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Abstract. System diagnosis is process of identifying faulty nodes in a system. An efficient di-

agnosis is crucial for a multiprocessor system. The BGM diagnosis model is a modification of

the PMC diagnosis model, which is a test-based diagnosis. In this paper, we present a specific

structure and propose an algorithm for diagnosing a node in a system under the BGM model. We

also give a polynomial-time algorithm that a node in a hypercube-like network can be diagnosed

correctly in three test rounds under the BGM diagnosis model.
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1. Introduction

Sensor networks are being increasingly used in computer technology. Among various communication

networks, sensor networks have been widely used in many fields, such as military, environmental mon-

itoring, smart agriculture, healthcare, traffic systems, etc. Sensors in the network are usually created
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by incorporating sensing materials with integrated circuits. Sensor networks can be established by en-

hancing each sensor node with wireless communication capabilities and networking the sensor nodes

together [1, 2]. Since sensor networks essentially have no infrastructure, it is more feasible to manage

and update the topology of certain substructure rather than the entire network. The substructure, for

example, may be a ring, a path, a tree, a mesh, etc. Sensor networks have multiple sensor nodes or pro-

cessors. In general, sensor nodes, processors, and links are modeled as a graph topology. Even slight

malfunctions can render the service ineffective; thus, system reliability is a crucial parameter that must

be considered when designing sensor networks. To ensure system reliability, faulty devices should be

replaced with fault-free ones immediately. The fault here means that the device has a calculation error

or a problem with the sensing information. At first glance, the device can operate normally, but there is

a problem with the calculation result or the sensing information. For example, the communication of a

sensor node is normal, but the sensing data may be abnormal. This situation is quite common in wire-

less sensor networks, but it may also happen in multi-processing systems. Hence the faulty device we

discussed is not that the device is completely inoperable, or that the communication system is broken

such that the device cannot exchange information with other devices in the network. The fault type

in this article is a partial fault. That is, the communication is normal, but the calculation or sensing

data is abnormal. System diagnosis refers to the process of identifying faulty devices. The maximum

number of faulty devices that can be identified accurately is called the diagnosability of a system. If

all the faulty devices in a system can be detected precisely and the maximum number of faulty devices

is t, then the system is t-diagnosable. Many studies on system diagnosis and diagnosability have been

reported [34, 40, 39, 9, 10, 11].

Barsi, Grandoni, and Maestrini proposed the BGM diagnosis model in [12]. The BGM model is

a test-based diagnosis and a modification of the PMC diagnosis model presented by Preparata et al.

[41]. Under the BGM model, a processor diagnoses a system by testing the neighboring processors

via the links between them. A few related studies have investigated the BGM model [14, 15, 16].

In this paper, we propose a sufficient and necessary characterization of a t-diagnosable system under

the BGM diagnosis model. We present a specific structure named the t-diagnosis-tree, and propose

an algorithm for diagnosing nodes in a system. With our algorithm, the faulty or fault-free status

of a node can be identified accurately if the total number of faulty vertices does not exceed t, the

connectivity of the system. We also discuss the conditional local diagnosis of the BGM model and

present an algorithm for diagnosing a system with a conditionally faulty set.

The hypercube is one of the commonest topologies in all interconnection networks appeared in the

literature [17]. The properties of the hypercube have been studied for many years. The hypercube has

remained eye-catching to this day. By twisting certain pairs of links in the hypercube, many different

network structures are presented [18, 19, 20, 21]. To make a unified study of these variants, Vaidya et

al. introduced the class of hypercube-like graphs in [22]. The hypercube-like networks, consisting of

simple, connected, and undirected graphs, contain most of the hypercube variants. In this paper, we

prove that the nodes in an n-dimensional hypercube-like network XQn can be diagnosed correctly

with a faulty set F in three test rounds under the BGM diagnosis model if |F | ≤ n. The remainder of

this paper is organized as follows. In Section 2, we introduce the BGM diagnosis model. In Section

3, we give some properties about the n-dimensional hypercube-like graphs XQn. In Section 4, we

propose a specific structure for local diagnosis, and present a local diagnosis algorithm for the BGM
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diagnosis model. In Section 5, we propose an algorithm for conditional local diagnosis under the

BGM model. We give a 3-round local diagnosis algorithm for the hypercube-like network under the

BGM diagnosis model in Section 6. Finally, Section 7 presents our conclusions.

2. The BGM diagnosis model

We use an interconnection network to represent the layout of processors and links in a high-speed

multiprocessor system. An interconnection network is typically modeled as an undirected graph in

which the nodes represent processors and the edges represent the communication links between the

processors. For graph definitions and notations, we follow [38]. Let G = (V,E) be a graph if V is a

finite set and E is a subset of {{u, v} | {u, v} is an unordered pair of V }. We define V as the node set

and E as the edge set of G. Two nodes u and v are adjacent if {u, v} ∈ E; we define u as a neighbor

of v, and vice versa. We use NG(u) to represent the neighborhood set {v | {u, v} ∈ E(G)}. The

degree of a node v in a graph G, represented as degG(v), is the number of edges incident to v.

