steps, →srev only reverses the steps that are sets, and →mrev

introduces partial reverses with mixed steps, including both the original and reverse actions. Figure 2
illustrates mixed reversing. Note that s⊕ α and s⊕ β are states in STS due to SEQ and CE.

In the domain of PT-nets, reversing is introduced structurally rather than behaviourally, by adding
reverses at the level of actions:
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•s

•

s⊕ α

• s⊕ (α+ β)

•

s⊕ β

α+ β

α+ β

β α

βα

Figure 2. A mixed reverse transition s⊕ α
α+β

−−−−→mrev s⊕ β derived from s
α+β

−−−−→STS .

A split reverse of STS is a step transition system STS
split = (S, T ⊎ T ′,→′, s0) satisfying

SEQ and such that T ∩ noidx(T ′) = ∅ and noidx(STS split ) = STS
rev , where noidx(STS split ) =

(S, T ∪noidx(T ′), {(s,noidx(α), s′) | (s, α, s′) ∈→′}, s0) is the step transition system obtained from
STS by replacing each occurrence of an indexed reverse action a〈idx〉 by a. That is, →′ introduces
split reverses allowing one or more reverses of a step, possibly using different reverses of the same
action when reversing a step that contains its multiple copies.

• A PT-net N with reverses is such that, for each original action a, there is a reverse action a
such that effN (a) = − effN (a).

• A PT-net N with strict reverses is such that, for each original action a, there is a reverse
action a such that preN (a) = postN (a) and postN (a) = preN (a).

• A PT-net N with split reverses is such that, for each original action a, there is at least one
indexed reverse action a〈idx〉 such that effN (a〈idx〉) = − effN (a).

A key problem which then arises is that of characterising relationships between statically defined
reversing of PT-nets and the behavioural reversing of their concurrent reachability graphs. In the rest
of this paper, we will address this problem by providing both negative and positive results. First,
however, we show basic properties of the reversed step transition systems. In particular, that all such
step transition systems are CEST-systems, and that the solvability of a reversed step transition system
implies the solvability of the original step transition system.

Theorem 3.1. Let STS be a CEST-system, and STS
split be any of its split reverses.

1. STS ◭ STS
srev

◭ STS
rev

◭ STS
mrev and STS ◭ STS

split .

2. STS
mrev , STS srev , STS rev , and STS

split are CEST-systems.

3. If any step transition system among STS
mrev , STS srev , STS rev , and STS

split is solvable, then
STS is also solvable.

Proof:

Let STS = (S, T,→, s0) and STS
′ be any step transition system among STS

mrev , STS srev , STS rev ,
and STS

split . We start with an auxiliary result.
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Lemma 3.2. Let α, β, γ, δ ∈ mult(T ).

1. s
α
−−→STSmrev s′ iff s

α
−−→STS rev s′ iff s

α
−−→STSsplit s′ iff s

α
−−→STS s

′.

2. s
α
−−→STSmrev s′ iff s

α
−−→STS rev s′.

Proof:

[Lemma 3.2] (1) The second and third equivalences are obvious, so we only show the first one.
(=⇒) Suppose that s

α
−−→STSmrev s′. Then, by the definition of STSmrev , there is r ∈ S such that

r
∅+α
−−−−→STS and (s =)r ⊕ ∅

∅+α
−−−−→STSmrev r ⊕ α(= s′). By Proposition 2.1(2), s = r. Hence, by

Proposition 2.1(2), r ⊕ α = s⊕ α = s′. As a result, s
α
−−→STS s

′.

(⇐=) Suppose that s
α
−−→STS s′. Then s

∅+α
−−−−→STS and so, by the definition of STS

mrev ,

s⊕∅
∅+α
−−−−→STSmrev s⊕α. By Proposition 2.1(1), s′ = s⊕α, and, by Proposition 2.1(2), s = s⊕∅.

Hence s
α
−−→STSmrev s′.

(2) (=⇒) Suppose that s
α
−−→STSmrev s′. Then, by the definition of STSmrev , there is r ∈ S such

that (s =)r ⊕ α
α+∅
−−−−→STSmrev r ⊕ ∅(= s′) and r

α+∅
−−−−→STS . By Proposition 2.1(2), s′ = r. Hence

s′
α
−−→STS s. Thus, by the definition of STS rev , s

α
−−→STS rev s′.

(⇐=) Suppose that s
α
−−→STS rev s′. Then, by the definition of STS rev , s′

α+∅
−−−−→STS s. Hence,

by definition of STSmrev , s′ ⊕ α
α+∅
−−−−→STSmrev s′ ⊕ ∅. By Proposition 2.1(1), s = s′ ⊕ α, and, by

Proposition 2.1(2), s′ = s′ ⊕∅. Hence s
α
−−→STSmrev s′. ⊓⊔

(1) Follows directly from the definitions and Lemma 3.2(1,2).
(2) We discuss in turn the four properties defining CEST-systems.
(EL and REA) Follow directly from part (1) and the fact that STS satisfies EL and REA.
(SEQ) For STS srev , STS rev , and STS

split , SEQ holds directly from the definitions. To show SEQ

for STSmrev , suppose that:

s
α1+α2+β1+β2
−−−−−−−−−−→STS and s⊕ (α1 + α2)

α1+α2+β1+β2
−−−−−−−−−−→STSmrev s⊕ (β1 + β2) .

Then, by SEQ for STS , we have s⊕α2
α1+β1
−−−−−→STS and s⊕β1

α2+β2
−−−−−→STS . Hence, by the definition

of STSmrev ,

(s⊕ α2)⊕ α1
α1+β1
−−−−−→STSmrev (s⊕ α2)⊕ β1

(s⊕ β1)⊕ α2
α2+β2
−−−−−→STSmrev (s⊕ β1)⊕ β2 .

Moreover, by Proposition 2.2, we have:

s⊕ (α2 + α1) = (s ⊕ α2)⊕ α1

(s⊕ β1)⊕ β2 = s⊕ (β1 + β2)

(s⊕ α2)⊕ β1 = s⊕ (α2 + β1) = (s ⊕ β1)⊕ α2 .

Hence, s⊕ (α1 + α2)
α1+β1
−−−−−→STSmrev s⊕ (α2 + β1)

α2+β2
−−−−−→STSmrev s⊕ (β1 + β2).
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(CE) We first observe that s
a
−→STSmrev s′ implies s′

a
−→STSmrev s, by Lemma 3.2 and the

definition of STS rev (*).
We have already demonstrated that SEQ holds for STS ′. Hence, by Propositions 2.3, it suffices to

show that CE holds for (STS ′)seq .
By Propositions 2.3, we have that STS seq satisfies CE. Moreover, by Lemma 3.2(1) as well as the

definition of STS ′ and (*), (STS ′)seq can be derived by a successive application of the construction
from the formulation of Proposition 2.4 (once for each reverse action and indexed reverse action).
Hence, by Propositions 2.4, (STS ′)seq satisfies CE.

