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Abstract. An order-theoretic forest is a countable partial order such that the set of elements
larger than any element is linearly ordered. It is an order-theoretic tree if any two elements have an
upper-bound. The order type of a branch (a maximal linearly ordered subset) can be any countable
linear order. Such generalized infinite trees yield convenient definitions of the rank-width and the
modular decomposition of countable graphs.

We define an algebra based on only four operations that generate up to isomorphism and via
infinite terms these order-theoretic trees and forests. We prove that the associated regular objects,
i.e., those defined by regular terms, are exactly the ones that are the unique models of monadic
second-order sentences.

We adapt some tools that we have used in a previous article for proving a similar result for join-
trees, i.e., for order-theoretic trees such that any two nodes have a least upper-bound.
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1. Introduction

Countably infinite trees have been studied in Fundamental Computer Science for many purposes:
semantics of programs [2, 8], theory of games [3, 18, 20] and distibuted computing [1, 14], just to name
a few topics. To be usable for obtaining algorithms, these trees must have finitary descriptions: several
notions have been developped for this purpose, e.g., automata of various types, logical descriptions
and equation systems [4, 7].

*Address of correspondence: LaBRI, Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
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In the logical setting of the Theory of Relations [15], a more general notion of tree is used : an
order-theoretic forest (an O-forest in short) is a countable partial order whose elements are called
nodes and such that the set of nodes larger than any node is linearly ordered; it is an order-theoretic
tree (an O-tree) if any two nodes have an upper-bound and a join-tree if any two nodes have a least
upper-bound. The order type of a linearly ordered subset can be any, possibly dense, linear order.
Join-trees yield convenient definitions of the rank-width and the modular decomposition of countable
graphs [9, 12].

Finitary descriptions of these objects can be given by logical sentences. For an example, the or-
dered set of rational numbers is, up to isomorphism, the unique linearly ordered countable set that is
dense without maximal and minimal elements. This characterization is first-order (FO) expressible.
First-order logic is actually not powerful enough for characterizing the structures we are interested in.
Monadic second-order (MSO) logic is much more expressive, and furthermore, its decidability on in-
finite trees is a fundamental result due to Rabin (see, e.g. [18]). This fundamental result is based on an
equivalence between certain finite automata and MSO descriptions. Such an equivalence was proved
for finite words by Trakhtenbrot [19] and, independently, by others for finite trees. MSO formulas can
also express transformations of structures that are very useful in proofs.

The rooted trees used in semantics are, in many cases, infinite terms (like are formal power series)
built with finite sets of function symbols. We call them F -terms, where F is the set of function
symbolds: they can be conveniently handled as labelled rooted trees, and we will discuss them by
using notions concerning trees: nodes, root, ancestor etc.

An F -term is regular if it has finitely many different subterms, equivalently if it is a component
of the unique solution of a finite equation system of a certain type. Such systems yield finitary de-
scriptions of regular F -terms. More complex equation systems yield wider notions of F -terms [4, 7]
whose MSO-theory is decidable, so that some of our results are applicable to them.

The existence of equivalent characterizations of a same class of objects indicates a certain robust-
ness as this class does not depend on a choice of definitions that may sound arbitrary. In particular, an
F -term is regular if and only if it is the unique model of an MSO sentence. (This characterization uses
a description of F -terms by logical structures).

Our objective is to obtain finitary descriptions of certain O-trees and O-forests, in particular by
regular terms. For this purpose, we define an algebra structure on the class of O-forests that uses only
three operations1. These operations can generate all O-trees up to isomorphism via infinite terms. The
regular O-trees are those defined by regular F-terms. Our main theorem states that an O-tree is regular
if and only if it is monadic second-order definable, i.e., is the unique model (up to isomorphism) of
an MSO sentence. In this way, we extend the corresponding result obtained for join-trees in [11]. The
proof uses the corresponding result for arrangements [17]. Arrangements are labelled linear orders,
hence are generalized words whose ordered sets of positions may be dense.

A main technical tool is the notion of structuring of an O-forest : it is a partition in convex linearly
ordered subsets that form a kind of tree. A regular O-forest has a structuring consisting of regular,
whence MSO-definable, arrangements; furthermore, the tree of these arrangements is in some sense
regular. These notions are collected in a finitary regular description scheme. A regular O-tree is

1An additional constant denotes the empty O-forest.
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definable, equivalently, by a regular F -term, by a regular description scheme and by an MSO sentence
that can use a finiteness set predicate. (Such a use is necessary).

All constructions are effective (although intractable) and so, the isomorphism of two regular O-
trees is decidable.

In Section 2 we review definitions and results concerning partial orders, rooted trees, F -terms,
arrangements and monadic second-order logic. In Section 3, we define O-forests and O-trees, their
structurings and descriptions schemes. In Section 4 we define the algebra of structured O-forests. We
get the notion of a regular O-forest and we prove the main theorem.

2. Definitions and a few lemmas

In the present article, all ordered sets, trees and logical structures are countable, which means finite
or countably infinite. We denote by X ] Y the union of sets X and Y if we want to insist that they
are disjoint. Isomorphism of ordered sets, trees and other logical structures is denoted by '. The
restriction of a relation R or a function f defined on a set V to a subset W is denoted by R � W or
f �W respectively.

2.1. Orders

Notation and definitions 2.1
For partial orders ≤,v, ... we denote respectively by <,@, ... the corresponding strict partial

orders. In many cases a partial order ≤ can be defined in a short way from the corresponding strict
partial order < so that x ≤ y holds if and only if x = y or x < y.

Let (V,≤) be a partial order. For subsets X,Y of V , X < Y means that x < y for every x ∈ X
and y ∈ Y . We write X < y instead of X < {y} and similarly for x < Y . The least upper bound of
x and y is denoted by x t y if it exists and is called their join. The notation x⊥y means that x and y
are incomparable. A subset Y of V is convex if y ∈ Y whenever x, z ∈ Y and x < y < z. A line2 is a
convex subset of V that is linearly ordered. Particular notations for convex sets (that are not necessarly
linearly ordered) are [x, y] denoting {z | x ≤ z ≤ y}, ] −∞, x[ denoting {y | y < x} (even if V is
finite), [x,+∞[ denoting {y | x ≤ y}. In a linearly ordered set, a line is called an interval.

Let (N,≤) and (N ′,≤′) be partial orders. An embedding j : (N,≤) → (N ′, ≤′) is an injective
order-preserving map such that x ≤ y if and only if j(x) ≤′ j(y); in this case, (N,≤) is isomorphic
by j to (j(N),≤′� j(N)), a suborder of (N ′,≤′). We say that j is a join-embedding if, furthermore,
j(x t y) = j(x) t j(y) whenever x t y is defined.

The first infinite ordinal and the linear order (N,≤) are denoted by ω.

Definitions 2.2 : Cuts in linear orders.
(a) A (Dedekind) cut of a linear order (U,≤) is a pair (U1, U2) of non-empty intervals such that

U = U1 ] U2 and U1 < U2. For an example, an element x ∈ U that is not maximal defines the cut
(]−∞, x], ]x,+∞[).

2In [9] we called line a linearly ordered subset, without imposing the convexity property. The present definition is from [11]
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(b) If K is a set of cuts, we extend ≤ into a linear order on U ]K, also denoted by ≤, such that:

x < (U1, U2) if x ∈ U1 (equivalently x < U2),
(U1, U2) < x if x ∈ U2 (equivalently x > U1),
(U1, U2) < (U ′1, U

′
2) if U1 ⊂ U ′1 (equivalently U ′2 ⊂ U2).

We denote UK := (U ]K,≤).

2.2. Functional trees

Functional trees are the infinite terms written with function symbols of fixed arity that are used in
semantics of program ([7, 8]) and also (see below Section 2.3) for defining labelled linear orders called
arrangements. These trees can be formalized in different ways. In order to avoid useless technicalities,
we limit definitions to function symbols of arity at most 2, as we will only use this case. We call them
F -terms to stress their algebraic nature.

Definitions 2.3 : Functional trees, equivalently, infinite terms.

(a) A binary tree-domain is a set of words D ⊆ {1, 2}∗ (called Dewey words) that is prefix-closed,
which means that u ∈ D if uv ∈ D, and is such that u1 ∈ D if u2 ∈ D. We consider (D,≤) as a
rooted tree, where the ancestor relation≤ reverses the prefix order on words (we get uv ≤ u). Its root
is the empty word ε.

(b) Let F be a finite binary functional signature, i.e., a finite set of symbols equipped with an
arity mapping ρ : F → {0, 1, 2}. A functional tree over F , called an F -term for short is a pair
t = (Dt, labt) consisting of a binary tree-domain Dt and a mapping labt : Dt → F such that, for
every u in Dt, ρ(labt(u)) is the number of integers i ∈ {1, 2} such that ui ∈ Dt. (See Examples 2.5).
The set of F -terms is denoted by T∞(F ) and the subset of finite ones by T (F ). We call u ∈ Dt a
position in t (or a node if we think of t as a tree); it is an occurrence of the function symbol labt(u).
We denote also by Pos(t) the set of positions of t.

The ancestor relation on Pos(t) is denoted by ≤t.

(c) If t = (Dt, labt) and u ∈ Dt, then t/u is the F -term with set of positions Dt/u := {w ∈
{1, 2}∗ | uw ∈ Dt} and labelling function such that labt/u(w) := labt(uw). We call t/u the subterm
issued from u. If u 6= v and the F -terms t/u and t/v are equal, then the corresponding subtrees3 of
the labelled rooted tree t are isomorphic but not equal, because their sets of nodes are {uw ∈ {1, 2}∗ |
uw ∈ Dt} and {vw ∈ {1, 2}∗ | vw ∈ Dt}.

(d) We recall that the lexicographic order on {1, 2}∗ is defined as follows:

u ≤lex v if and only if v = uv′ or u = w1u′ and v = w2v′ for some words w, u′ and v′.