For the specialized terms of the BGM diagnosis model, we follow [12]. We assume that adjacent

processors can perform tests on each other under this model. Let G = (V,E) denote the underlying

topology of a multiprocessor system. For any two adjacent nodes u, v ∈ V (G), the ordered pair (u, v)
represents a test in which processor u can diagnose processor v. In this situation, u is a tester and v
is a testee. If u evaluates v as faulty, the result of the test (u, v) is 1; if u evaluates v as fault-free, the

result of the test (u, v) is 0. Because we consider the faults permanent, the result of a test is reliable

if and only if the tester is fault-free. To make a system with a complex structure more realistic, we

assume that every processor has computational ability. Therefore, any completed test for a given set

of faults in a processor consists of a sequence of numerous stimuli. Based on the observation, it is

reasonable to suppose that, between real and expected reaction to the stimuli, at least one mismatch

will occur as long as the tested processor is faulty, even if the testing processor is faulty. Following

this discussion, the diagnostic model for a system G is defined as follows. Assume that x and y are

two adjacent processors in G. If x is fault-free, the result of the test (x, y) is 0 if y is fault-free and 1
if y is faulty. If x is faulty and y is fault-free, both results of are possible. If x and y are faulty, the

result of the test (x, y) is 1 (Table 1). According to the aforementioned definition, if a test result is 0,

the testee should definitely be fault-free. By contrast, if the test result is 1, a fault exists in the tester,

testee, or both.

Table 1. Results of σ(x, y) and σ(y, x) under the BGM diagnosis model.

Node x Node y σ(x, y) σ(y, x)

Fault-free Fault-free 0 0

Fault-free Faulty 1 0 or 1

Faulty Fault-free 0 or 1 1

Faulty Faulty 1 1
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A test assignment for system G is a collection of tests that can be modeled as a directed graph

T = (V,L). Thus, (u, v) ∈ L means that u and v are adjacent in G. The collection of all test

results from the test assignment T is called a syndrome. Formally, a syndrome of T is a mapping

σ : L → {0, 1}. A faulty set F is the set of all faulty processors in G. Note that F can be any

subset of V . System diagnosis is the process of identifying faulty nodes in a system. The maximum

number of faulty nodes that can be accurately identified in a system G is called the diagnosability of

G, denoted by τ(G). A system G is t-diagnosable if all faulty nodes in G can be precisely detected

with the total number of faulty nodes being at most t. Let σ denote the syndrome resulting from a test

assignment T = (V,L). A subset of nodes F ⊆ V is considered consistent with σ if for a (u, v) ∈ L
such that u ∈ V − F , σ(u, v) = 1 if and only if v ∈ F . Let σ(F ) denote the set of all possible

syndromes with which the faulty set F can be consistent. Two distinct faulty sets F1 and F2 of V are

distinguishable if σ(F1) ∩ σ(F2) = ∅; otherwise, F1 and F2 are indistinguishable. Thus, (F1, F2) is

a distinguishable pair of faulty sets if σ(F1) ∩ σ(F2) = ∅; otherwise, (F1, F2) is an indistinguishable

pair. For any two distinct faulty sets F1 and F2 of G with |F1| ≤ t and |F2| ≤ t, a system G is

t-diagnosable if and only if (F1, F2) is a distinguishable pair. Let F1 and F2 be two distinct sets. We

use F1△F2 to denote the symmetric difference (F1 − F2) ∪ (F2 − F1) between F1 and F2. Many

researchers study the conventional diagnosability that describes the global status of a system under

the random-fault model. Thus, Hsu and Tan proposed the concept of local diagnosability in [24]. The

research about local diagnosability concerns with the local connective substructure in a system. Some

related studies have been proposed in [25, 26, 27, 28]. Suppose that σF is a syndrome produced by

a set of faulty nodes F ⊆ V containing u with |F | ≤ t. We consider G locally t-diagnosable at u if

every faulty node set F ′ compatible with σF and |F ′| ≤ t also contains u. The local diagnosability of

u is the maximum value of t such that G is locally t-diagnosable at u.

3. The hypercube-like graphs

Let G0 = (V0, E0) and G1 = (V1, E1) be two disjoint graphs with the same number of nodes. A 1-1

connection between G0 and G1 is defined as an edge set E = {(v, φ(v)) | v ∈ V0, φ(v) ∈ V1, and φ :

V0 → V1 is a bijection }. We use G0 ⊕G1 to denote G = (V0 ∪V1, E0 ∪E1 ∪E). The operation ”⊕”

may generate different graphs depending on the bijection φ. There are some studies on the operation

”⊕”. Let G = G0 ⊕ G1, and let x be any node in G. We use x̄ to denote the unique node matched

under φ.