(3) Let N ′ = (P, T ′, F,M0) be a PT-net such that STS ′ ≃ψ CRGN ′ . We will show that STS ≃ψ

CRGN , where N = N ′|T . Note that the enabling and firing of steps over T is exactly the same in
both N and N ′ (*).

We first observe that ψ(s0) =M0. Suppose then that s ∈ S and ψ(s) ∈ reachN . To show that the
executions of steps are preserved by ψ in both directions, we consider two cases for α ∈ mult(T ).

Case 1: s
α
−−→STS s′. Then, by part (1), s

α
−−→STS ′ s′. Hence, by STS

′ ≃ψ CRGN ′ , we have

ψ(s)
α
−−→N ′ ψ(s′). Thus, by (*), ψ(s)

α
−−→N ψ(s′).

Case 2: ψ(s)
α
−−→N M . Then, by (*), ψ(s)

α
−−→N ′ M . Hence, by STS

′ ≃ψ CRGN ′ , we have

M ∈ ψ(S) and s
α
−−→STS ′ ψ−1(M). Thus, by Lemma 3.2(1), s

α
−−→STS ψ

−1(M). ⊓⊔

4. Multiset and set reversibility

The investigation of different notions of step reversibility starts with a straightforward but important
negative result stating that, in the domain of PT-nets, the concept of direct reversibility — which
directly generalises sequential reversibility and should be considered as the preferred way of reversing
step transition systems — cannot handle steps which are true multisets.

Proposition 4.1. Let STS be a CEST-system which is not a set transition system. Then STS
rev is not

solvable.

Proof:

[Figure 3(a) illustrates the idea of the proof.] Let STS = (S, T,→, s0). Suppose that STS rev is
solvable. Then there is a PT-net N such that STS rev ≃ψ CRGN (*). As STS is not a set transition

system, there are v ∈ S and α ∈ mult(T ) such that v
α
−−→STS and (aa) ≤ α, for some a ∈ T .

By SEQ for STS and Theorem 3.1(1), there are w, q ∈ S such that v
(aa)
−−−→STS rev w and

v
a
−→STSrev q (**). Hence, by the definition of STS rev , w

(aa)
−−−→STS rev v (***).

Let Ms = ψ(s), for s ∈ {v,w, q}. By the definition of STS rev and (*), the step β = (aa) is not
enabled at Mq. Hence, there is a place p of N such that Mq(p) < preN (β)(p) (†). On the other hand,
by (**) and (***), we have:

preN (aa) ≤Mv preN (aa) ≤Mw Mw =Mv + effN (aa) Mq =Mv + effN (a) .

Thus preN (β)+preN (β) = preN (aaaa) ≤Mv+Mw =Mv+Mv+effN (aa) =Mq+Mq, yielding
a contradiction with (†). ⊓⊔
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a
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b (b)

Figure 3. An illustration of the proof of Proposition 4.1 (a), and PT-net generating concurrent reachability
graph which is not step-finite (b).

In view of Proposition 4.1, when facing the problem of implementing a reverse of non-set step
transition system STS using PT-nets, one may consider set reversibility based on STS

srev , or mixed
reversibility based on STS

mrev .5

Among these two options, one might prefer STS
srev to STS

mrev as the latter introduces steps
containing both the original and reverse actions. However, as the next example shows, it not always
possible to ‘replace’ a mixed reversibility solution by a set reversibility solution.

Example 4.2. Let us consider a CEST-system STS = ({s0, s1, . . . }, {a, b},→, s0) such that:

si
aj
−−→STS si and si

b+aj
−−−−→STS si+1 for all i ≥ 0 and j ≤ i .

It is straightforward to see that STSmrev is solvable by the PT-net shown in Figure 3(b). However,
STS

srev is not solvable by any PT-net. If such a PT-net N existed, then it would have distinct reachable
markings M0,M1, . . . satisfying, for every i ≥ 0:

Mi
b
−→N Mi+1 (*) Mi

ai
−−→N Mi (**) Mi

a
−→N Mi (***) ¬Mi

(aa)
−−−→N (†) .

We now observe that M0 ≤ M1 ≤ · · · due to (*). Hence, there is a place p such that preN (aa)(p) >
M0(p) = M1(p) = · · · (‡), due to (†) and the finiteness of N . On the other hand, preN (a)(p) ≤
M0(p) = M1(p) = · · · due to (***), and preN (a)(p) = 0 due to (**) and (‡). As a result,
preN (aa)(p) ≤M0(p), yielding a contradiction with (‡). ♦

Example 4.2 demonstrated that there are step transition systems which can be treated using mixed
reversibility, but not using set reversibility. What is more, the example worked because the step tran-
sition system considered was not step-finite. As the next result shows, that was the only reason why
set reversibility failed to hold.

Theorem 4.3. Let STS be a CEST-system such that STSmrev is solvable. Then STS
srev is solvable

if and only if STS is step-finite.

5We will discuss split reversibility separately in Section 7.
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Proof:

Let STS = (S, T,→, s0).
(=⇒) Suppose that STS srev is solvable by a PT-net N = (P, T ∪ T , F,M0), and that STS is

not step-finite. By the finiteness of P and T as well as SEQ for STS , there is a ∈ T and reachable

markings M1 ≤ M2 ≤ . . . such that Mi
ai
−−→N , for every i ≥ 1. Hence, by SEQ for CRGN , there

is a marking M ′
i such that Mi

a
−→N M ′

i and M ′
i

ai−1

−−−−→N (∗), for every i ≥ 1. As a result, M ′
i

a
−→N

and M ′
i

a
−→N (∗∗), for every i ≥ 2.

We now observe that (M =)M ′
m+2

(aa)
−−−→N , where m = max{F (p, a) | p ∈ P}. Indeed,

otherwise there is p ∈ P such that M(p) < F (p, a) +F (p, a) ≤ F (p, a) +m (†). On the other hand,
by (∗∗), M(p) ≥ F (p, a) and M(p) ≥ F (p, a). Hence, it must be the case that F (p, a) > 0. Thus, by

(∗), M(p) ≥ (m+ 1) · F (a, p) = m+ F (a, p), contradicting (†). As a result, M
(aa)
−−−→N , yielding a

contradiction with our initial assumption.

(⇐=) If STS is step-finite, then there is k ≥ 1 such that |α| ≤ k, whenever s
α
−−→STS . Moreover,

since STS
mrev is solvable, there exists a PT-net N = (P, T ∪ T , F,M0) such that STSmrev ≃ψ

CRGN . We then modify N , by adding to P a set of fresh places P ′ = {pab | a ∈ T ∧ b ∈ T}.
Each pab is such that M0(pab) = k and has four non-zero connections, F (a, pab) = F (pab, a) = 1
and F (b, pab) = F (pab, b) = k. For the resulting PT-net N ′, we have STS

srev ≃ψ′ CRGN ′ , where
ψ′(s) = ψ(s) +

∑
p∈P ′ pk, for every s ∈ S. ⊓⊔

We have therefore obtained a full characterisation of step transition systems for which mixed
reversibility solutions can be replaced by set reversibility solutions. In addition, the second part of the
proof of Theorem 4.3 provides a straightforward construction achieving this.