It is a linear order. Hence, it defines a linear order on every tree-domain. Another order will be
defined in Definition 2.17. �
3In the sense of graph theory.
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Definitions 2.4 : Operations on F -terms.
(a) Let f ∈ F be of arity 2. Let t1 and t2 ∈ T∞(F ). Then t := f(t1, t2) is defined as follows:

Dt := {ε} ] 1Dt1 ] 2Dt2 ,

labt(ε) := f, labt(1u) := labt1(u), labt(2u) := labt2(u).

If f has arity 1 and t1 ∈ T∞(F ), then, t := f(t1) is defined as follows:

Dt := {ε} ] 1Dt1 ,

labt(ε) := f and labt(1u) := labt1(u).

If t = f , a nullary symbol, then Dt := {ε} and labt(ε) := f.�

The link between trees and terms is best illustrated by examples.

Examples 2.5 : Let F := {f, g, a, b} where these symbols have respective arities 2,1,0 and 0.
(1) The term t = f(g(a), f(a, b)) has domain Dt = {ε, 1, 2, 11, 21, 22} and labelling function

labt such that :

ε 7−→ f, 1 7−→ g, 2 7−→ f, 11 7−→ a, 21 7−→ a, 22 7−→ b.

(2) The infinite term s = f(a, f(g(b), f(a, f(g(b), ....))) has domain Ds := 2∗ ] (22)∗1 ]
2(22)∗1 ] 2(22)∗11 and labelling function labs such that :

2i 7−→ f, (22)i1 7−→ a, 2(22)i1 7−→ g, 2(22)i11 7−→ b for all i ≥ 0. �

Definition 2.6 : Regular terms.
An F -term t is regular if the set of its subtrees is finite. Every finite F -term is regular.

Proposition 2.10 states equivalent characterizations of regular terms, for which we review some
definitions.

Definition 2.7 : Automata.
(a) A finite automaton over F (as in Definition 2.3(b)) is (in the present article) a tuple B =

(F, S, τ, sinit) where S is the finite set of states, sinit is the initial state and τ is the transition function,
a total mapping :

S → F × ((S × S) ] S ] {ε})
such that, for each state s, τ(s) is either (f, s1, s2) if f has arity 2, or (f, s1) if f has arity 1 or

(f, ε) if f has arity 0, for some s1, s2 ∈ S and f ∈ F .

(b) Let t ∈ T∞(F ). The run of B on t is the (unique) mapping runB : Pos(t) → S such that
runB(ε) = sinit and, for every u ∈ Pos(t), if u is an occurrence of f and runB(u) = s, we have the
following cases:
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if ρ(f) = 2, then τ(s) = (f, runB(u1), runB(u2)),
if ρ(f) = 1, then τ(s) = (f, runB(u1)), and
if ρ(f) = 0, then τ(s) = (f, ε).

Hence, a state s at a position u defines (via τ ) the symbol at u and the states at the positions u1 and
u2 when they do exist. There is at most one run runB. It is defined, deterministically, in a top-down
way.

(c) An F -term t is accepted by B if B has a run on t. As automata are top-down deterministic,
each of them accepts exactly one F-term.

Definition 2.8 : First-order (FO) and monadic second-order (MSO) logic
Let R be a finite set of relation symbols {R1, ..., Rk}, each being given with a positive integer

ρ(Ri) called its arity.

(a) A R-relational structure is a tuple S = (DS , R1S , ..., RkS) where DS is the domain and RiS
is a ρ(Ri)-ary relation on the domain. Its properties will be expressed by first-order (FO) or monadic
second-order (MSO) formulas or sentences. A sentence is a formula without free variables.

(b) A partial order is by definition a relational structure. For expressing properties of an F -term t,
we will use the relational structure:

btc := (Dt, son1, son2, (labf )f∈F ) where Dt is the domain,
soni(u, v) :⇐⇒ v = ui,
labf (u) :⇐⇒ u is an occurrence of f .

(c) The finiteness of a set X is not expressible in MSO logic. Hence, we will use MSO formulas
written with a finiteness set predicate Fin(X), and denote by MSOfin the corresponding extension
of MSO logic. However, if X ⊆ V , V is partially ordered and X linearly ordered, then its finiteness
is MSO-expressible in terms of the order relation of V [11].

Definition 2.9: Regular equation systems
Let t1, ..., tn be unknowns denoting F -terms. A regular equation system is an n-tuple (ti = si; i =

1, .., n) where each si is of the form f(tj , tk) or f(tj) or f , the symbol f has arity respectively 2,1 or
0, and j, k ∈ {1, .., n}.

A solution is an n-tuple of F -terms that satisfy the equations. Every such system has a unique
solution (see [7]). �

Proposition 2.10 : An F -term t is regular if and only if

(i) it is a component of the unique solution of a regular equation system,

(ii) it is accepted by a finite automaton,

(iii) for each f ∈ F , the set of occurrences of f in t is a regular language (included in {1, 2}∗).
(iv) the structure btc is the unique model u.t.i. (that means up to isomorphism) of an MSO sentence.

Proof:
Characterizations (i) and (ii) are clear from the definitions. For (iii) see [7]. For (iv) see [18] ut
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Examples 2.11 : (1) The F -term s of Example 2.5(2) is regular, as it is defined by the equation system:

{s = f(ra, u), u = f(w, s), w = g(rb), ra = a, rb = b}.

The different subterms are s, u, w, ra and rb. An automaton accepting it has states s, u, w, ra, rb,
initial state s and transitions s 7−→ (f, ra, u), u 7−→ (f, w, s), w 7−→ (g, rb), ra 7−→ (a, ε), rb 7−→
(b, ε).

Other examples will be given in Examples 2.16.

(2) Let t be regular and accepted by an automaton B = (F, S, τ, sinit). We let tB be obtained by
replacing a symbol f at position u by the symbol (f, runB(u)). Then tB is a regular (F × S)-term
defined by an automaton having the same states as B. The arity of (f, s) is that of f . �

Definition 2.12 : MSO definable sets of positions of an F-term.
Let t be an F -term. Let ϕ(X1, ..., Xn) be an MSO formula such that there is a unique tuple

X1, ...Xn of sets of positions of t such that btc |= ϕ(X1, ..., Xn). We say that (X1, ..., Xn) is MSO-
definable in t.

Let now F ′ := F × P([n]) and tϕ the F ′-term obtained from t by replacing a symbol f at an
occurrence u by the symbol (f, I) of same arity where I is the set of indices i such that u ∈ Xi, where
(X1, ..., Xn) is defined by ϕ. We have the following.

Lemma 2.13 : Let t be regular and F ′ and ϕ be as above.
(1) The F ′-term tϕ is regular.
(2) In the case where n = 1, the cardinality of the unique set X1 such that btc |= ϕ(X1) can be

computed.

Proof:
Easy consequences of Proposition 2.10 together with routine logical manipulations. ut

2.3. Arrangements and labelled sets

We review a notion introduced in [6] and further studied in [16, 17].

Definitions 2.14 : Arrangements

(a) Let X be a countable set. A linear order (V,≤) equipped with a labelling mapping lab : V →
X is called an arrangement over X . We denote by A(X) the set of arrangements over X . A linear
order (V,≤) is identified with the arrangement (V,≤, Id) such that Id(v) := v for each v ∈ V .

An arrangement over a finite set X can be considered as a generalized word over alphabet X .

(b) An isomorphism of arrangements i : (V,≤, lab)→ (V ′,≤′, lab′) is an order preserving bijec-
tion i : V → V ′ such that lab′ ◦ i = lab. Isomorphism is denoted by ' (as for all structures).

(c) The concatenation of linear orders (denoted by the noncommutative operation +) yields a con-
catenation of arrangements denoted by •. We denote by Ω the empty arrangement and by a the one
reduced to a single occurrence of a ∈ X . Clearly, w • Ω = Ω • w = w for every w ∈ A(X). The
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infinite word w = aω is the arrangement over {a} with underlying linear order ω; it is described by
the equation w = a • w. Similarly, the arrangement w = aη over {a} with underlying linear order
(Q,≤) (that of rational numbers) is described by the equation w = w • (a • w).

Definition 2.15 : Terms defining arrangements.
(a) Let X be a set of nullary symbols and t ∈ T∞({•,Ω} ]X). The set Pos(t) of positions of t

is the tree-domain Dt ⊆ {1, 2}∗. The value of t is the arrangement val(t) := (Occ(t,X),≤lex, lab)
where Occ(t,X) is the set of positions of the elements of X and lab(u) is the symbol of X occurring
at position u. We say that t denotes an arrangement w if w is isomorphic to val(t).

(b) An arrangement is regular if it is denoted by a regular term. �

Examples 2.16 : (a) t0 := •(a, •(b, •(a, •(b, •(.........)))))) denotes the infinite word abab... . Its
value is defined from the set of words Occ(t0, {a, b}) = 2∗1, lexicographically ordered4 and the
labelling function such that lab(2i1) := a if i is even and lab(2i1) := b if i is odd. The term t0 is
regular.

(b) The arrangements aω and aη (whose underlying orders are, respectively, the natural and rational
numbers) are denoted respectively by t1 and t2 that are the unique solutions in T∞({•,Ω, a}) of the
equations t1 = a • t1 and t2 = t2 • (a • t2). These two arrangements are regular.

The term t2 is defined from the two equations t2 = t2 • s and s = a • t2. The tree-domains of t2
and s satisfy the equalities :

Dt2 = ε ∪ 1Dt2 ∪ 2Ds and Ds = ε ∪ 1 ∪ 2Dt2 ,

hence Dt2 is defined by the regular expression (1∪ 22)∗(ε∪ 2∪ 21). The positions in (1∪ 22)∗21 are
the occurrences of a. �

An arrangement is regular5 if and only if it is the value of a regular expression in the sense of [16].
The later characterization implies that regularity is preserved under alphabetic homomorphisms : if
w = (V,≤, lab) ∈ A(X) is regular and r : X → Y is a partial mapping, then (V ′,≤, r ◦ lab) is a
regular arrangement over Y where V ′ is the set of x ∈ V such that r(lab(x)) is defined6.