Now, we can define the set of n-dimensional hypercube-like graph XQn as follows:

(1) XQ1 = {K2}, where K2 is the complete graph with two nodes.

(2) Assume that G0 ∈ XQn and G1 ∈ XQn. Then G = G0 ⊕G1 is a graph in XQn+1.

Every graph in XQn is an n-regular graph with 2n nodes. Let G be a graph in XQn+1. Then G =
G0 ⊕G1 with both G0 and G1 in XQn. Suppose that u is a node in V (G). Then u is a node in V (Gi)
for some i ∈ {0, 1}. We use ū to denote the node in V (G1−i) matched under φ. The 1-dimensional

hypercube-like graph XQ1 is a complete graph with two nodes and the edge is labeled by 1. An n-

dimensional hypercube-like graph XQn can be generated by two (n− 1)-dimensional hypercube-like

graphs, denoted XQ0
n−1 and XQ1

n−1, and a perfect match between the nodes of XQ0
n−1 and XQ1

n−1,
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where every edge in this perfect match is labeled by n. The following is some properties about the

n-dimensional hypercube-like graphs.

Theorem 3.1. [29] Let n and k be any two integers with n ≥ 3 and 1 ≤ k ≤ 2n − 2. For any node

subset V of XQn with |V | = k, |NXQn
(V )| ≥ kn− k(k+1)

2 + 1.

Lemma 3.2. Let {u1, u2, . . . , uk} be a set of k distinct nodes of XQn with k ≤ n. There exists a node

set {v1, v2, . . . , vk} in XQn − {u1, u2, . . . , uk} such that (ui, vi) ∈ E(XQn) for every 1 ≤ i ≤ k.

Proof:

We prove the lemma by induction on n. For n = 1, the lemma follows trivially. Suppose that the

lemma holds on XQm for 1 ≤ m ≤ n − 1. Without loss of generality, we assume that k = n.

Let Ai = {u1, u2, . . . , un} ∩ V (XQi
n−1) for i ∈ {0, 1}. Without loss of generality, we assume that

|A0| ≥ |A1|. We have the following cases.

Case 1: Suppose that |A0| ≤ n− 1. Since |A0| ≥ |A1|, |A1| ≤ n− 1. Without loss of generality,

we assume that A0 = {u1, u2, . . . , ut} and A1 = {ut+1, ut+2, . . . , un}. By induction, there exists

a node set {v1, v2, . . . , vt} in XQ0
n−1 − {u1, u2, . . . , ut} such that (ui, vi) ∈ E(XQ0

n−1) for every

1 ≤ i ≤ t, and there exists node set {vt+1, vt+2, . . . , vn} in XQ1
n−1 −{ut+1, ut+2, . . . , un} such that

(ui, vi) ∈ E(XQ1
n−1) for every t+ 1 ≤ i ≤ n. Thus {v1, v2, . . . , vn} forms a desired set.

Case 2: Suppose that |A0| = n. For every 1 ≤ i ≤ n, we set vi being the neighbor of ui where

(ui, vi) is labeled by n. Thus {v1, v2, . . . , vn} forms a desired set.

Thus the lemma holds. ⊓⊔

Lemma 3.3. Suppose that n ≥ 4. Let {u1, u2, . . . , un+1} be a set of n + 1 distinct nodes of XQn,

where it is not isomorphic to K1,n. Then there exists a node set {v1, v2, . . . , vn+1} of XQn −
{u1, u2, . . . , un+1} such that (ui, vi) ∈ E(XQn) for every 1 ≤ i ≤ n+ 1.

Proof:

We set Ai = {u1, u2, . . . , un+1} ∩ V (XQi
n−1) for i ∈ {0, 1}. Without loss of generality, we assume

that |A0| ≥ |A1|. Then we have the following cases.

Case 1: Suppose that |A0| ≤ n− 1. Since |A0| ≤ n− 1, |A1| ≤ n− 1. Without loss of generality, we

assume that A0 = {u1, u2, . . . , ut} and A1 = {ut+1, ut+2, . . . , un+1}. By Lemma 3.2, there exists

a t distinct node set {v1, v2, . . . , vt} of XQ0
n−1 − {u1, u2, . . . , ut} such that (ui, vi) ∈ E(XQ0

n−1)
for every 1 ≤ i ≤ t. Similarly, there exists a n − t + 1 distinct node set {vt+1, vt+2, . . . , vn+1} of

XQ1
n−1−{ut+1, ut+2, . . . , un+1} such that (ui, vi) ∈ E(XQ1

n−1) for every t+1 ≤ i ≤ n+1. Thus

{v1, v2, . . . , vn+1} forms a desired set.

Case 2: Suppose that |A0| = n. Without loss of generality, we assume that A0 = {u1, u2, . . . , un}
and A1 = {un+1}.