A direct corollary of the last result is that for a set step transition system it is always possible to
replace a mixed reversibility solution by a set reversibility solution.

Theorem 4.4. Let STS be a set CEST-system. If STSmrev is solvable, then STS
rev is also solvable.

Proof:

As a set CEST-system, STS is step-finite and STS
rev = STS

srev . Hence the result follows from
Theorem 4.3. ⊓⊔

A concluding observation is that all three versions of reversibility which do not involve splitting
are worthy of investigation.

5. Mixed reversibility

In this section, we consider the problem of deciding whether the mixed reverse STS
mrev of a solvable

step transition system STS is also solvable. A specific concern we implicitly address is the size of
STS

mrev which (in the finite case) can be exponentially larger than that of STS . The aim is therefore
to avoid dealing directly with STS

mrev . As shown below, this is possible as the checking of feasibility
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of mixed reversing can be replaced by checking the solvability of the original transition system, and
the solvability of its reverse.

Throughout this section we make the following assumptions:

• STS = (S, T,→, s0) is a CEST-system and R is a home cover of STS .

• STS = (S, T , {(s′, α, s) | s
α
−−→STS s

′}, R) is a step transition system with multiple initial
states.

• STS r = (Sr, T ,→r, r) is a step transition system such that r ∈ R, Sr = {s ∈ S | r ∈
predSTS (s)}, and →r=→ ∩ (Sr ×mult(T )× Sr).

That is, STS is obtained by reversing each transition of STS , and considering all the states in the
home cover R as the initial states.

Proposition 5.1. Let r ∈ R.

1. STS r is a CEST-system.

2. s0 ∈
⋂
s∈Sr

predSTS (s).

3. S =
⋃
r∈R Sr.

Proof:

(1) The only non-trivial property to show is CE. For every A-vector α with support T , let α̂ be the
A-vector with support T such that α̂(a) = −α(a), for every a ∈ T .

We first observe that, for every π ∈ pathsSTSr
(s, s′), there is π′ ∈ pathsSTS (s, s

′) such that

sign(π′) = ̂sign(π) (*). Hence, we also have that α ⊲⊳STS r
β implies α̂ ⊲⊳STS β̂, for all A-vectors α

and β with support T (**). Thus, STS r satisfies CE by (*) and (**).

(2) Follows from the fact that STS satisfies REA.

(3) Follows from the fact that R is a home cover. ⊓⊔

Theorem 5.2. STS
mrev is solvable if and only if both STS and STS are solvable.

Proof:

(=⇒) By Theorem 3.1(3), STS is solvable. To show that STS is solvable, suppose that N =
(P, T, F,M0) is a PT-net such that STSmrev ≃ψ CRGN . We will show that STS r ≃ψ|Sr

CRGNr ,
where, for every r ∈ R, Nr is the PT-net N |T with the initial marking set to ψ(r). Note that the
enabling and firing of steps over T is exactly the same in both N and Nr (*).

We first observe that the initial states of STS r and CRGNr are related by ψ. Suppose then that
s ∈ Sr is such that ψ(s) ∈ reachNr . To show that the executions of steps are preserved by ψ in both
directions, we consider two cases, where α ∈ mult(T ).

Case 1.1: s
α
−−→STSr

s′. Then s
α
−−→STS rev s′ and so, by Lemma 3.2(2), s

α
−−→STSmrev s′. Hence,

by STS
mrev ≃ψ CRGN , we have ψ(s)

α
−−→N ψ(s′). Thus, by (*), ψ(s)

α
−−→Nr ψ(s

′).
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Case 1.2: ψ(s)
α
−−→Nr M . Then, by (*), ψ(s)

α
−−→N M . Hence, by STS

mrev ≃ψ CRGN , we

have M ∈ ψ(S) and s
α
−−→STSmrev ψ−1(M). Thus, by Lemma 3.2(2), s

α
−−→STS rev ψ−1(M). Hence

s
α
−−→STSr

ψ−1(M).

N ′

a

N ′′

a

N

k
k

m
m

Figure 4. An illustration of the second part of the proof of Theorem 5.2.

(⇐=) Since STS is solvable, there is a PT-net N ′ = (P ′, T, F ′,M ′
0) such that STS ≃ψ′ CRGN ′ .

(Note that ψ′(s0) = M ′
0.) Moreover, since STS is solvable, there is an umarked PT-net N ′′ =

(P ′′, T , F ′′) and a mapping ψ′′ : S → mult(P ′′) such that STS r ≃ψ′′|Sr
CRGNr , where Nr =

(P ′′, T , F ′′,Mr) and Mr = ψ′′(r), for every r ∈ R. Clearly, we may assume that P ′ ∩ P ′′ = ∅ as
the identities of places play no role in the solvability problems of STS and STS .

Let N = (P ′ ∪ P ′′, T ∪ T , F,M0) be the PT-net with strict reverses (illustrated in Figure 4) such
that M0 =M ′

0 ⊔ ψ
′′(s0) = ψ′(s0) ⊔ ψ

′′(s0) and, for every a ∈ T :

preN (a) = preN ′(a) ⊔ postN ′′(a) postN (a) = postN ′(a) ⊔ preN ′′(a)

preN (a) = preN ′′(a) ⊔ postN ′(a) postN (a) = postN ′′(a) ⊔ preN ′(a) .
(2)

Let ψ be a mapping with the domain S which, for every s ∈ S, returns ψ′(s) ⊔ ψ′′(s). Note that
ψ is well-defined due to Lemma 5.1(3) and ψ(s0) =M0.

Lemma 5.3. Let STS ′ be CRGN with all the transitions labelled by steps of the form α + β, for
α, β 6= ∅, deleted.

1. STS
rev ≃ψ STS

′.

2. STS
′ satisfies REA.

3. ψ(s ⊕ α) = ψ(s) + effN (α), for all s
α
−−→STS .

Proof:

[Lemma 5.3] (1) We observe that the initial states of STS rev and STS
′ are related by ψ. Suppose

now that s ∈ S and ψ(s) ∈ reachN . To show that the executions of steps are preserved by ψ in both
directions, we consider four cases, where α ∈ mult(T ).
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Case 2.1: s
α
−−→STS rev s′. Then, by STS ≃ψ′ CRGN ′ , we have ψ′(s)

α
−−→N ′ ψ′(s′) and ψ′(s) ≥

preN ′(α). Moreover, s′
α
−−→STS rev s. Hence, by Lemma 5.1(3), there is r ∈ R such that s′

α
−−→STSr

s.