We will also use the result of [17] that an arrangement over a finite alphabet is regular if and only
if is MSO-definable, where we represent an arrangement w = (V,≤, lab) over X by the relational
structure bwc := (V,≤, (laba)a∈X) such that laba(u) is true if and only if lab(u) = a.

Definition 2.17 : The inorder on words over {1, 2}.
We define as follows a strict linear order <in on W := {1, 2}∗:

x <in y :⇐⇒ either x = y1x′, or y = x2y′, or x = z1x′ and y = z2y′ for some words
x′, y′, z.

In the last two cases, we have x <lex y. �
4We have 1 < 21 < 221 < ...
5Equivalently is a component of the initial solution of a regular equation system over {•,Ω} ]X (X is finite, cf. [6]). We
will not use this characterization.
6A letter a is erased if r(a) is undefined.
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The verification that <in is indeed a strict linear order is easy from definitions. It generalizes to
infinite binary trees the inorder on the nodes of finite ones.

Proposition 2.18 : Let F be a finite set of function symbols of arity at most 2. Let t ∈ T∞(F ) be a
regular term.

(1) The arrangement t̂ := (Pos(t),≤in, labt) over F is regular.
(2) If X ⊆ Pos(t) is MSO-definable in t, then the arrangement t̂[X] := (X, ≤in, labt) is regular.

Proof sketch: (1) Let t = t1 be defined by equations ti = si where i = 1, .., n. We obtain as
follows a finite equation systems defining the arrangements t̂i for i = 1, .., n.

If ti = f(tj , tk) then t̂i = (t̂j • f ) • t̂k.
If ti = f(tj) then t̂i = t̂j • f.
If ti = f then t̂i = f.

(2) By Lemma 2.13 and the fact that the regularity of arrangements is preserved by erasing letters
in a deterministc way. �

Definition 2.19 : Labelled sets, or commutative arrangements
(a) An X-labelled set is a pair m = (V, lab) where V is a set and lab is a mapping : V → X ,

equivalently, if X is finite, a relational structure (V, (laba)a∈X) where each element of V belongs to a
unique set laba. We denote by S(X) the set of X-labelled sets.

(b) We denote by set(w) the X-labelled set obtained by forgetting the linear order of an arrange-
ment w over X . A term in t ∈ T∞({•,Ω} ∪X) defines the X-labelled set set(val(t)). Over labelled
sets, the operation • is commutative.

Up to isomorphism, anX-labelled setm is defined by the cardinalities in N∪{ω} of the sets laba,
hence is a countable multiset of elements of X : a number in N ∪ {ω} is associated with each a ∈ X
and represents its number of occurrences in m.

If X is finite, each X-labelled set is MSOfin -definable, i.e., is the unique countable model, u.t.i.,
of a sentence of monadic second-order logic extended with a set predicate Fin(U) expressing that a
set U is finite. It is also regular, i.e., is set(val(t)) for some regular term in T∞({•,Ω} ∪ X). The
notion of regularity is thus trivial for X-labelled sets when X is finite.

3. Order-theoretic trees and forests

In order to have a simple terminology, we will use the prefix O- to mean order-theoretic and to distin-
guish these generalized trees from the ordered ones in [11]. An order-theoretic forest is called simply
a tree by Fraı̈ssé in [15]. We will distinguish carefully trees, forests, O-trees and O-forests.

Definition 3.1 : Order-theoretic forests and trees.
(a) An O-forest is a pair J = (N,≤) such that:

1) N is a countable7 set called the set of nodes,
7Countable means finite or countably infinite.
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2) ≤ is a partial order on N such that, for every node x, the set [x,+∞[ (the set of nodes
y ≥ x) is linearly ordered.

It is called an O-tree if furthermore:

3) every two nodes x and y have an upper-bound.

An O-forest (N,≤) is the disjoint union of O-trees whose sets of nodes are the connected compo-
nents of the comparability graph of ≤. More precisely, two nodes are in a same component, i.e. in the
same composing O-tree, if and only if they have a (common) upper bound.

(b) A minimal node is a leaf. If N has a largest element r (that is x ≤ r for all x ∈ N ) then J is a
rooted O-tree and r is its root. In an O-tree, the set of strict upper-bounds of a nonempty set X ⊆ N
is an upwards closed line8 L.

(c) An O-tree is a join-tree9 if every two nodes x and y have a least upper-bound denoted by
x t y and called their join (cf. Section 1). It is a join-forest if every two nodes having an upper-bound
actually have a join. �

If T is a finite rooted tree, then (NT ,≤T ) is a join-tree (≤T is the ancestor relation) and every
finite O-tree is a join-tree of this form.

3.1. Structurings

O-forests will be partitioned into lines, i.e., into convex linearly ordered subsets.

Definition 3.2 : Covering between lines.
Let J = (N,≤) be an O-forest. If U and W are two lines, we say that W covers U , denoted by

U ≺ W , if U < w for some w in W and, for all x ∈ N and w in W , if U < x < w, then x ∈ W .
Hence, there is nothing between U and W : if U < y and y ∈ N , then there is w ∈ W such that
U < w ≤ y. The covering relation is not transitive, hence ≺ is not a strict partial order.

Definitions 3.3 : Structurings of O-forests
(a) Let J = (N,≤) be an O-forest. A structuring of J is a set U of nonempty lines that forms a

partition of N and satisfies the following condition:
For each x in N , we have10 [x,+∞[= Ik ] Ik−1 ] ... ] I0 for nonempty intervals I0, ..., Ik of

[x,+∞[ such that:

Ik < Ik−1 < ... < I0,
for each j, we have Ij ⊆ U for some unique line U in U , denoted by Uj ,
each interval Ij is upwards closed in (Uj ,≤), which implies that Uj 6= Uj′ if j 6= j′.

8See Section 2.1 for the notion of line. That a set A is upwards closed means that [u,+∞[⊆ A for all u ∈ A.
9An ordered tree is a rooted tree such that the set of sons of each x is linearly ordered by an order depending on x. This
notion is extended in [11] to join-trees. Ordered join-trees should not be confused with order-theoretic trees.
10The set [x,+∞[ may have a greatest element that this notation does not specify.



B. Courcelle / Order-theoretic Trees: Monadic Second-order Descriptions and Regularity 99

It follows that Uk ≺ Uk−1 ≺ ... ≺ U0 and that I0 and U0 are upwards closed in J .
Then J = (N,≤,U) is a structured O-forest, an SO-forest in short.
A structuring of an O-forest is a union of structurings of the O-trees composing it.

(b) The sequence I0, I1, ..., Ik is uniquely defined for each x, and k is called the depth of x. If x ∈
N , then U(x) denotes the line of U containing x.We define β(x) := [x,+∞[−U(x) = Ik−1] ...]I0

(hence, x /∈ β(x)).

(c) If J = (N,≤,U) is an SO-forest and X ⊆ N , then the set of nonempty sets X ∩U for U ∈ U
is a structuring of the O-forest J [X]. However, the depth of an element of X may be smaller in J [X]
than in J . �

Example 3.4 : Figure 1 shows a structuring {A,B,C,D,E} of an O-tree. The line A is upwards
closed (we will call it the axis). The depth of x is 0, the depths of y and z are 2. We have β(x) = ∅
and β(u) = I where u is any node in B ∪D. The lines {A,B,C,D,E} form a kind of tree. �

Figure 1. A structuring of an O-tree.

Proposition 3.5 : Every O-forest has a structuring.

Proof:
The proof is similar to that of [11] establishing that every join-tree has a structuring. We give it for
completeness.

We first consider an O-tree J = (N,≤). We choose an enumeration x0, x1, ..., xn, ... of N and a
maximal11 line B0; it is upwards closed. For each i > 0, we choose a maximal line Bi containing the
first node not in Bi−1 ∪ ... ∪ B0. We define U0 := B0 and, for i > 0, Ui := Bi − (Ui−1 ] ... ] U0)
= Bi − (Bi−1 ∪ ... ∪B0). We define U as the set of lines Ui. It is a structuring of J .

An O-forest has a structuring that is the union of structurings of the O-trees composing it. ut
11Maximal for set inclusion.
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Definition 3.6 : Axis
(a) An axis of an SO-forest J = (N,≤,U) is a distinguished upwards closed line A ∈ U . It is

an axis of one of the SO-trees composing J . An SO-forest with axis, an SOA-forest in short, is thus a
4-tuple J = (N,≤,U , A). If A empty, we say that J has no axis; it can be defined as (N,≤,U).

An nonempty SO-tree J = (N,≤,U) has a unique axis A, defined from U , that we denote by
Axis(J). Hence it is an SOA-tree in a unique way. However, as for SO-forests, we may decide that it
has no axis.

(b) The operation fg forgets the axis of an SOA-forest (or of an SOA-tree):

fg(N,≤,U , A) := (N,≤,U) identified to (N,≤,U , ∅).

(c) The union of pairwise disjoint SO-trees (without axes) is an SO-forest, and conversely. If J is
an SO-forest, we denote by Axes(J) the set of axes of the SOA-trees composing it according to (a).

(d) If J = (N,≤,U) is an SO-forest and U ∈ U , we denote by J ↓ U the SOA-tree J [W ] with
axis U , where W is the union of the sets ]−∞, x] for all x ∈ U . �

Definition 3.7 : Cuts defined from a structuring.
Let J = (N,≤,U) be an SO-forest.
(a) If U ∈ U , we say that a node x ∈ N defines a cut (U1, U2) of the linear order (U,≤) if x /∈ U ,

U2 = U ∩ [x,+∞[6= ∅ and x⊥U1 (i.e., x is incomparable with each element of the nonempty set U1).
This cut is denoted by κ(U, x).