Case 2.1: Suppose that (ui, un+1) /∈ E(XQn) for every 1 ≤ i ≤ n. For every 1 ≤ i ≤ n + 1, we

set vi being the neighbor of ui where (ui, vi) is labeled by n. Thus {v1, v2, . . . , vn+1} forms a desired

set.
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Case 2.2: Suppose that (ui, un+1) ∈ E(XQn) for some 1 ≤ i ≤ n. Without loss of generality,

we assume that (u1, un+1) ∈ E(XQn). Since {u1, u2, . . . , un+1} is not isomorphic to K1,n+1 and

(u1, un+1) ∈ E(XQn), (u1, ui) /∈ E(XQn) for some 2 ≤ i ≤ n. Since degXQ0

n−1

(u1) = n− 1 and

(u1, ui) /∈ E(XQn) for some 2 ≤ i ≤ n, there exists a node v1 ∈ V (XQ0
n−1)−{u1, u2, . . . , un} such

that (u1, v1) ∈ E(XQ0
n−1). By Theorem 3.1, |N({u2, u3, . . . , un})| ≥ (n−1)(n−1)− (n−1)n

2 +1 =
(n2

−3n)
2 + 2 ≥ 3 if n ≥ 4. Thus there exists a node v2 ∈ V (XQ0

n−1) − {u1, u2, . . . , un, v1}
such that (ui, v2) ∈ E(XQ0

n−1) for some 2 ≤ i ≤ n. Without loss of generality, we assume that

(u2, v2) ∈ E(XQ0
n−1). For every 3 ≤ i ≤ n, let vi be the neighbor of ui where (ui, vi) is labeled by

n. Since degXQ1

n−1

(un+1) = n− 1, there exists a node vn+1 ∈ V (XQ1
n−1)− {v3, v4, . . . , vn} such

that (un+1, vn+1) ∈ E(XQ1
n−1). Thus {v1, v2, . . . , vn+1} forms a desired set.

Case 3: Suppose that |A0| = n + 1. For every 1 ≤ i ≤ n + 1, we set vi being the neighbor of ui
where (ui, vi) is labeled by n. Thus {v1, v2, . . . , vn+1} forms a desired set. ⊓⊔

Lemma 3.4. Suppose that n ≥ 3. Let {u1, u2, . . . , un+1} be a set of n + 1 distinct nodes of XQn,

where N(u1) = {u2, u3, . . . , un+1}. Then there exists a node set {v2, v3, . . . , vn+1} of XQn −
{u1, u2, . . . , un+1} such that (ui, vi) ∈ E(XQn) for every 2 ≤ i ≤ n+ 1.

Proof:

We prove the lemma by induction on n. Suppose that n = 3. The desired set is illustrated in Figure 1.

Suppose that the lemma holds on XQm for 3 ≤ m ≤ n − 1. Without loss of generality, we assume

that un+1 is the neighbor of u1 where (u1, un+1) is labeled by n. Thus, we have {u1, u2, . . . , un} ⊆
V (XQj

n−1) and {un+1} ⊆ V (XQ1−j
n−1) for some j ∈ {0, 1}. By induction, there is a node set

{v2, v3, . . . , vn} of XQj
n−1 − {u1, u2, . . . , un} such that (ui, vi) ∈ E(XQj

n−1) for every 2 ≤ i ≤ n.

Let vn+1 be the neighbor of un+1 where (un+1, vn+1) is labeled by 2. Obviously, vn+1 ∈ V (XQ1−j
n−1).

Thus {v2, v3, . . . , vn+1} forms a desired set. ⊓⊔

u1 u2

u3

u4

v2

v3

v4

u1 u2

u3

u4

v2

v3

v4

Figure 1. Two structures of XQ3 in the proof of Lemma 3.4.
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4. Local diagnosis under the BGM model

First, we establish a necessary and sufficient condition for ensuring distinguishability in the following

theorem.

Theorem 4.1. Let F1 and F2 be any two distinct node subsets of a system G = (V,E). Thus, (F1, F2)
is a distinguishable pair if and only if one of the following states holds:

1. There exist a node u ∈ V − (F1 ∪ F2) and a node v ∈ F1 △ F2 such that (u, v) ∈ E;

2. There exist two distinct nodes u, v ∈ F1 − F2 such that (u, v) ∈ E;

3. There exist two distinct nodes u, v ∈ F2 − F1 such that (u, v) ∈ E. (See Figure 2 for an

illustration.)

u

v

u

v

u

v

u

v

F1

F1

F1

F1

F2 F2

F2 F2

Figure 2. An illustration of Theorem 4.1.

Proof:

First, we prove the necessary condition. Suppose that (F1, F2) is a distinguishable pair, and none of

the states holds. Hence, there exists a syndrome (Figure 3) such that F1 and F2 are allowable faulty

sets under the BGM model, thus contradicting the assumption that (F1, F2) is a distinguishable pair.