Thus, by STS r ≃ψ′′|Sr
CRGNr , we have ψ′′(s′)

α
−−→N ′′ ψ′′(s) and ψ′′(s) ≥ postN ′′(α). Hence, by

Eq.(2):
ψ(s) = (ψ′(s) ⊔ ψ′′(s)) ≥ (preN ′(α) ⊔ postN ′′(α)) = preN (α) .

As a result, ψ(s)
α
−−→N ψ(s) + effN (α). Hence ψ(s)

α
−−→N ψ(s′) as we have, by Eq.(2):

ψ(s) + effN (α) = (ψ′(s) ⊔ ψ′′(s)) + postN (α) − preN (α)

= (ψ′(s) ⊔ ψ′′(s)) + (postN ′(α) ⊔ preN ′′(α))− (preN ′(α) ⊔ postN ′′(α))

= (ψ′(s) + effN ′(α)) ⊔ (ψ′′(s)− effN ′′(α))

= ψ′(s′) ⊔ ψ′′(s′) = ψ(s′) .

Case 2.2: s
α
−−→STS rev s′. Then s′

α
−−→STSrev s and so, by Case 2.1, ψ(s′)

α
−−→N ψ(s). Hence,

since N is a PT-net with strict reverses, ψ(s)
α
−−→N ψ(s′).

Case 2.3: ψ(s)
α
−−→N M . Then, by Eq.(2), we have:

ψ′(s) ⊔ ψ′′(s) = ψ(s) ≥ preN (α) = preN ′(α) ⊔ postN ′′(α)

M = ψ(s) + effN (α) = (ψ′(s) ⊔ ψ′′(s)) + (postN ′(α) ⊔ preN ′′(α))− (preN ′(α) ⊔ postN ′′(α)).

Hence, by P ′ ∩ P ′′ = ∅, ψ′(s) ≥ preN ′(α) and ψ′′(s) ≥ postN ′′(α) as well as:

M |P ′ = ψ′(s) + effN ′(α) and M |P ′′ = ψ′′(s)− effN ′′(α) .

Thus ψ′(s)
α
−−→N ′ M |P ′ . Hence, by STS ≃ψ′ CRGN ′ , we obtain M |P ′ ∈ ψ′(S) and s

α
−−→STSrev s′,

where ψ′(s′) = M |P ′ . We still need to show that ψ(s′) = M . This follows from ψ′′(s′) = M |P ′′ .

Indeed, we have s′
α
−−→STS rev s and so, by Lemma 5.1(3), there is r ∈ R such that s′ ∈ Sr. Now, by

STS r ≃ψ′′|Sr
CRGNr , ψ′′(s′)

α
−−→N ′′ ψ′′(s), which means that ψ′′(s′) = ψ′′(s)−effN ′′(α) =M |P ′′ .

Case 2.4: ψ(s)
α
−−→N M . Then, by Eq.(2), we have:

ψ′(s) ⊔ ψ′′(s) = ψ(s) ≥ preN (α) = preN ′′(α) ⊔ postN ′(α)

M = (ψ′(s) ⊔ ψ′′(s)) + (postN ′′(α) ⊔ preN ′(α)) − (preN ′′(α) ⊔ postN ′(α)) .

Hence, by P ′ ∩ P ′′ = ∅, ψ′(s) ≥ postN ′(α) and ψ′′(s) ≥ preN ′′(α) as well as:

M |P ′ = ψ′(s)− effN ′(α) and M |P ′′ = ψ′′(s) + effN ′′(α) .

Thus ψ′′(s)
α
−−→N ′′ M |P ′′ . Hence, by Lemma 5.1(3), there is r ∈ R such that s ∈ Sr. Thus, by

STS r ≃ψ′′|Sr
CRGNr , M |P ′′ ∈ ψ′′(S) and s

α
−−→STS rev s′, where ψ′′(s′) = M |P ′′ . We still need to

show that ψ(s) = M . This follows from ψ′(s′) = M |P ′ . Indeed, we have s′
α
−−→STS rev s and so, by

STS ≃ψ′ CRGN ′ , we obtain ψ′(s′)
α
−−→N ′ ψ′(s), which means that ψ′(s′) = ψ′(s) − effN ′(α) =

M |P ′ .
(2) The modification of CRGN does not produce unreachable states since CRGN satisfies SEQ.
(3) Follows from part (1) and the forward determinism of STS and CRGN . ⊓⊔
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Returning to the proof of STSmrev ≃ψ CRGN , suppose that s ∈ S is such that ψ(s) ∈ reachN
and consider two cases, where α, β ∈ mult(T ).

Case 3.1: s
α+β
−−−−→STS and s⊕ α

α+β
−−−−→STSmrev s⊕ β. Then we have s

α+β
−−−−→STSrev as well as:

s
α
−−→STS s⊕ α s

β
−−→STS s⊕ β s

α
−−→STS rev s⊕ α s

β
−−→STS rev s⊕ β .

Hence, by Lemma 5.3(1,3), we have:

ψ(s)
α+β
−−−−→N ψ(s)

α
−−→N ψ(s⊕α) = ψ(s)+effN (α) ψ(s)

β
−−→N ψ(s⊕β) = ψ(s)+effN (β) .

Thus ψ(s) ≥ preN (α+ β), and so ψ(s) + effN (α) ≥ preN (α + β) + effN (α) = preN (α + β) due
to Eq.(2). Hence, again by Eq.(2):

ψ(s⊕α) = ψ(s)+effN (α)
α+β
−−−−→N ψ(s)+effN (α)+effN (α+β) = ψ(s)+effN (β) = ψ(s⊕β) .

Case 3.2: ψ(s)
α+β
−−−−→N M . Then ψ(s)

α
−−→N ψ(s)+effN (α)(=M ′). Hence, by Lemma 5.3(1),

s
α
−−→STS rev ψ−1(M ′)(= s′). Thus, by the definition of STS rev , s′

α
−−→STS s = s′ ⊕ α. We then

observe that, by Eq.(2):

M ′ = ψ(s) + effN (α) ≥ preN (α+ β) + effN (α) = preN (α+ β) .

Hence M ′ α+β
−−−−→N and so, by Lemma 5.3(1), s′

α+β
−−−−→STS rev and, as a consequence, s′

α+β
−−−−→STS

and s′
β
−−→STS . Hence, by the definition of STSmrev , s′ ⊕ α

α+β
−−−−→STSmrev s′ ⊕ β. Moreover,

ψ(s′ ⊕ α) = ψ(s′) + effN (α) =M ′ + effN (α) = ψ(s) + effN (α) + effN (α) = ψ(s)

ψ(s′ ⊕ β) = ψ(s′) + effN (β) =M ′ + effN (β) = ψ(s) + effN (α) + effN (β) =M ,

by Lemma 5.3(3) and Eq.(2). ⊓⊔

As the next example shows, reversing a solution of STS may not lead to a solution of STS . Hence,
in general, one needs to consider finding solutions to both STS and STS .