(b) We let Cuts(U) be the set of cuts κ(U, x) of U, and we denote by UCuts(U) the linearly
orderered set (U ] Cuts(U),≤) (cf. Definition 2.2). It is countable as N is.

(c) We denote by K the union of the sets Cuts(U) for all U ∈ U . This set is countable because
cuts are defined by nodes and each node x of depth k > 0 defines finitely many cuts in lines of smaller
depth.

(d) If κ is a cut of U of depth k ≥ 0, we denote by Def (κ) the SO-forest (without axis) induced
by the nodes x such that κ(U, x) = κ. Then Axes(Def (κ)) is the set of lines W of Def (κ) that are at
depth k + 1 (in J), hence such that W ≺ U . Each of them defines an SOA-tree J ↓W and Def (κ) is
the union of the SO-trees fg(J ↓W ) for all W ∈ Axes(Def (κ)).

We denote by L the set of O-forests Def (κ) for all κ ∈ K. It is in bijection with K. �

In Example 3.4 and Figure 1, we let κ := κ(A, y) = κ(A, z). Then Def (κ) consists of the two
trees B ∪ C and D ∪ E, Axes(Def (κ)) = {B,D} and J ↓ B is the SOA-tree B ∪ C with axis B.

Lemma 3.8 : Let J = (N,≤,U) be an SO-forest.
(1) Each node x at depth k > 0 defines a cut of some U ∈ U of depth k − 1.
(2) Each cut of U of depth k ≥ 0 is κ(U, x) for some node x at depth k + 1.

Proof: Clear from definitions. �
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3.2. Description schemes of SOA-forests

As observed above, a structuring of an O-tree can be seen as a kind of ”tree of lines”. In a regular
SO-tree (a notion to be defined), the structuring consists of finitely many lines up to isomorphism, and
they are regular arrangements. By defining these arrangements by monadic second-order sentences,
we will obtain finitary descriptions. The formal definitions are more involved.

Definitions and notation 3.9 : Concerning SO-forests
Let J = (N,≤,U) be an SO-forest. It is a disjoint union of SO-trees.

(a) As observed in Definition 3.6(a), each of these SO-trees L = (NL,≤,UL) has a unique axis
A ∈ UL ⊆ U denoted by Axis(L). We denote by Axes(J) the set of lines Axis(L) for all these
SO-trees L.

(b) Let U ∈ U . Its tail, denoted by Tail(U), is the SO-forest induced on {x ∈ N | x < U}. It
may be empty12. We let T be the set of nonempty SO-forests Tail(U) for U ∈ U . For each U ∈ U ,
we let τU be a new symbol, standing for Tail(U) and located so as to mark that Tail(U) < U, as
shown by the next definition. Similarly, a cut κ of U marks the position of Def (κ) among the nodes
of U .

(c) We recall (Definition 2.2) that UCuts(U) is the arrangement extending U by inserting its cuts at
their natual places. We let U+ be the arrangement τU • UCuts(U) defined by prefixing UCuts(U) with
τU . It is countable.

Definition 3.10 : Substitutions of SO-forests in linear orders.
Let H = (N,≤H) be a linear order, X ⊆ N and for each x ∈ X, let Fx = (Mx,≤x,Ux) be an

SO-forest such that the sets Mx are pairwise disjoint and disjoint from N . Then H[x ← Fx;x ∈ X]
is the SOA-forest (M,≤,U , A) such that :

M is the union of N −X and the sets Mx,
u ≤ v if and only if u, v ∈ N −X and u ≤H v,
or u, v ∈Mx and u ≤x v for some x ∈ X ,
or v ∈ N −X and u ∈Mx for some x ∈ X and x <H v.

A := N −X ,
U consists of A and the sets in the Ux’s for all x ∈ X . �

With these definition and notation, we have :

Lemma 3.11 : Let J = (N,≤,U) be an SO-forest and U ∈ U . Then we have:

J ↓ U = U+[κ← Def (κ);κ ∈ Cuts(U), τU ← Tail(U)]

if Tail(U) is not empty. Otherwise,
J ↓ U = U+[κ← Def (κ);κ ∈ Cuts(U)].

12If we define U by means of the construction of Proposition 3.5, all tails are empty.
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Proof:
Straightforward from the definitions. We have equalities, not just isomorphisms. ut

Labellings of SO-forests.

Let J = (N,≤,U) be an SO-forest, as in Definitions 3.7 and 3.9. Then K will denote the set of
all cuts, L the set of associated SO-forests Def (κ) for all κ ∈ K and T the set of all tails. Hence, L
and T are disjoint sets of SO-forests.

Our objective is to use labelling functions r : U → D and s : L ] T → Q, into disjoint sets D
and Q, in such a way that :

r(U) = r(U ′) implies J ↓ U ' J ↓ U ′ and
s(L) = s(L′) implies L ' L′.

Actually, stronger conditions will be useful.

Definitions 3.12 : Good labelling of an SO-forest J.
A good labelling of J = (N,≤,U) is defined from the following items:

disjoint sets D, Qcut and Qtail, with Q := Qcut ]Qtail,
mappings r : U → D and s : L ] T → Q such that:
s(L) ⊆ Qcut, s(T ) ⊆ Qtail,
r(U) = r(U ′) implies sB U+ ' sB U ′+ and
s(L) = s(L′) implies r{Axes(L)} = r{Axes(L′)},

where we use the following notation:

sB U+ is the arrangement over {∗} ]Q, obtained by replacing τU by s(Tail(U)), each
κ in Cuts(U) by s(Def (κ)) and each u ∈ U by ∗,
r{Axes(L)} is the multiset of elements of D (cf. Definition 2.19) consisting of the labels
r(Axis(W )) for all W in Axes(L), hence r{Axes(L)} ∈ S(D).

If r and s define a good labelling, then r(U) = r(U ′) implies s B U+ ' s B U ′+ whence also
J ↓ U ' J ↓ U ′ (by Lemma 3.11), and s(L) = s(L′) implies r{Axes(L)} = r{Axes(L′)} whence
L ' L′.

In what follows, we focus on O-trees. Extending the results to O-forests will be staightforward as
they are disjoint unions of O-trees.

Definition 3.13 : Description schemes.
(a) A description scheme is a tuple ∆ = (D,Q, dAx, (mq)q∈Q, (wd)d∈D) where D and Q are

disjoint sets, dAx ∈ D, mq ∈ S(D) for each q ∈ Q and each wd is an arrangement over {∗} ]Q.

(b) It describes an SOA-tree J = (N,≤,U , A) if J has a good labelling with mappings r : U → D
and s : L ] T → Q such that :
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r(A) = dAx,
if r(U) = d, then wd ' sB U+,
if s(L) = q, then mq = r{Axes(L)}.

In that case, we say that ∆ describes as well the SO-tree (N,≤,U) and the O-tree (N,≤).

(c) A description scheme ∆ = (D,Q, dAx, (mq)q∈Q, (wd)d∈D) is regular if D ] Q is finite and
each arrangement wd is regular. The finiteness of D implies that the D-labelled sets mq are regular
(cf. Section 2.3).

Lemma 3.14 : (1) Every SOA-tree is described by some description scheme.
(2) Every description scheme describes a unique SOA-tree, u.t.i.

Proof:
(1) One can take D := U , Q := L ] T and identity mappings r and s.
(2) Similar to the proof of Proposition 3.24 in [11]. ut

Examples 3.15 : (1) If all components D,Q,mq and wd of a description scheme ∆ are finite, then, the
defined SOA-tree is a regular, possibly infinite, rooted tree (with an axis).

For example, ∆ := ({d}, {q}, d,mq, wd) where mq = {d} and wd = q∗ defines the SOA-tree
J := (N,≤J ,U , {0}) such that n ≤J m if and only if m ≤ n and U is the set of singletons {n}.

Figure 2. See Example 3.15.

(2) Figure 2 sketches a description scheme of a structured O-tree whose lines have depth 0 or 1.
The axis A is {a, b, c, d, e}, it has four cuts named κ, λ, µ, ν. The other lines of the structuring have
isomorphism types B or C. The SO-forests Def (κ) and Def (µ) are both isomorphic to the multiset
{B,B,C}: we mean that the SO-forest Def (κ) has three components respectively isomorphic to
B,B and C. Similarly, Def (λ) and Def (ν) are isomorphic to {B,C, ..., C} with ω times C. The
axis has a tail isomorphic to {B,C,C}. We let p label κ and µ, q label λ and ν, and z label τA. Then
sBA+ = z ∗ p ∗ q ∗ p ∗ q∗ (cf. Definition 3.12).
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A corresponding description scheme has D := {α, β, γ}, Q := {z, p, q}, dAx := α, wα :=
sB A+, wβ := sB B,wγ := sB C, mz := {β, γ, γ}, mp := {β, β, γ}, mq := {β, γ, ..., γ} with ω
times γ. As B and C have neither cuts nor tails, B+ = B,C+ = C and the arrangements sB B and
sB C are over {∗}.

The elements ofD name the isomorphism types of the lines that form the structuring. The elements
of Q name the isomorphism types of the axes of the SOA-trees composing the SO-forests defined by
the tail of A and by its cuts. More than the isomorphism type of the axis A, the element α of D
designates the arrangement sBA+ that incorporates descriptions of the cuts of A (and the SO-forests
they define) and of its tail. �

3.3. Monadic second-order description of SO-forests

In view of our use of monadic second-order logic, we give a description of SO-forests by relational
structures. An SO-forest J = (N,≤,U) is not per se a relational structure because U is a partition of
N in an unbounded number of sets. We will encode U by a bipartition ofN , by using a tool introduced
in Definition 3.6 of [11].