0

1

1

1

1

0 0

0

1

1
11

Figure 3. A syndrome for which both F1 and F2 are allowable faulty sets under the BGM model.
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We then prove the sufficient condition. Suppose that one of the states holds, and (F1, F2) is an

indistinguishable pair. Thus, a syndrome exists such that F1 and F2 are allowable faulty sets under the

BGM model. Without loss of generality, we assume that u ∈ V − (F1 ∪ F2) and v ∈ F1 − F2 exist.

Under the BGM model, if σ(u, v) = 0, F1 is not the faulty set. If σ(u, v) = 1, F2 is not the faulty

set. We then consider another two states. Without loss of generality, assume that u, v ∈ F1 − F2.

Under the BGM model, if σ(u, v) = 0, F1 is not the faulty set. If σ(u, v) = 1, F2 is not the faulty set.

Thus, the allowable faulty set is unique, and (F1, F2) is a distinguishable pair, thereby contradicting

the assumption that (F1, F2) is an indistinguishable pair. ⊓⊔

For the local diagnosability, we have the following theorem.

Theorem 4.2. Let G = (V,E) be a system, and u ∈ V (G). G is locally t-diagnosable at node u if

and only if for any two distinct sets F1, F2 ⊂ V with |F1| ≤ t, |F2| ≤ t and u ∈ F1 △ F2, (F1, F2) is

a distinguishable pair.

Here, we propose a specific structure called the t-diagnosis-tree for local diagnosis under the BGM

model. The definition of a t-diagnosis-tree is as follows.

Definition 4.3. A t-diagnosis-tree DTt(u) is a tree with order t and rooted at u, such that V (DTt(u)) =
{u} ∪ {xi | 1 ≤ i ≤ t} ∪ {yi | 1 ≤ i ≤ t}, and E(DTt(u)) = {{u, xi}, {xi, yi} | 1 ≤ i ≤ t}.

Figure 4 illustrates the DTt(u).

u

x1 x2 x3 xt

y1 y2 y3 yt

Figure 4. A t-diagnosis-tree DTt(u) of Definition 4.3.

We propose the local diagnosis algorithm (LDA) for determining the fault status of a node u in a

t-diagnosis-tree DTt(u) with two test rounds under the BGM model in Algorithm 1.

We then prove that a node u in a t-diagnosis-tree DTt(u) can be diagnosed accurately in two test

rounds with LDA(DTt(u)) under the BGM diagnosis model.

Theorem 4.4. Suppose that DTt(u) is a t-diagnosis-tree with order t and rooted at u. If F is a faulty

set in DTt(u) with |F | ≤ t, then the faulty/fault-free status of u can be identified accurately in two

test rounds with LDA(DTt(u)) under the BGM diagnosis model.

Proof:

Depending on the definition of the BGM model and the results listed in Table 1, if σ(yi, xi) = 0 for

every 1 ≤ i ≤ t, the node xi is fault-free. Thus, the test (xi, u) is reliable. If σ(yi, xi) = 1 for every

1 ≤ i ≤ t, there exists at least one faulty node in {xi, yi}. Assume that u ∈ F . We have |F | ≥ t+ 1,

which contradicts the assumption that |F | ≤ t. Thus, the theorem holds. ⊓⊔
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Algorithm 1: LDA(DTt(u))

Input: A t-diagnosis-tree DTt(u).
Output: The value is 0 or 1 if u is fault-free or faulty, respectively.

begin
Round 1: Perform the test (yi, xi) for every 1 ≤ i ≤ t.
set A = {xi | σ(yi, xi) = 0 for 1 ≤ i ≤ t};

if |A| 6= 0 then

set z being a node in A;

Round 2: Perform the test (z, u).
if σ(z, u) = 0 then return 0;

else return 1;

end

else

return 0;

end

end

5. One good neighbor conditional local diagnosis algorithm under the

BGM model

Lai et al. proposed the concept of conditional fault diagnosis by restricting that, for each processor v
in the network, all processors directly connected to v do not fail simultaneously [30]. Suppose that

G = (V,E). A set F ⊂ V (G) is a conditional faulty set if NG(v) 6⊆ F for any node v ∈ V (G) − F .

A system G is conditionally faulty if the faulty node set of G forms a conditional faulty set. For

any two distinct conditional faulty sets F1 and F2 of G with |F1| ≤ t and |F2| ≤ t, if (F1, F2) is a

distinguishable pair, G is conditionally t-diagnosable. The maximum number of conditional faulty

nodes that can be accurately identified in G is called the conditional diagnosability of G.

Theorem 5.1. Suppose that F1 and F2 are two distinct conditional faulty sets in a system G with

|F1| ≤ t and |F2| ≤ t. Thus, G is conditionally t-diagnosable under the BGM diagnosis model.