(a)

•q0

•q1

a

(b)

•

•

a

(c)

•q0

•q1

a

(d)

••

a

Figure 5. Reversing a solution does not give a solution to reversing (Example 5.4).
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Example 5.4. Let us consider STS , a step transition system depicted in Figure 5(a), and its only
home state q1. The PT-net N depicted Figure 5(b) solves STS . However, the direct reverse of N
with the initial marking corresponding to q1, depicted in Figure 5(d), does not solve the step transition
system STS q1 shown in Figure 5(c). ♦

As the set of all the states of a step transition system is a home set, Theorem 5.2 is fundamental as it
provides a way of solving mixed reversibility using (much) simpler synthesis problems. In particular,
if one is interested whether the mixed reverse CRG

mrev
N of the concurrent reachability graph of a

PT-net N is solvable when CRGN has a home state.

Theorem 5.5. If r is a home state of STS , then STS
mrev is solvable if and only if both STS and

STS r are solvable.

Proof:

Follows directly from Theorems 5.2. ⊓⊔

The above result and the proof of Theorem 5.2 provide a method for constructing a PT-net im-
plementing mixed step reversibility provided that one can synthesise PT-nets for two step transition
systems using, e.g., theory of regions [25, 26].

The method for checking the solvability of mixed reversibility easily extends to checking direct
reversibility of set transition systems.

Theorem 5.6. Let STS be a set transition system and r be a home state of STS . Then STS
rev is

solvable if and only if both STS and STS r are solvable.

Proof:

(=⇒) Let STS rev ≃ψ CRGN . Then STS ≃ψ CRGN |T and STS r ≃ψ CRGN ′ , where N ′ is N |T
with the initial marking set to ψ(r).

(⇐=) Follows from Theorems 5.2 and 4.4. ⊓⊔

6. From sequential reversibility to step reversibility

Checking the feasibility of step reversibility is, in general, a difficult task. The next result shows that in
certain cases it is possible to proceed more effectively, if one is given a PT-net that solves the original
step transition system, over-approximates its reverse containing only spikes, and under-approximates
its mixed reverse.

Theorem 6.1. Let STS = (S, T,→, s0) be a CEST-system and N = (P, T ∪ T , F,M0) be a PT-net
such that:

(STS spike)rev ✁ CRGN ✁ STS
mrev and STS ≃ CRGN |T . (3)

Then STS
mrev is solvable.
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Proof:

The states as well as the initial states of (STS spike)rev , STSmrev , and STS are the same. More-
over, ((STS spike)rev |T )

seq = (STSmrev |T )
seq = STS

seq . Similarly, the initial states of CRGN and
CRGN |T are the same and we have (CRGN )|T = CRGN |T . We also observe that all step transition
systems in Eq.(3) are CEST-systems, and there is a unique bijection ψ such that:

(STS spike)rev ✁ψ CRGN CRGN ✁ψ−1 STS
mrev

STS ≃ψ CRGN |T . (4)

By the first part of Eq.(3), SEQ, and the fact that we may assume that each action in T appears in the
labels of the transitions of STS , we have:

reachN = reachN |T and effN (a) = − effN (a) for every a ∈ T . (5)

Lemma 6.2. It can be assumed that preN (a) ≥ postN (a) and postN (a) ≥ preN (a), for every a ∈ T .

Proof:

[Lemma 6.2] Suppose that F (p, a) < F (a, p), and so also F (a, p) > F (p, a). We then modify F to
become F ′ which is the same as F except that F ′(p, a) = F (a, p) and F ′(a, p) = F (p, a). Let N ′ be
the resulting PT-net. Clearly, effN = effN ′ .

After this modification, which does not affect actions in T , the second part of Eq.(3) is still satisfied
after taking N ′ to play the role of N . However, the first part of Eq.(3) needs to be demonstrated.

We observe that the modification can only restrict the enabling of steps involving a. Hence, if the
first part of Eq.(3) does not hold with N ′ playing the role of N , then there is M ∈ reachN ′ ⊆ reachN

and k ≥ 1 such that M
ak
−−→N M ′ (*) and ¬M

ak
−−→N ′ (**). By Eq.(5) and (*), we have M ′ ak

−−→N

M , and so M(p) ≥ postN (a
k)(p) (***).

By construction, (**) implies preN ′(ak)(p) > M(p). Thus, by preN ′(ak)(p) = postN (a
k)(p),

we obtain postN (a
k)(p) > M(p), yielding a contradiction with (***).

We can apply the above modification as many times as needed, finally concluding that the result
holds, as any modification does not invalidate the conditions captured in the formulation of this lemma
that were obtained by the previous modifications. ⊓⊔

N

p

<

a

a

Ñ

p

pa

a

a

uw

F (a, p)
F (p, a)

F (p, a)

F (a, p)

F (a, p)
F (p, a)

F (a, p)

F (p, a)

F (p, a)

F (a, p)

x
−y

Figure 6. Introducing place pa in the proof of Theorem 6.1, where u represents any place in T ∪ T \ {a} for
which x = effN (u)(p) > 0, and w any place for which y = effN (w)(p) ≤ 0.
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We will show that STSmrev is solvable by a PT-net Ñ = (P̃ , T ∪ T , F̃ , M̃0) constructed thus:

• P̃ =
⋃
p∈P Pp, where, for every p ∈ P ,6 Pp = {p}∪ {pa | a ∈ T ∧F (p, a) > F (a, p)} and

M̃0(q) =M0(p) for q ∈ Pp.

• The connections in Ñ are set as follows, where p ∈ P and u ∈ T ∪ T \ {a}:

– F̃ (p, a) = F (a, p) and F̃ (a, p) = F (p, a).

– F̃ (pa, a) = F (p, a) and F̃ (a, pa) = F (a, p).

– effN (u)(p) > 0 implies F̃ (pa, u) = 0 and F̃ (u, pa) = effN (u)(p).

– effN (u)(p) ≤ 0 implies F̃ (u, pa) = 0 and F̃ (pa, u) = − effN (u)(p).

– F̃ on (P × T ) ∪ (T × P ) is as F unless it has been set explicitly above.

In what follows, for every marking M of N , we use φ(M) to denote the marking of Ñ such that

φ(M)(q) =M(p), for every q ∈ Pp and p ∈ P . Hence φ(M0) = M̃0.

We now present a number of straightforward properties of Ñ . We first observe that, by Lemma 6.2,
for all a ∈ T , u ∈ T ∪ T , and p ∈ P ,

pre
Ñ
(a) ≥ post

Ñ
(a) eff

Ñ
(a) = − eff

Ñ
(a)

post
Ñ
(a) ≥ pre

Ñ
(a) eff

Ñ
(u)(Pp) = {effN (u)(p)} .