Definition 3.16 : SO-forests represented by relational structures.
If J = (N,≤,U) is an SO-forest, we define S(J) as the relational structure (N,≤, N0, N1) such

that N0 is the set of nodes at even depth and N1 := N −N0 is the set of those at odd depth; N0 and
N1 are sets but we consider them also as unary relations.

Proposition 3.17 :(1) There is an MSO formula ϕ(N0, N1) expressing that a relational structure (N,≤
, N0, N1) is S(J) for some SO-forest J = (N,≤,U).

(2) There exist MSO formulas θ1(N0, N1, U) and θ2(N0, N1, U,W ) expressing respectively, in a
structure (N,≤, N0, N1) = S((N,≤,U)), the properties ”U ∈ U” and ”U,W ∈ U and U ≺ W ” (cf.
Definition 3.2 for ≺ ).

Proof:
Easy extension of Proposition 3.7 of [11] ut

We recall from Definition 3.6 that if (N,≤, N0, N1) is S(J) for some SO-tree J = (N,≤,U),
then its only possible axis is the unique set A in U such that A ⊆ N0 and there is no x ∈ N1 such that
A < x.

One of our key results is the following theorem.

Theorem 3.18 : Let ∆ be a regular description scheme. There exists an MSOfin sentence that char-
acterizes u.t.i. the SOA-trees described by ∆.

Its proof will be given after some more notation and definitions.

Definitions 3.19 : Defining nodes.
Let J = (N,≤,U , A) be an SOA-tree. We use the notation of Definitions 3.7, 3.9, 3.12 and 3.13.
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(a) We say that x ∈ N defines13 W ∈ U if W = U(x).

We say that x ∈ N defines the tail of W ∈ U if U(x) < W and U(x) ≺ W , which implies that
Tail(W ) is not empty and U(x) ⊆ Tail(W ). Furthermore, U(x) ∈ Axes(Tail(W )).

We say that x ∈ N defines the cut (W1,W2) = κ of W ∈ U if U(x) < W2, U(x)⊥W1 and
U(x) ≺W , which implies that U(x) ⊆ Def (κ) and U(x) ∈ Axes(Def (κ)) (cf. Definition 3.9(b)).

(b) A triple of sets (NU , NT , NK) is well-defining (for J) if :

NU contains exactly one element defining each W ∈ U ,

NT contains exactly one element defining a nonempty tail Tail(W ) for all W ∈ U ,

NK contains exactly one element defining each cut in K, the set of all cuts of all lines.

We have NT ∩NK = ∅.

(c) Let p, p′ be positive integers. A mapping r : U → [p] is described by a partition (R1, ..., Rp)
of NU , such that r(U) = i if and only if there is some x ∈ U ∩NU ∩Ri. A mapping s : T ] L → [p′]
is described similarly by a partition (S1, ..., Sp′) of NT ]NK. (We recall that Def defines a bijection
K → L).

(d) Let N0, N1 be as in Definition 3.16. A pair (r, s) that defines a good labelling (cf. Definition
3.12) whereD = [p] andQ = [p′] can be described by a tuple of sets (NU , NT , NK, R1, ..., Rp, S1, ...,
Sp′) that satisfies ϕ(N0, N1) and, thanks to Proposition 3.17(2), the conditions of (b) and (c).

We denote by ψ(N0, N1, NU , NT , NK, R1, ..., Rp, S1, ..., Sp′) the MSO-formula expressing the
conjunction of these conditions (including ϕ(N0, N1)). �

Proof of Theorem 3.18 : Let ∆ = (Q,D, dAx, (mq)q∈Q, (wd)d∈D) be a regular description scheme.
For each d ∈ D, there is an MSO-formula ψd that characterizes, u.t.i., the regular arrangement

wd, cf. Section 2.3. It is written with the relation symbol≤ and unary relation symbols labq, lab∗ used
for encoding the labelling in Q ] {∗}.

For each q ∈ Q, there is an MSOfin-formula ηq that characterizes, u.t.i., the labelled set (the
multiset) mq. It is written with the unary symbols labd for encoding the labelling in D. The finiteness
predicates are necessary to distinguish the infinite sets from the finite ones.

Without loss of generality, we assume that D = [p] and Q = [p′].
Let (N,≤) be an O-tree. (An FO sentence can check that (N,≤) is actually an O-tree). Let

N0, N1, NU , NT , NK, R1, ..., Rp, S1, ..., Sp′ be 5+p+p′ sets of nodes. The MSO formula ψ(N0, N1,
NU , NT , NK, R1, ..., Rp,S1, ..., Sp′) expresses that they define a structuring U of the O-tree (N,≤),
that the sets NU , NT , NK and the mappings r and s on the sets U and T ∪ K are as in Definition
3.19(b,c).

In order to build an MSOfin formula that checks the conditions of Definition 3.13(b), we use the
follows steps.

13A different notion of representation of a line by an element (actually a position in a term defining J) will be used in
Section 4.
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(a) For each x ∈ Rd, 1 ≤ d ≤ p, the arrangement s B U(x)+ has a domain consisting of U(x)
whose elements are labelled by ∗, together with the nodes y of NK that define cuts14 of U(x); each
such y is labelled by s(Def (V,W )) ∈ Qcut where (V,W ) is the cut it defines. Furthermore, if the tail
of U(x) is not empty, then sBU(x)+ has a first element z inNT marking its place, and that is labelled
by s(Tail(U(x))). The linear ordering of U(x)+ following from Definition 2.2 is MSO-definable, as
for each y ∈ NK, the corresponding pair (V,W ) can be MSO-defined.

It remains to express that s B U(x)+ satisfies ψr(x) which can be done by an MSO formula,
constructed from ψr(x) by relativization to the domain of U(x)+ described above.

In this way, we express that the arrangements U+ associated with the lines U of U satisfy Defini-
tion 3.13(b).

(b) Next we consider the cuts, defined by nodes y ∈ Sq ∩NK. Let y define a cut κ. We recall that
Axes(Def (κ)) is the set of axes of the SOA-trees that form the SO-forest Def (κ). Each of these axes
A has a defining node ∂(A) in NU , and each ∂(A) has an image in D by r (specified by (R1, ..., Rp)).
We obtain a labelled set r{Axes(Def (κ))}. By means of the MSOfin formula ηs(y), one can express
that it is isomorphic to mq.

The case of tails, defined by the nodes in the sets Sq ∩NT can be treated similarly.

(c) We also express that the axis of the structuring of (N,≤) defined by N0, N1 contains a node in
Rr(dAx).

Hence, we get an MSOfin formula Θ∆(N0, N1, NU , NT , NK, R1, ..., Rp, S1, ..., Sp′) (it implies
ψ(N0, N1, NU , NT , NK, R1, ..., Rp,S1, ..., Sp′)), that expresses the conditions of Definition 3.13(b)
and 3.19(b,c).

It follows that an O-tree (N,≤) has a structuring defined by ∆ if and only if it satisfies the MSOfin

sentence:

∃N0, N1, NU , NT , NK, R1, ..., Rp, S1, ..., Sp′ .Θ∆(N0, ..., Sp′) . �

Our aim is now to establish the converse to Theorem 3.18 yielding Theorem 4.19 that is our main
theorem. We will use for that an algebra of SO-forests of possible independent interest.

4. The algebra of SO-forests

We will actually use SO-forests enriched with distinguished axes. Their algebra is similar to that of
[11] for structured join-trees, but it uses less operations and a single sort instead of two.

Definition 4.1 : The algebra of SOA-forests.
SOA-forests are defined in Definition 3.6. We define the following operations.

(a) Concatenation of SOA-forests along axes.

14We replace in the definition of U+ (Definition 3.9(c)) a cut by the node in NK that defines it.
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The concatenation J • J ′ of disjoint SOA-forests J = (N,≤,U , A) and J ′ = (N ′,≤′,U ′, A′) is
defined as follows:

J • J ′ := (N ]N ′,≤′′,U ′′, A ]A′) where :
x ≤′′ y :⇐⇒ x ≤ y ∨ x ≤′ y ∨ (x ∈ N ∧ y ∈ A′),
U ′′ := (U − {A}) ] (U ′ − {A′}) ] {A ]A′}.

This operation is associative. If A = A′ = ∅, then J • J ′ is the union of J and J ′, and then
J • J ′ = J ′ • J.

If J and J ′ are not disjoint, we replace one of them by an isomorphic copy disjoint from the other.
The result is well-defined u.t.i. (we recall up to isomorphism) as different isomorphic copies can be
chosen. (This is a standard technique. See [13]).

If J and J ′ are linear orders with A = N , U = {A}, A′ = N ′ and U ′ = {A′} then J • J ′ is their
concatenation.

Figure 3. From left to right O-forests J, J ′ andK. Thick lines show the axes. See Figure 4 for concatenations.

Figure 4. The concatenations J • J ′ and K • J.

Figure 3 shows SOA-forests J, J ′ and K where J and J ′ have axes shown by thick lines and K
has no axis. They all consist of two SO-trees. Figure 4 shows the concatenations J • J ′ and K • J.
Both consist of two O-trees.
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(b) The empty SOA-forest is denoted by the nullary symbol Ω.
Clearly, J • Ω = Ω • J = J.

(c) Nullary symbols for nodes. For each u (intended to be a node), we denote by u the SOA-tree
({u},=, {{u}}, {u}). When considering SOA-trees and SOA-forests u.t.i., we replace every u by the
unique symbol ∗ denoting any singleton SOA-tree.

(d) Forgetting the axis (cf. Definition 3.6).
To forget the axis, equivalently, to make it empty, we use the unary operation fg such that15 :

fg(N,≤,U , A) := (N,≤,U , ∅), equivalently, (N,≤,U).