Proof:

Without loss of generality, consider the faulty set F1. Let u ∈ V (G)−F1. Because F1 is a conditional

faulty set, a node v is adjacent to u such that v /∈ F1. According to Theorems 4.1 and 4.2, G is

conditionally t-diagnosable under the BGM diagnosis model. ⊓⊔

Here, we propose the conditional local diagnosis algorithm (CLDA) for determining the fault

status of a node u in a conditional faulty diagnostic system G under the BGM model in Algorithm 2.

We then prove that a node u in a conditional faulty diagnostic system G can be diagnosed accu-

rately with CLDA(G,u, t) under the BGM diagnosis model.
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Algorithm 2: CLDA(G,u, t)

Input: A graph G and a node u ∈ V (G) with degG(u) = t.
Output: The value is 0 or 1 if u is fault-free or faulty, respectively.

begin
Perform the tests (u, vi) and (vi, u), where vi ∈ NG(u) for every 1 ≤ i ≤ t.
if there exists at least one test result pair ((u, vi), (vi, u)) = (0, 0) then

return 0;

end

else

return 1;

end

end

Theorem 5.2. Suppose that u is a node in G with degG(u) = t. If F is a conditional faulty set in G
with |F | ≤ t, then the faulty/fault-free status of u can be identified accurately with CLDA(G,u, t)
under the BGM diagnosis model.

Proof:

Depending on the definition of the BGM model and the results listed in Table 1, if u ∈ F , test result

pair ((u, vi), (vi, u)) ∈ {(0, 1), (1, 0), (1, 1)}, where vi ∈ NG(u) for every 1 ≤ i ≤ t. Suppose

that u /∈ F . According to the definition of a conditionally faulty system, there exists at least one node

vi ∈ NG(u) for some 1 ≤ i ≤ t such that vi /∈ F . Thus, we have the test result pair ((u, vi), (vi, u)) =
(0, 0) and the theorem holds. ⊓⊔

6. A 3-round diagnosis algorithm of hypercube-like networks under the

BGM model

In this section, we prove that the nodes in an n-dimensional hypercube-like network XQn can be

diagnosed correctly with a faulty set F in three test rounds under the BGM diagnosis model if |F | ≤ n.

Theorem 6.1. Let XQn be an n-dimensional hypercube-like graph. If F is a faulty set in XQn with

|F | ≤ n, then the faulty/fault-free nodes of XQn can be identified correctly in three test rounds under

the BGM diagnosis model.

Proof:

Let the edges in XQn labeled by n be the perfect matching. We give the algorithm DHL (Diagnosis

for Hypercube-like graph) in Algorithm 3 to identify the faulty/fault-free status of the nodes in XQn

under the BGM diagnosis model. In the first test round, let the nodes in XQ0
n−1 test the nodes in

XQ1
n−1. We set A = {vi | σ(v̄i, vi) = 1, where v̄i ∈ V (XQ0

n−1) and vi ∈ V (XQ1
n−1)}. We

consider the following cases.



C.K. Lin et al. / A Diagnosis Algorithm for Hypercube-like Networks under BGM Model 367

Algorithm 3: DHL(XQn)

Input: A hypercube-like network XQn.

Output: The node in XQn is fault-free or faulty.

begin

The nodes in XQ0
n−1 test the nodes in XQ1

n−1. /* Test round 1. */

set A = {vi | σ(v̄i, vi) = 1, where v̄i ∈ V (XQ0

n−1
) and vi ∈ V (XQ1

n−1
)}.

if A is not isomorphic to K1,n−1 then

if |A| ≤ n− 1 then return DHLA(XQn, A);
else return DHLB(XQn, A);

end

else
set x being the node in A such that NXQ1

n−1

(x) = A− {x}.

set C′ being the nodes in V (XQ1

n−1
)−A such that A− {x} and C′ form a perfect matching

in XQ1

n−1.

return DHLC(XQn, A, x, C
′)

end

end

Algorithm 4: DHLA(XQn, A)

Input: A hypercube-like network XQn. A set A = {vi | σ(v̄i, vi) = 1, where v̄i ∈ V (XQ0

n−1
) and

vi ∈ V (XQ1

n−1
), 1 ≤ i ≤ n} with |A| ≤ n− 1.

Output: The node in XQn is fault-free or faulty.

begin

The nodes in XQ1
n−1 test the nodes in XQ0

n−1. /* Test round 2. */

set B = {v̄i | σ(vi, v̄i) = 1, where v̄i ∈ V (XQ0

n−1
) and vi ∈ V (XQ1

n−1
)}.

set C being the nodes in V (XQ1

n−1
)−A such that A and C form a perfect matching in XQ1

n−1
.

if |A| = 0 then The nodes in B are faulty, and the others are fault-free;

else if 1 ≤ |B| ≤ n− 1 then

set D being the nodes in V (XQ0
n−1)−B such that B and D form a perfect matching in

XQ0

n−1
.