(6)

Therefore, for every marking M of N and every κ ∈ mult(T ∪ T ) such that M + effN (κ) ≥ ∅,

φ(M) + eff
Ñ
(κ) = φ(M + effN (κ)) . (7)

The construction does not affect the enabling of steps involving just one action as well as steps α over
T since pa ∈ Pp cannot disable α if it is not also disabled by p. Hence, for all markings M of N ,
u ∈ T ∪ T , k ≥ 1, and α ∈ mult(T ):

M
uk
−−→N ⇐⇒ φ(M)

uk
−−→

Ñ
and M

α
−−→N ⇐⇒ φ(M)

α
−−→

Ñ
. (8)

Thus, by Eqs.(4,7,8) and M̃0 = φ(M0),

(STS spike)rev ✁φ◦ψ CRG
Ñ

and STS ≃φ◦ψ CRG
Ñ |T

≃φ−1 CRGN |T . (9)

Lemma 6.3. Let α, β ∈ mult(T ) and M̃ = φ(M), for some M ∈ mult(P ).

1. M̃
α+β
−−−−→

Ñ
implies M̃ − eff

Ñ
(α)

α+β
−−−−→

Ñ
M̃ + eff

Ñ
(β).

2. M̃
α+β
−−−−→

Ñ
implies M̃ + eff

Ñ
(α)

α+β
−−−−→

Ñ
M̃ + eff

Ñ
(β).

6Intuitively, each pa ∈ Pp is a (suitably adjusted) copy of p.
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Proof:

[Lemma 6.3] (1) We first observe that, by SEQ, M̃ − eff
Ñ
(α) = M̃ + eff

Ñ
(α) ∈ reach

Ñ
. We then

observe that, by M̃ ≥ pre
Ñ
(α+ β), the step α+ β is enabled at M̃ − eff

Ñ
(α), and so, by Eq.(6):

M̃−eff
Ñ
(α) ≥ pre

Ñ
(α+β)−eff

Ñ
(α) = pre

Ñ
(α)+pre

Ñ
(β)−post

Ñ
(α)+pre

Ñ
(α) ≥ pre

Ñ
(α+β).

Hence, the result holds, as M̃ − eff
Ñ
(α) + eff

Ñ
(α+ β) = M̃ + eff

Ñ
(β).

(2) By SEQ, M̃
α
−−→

Ñ
M̃ +eff

Ñ
(α)(= M ′). Suppose that M ′ α+β

−−−−→
Ñ

does not hold. Then there

is q ∈ P̃ such that pre
Ñ
(α+ β)(q) > M ′(q) (*). Moreover, M̃ ≥ pre

Ñ
(α+ β). Hence, we have:

pre
Ñ
(α+β)(q) > M̃(q)+eff

Ñ
(α)(q) ≥ pre

Ñ
(α+β)(q)+eff

Ñ
(α)(q) = pre

Ñ
(β)(q)+post

Ñ
(α)(q),

and so pre
Ñ
(α)(q) > post

Ñ
(α)(q). Thus there is a ∈ α and such that F̃ (q, a) > F̃ (a, q) and so, by

the definition of Ñ , q = pa, for some p ∈ P . Now, it follows from the construction of Ñ , that there
are α0, α1, β0, β1 and k ≥ 1 such that α = ak + α0 + α1 and β = β0 + β1 and a 6∈ α0 + α1 and, for
x = α, β, we have:

post
Ñ
(x1)(pa) = pre

Ñ
(x0)(pa) = 0 = pre

Ñ
(x1)(pa) = post

Ñ
(x0)(pa)

pre
Ñ
(x0)(pa) = post

Ñ
(x0)(pa) pre

Ñ
(x1)(pa) = post

Ñ
(x1)(pa) .

By SEQ, M̃
α1+β1
−−−−−→

Ñ
M̃ + eff

Ñ
(α1 + β1)

ak
−−→

Ñ
M̃ + eff

Ñ
(α1 + β1 + ak). Thus, by Eq.(9),

M̃ + eff
Ñ
(α1 + β1 + ak)

ak
−−→

Ñ
M̃ + eff

Ñ
(α1 + β1), and so we have:

M̃(pa) + eff
Ñ
(α1 + β1 + ak)(pa) = M̃(pa) + eff

Ñ
(ak)(pa) + eff

Ñ
(α1 + β1)(pa)

= M̃(pa) + eff
Ñ
(ak)(pa)− pre

Ñ
(α1 + β1)(pa)

≥ pre
Ñ
(ak)(pa) .

We therefore have:

M ′(pa) = M(pa) + eff
Ñ
(ak)(pa)− pre

Ñ
(α1)(pa) + post

Ñ
(α0)(pa)

≥ pre
Ñ
(ak)(pa) + pre

Ñ
(β1)(pa) + post

Ñ
(α0)(pa)

= pre
Ñ
(ak)(pa) + pre

Ñ
(β1)(pa) + pre

Ñ
(α0)(pa)

= pre
Ñ
(α)(pa) + pre

Ñ
(β)(pa)

= pre
Ñ
(α + β)(pa) ,

yielding a contradiction with (*). Thus M ′ α+β
−−−−→

Ñ
holds. Hence we obtain the result as we have

M ′ + eff
Ñ
(α+ β) = M̃ + eff

Ñ
(α) + eff

Ñ
(α+ β) = M̃ + eff

Ñ
(β). ⊓⊔

We now conclude that STSmrev ≃φ◦ψ CRG
Ñ

holds thanks to Eq.(9) and Lemma 6.3. ⊓⊔

The last result leads to a simple sufficient condition for the solvability of direct reversibility in the
case that proper multisets are not involved.
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Theorem 6.4. Let STS be a solvable set CEST-system such that (STS seq)rev is solvable. Then
STS

rev is solvable.

Proof:

Referring to the notation and proof of Theorem 6.1, we construct a new net Ñ ′, by adding to Ñ a fresh
set of (mutex) places P ′ = {pab | a, b ∈ T}, where each pab is such that M̃0(pab) = 1 and has four
non-zero connections: F̃ (a, pab) = F̃ (pab, a) = F̃ (b, pab) = F̃ (pab, b) = 1.

Since all the steps in STS are sets P ′ ensure that each step enabled at a reachable marking of Ñ ′

is a subset of T or a subset of T . Moreover, the enabling of such steps is not affected by adding P ′, so
we obtain STS

rev ≃ CRG
Ñ ′

as STSmrev ≃ CRG
Ñ

holds by Theorem 6.1. ⊓⊔

As the next example shows, modifying the original PT-net in Theorem 6.1 is unavoidable.