It is clear that:

fg(Ω) = Ω,

fg(fg(J)) = fg(J) and

fg(J) • fg(J ′) = fg(J ′) • fg(J) = fg(J • fg(J ′)),

where J and J ′ are disjoint or replaced by disjoint copies; in the latter case, equality is replaced
by isomorphism.

(e) We let F := {•, fg ,Ω, ∗} and we obtain an F -algebra of SOA-forests u.t.i, denoted by S. �

The value in S of a term in T (F ), i.e., of a finite term over F, follows immediately from the
definition of the operations. It is defined u.t.i. because we need to take disjoint copies of the SO-
forests that are arguments of concatenation: the simplest example is for the term ∗ • ∗. Alternatively,
u•v denotes the SOA-tree ({u, v},≤, {{u, v}}, {u, v}) where u < v.

Figure 5. A term and the SOA-tree it defines, cf. Example 3.2.

15We could define an algebra with two sorts for O-forests with and without an axis, and more operations.
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Example 4.2 : Figure 5 shows a finite term t (on the left) and the SOA-tree J it defines. The bold
edges indicate the axis {c, d, f}. We have U = {{a, b}, {c, d, f}, {e}, {g, h}}. If in this term we omit
the operation fg at position 11 (we use Dewey notation for positions, cf. Definition 2.3), marked in
Figure 5 by an arrow, we obtain an SOA-tree with axis {a, b, c, d, f} and same ancestor relation. �

Before giving a formal definition of the SOA-forest denoted by an infinite term t, i.e., that will be
its value in S, we give three examples.

Examples 4.3 : Some SOA-forests and terms that denote them.
(1) The SOA-tree (Q,≤, {Q},Q) that we will denote by Q is the value of the regular term t0

defined as the (unique) solution of the equation t0 = t0 • (∗ • t0), cf. Example 2.16(b) in Section 2.3
about arrangements.

(2) Let now J := (Q,≤′,U ,Q−B) be the SOA-tree such that:

B := {−n | n ∈ N},
x ≤′ y if and only if x ≤ y and y /∈ B,

and its structuring U consists of the axis Q−B and the sets {b} for b ∈ B.

It is not a join-tree because (−n)tx is undefined if n ∈ N and x < −n. We have J ' J • (fg(∗)•
Q). It is the value of the term t1 that is the unique solution of the equation t1 = t1 • (fg(∗) • t0).

(3) Let H be an SOA-forest and J := fg(H)•u. Then J is an SOA-tree with root u and axis
{u}; its subtrees below u are the components of the forest H whose axis has been ”forgotten” by the
operation fg . This construction is denoted by extu(H) in [11]. �

We will use concrete terms that define SOA-forests with explicit nodes, as opposed to SOA-forests
up to isomorphism. For this purpose, if M is a set of potential nodes, then M is the set of nullary
symbols u for u ∈ M . We let FM be the set {•, fg ,Ω} ]M . A concrete term is a term in T∞(FM )
such that each u has at most one occurrence (because the arguments of • must define disjoint forests).
Its value is an SOA-forest with nodes in M . The following definition is similar to Definition 3.28
of [11].

Definition 4.4 : The value of a term in T∞(FM ) or in T∞(F ).
Positions of terms are defined as words over {1, 2}, cf. Definition 2.3.

(a) If u, v are positions of a term t and v is an ancestor of u, we write u <t1 v if u = v1u′ for
some word u′ (i.e., u is the left son of v or is below it), and similarly, u <t2 v if u = v2u′. We will
also use the lexicographic order ≤lex on words.

(b) Let t be a term in T∞(FM ) or in T∞(F ), and w,w′ ∈ Pos(t). We write w ≈ w′ if and only
if w = w′ or w 6= w′ and there is no occurrence of the operation fg on the path in t (considered as a
rooted tree) between its nodes w and w′. However, w and/or w′ may be occurrences of fg (cf. Example
4.10(2) below).

If w and w′ are occurrences respectively of u and u′, we write u ≈ u′ if and only if w ≈ w′. We
denote by occ(t, u) the occurrence of u in t. We will frequently replace occ(t, u) by u.



110 B. Courcelle / Order-theoretic Trees: Monadic Second-order Descriptions and Regularity

(c) The value of a concrete term. Let t ∈ T∞(FM ). We let N be the set of u ∈M such that u has
one occurrence in t (hence a unique one). It is empty if, for example, t is Ω or Ω • Ω.

The value val(t) is the tuple (N,≤,U , A) defined as follows:

(i) Let u, v ∈ N . We define:

u < v if and only if occ(t, u) <lex occ(t, v) and occ(t, v) ≈ w where w := occ(t, u) tt
occ(t, v) (the join of occ(t, u) and occ(t, v) in t).

Hence w is an occurrence of •, occ(t, u) <t1 w and occ(t, v) <t2 w.

(ii) The axis A is the set of nodes u ∈ N such that occ(t, u) ≈ roott provided roott is not an
occurrence of fg ; otherwise, there is no axis.

(iii) The sets in U are the nonempty sets [x]≈ ∩N for some position x in t; each such set is U(u)
for some u in N . On a set U(u), the order ≤ is the lexicographic order.

We will see that val(t) is an SOA-forest.

(d) The value of a term in T∞(F ).

We construct from t ∈ T∞(F ) an SOA-forest J = (N,≤,U , A) whose isomorphism class is the
value of t, also denoted by val(t):

N := Occ(t, ∗), the set of occurrences of the nullary symbol ∗;
the partial order ≤, the set U and the axis A are defined as above in (c).

For comparing (c) and (d), we observe that if t′ ∈ T∞(FM ) and t ∈ T∞(F ) is obtained from t′

by substituting ∗ for each u, then val(t′) ' val(t).
(e) An SOA-forest J is regular if it is, up to isomorphism, the value of a regular term in T∞(F ).

The SO-forest and the O-forest underlying J are said to be regular. We say that a term t′ ∈ T∞(FM )
is regular if t defined as in (d) is. �

The logical structure btc representing a term t is defined in Definition 2.8.

Proposition 4.5 : If t ∈ T∞(FM ), then val(t) = (N,≤,U , A) is an SOA-forest. The order≤ and the
set U are MSO-definable in btc.
Proof sketch: The following claims are easily proved from the definitions and yield the stated facts.
The pair (N,≤) is an O-forest. The sets in U are linearly ordered and form a partition of N . If
u < v < w and u ≈ w, then u ≈ v ≈ w: it follows that (N,≤,U) is an SO-forest. Finally, A ∈ U
and is an axis. Definition 4.4(b) yields a monadic second-order definition in btc of the structuring of
val(t) because the equivalence relation ≈ is MSO definable. �

Proposition 4.6 : (1) If t ∈ T∞(FM ), val(t) = (N,≤,U , A) and X ⊆ N , then the induced SOA-
forest J [X] (cf. Definition 3.3(c)) is defined by the term t′ obtained from t by replacing, for each
u /∈ X, the nullary symbol u by Ω .

(2) Let Ji, i = 1, ... be countably many pairwise disjoint SOA-forests, defined respectively by
concrete terms t1, t2, .... The term fg(t1)• (fg(t2)• ...(fg(ti)• (...))) defines an SO-forest without axis
that is their union.
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Proof:
Clear from the definitions. ut

The following proposition justifies Definition 4.4.

Proposition 4.7 : Let t• t′ ∈ T∞(FM ). Then val(t• t′) = val(t)•val(t′).We also have val(fg(t)) =
fg(val(t)), val(Ω) = Ω and val(u) = u.

Proof:
Routine proofs from definitions. ut

Hence, for a finite term t, the value val(t) from Definition 4.4 is the same as the one defined by
induction on its structure. We also get that every finite SOA-forest with set of nodes N is the value of
a term in T (FN ).

Proposition 4.8 : Every SOA-forest J is the value of a term in T∞(FN ) where N is its set of nodes.

Proof:
Similar to Proposition 3.19 in [11]. ut

Representations of lines, tails and cuts by positions.

In the following Lemmas 4.9, 4.11, 4.13 and 4.14, a term t ∈ T∞(FM ) defines a nonempty SOA-
tree J = (N,≤,U , A). The ancestor relation in t is denoted by ≤t. As positions in t are words,
we will also use on Pos(t) the linear orders ≤lex and ≤in. Furthermore, we will identify a node u
in N with occ(t, u), the position in t that defines it by being the unique occurrence of u. Hence, if
u, v ∈ N , the notations u ≈ v, [u]≈, u ≤t v, u tt v, u ≤lex v and u ≤in v will stand respectively
for occ(t, u) ≈ occ(t, v), [occ(t, u)]≈, occ(t, u) ≤t occ(t, v), occ(t, u) tt occ(t, v), occ(t, u) ≤lex
occ(t, v) and occ(t, u) ≤in occ(t, u). The notation u ≤ v refers to the order of J defined from t: here,
u and v are nodes.

Lemma 4.9 : (1) For each U = U(u) where u ∈ N , the set of positions [u]≈ has a ≤t-maximal
element x that is an occurrence of • or of u. We denote it by Rep(U).

(2) For all U,U ′ in U , if t/Rep(U) ' t/Rep(U ′), then (U,≤) ' (U ′,≤) and Tail(U) '
Tail(U ′).�

Because of the second assertion, we say that position Rep(U) is representative of U and, also, of
Tail(U). This notion differs from that of a defining node in Definition 3.19.

Proof:
(1) Consider u ∈ N and U := U(u). The set [u]≈ has a unique maximal element x with respect to
≤t . It cannot have two because any two nodes have a join that is on the path linking them.

This position x is an occurrence of a nullary symbol w for some w in N if and only if w = u and
U = {u}. It can also be an occurrence of •. In these two cases, we define Rep(U) := x.