The nodes in C test the nodes in A, and the nodes in D test the nodes in B. /* Test round 3. */

set A1 = {vi | σ(ci, vi) = 1, where ci ∈ C and vi ∈ A}.

set B1 = {v̄i | σ(di, v̄i) = 1, where di ∈ D and v̄i ∈ B}.

return The nodes in A1 or B1 are faulty, and the others are fault-free.

end

else
The nodes in C test the nodes in A. /* Test round 3. */

set A1 = {vi | σ(ci, vi) = 1, where ci ∈ C and vi ∈ A}.

return The nodes in A1 are faulty; for every node v̄i ∈ B, v̄i is faulty if vi is not in A1; the

others are fault-free.
end

end
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Case 1: Suppose that A is not isomorphic to K1,n−1. We consider the following cases.

Subcase 1.1: Suppose that |A| ≤ n− 1. We give the algorithm DHLA in Algorithm 4 to identify

the faulty/fault-free status of the nodes in XQn. In the second test round, let the nodes in XQ1
n−1 test

the nodes in XQ0
n−1. We set B = {v̄i | σ(vi, v̄i) = 1, where v̄i ∈ V (XQ0

n−1) and vi ∈ V (XQ1
n−1)}.

By Lemma 3.2, there exists a node set C in XQ1
n−1 − A such that A and C form a perfect matching

in XQ1
n−1. We consider the following cases.

Subcase 1.1.1: Suppose that |A| = 0. Under the BGM diagnosis model, the nodes in B are faulty,

and the others are fault-free.

Subcase 1.1.2: Suppose that 1 ≤ |A| ≤ n−1 and 1 ≤ |B| ≤ n−1. By Lemma 3.2, there exists a

node set D in XQ0
n−1 −B such that B and D forms a perfect matching in XQ0

n−1. Under the BGM

diagnosis model, the nodes in C ∪D is fault-free. In the third test round, let the nodes in C test the

nodes in A, and let the nodes in D test the nodes in B. We set A1 = {vi | σ(ci, vi) = 1, where ci ∈ C
and vi ∈ A} and B1 = {v̄i | σ(di, v̄i) = 1, where di ∈ D and v̄i ∈ B}. Since the nodes in C ∪D
is fault-free, the tests performed by the nodes in C ∪D are reliable. Thus the nodes in A1 or B1 are

faulty, and the others are fault-free.

Subcase 1.1.3: Suppose that 1 ≤ |A| ≤ n− 1 and |B| = n. In the third test round, let the nodes

in C test the nodes in A. We set A1 = {vi | σ(ci, vi) = 1, where ci ∈ C and vi ∈ A}. Since |B| = n,

F ⊆ A ∪ B. The tests performed by the nodes in C are reliable. Thus the nodes in A1 are faulty; for

every node v̄i ∈ B, v̄i is faulty if vi is not in A1; the others are fault-free.

Subcase 1.2: Suppose that |A| = n. We give the algorithm DHLB in Algorithm 5 to identify the

faulty/fault-free status of the nodes in XQn. By Lemma 3.3, there exists a node set C in XQ1
n−1 −A

such that A and C forms a perfect matching in XQ1
n−1. In the second test round, let the nodes

in C test the nodes in A. We set A0 = {vi | σ(ci, vi) = 0, where ci ∈ C and vi ∈ A} and

A1 = {vi | σ(ci, vi) = 1, where ci ∈ C and vi ∈ A}. Since |A| = n, F ⊆ A ∪ B. The tests

Algorithm 5: DHLB(XQn, A)

Input: A hypercube-like network XQn. A set A = {vi | σ(ui, vi) = 1, where

ui ∈ V (XQ0
n−1) and vi ∈ V (XQ1

n−1)} with |A| = n.

Output: The node in XQn is fault-free or faulty.

begin

set C being the nodes in V (XQ1
n−1)−A such that A and C form a perfect matching in

XQ1
n−1.

The nodes in C test the nodes in A. /* Test round 2. */

set A0 = {vi | σ(ci, vi) = 0, where ci ∈ C and vi ∈ A}.

set A1 = {vi | σ(ci, vi) = 1, where ci ∈ C and vi ∈ A}.

return The nodes in A1 are faulty; for every node v̄i, v̄i is faulty if vi is in A0; the others

are fault-free.
end
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performed by the nodes in C are reliable. Thus the nodes in A1 are faulty; for every node v̄i, v̄i is

faulty if vi is in A0; the others are fault-free.