Example 6.5. Figure 7(a) depicts a family Nn,m of PT-nets which satisfy the assumptions of Theo-
rem 6.1. We have CRGNn,m 6≃ STS

mrev , where STS is the step reachability graph of the PT-net

obtained from Nn,m after deleting actions a and b. However, the construction from the proof of The-
orem 6.1 yields the PT-net CRG

Ñn,m
, shown in Figure 7(b), satisfying CRG

Ñn,m
≃ STS

mrev . ♦

m n

ka a b b

(a) (b)

m n

k

k

k

a a b b

Figure 7. PT-net Nn,m with k = max(m,n) and m,n ≥ 1 (a); and the same net after applying the construc-
tion from Theorem 6.1 (b).

It is not possible to drop Eq.(3) from the formulation of Theorem 6.1. The next example shows a
CEST-system which has only one non-singleton step and is reversible in the sequential semantics, but
cannot be reversed in step sequence semantics, even with mixed reverses.

Example 6.6. Let us consider a step transition system STS together with a PT-net solving it, shown
in Figure 8(a, b). If we erase the spike between the states v0 and v2, and add all the reverses (see
Figure 8(c)), then the resulting step transition system is solvable (see Figure 8(d)). However, STS
cannot be reversed, as shown below.

Suppose that there is a PT-net N solving STS
mrev . Let Mi be the marking of N corresponding to

the state vi, for i = 0, . . . , 4. Then the step (aa) is enabled at M2, and a is not be enabled at M3 (*).

Let p be any place of N . We first observe that M4 is a marking, and so 0 ≤M4(p) =M2(p)+2k,
where k = effN (b)(p). Hence 1

2 ·M2(p) + k ≥ 0. We then recall that (aa) is enabled at M2, and so
M2(p) ≥ 2 · F (p, a). Hence 1

2 ·M2(p) ≥ F (p, a). We therefore have:

M3(p) =M2(p) + k =
1

2
·M2(p) + k +

1

2
·M2(p) ≥ 0 + F (p, a) = F (p, a) .

This means that a is a step enabled at M3, yielding a contradiction with (*). ♦
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(a)

•v0

•v1

•
v2

•
v3

•
v4

a

a

b b

aa

••

••

a

b

2

2 (b)

(c)

•v0

•v1

•
v2

•
v3

•
v4

a

a

b b

a

a

b b

•••

••

a a

b

b

2 2

2

22

2
22

(d)

Figure 8. A step transition system STS with one spike (a), and a PT-net solving it (b). STS without the spike
between v0 and v2 can be reversed (c, d), but STS cannot.

One might expect that, as it was shown to be the case for bounded PT-nets executed under the
sequential semantics [19], it is sufficient to use PT-nets with split reverses also for the reversing under
the step semantics. This, however, is not the case as demonstrated in the following example.

Example 6.7. Let us consider a step transition system STS together with a PT-net solving it, shown
in Figure 9(a, b). Suppose that there is a PT-net N with split reverses such that CRGN is a split reverse
of STS . Moreover, let Mi be the marking of N corresponding to vi, for i = 1, . . . , 6.

Let p be any place of N . We first observe that the effect of executing the sequences of actions aaa
and bb on p is the same, when going from M1 to M6. Hence, 3 · effN (a)(p) = 2 · effN (b)(p), and so
there is an integer k such that effN (a)(p) = 2k and effN (b)(p) = 3k. With this observation, and by
considering different arrows in STS , we obtain:

M2(p) =M1(p) + 2k M3(p) =M1(p) + 3k M4(p) =M1(p) + 5k

M5(p) =M1(p) + 4k M6(p) =M1(p) + 6k .

Hence, in particular, we have:

M3(p) ≤M5(p) ≤M4(p) or M3(p) ≥M5(p) ≥M4(p) . (10)
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(a)

•

v1

•v2 • v3

•
v4

•v5 • v6

a b

(ab)

b a

a

a

b

6
• •

a b

2 3

2 3

(b)

Figure 9. Splitting is not enough to guarantee reversing (Example 6.7). Note that v1 is the initial state.

Suppose now that (a〈i〉b〈j〉) is a step reversing (ab) at M4. Then, by SEQ and CE holding for the

concurrent reachability graphs of PT-nets, b〈j〉 is also enabled at M3. On the other hand, b〈j〉 is not

enabled at M5. Then there must be a place p of N such that M5(p) < preN (b〈j〉)(p). But we also

have M3(p) ≥ preN (b〈j〉)(p) and M4(p) ≥ preN (b〈j〉)(p), as b〈j〉 is enabled at M3 and M4. This,
however, produces a contradiction with Eq.(10). ♦

Example 6.7 can be used further to show that even allowing inhibitor arcs in N would not help.7

The reason is that due to the formulas Eq.(10) for the markings M3, M4, and M5, no inhibitor place p
could be empty at M3 and M4, and contain a token at M5. It would therefore be useless to block b〈j〉
at M5 and still allow the execution of b〈j〉 at M3 and M4. Thus, reversing using PT-nets with inhibitor
arcs is also not going to work in the general case, when considering the step semantics. This justifies
the need to use test arcs ‘stronger’ than inhibitor arcs in addition to the splitting of reverse actions.
Indeed, a general solution can then be obtained using an extended model of PT-nets, as shown in the
next section.

7. A solution combining splitting and weighted read arcs

A PT-net with weighted read arcs (or PTR-net) is a tuple N = (P, T, F,R,M0) such that N ′ =
(P, T, F,M0) is a PT-net, and R : P × T → N is a partial function defining read arcs. All the
notations and concepts introduced for N ′ are applicable to N except that a step α of N is enabled at
a marking M if it is enabled at marking M in N ′ and, in addition, R(p, t) = M(p), whenever a ∈ α
and p ∈ P are such that R(p, a) is defined. Read arcs are depicted as arrows with square arrowheads
and labelled by their weights.

As the read arcs do not affect markings which result from firing steps of actions, the concurrent
reachability graphs of PTR-nets satisfy CE. Although SEQ may fail to hold, it is the case that if α is
an enabled step, then each step β ≤ α is also enabled.

We first show that there is a PT-net with weighted read arcs reversing the reachability graph from
Example 6.7.

7An inhibitor arc between a place p and action t means that if t is enabled at a marking M , then M(p) = 0.
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Example 7.1. Recall the step transition system and the PT-net from Example 6.7. The construction
of a solution comes in two phases. In the first phase, splitting is used to reverse all singleton steps.
The result, which uses two reverses for a and two reverses for b, is shown in Figure 10(b). Note
that although all the singleton steps are indeed reversed, the only non-singleton step (ab) is not. The
second phase of the construction adds reverses for a and b which are simultaneously executable at
M4, as shown in Figure 10(d). A solution is then obtained by joining together Figures 9(b), 10(b)
and 10(d), by identifying the places with 6 tokens and the places with 0 tokens. ♦

(a)

•

v1

•v2 • v3

•
v4

•v5 • v6

a〈1〉 b〈1〉

b〈2〉 a〈2〉
a〈2〉

a〈2〉

b〈2〉

6

a〈1〉a〈2〉 b〈1〉 b〈2〉

4
6

2

24
2

3
6

3

3 5
2

(b)

(c)

•

v1

•v2 • v3

•
v4

•v5 • v6

(a〈3〉b〈3〉)

b〈3〉 a〈3〉

6

a〈3〉 b〈3〉

1
2

2

1
3

3

(d)

Figure 10. Reversing with splitting: phase one (a, b), and phase two (c, d).