Otherwise, x is an occurrence of fg whose unique son w must be an occurrence of • or of u (be-
cause if w is also an occurrence of fg , then x is not≈-equivalent to u). Then we define Rep(U) := w.
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(2) The occurrences of the nodes in U are below Rep(U) or equal to it. Furthermore, the order ≤
(of val(t)) restricted to U is ≤lex. It follows from Definition 4.4(a,b) that (U,≤) is fully defined from
t/Rep(U) . Hence (U,≤) ' (U ′,≤) if t/Rep(U) ' t/Rep(U ′).

Note that t is a concrete term with nullary symbols denoting the nodes of val(t). Hence, our hy-
pothesis is t/Rep(U) ' t/Rep(U ′). If t′ is obtained from t by replacing each u by ∗ and t′/Rep(U) =
t′/Rep(U ′), then we have also (U,≤) ' (U ′,≤). Similarly, all positions of t that define Tail(U)
(we mean those that define the nodes of Tail(U) and those that are on the paths in t between any
two nodes) are below Rep(U) as one can check easily. (See Example 4.10(1)). Hence Tail(U) '
Tail(U ′) if t/Rep(U) ' t/Rep(U ′). ut

If val(t) has a (nonempty) axis A, then Rep(A) is the root of t.

Examples 4.10: (1) Consider the term t0 := fg(w)• (u•v). The set U := {u, v} is the axis of val(t0)
and Rep(U) is the root of t0 (the position of the first occurrence of •). We are in the third case of the
proof of Lemma 4.9(1). Note that u tt v (the position of the second occurrence of •), that is the join
of (the positions of) two elements of U, is not the maximal element of [u]≈.

The tail of U is {w} (precisely ({w},=, {{w}})). The maximal element of [w]≈ is the position of
the unique occurrence of fg ; let x be its son. We have Rep({w}) = x. This tail is defined by fg(w),
below Rep(U).

(2) The term t1 = fg(Ω • (a • (b • fg(Ω)))) defines J1 := ({a, b}, ≤, {{a, b}}, ∅) where a < b.
The position of the first occurrence of • in t is Rep({a, b}). The two occurrences of fg are equivalent
by ≈.

(3) Let J2 := ({a, b, c, d, e, f},≤, {{a, b}, {c, d}, {e}, {f}}, {a, b}) where< is defined from a <
b, e < d < c < b and f < d by transitivity. It is the value of the term a• [fg(d• [fg(e)• fg(f)] • c)•b].
The underlined occurrence of •, call it x, is representative of the line {c, d} of U ; the tail of this line
is ({e, f},=, {{e}, {f}}) defined by the subterm fg(e) • fg(f) that is actually below x. �

We now define representative positions of cuts. If U ∈ U and κ(U, x) = (U1, U2), we recall that
U1⊥x and x < U2. The same cut is defined by each z ∈ N such that U1⊥z and z < U2.

Lemma 4.11 : Let κ(U, x) = (U1, U2) be a cut of U. Let K be the set of joins u tt v for all u ∈ U1

and v ∈ U2.

(1) If u ∈ U1 and v ∈ U2, we have x <t u tt v . The set K is linearly ordered with respect to
<t. It has a minimal element that we denote by Rep(κ) and is an occurrence of •. This position is
≈-equivalent to u and v.

(2) The subterm t/Rep(κ) of t defines an SOA-tree whose axis is the interval of (U,≤lex) con-
sisting of the elements w of U such that w <t Rep(κ).

(3) The SO forest Def (κ) is val(t/Rep(κ))[L] whereL is the set of x ∈ N such that x <t Rep(κ),
U1⊥x and x < U2.

(4) If κ is a cut of U and κ′ is a cut of U ′ such that t/Rep(κ) ' t/Rep(κ′), then Def (κ) '
Def (κ′).
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Proof:
(1) Let u ∈ U1 and v ∈ U2. The position u tt v is an occurrence of •. As u, v ∈ U, we have u ≈ v,
and so, u ≈ u tt v.

We have u < v and x < v, hence, by Definition 4.4, we have u <t1 u tt v and v <t2 u tt v, and,
similarly x <t1 xtt v and v <t1 xtt v. Hence utt v and xtt v are comparable (with respect to ≤t).

If u tt v <t x tt v, then x <t1 x tt v, u <t u tt v <t2 x tt v. We also have x tt v ≈ v, hence
x tt v ≈ u tt v as we have u ≈ u tt v ≈ v. Hence, we have x < u, because x <t1 x tt v = x tt u,
u <t2 xtt u and u ≈ xtt u. This contradicts the assumption that U1⊥x. Hence utt v ≥t xtt v and
u tt v >t x.

It follows that the set K is linearly ordered in t with respect to the ancestor relation. It has a
minimal element, say w, that we denote by Rep(κ). We have {u, x, v} <t Rep(κ) and Rep(κ) ≈ y
for each y ∈ U .

(2) We also have Rep(κ) ≈ y for each y in [u]≈ such that u ∈ U . The axis of val(t/Rep(κ))
consists of the elements u of U that are below Rep(κ) in t.

(3) and (4) are clear. Some leaves of t/Rep(κ) not in U may not belong to Def (κ) and so, may
not define the cut κ. See Example 4.12. ut

We will say that the position Rep(κ) is representative of the cut κ.

Example 4.12 : Let t = [a•((fg(y)•b) • [fg(x)•(c•(fg(z)•d))])]•e and J := val(t). See Figure 6.
Its axis is a < b < c < d < e and x defines its cut κ = ({a, b}, {c, d, e}). The representative position
of κ is the underlined occurrence of • marked by an arrow in Figure 6. The axis of val(t/Rep(κ))
consists of {b, c, d} with the cut ({b}, {c, d}). We have Def (κ) = ({x},=, {{x}}) (without axis).
Nodes y and z are below Rep(κ) in t but are not in Def (κ). �

Figure 6. Example 4.12.
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Let U ∈ U and R be Rep(Cuts(U)), defined as the set of representing positions of the cuts of U .
The linear order UCuts(U) on U ] Cuts(U) is defined in Definition 2.2.

We let UR := (U ] R,≤in). The following lemma shows that it is isomorphic to UCuts(U). The
inorder ≤in is defined in Definition 2.17.

Lemma 4.13 : Let U ∈ U . If u, v ∈ U and κ, κ′ ∈ Cuts(U), then :

(i) u < v ⇐⇒ u <in v,
(ii) u < κ⇐⇒ u <in Rep(κ),
(iii) κ < u⇐⇒ Rep(κ) <in u,

(iv) κ < κ′ ⇐⇒ Rep(κ) <in Rep(κ
′).

Proof:
(i) has been observed in Definition 4.4(b).

(ii) and (iii). Let u < κ = (U1, U2). Let w ∈ U1 and z ∈ U2 be such that Rep(κ) = w tt z. We
have u ∈ U1 hence u <in z and so u <t1 u tt z and z <t2 u tt z. We have Rep(κ) ≤t u tt z.
If Rep(κ) = u tt z, then u <in Rep(κ) since u <t1 u tt z. If Rep(κ) <t u tt z then we have
Rep(κ) <t2 uttz as we have z <t2 uttz and z <t Rep(κ). As u <t1 uttz,we have u <in Rep(κ).
Similarly, κ < u implies Rep(κ) <in u.

Assume now u <in Rep(κ). If κ < u, then Rep(κ) <in u. Hence, we must have x < κ.
Similarly, Rep(κ) <in u implies κ < u.

(iv) If κ = (U1, U2) < κ′ = (U3, U4), then U2 contains some u not in U4, hence u < U4, and thus
(U1, U2) < u < (U3, U4). Hence, if κ < κ′, we have Rep(κ) <in x <in Rep(κ

′).
If conversely Rep(κ) <in Rep(κ

′), we cannot have κ > κ′ by the previous proof, hence κ < κ′. ut

Lemma 4.14 : (i) There is an MSO formula χ1(x, U,W ) such that, if t ∈ T∞(FM ), val(t) = (N,≤
,U , A), U,W ⊆ N, x ∈ N , then χ1(x, U,W ) holds in btc if and only if U ∈ U , x = Rep(U) and
W = Rep(Cuts(U)).

(ii) Similarly, there is an MSO formula χ2(x, y, U, Z) that holds in btc if and only if U ∈ U , x =
Rep(U), y = Rep(κ) where κ is a cut of U , and Z is the set of positions Rep(V ) such that V is an
axis of an SOA-tree composing Def (κ).

(iii) There is an MSO formula χ3(x, U, Z) that holds in btc if and only if U ∈ U , x = Rep(U)
and Z is the nonempty set of representing positions Rep(V ) such that V is an axis of an SOA-tree
composing Tail(U).

Proof:
(i) The following facts are MSO-expressible by the corresponding definitions:

U ∈ U ,
x = Rep(U),
y = Rep(U1, U2) where (U1, U2) is a cut of U ,
and W = Rep(Cuts(U)).
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From these observations, we can construct χ1(x, U,W ).

(ii) Similar to (i). An MSO formula α(U, y,X) can identify the set of nodes X of Def (κ) where
y = Rep(κ) and κ is a cut of U .

The SO-trees composing the SO-forest Def (κ) can be identified, and so can be their axes and thus
the representing positions of these axes.

(iii) Similar to the previous cases. ut

Construction of a regular description scheme from a regular term.

We consider a regular term t ∈ T∞(FM ). It defines a nonempty SOA-tree J = (N,≤,U , A).
Without loss of generality, we assume that A is not empty. Its representative position Rep(A) is the
root.

Our aim is to construct for J a regular description scheme. This construction will be based on a
finite automaton accepting t, cf. Section 1.

Let B such an automaton with set of states S. We get a regular term tB (cf. Example 2.11(2)) by
attaching to each position of t, the state reached there by the unique run runB of B. Each position x
in this term is labelled by a pair (s, q) where s is the symbol of FM occuring at x and q ∈ S.