Case 2: Suppose that A is isomorphic to K1,n−1. Let x be the node in A such that NXQ1

n−1

(x) =

A − {x}. By Lemma 3.4, there exists a node set C ′ in V (XQ1
n−1) − A such that A − {x} and C ′

form a perfect matching in XQ1
n−1. We give the algorithm DHLC in Algorithm 6 to identify the

Algorithm 6: DHLC(XQn, A, x,C
′)

Input: A hypercube-like network XQn. A set A = {vi | σ(ui, vi) = 1, where

ui ∈ V (XQ0
n−1) and vi ∈ V (XQ1

n−1)} with A being isomorphic to K1,n−1. A node

x ∈ A with NXQ1

n−1

(x) = A− {x}. A set C ′ ∈ V (XQ1
n−1)−A, where A− {x}

and C ′ form a perfect matching in XQ1
n−1.

Output: The node in XQn is fault-free or faulty.

begin

The nodes in C ′ test the nodes in A− {x}. /* Test round 2. */

set A0 = {vi | σ(ci, vi) = 0, where ci ∈ C ′ and vi ∈ A− {x}}.

set A1 = {vi | σ(ci, vi) = 1, where ci ∈ C ′ and vi ∈ A− {x}}.

if |A0| 6= 0 then
set y being a node in A0.

The node y tests the node x. /* Test round 3. */

if σ(y, x) = 0 then
return x̄ is faulty; the nodes in A1 are faulty; for every node v̄i, v̄i is faulty if vi is

in A0; the others are fault-free.
end

else
return x is faulty; the nodes in A1 are faulty; for every node v̄i, v̄i is faulty if vi is

in A0; the others are fault-free.
end

end

else

set z being a node in XQ0
n−1 − {x̄}.

The node z tests the node x̄. /* Test round 3. */

if σ(z, x̄) = 0 then
return x is faulty; the nodes in A1 are faulty; for every node v̄i, v̄i is faulty if vi is

in A0; the others are fault-free.
end

else
return x̄ is faulty; the nodes in A1 are faulty; for every node v̄i, v̄i is faulty if vi is

in A0; the others are fault-free.
end

end

end



370 C.K. Lin et al. / A Diagnosis Algorithm for Hypercube-like Networks under BGM Model

faulty/fault-free status of the nodes in XQn. In the second test round, let the nodes in C ′ test the

nodes in A− {x}. Since |A| = n, F ⊆ A ∪ B. The tests performed by the nodes in C ′ are reliable.

Thus the nodes in A1 are faulty; for every node v̄i, v̄i is faulty if vi is in A0; the nodes in A0 are

fault-free. For the faulty/fault-free status of the node x, we consider the following cases.

Subcase 2.1: Suppose that |A0| 6= 0. Let y be a node in A0. In the third test round, let y test x. If

σ(y, x) = 0, x is fault-free, and x̄ is faulty. If σ(y, x) = 1, x is faulty, and x̄ is fault-free.

Subcase 2.2: Suppose that |A0| = 0. Let z be a node in V (XQ0
n−1)−{x̄}. In the third test round,

let z test x̄. Since F ⊆ A ∪ B, the test performed by z is reliable. If σ(z, x̄) = 0, x̄ is fault-free, and

x is faulty. If σ(z, x̄) = 1, x̄ is faulty, and x is fault-free. ⊓⊔

7. Concluding remarks

In this paper, a diagnosis testing signal is supposed to be delivered from one node to another node

through the communication bus at one time. The node is not allowed to perform multiple tests si-

multaneously. There are many paired tests that can be performed parallel in a test round. Each node

can only have one of the following state in a round, testing, being tested, and not participating in any

testing. In [39], Teng and Lin discussed the local diagnosability of a t-diagnosable system under the

PMC diagnosis model. They proved that any reliable diagnosis algorithm should be completed in at

least three test rounds under the PMC model. The PMC model is a more general diagnosis model,

and the BGM model can be regarded as a special case of the PMC model. The definitions of the

two diagnosis models are different. In this paper, we propose an algorithm for determining the fault

status of a node in a t-diagnosable system with the structure t-diagnosis-tree under the BGM model,

and we prove that the diagnosis can be completed in two test rounds. We also give an algorithm for

conditional local diagnosis under the BGM model. The structure t-diagnosis-tree can be embedded

in many well-known interconnection networks of multiprocessor systems; for instance, hypercubes,

star graphs, and arrangement graphs. We give an algorithm for determining the fault status of a node

in a hypercube-like network. Suppose that XQn is an n-dimensional hypercube-like network, and

F is a faulty set in XQn with |F | ≤ n. We prove that the fault status of nodes in XQn can be

identified in three test rounds under the BGM diagnosis model. To perform our algorithm, we have

to find the perfect matching in the hypercube-like graph. Finding a perfect matching can be solved

in polynomial time by the algorithm of Edmonds [31]. Therefore, with our algorithm, the diagnosis

can be completed in polynomial time. Future research will endeavor to determine specific structures

for existing practical interconnection networks, design an efficient diagnosis algorithm, and prove the

diagnosability of this useful structure under the BGM diagnosis model.
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