The solution presented in Example 7.1 inspired the development of a general construction which
works for an arbitrary bounded PT-net.

Let N = (P, T, F,M0) be a bounded PT-net, and let n be an upper limit on the sizes of steps
enabled at its reachable markings (such an n always exists as the concurrent reachability graph of N
is finite). Moreover, for every marking M ∈ reachN , the steps annotating actions incoming to M in
the concurrent reachability graph are inN (M) = {α | ∃M ′ ∈ reachN :M ′ α

−−→N M}. Since CRGN

is a CEST-system, α ≤ β ∈ inN (M) implies α ∈ inN (M).
We then construct a PTR-net N ′ = (P ⊎ P ′, T ⊎ T ′, F ⊔ F ′, R,M0 ⊔M

′
0). A key aspect of the

construction is that for each reachable marking M of N , and for each maximal step8 α ∈ inN (M),
we add a set of fresh actions Tα,M = {a〈α,M,i〉 | a ∈ α ∧ 1 ≤ i ≤ α(a)}. We then proceed thus:

• For every new action a〈α,M,i〉 ∈ T ′:

– preN ′(a〈α,M,i〉)|P = postN (a) and postN ′(a〈α,M,i〉)|P = preN (a).

8That is, α ≤ β ∈ inN(M) implies α = β.
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– For every b ∈ T , we add a fresh (mutex) place, as in Figure 11(a).

– For every b〈β,M,j〉 ∈ T ′ with α 6= β, we add a fresh (mutex) place, as in Fig-
ure 11(b).

• P × T ′ is the domain of R and R(p, a〈α,M,i〉) =M(p), for all p ∈ P and a〈α,M,i〉 ∈ T ′.

• M ′
0 ∈ mult(P ′) is the marking of the places in P ′ as indicated in Figure 11.

(a)

nb a〈α,M,i〉

n

n

•a〈α,M,i〉 b〈β,M,j〉

(b)

Figure 11. Places P ′ added in the construction of N ′.

We then obtain the desired result.

Theorem 7.2. CRGN ′ is a split reverse of CRGN .

Proof:

Let STS = CRGN and STS
′ = CRGN ′ . We first gather together some immediate facts about N ′.

Lemma 7.3.

1. a〈α,M,i〉 is an indexed reverse of a, for all a〈α,M,i〉 ∈ T ′ and a ∈ T .

2. effN ′(α) = effN (α) ⊔∅P ′ , for every α ∈ mult(T ).

3. effN ′(γ) = − effN (α) ⊔∅P ′ , for all γ ∈ mult(T ′) and α ∈ mult(T ) such that α = noidx(γ).

4. M |P ′ =M ′
0, for every M ∈ reachN ′ .

5. If γ is a step enabled at M ∈ reachN ′ , then γ ∈ mult(T ), or there is α ∈ inN (M) such that γ
is a set included in Tα,M ⊆ T ′.

Proof:

[Lemma 7.3] (1,2) Follow directly from the definition of N ′.
(3) Follows from part (1).
(4) Follows from parts (2) and (3).
(5) By part (4), M |P ′ =M ′

0. Hence the result follows from the presence of the weighted read arcs
R and the mutex places shown in Figure 11. ⊓⊔

We will show that reachN ′ = {M ⊔M ′
0 | M ∈ reachN} and STS

rev ≃ψ noidx(STS ′), where
ψ(M) =M ⊔M ′

0, for every M ∈ reachN .
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We first observe that ψ(M0) = M0 ⊔M
′
0 is the initial marking of N ′. Suppose that M ∈ reachN

is such that ψ(M) =M ⊔M ′
0 ∈ reachN ′ . To show that the executions of steps are preserved by ψ in

both directions, we consider four cases, after taking into account Lemma 7.3(5).

Case 1: M
α
−−→STS M ′. Then, since n in Figure 11(a) is such that |α| ≤ n, the addition of

the new places P ′ does not block α. Hence α is enabled at M ⊔M ′
0. Moreover, by Lemma 7.3(2),

M ⊔M ′
0

α
−−→STS ′ M ′ ⊔M ′

0.

Case 2: M
α
−−→STSrev M ′. Then M ′ α

−−→STS M and α ∈ inN (M). Let β be any maximal step
in inN (M) such that α ≤ β (such a step exists since CRGN is finite). Then there is a subset γ of
Tβ,M such that noidx(γ) = α. By construction, γ is enabled at M ⊔M ′

0. Hence, by Lemma 7.3(3),

M ⊔M ′
0

γ
−→STS ′ M ′ ⊔M ′

0.

Case 3: M ⊔M ′
0

α
−−→STS ′ M ′ and α ∈ mult(T ). Then, by construction and Lemma 7.3(2), α is

enabled at M and M ′ = (M + effN (α)) ⊔M
′
0. Moreover, M

α
−−→STS rev M + effN (α).

Case 4: M ⊔M ′
0

γ
−→STS ′ M ′, where γ is a subset of Tα,M for some α ∈ inN (M). Let β =

noidx(γ) ≤ α. Then, by construction and Lemma 7.3(3), M ′ = (M − effN (β)) ⊔M
′
0, β is enabled

at M − effN (β), and M − effN (β)
β
−−→STS M . Hence M

β
−−→STS rev M − effN (β). ⊓⊔

We have developed a general construction which brings us to the same level of reversibility as in
the sequential case. However, we had to pay the (costly) price of using of a non-standard class of read
arcs. The construction presented above is far from being optimal. Taking as an example the solution
from Example 7.1, we observe that it would introduce 5 reverses of a, 4 reverses of b, and a total of
31 additional places. One can easily see that a large number of them could be avoided, by considering
the conditions that force the introduction of each split reversal and those requiring the addition of the
new control places. We expect that the proposed construction could be optimised by reducing the
number of split reverses and, at the same time, allowing some them to exhibit autoconcurrency (which
is admitted in PTR-nets).

8. Concluding remarks

In this paper, we continued a study of reversibility in PT-nets, when the step semantics based on
executing steps (multisets) of actions rather than single actions is considered, thus capturing real

parallelism. In a more abstract setting, the (partial) reversal of steps, thus generating mixed steps

possibly containing both original and reverse action, has been studied in [6]. Here we discussed how
such reversing can be done in a concrete operational framework of PT-nets.

In the future work, we plan to develop an effective solution to the synthesis problem for the step
transition systems with multiple initial states, and address the optimisation of the general solution
based on PTR-nets presented in the last section.
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