We will construct a description scheme for J of the form ∆ = (D,Q, dAx, (mq)q∈Q, (wd)d∈D)
where D and Q are finite sets built from S, mq ∈ S(D) for each q ∈ Q, wd is a regular arrangement
over Q ∪ {∗} and dAx ∈ D.

Here is a key idea. Every line U of the structuring of J has a representative position Rep(U) in t.
The state of B at Rep(U) is some d. If another line U ′ has representative position Rep(U ′) with the
same state d, then t/Rep(U) ' t/Rep(U ′), hence U ' U ′ and even s . U+ ' s . U ′+ by Lemma
4.17 below. Furthermore s . U+ is a regular arrangement. It depends only on d and is the desired wd.
The definition of mq is similar by means of Lemma 4.16.

Construction 4.15 : From a regular term t to a description scheme for val(t).
We let J := (N,≤,U , A) = val(t) where t is regular and A not empty. We will build a regular

description scheme ∆ = (Q,D, dAx, (mq)q∈Q, (wd)d∈D) that defines J .

(i) We define the finite sets D and Q :
D := runB(P1) ⊆ S where P1 is the set of positions Rep(U) for all U ∈ U .

Qtail := runB(P ′1)× {1} where P ′1 ⊆ P1 is the set of positions Rep(U) such that Tail(U) is not
empty.

Qcut := runB(P2)× {2} where P2 is the set of positions Rep(κ) of all cuts κ ∈ K.

The sets D and Q := Qtail ] Qcut are finite and disjoint because D ⊆ S, Qtail ⊆ S × {1} and
Qcut ⊆ S × {2}.

The element dAx is runB(roott) as we have Rep(A) = roott since A is not empty.

The multisets mq and the arrangements wd will be defined in Lemmas 4.16 and 4.17.

(ii) We define a good labelling (Definition 3.12) :

r(U) := runB(Rep(U)) for U ∈ U ,
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s(Tail(U)) := (runB(Rep(U)), 1) ∈ Qtail for each U ∈ U such that Tail(U) is not
empty; this is well defined because each tail Tail(U) corresponds to a unique line U ,

s(Def (κ)) := (runB(Rep(κ)), 2) ∈ Qcut for each cut κ ∈ K; this is well defined
because each O-forest Def (κ) corresponds to a unique cut κ.

Furthermore, s(Def (κ)) = s(Def (κ′)) implies runB(Rep(κ)) = runB(Rep(κ′)) hence t/
Rep(κ) ' t/Rep(κ′) and Def (κ) ' Def (κ′) by Lemma 4.11(4). Similarly, r(U) = r(U ′) im-
plies runB(Rep(U)) = runB(Rep(U ′)) hence t/Rep(U) ' t/Rep(U ′) and U ' U ′ by Lemma
4.9(2). Also, s(Tail(U)) = s(Tail(U ′)) implies t/Rep(U) ' t/Rep(U ′) and Tail(U) ' Tail(U ′).

Lemmas 4.16 and 4.17 will prove that we have actually defined a good labelling and a regular
description scheme.

With the previous notation, we have the following.

Lemma 4.16 : (1) The sets D, Qtail and Qcut are computable.

(2) For each pair (q, 1) in Qtail, one can compute the multiset

m(q,1) := r{Axes(Tail(U))} ∈ S(D),

where U is any line such that s(Tail(U)) = (q, 1).

(3) For each pair (q, 2) in Qcut, one can compute the multiset

m(q,2) := r{Axes(Def (κ)} ∈ S(D),

where κ is any cut such that s(Def (κ)) = (q, 2).

Proof:
(1) Follows from Lemma 2.13 (tB is regular) by using the MSO formulas of Lemma 4.14.

(2) Let (q, 1) ∈ Q. One can determine the position Rep(U) of some U ∈ U such that
runB(Rep(U)) = q.

The term t/Rep(U) is regular. An MSO formula16 can identify the nodes x of val(t) (they are
defined at leaves) such that x < U . They form a set disjoint from U that induces the SO-forest
Tail(U). The lines L in Axes(Tail(U)) can be identified by an MSO formula. Their representing
positions Rep(L) are all in t/Rep(U), and can be identified by an MSO formula. For each of them,
r(L) := runB(Rep(L)) is a state p of B that can be read in the symbol (•, p) occuring at Rep(L).
(We know that an MSO formula determines the symbol of tB at each position.) By Lemma 2.13(2), for
each d ∈ D, the number of lines L ∈ Axes(Tail(U)) such that r(L) = d can be computed. Hence,
we can compute m(q,1).

(3) The proof is similar. ut
16that does not depend on t.
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The next task is to prove that for each U in U , the arrangement sB U+ depends only on r(U) :=
runB(Rep(U)) and is regular. We recall that U+ is the arrangement (U,≤) in which each cut κ(U, x)
is inserted at its natural place and, furthermore, that is prefixed by τU standing for the tail of U if this
tail is not empty.

We will describe sB U+ as an MSO definable arrangement inside btc, whose linear order is ≤in.
For this purpose, without introducing additional notation, we replace in U+ a cut κ by the position
Rep(κ) and we will use Lemma 4.13.

Lemma 4.17 : Let t be a regular term accepted by a finite automaton B and val(t) = (N,≤,U , A).
Let U ∈ U .

(1) The arrangement U+ can be defined from t/Rep(U).

(2) The arrangement sBU+ can be defined from tB/Rep(U). It is regular and its MSO description
can be computed.

Proof:
Let U ∈ U .

(1) This is clear from definitions and previous remarks.

(2) Furthemore, s B U+ can be defined from tB/Rep(U). Hence, for any other line U ′ ∈ U , if
r(U) = r(U ′), we have sB U+ ' sB U ′+.

The term tB/Rep(U) is regular as it is a subterm of the regular term tB. We first assume that
Tail(U) is empty. MSO formulas can identify the leaves belonging to U and the nodes Rep(κ) for
the cuts κ of U . Let X be the set of all these nodes : we label by ∗ the leaves belonging to U and
a node Rep(κ) by (runB(Rep(κ)), 2). Then s B U+ ' (X,≤in, lab). This arrangement is regular
by Proposition 2.18(2). It is wd where d = runB(Rep(U)). As proofs are effective, we can build a
defining MSO sentence describing it.

If Tail(U) is not empty, the construction the same, except that s B U+ is then the arrange-
ment (X,≤in, lab) prefixed by τU labelled by (runB(Rep(U)), 1). Hence it is regular and is MSO-
definable. ut

Hence Construction 4.15 and Lemmas 4.16 and 4.17 prove the following.

Proposition 4.18: From a finite automaton B accepting a term t ∈ T∞(F ) that defines an SOA-tree,
one can construct a regular description scheme for val(t).

Theorem 4.19 : The following properties of an O-tree J are equivalent:

(1) J is regular,
(2) J is described by a regular description scheme,
(3) J is MSOfin -definable.
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Proof:
(1) =⇒(2). If J is regular, a regular term defines a structuring of it (Definition 4.4(d)). By Propo-

sition 4.18 this structuring has a regular description scheme, that describes J according to Definition
3.13.

(2)=⇒(3) If J is described by a regular description scheme, then, it is MSOfin -definable by The-
orem 3.18.

(3)=⇒(1). By Definition 4.4, the mapping α that transforms the relational structure btc for t in
T∞(F ) into the O-forest val(t) = (N,≤) (where N = Occ(t, ∗)) is an MSO-transduction, because
an MSO formula can identify the nodes of val(t) among the positions of t and other formulas can
define ≤.

Let J = (N,≤) be an MSOfin -definable O-tree. It is, up to isomorphism, the unique model of an
MSOfin sentence ψ. It follows by a standard argument17 that the set of terms t in T∞(F ) such that
α(btc) |= ψ is MSOfin definable. Since the structures btc are linearly ordered by ≤in that is MSO-
definable, this set is also MSO-definable (cf. Definition 2.8), and thus, contains a regular term, by a
result due to Rabin [18]. This term defines J . Hence J is regular. ut

As for Corollaries 4.22 and 4.31 in [11] we have :

Corollary 4.20 : The isomorphism problem for regular O-trees is decidable.

Proof:
A regular O-tree can be defined by a regular term or by an MSOfin sentence. The proof of Theorem
4.19 is effective: algorithms can convert any of these specifications into another one. Hence, two
regular O-trees can be given, one by an MSOfin sentence ψ, the other by a regular term t. They
are isomorphic if and only if α(btc) |= ψ (cf. the proof of (3)=⇒(1) of Theorem 4.19) if and only
if btc |= ψ′ where ψ′ obtained by applying Backwards Translation [13] to the sentence ψ and the
transduction α. This is decidable [18]. ut

Corollary 4.21 : An O-forest is regular if and only if it is MSOfin -definable. The isomorphism of two
regular O-forests is decidable.

Proof:
If J is an O-forest, then J • ∗ is an O-tree. It is easy to prove that J is MSOfin -definable if and only if
J • ∗ is. Furthermore, J is regular if and only if J • ∗ is. The results follow then from Theorem 4.19
and Corollary 4.20. ut

Corollary 4.22 : (1) The MSOfin -theory of a regular O-forest is decidable.

(2) It is decidable whether some O-forest satisfies a given MSOfin -sentence. If so, this sentence is
satisfied by some regular O-forest.

Proof:
We use routine constructions as for (3)=⇒(1) of Theorem 4.19. ut
17If α is an MSO-transduction and ψ is an MSOfin sentence, then the set of structures S such that α(S) |= ψ is MSOfin-
definable, by Backwards Translation [13].
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5. Conclusion

We have shown how to describe O-trees and O-forests, u.t.i., by infinite terms over three operations.
We have generalized to regular O-forests the results of [11] that concern regular join-trees.

More complex terms than the regular ones have finitary descriptions (see [4]) and thus, can yield
finitary descriptions of other types of O-forests. As they have decidable MSO theories, the MSO-
theories of the defined O-forests are decidable.
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