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Abstract. In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their
similarity to improve the performance w.r.t. single-task learning. In this paper we investigate the case when all the tasks can be
accurately represented in a linear approximation space using the same small subset of the original (large) set of features. This
is equivalent to assuming that the weight vectors of the task value functions are jointly sparse, i.e., the set of their non-zero
components is small and it is shared across tasks. Building on existing results in multi-task regression, we develop two multi-task
extensions of the fitted Q-iteration algorithm. While the first algorithm assumes that the tasks are jointly sparse in the given
representation, the second one learns a transformation of the features in the attempt of finding a more sparse representation. For
both algorithms we provide a sample complexity analysis and numerical simulations.
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1. Introduction14

Reinforcement learning (RL) and approximate15

dynamic programming (ADP) [2, 26] are effective16

approaches to solve the problem of decision-making17

under uncertainty. Nonetheless, they may fail in18

domains where a relatively small amount of samples19

can be collected (e.g., in robotics where samples are20

expensive or in applications where human interaction21

is required, such as in automated rehabilitation). For-22

tunately, the lack of samples can be compensated by23

leveraging on the presence of multiple related tasks24

(e.g., different users). In this scenario, usually referred25

to as multi-task reinforcement learning (MTRL), the26

objective is to simultaneously solve multiple tasks and27

exploit their similarity to improve the performance w.r.t.28

single-task learning (we refer to [28] and [16] for a com-29

prehensive review of the more general setting of transfer30

RL). In this setting, many approaches have been pro-31

posed, which mostly differ for the notion of similarity32

∗Corresponding author: Daniele Calandriello, Team SequeL,
INRIA Lille – Nord Europe, France. E-mail: daniele.calandriello@
inria.fr.

leveraged in the multi-task learning process. In [30] 33

the transition and reward kernels of all the tasks are 34

assumed to be generated from a common distribution 35

and samples from different tasks are used to estimate 36

the generative distribution and, thus, improving the 37

inference on each task. A similar model, but for value 38

functions, is proposed in [17], where the parameters of 39

all the different value functions are assumed to be drawn 40

from a common distribution. In [25] different shaping 41

function approaches for Q-table initialization are con- 42

sidered and empirically evaluated, while a model-based 43

approach that estimates statistical information on the 44

distribution of the Q-values is proposed in [27]. Simi- 45

larity at the level of the MDPs is also exploited in [18], 46

where samples are transferred from source to target 47

tasks. Multi-task reinforcement learning approaches 48

have been also applied in partially observable environ- 49

ments [19]. 50

In this paper we investigate the case when all the 51

tasks can be accurately represented in a linear approxi- 52

mation space using the same small subset of the original 53

(large) set of features. This is equivalent to assuming 54

that the weight vectors of the task value functions are 55

jointly sparse, i.e., the set of their non-zero components 56

1724-8035/15/$35.00 © 2015 – IOS Press and the authors. All rights reserved
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is small and it is shared across tasks. We can illustrate57

the concept of shared sparsity using the blackjack card58

game. The player can rely on a very large number of fea-59

tures such as: value and color of the cards in the player’s60

hand, value and color of the cards on the table and/or61

already discarded, different scoring functions for the62

player’s hand (e.g., sum of the values of the cards) and63

so on. The more the features, the more likely it is that the64

corresponding feature space could accurately represent65

the optimal value function. Nonetheless, depending on66

the rules of the game (i.e., the reward and dynamics), a67

very limited subset of features actually contribute to the68

value of a state and we expect the optimal value func-69

tion to display a high level of sparsity. Furthermore,70

if we consider multiple tasks differing for the behav-71

ior of the dealer (e.g., the value at which she stays) or72

slightly different rule sets, we may expect such spar-73

sity to be shared across tasks. For instance, if the game74

uses an infinite number of decks, features based on the75

history of the cards played in previous hands have no76

impact on the optimal policy for any task and the cor-77

responding value functions are all jointly sparse in this78

representation.79

The main limitation of this formulation is that it80

forces all tasks to be jointly sparse, and the set of useful81

features is not know in advance. Therefore whenever82

a new task is added, the sparisty scenario may be sig-83

nificantly affected. On the one hand, adding tasks may84

improve the sample complexity by reducing the overall85

variance. On the other hand, if the new task requires86

features that were useless up to that point (i.e., it is not87

jointly sparse), then it would not help identifying the set88

of useful features, and in addition the set of useful fea-89

tures would grow larger. In the second part of the paper90

we will introduce a generalization of the concept of joint91

sparsity to tackle this problem. The sparsity of the linear92

weights in the solution is highly dependant on the par-93

ticular feature space chosen for the problem. We will try94

to learn a transformation of the features in order to build95

a new feature space where the solution has its sparsest96

representation. Intuitively, this will correspond to gen-97

eralizing the assumption of correlation through shared98

sparsity (shared support) to the more general assump-99

tion of linear correlation between tasks, and provide us100

more flexibility in choosing which tasks can be added101

to the problem. This concept will be explored in more102

detail in the remarks of Sections 4 and 5 after we will103

have formalized the notation and introduced the main104

results.105

In this paper we first introduce the notion of sparse106

MDPs in Section 3. Then we build on existing results in107

multi-task regression [1, 20] to develop two multi-task 108

extensions of the fitted Q-iteration algorithm. While 109

the first algorithm (Section 4) assumes that the tasks 110

are jointly sparse in the given representation, the sec- 111

ond algorithm (Section 5) performs a transformation 112

of the given features in the attempt of finding a more 113

sparse representation. For both algorithms we provide 114

a sample complexity analysis and numerical simula- 115

tions both in a continuous chain–walk domain and in 116

the blackjack game (Section 6).1 117

2. Preliminaries 118

2.1. Multi-task reinforcement learning (MTRL) 119

A Markov decision process (MDP) is a tuple M = 120

(X,A, R, P, γ), where the state space X is a bounded 121

closed subset of the Euclidean space, the action space 122

A is finite (i.e., |A| < ∞), R : X × A → [0, 1] is the 123

reward of a state-action pair, P : X × A → P(X) is the 124

transition distribution over the states achieved by taking 125

an action in a given state, and γ ∈ (0, 1) is a discount 126

factor. A deterministic policy π : X → A is a mapping 127

from states to actions. We denote by B(X × A; b) the 128

set of measurable state-action functions f : X × A → 129

[−b; b] absolutely bounded by b. Solving an MDP 130

corresponds to computing the optimal action-value 131

function Q∗ ∈ B(X × A;Qmax = 1/(1 − γ)), defined 132

as the largest expected sum of discounted rewards 133

that can be collected in the MDP and fixed point of 134

the optimal Bellman operator T : B(X × A;Qmax) → 135

B(X × A;Qmax) defined as TQ(x, a) = R(x, a) + 136

γ
∑
y P(y|x, a) maxa′ Q(y, a′). The optimal policy is 137

finally obtained as the greedy policy w.r.t. the opti- 138

mal value function as π∗(x) = arg maxa∈AQ∗(x, a). In 139

this paper we study the multi-task reinforcement learn- 140

ing (MTRL) setting where the objective is to solve 141

T tasks, defined as Mt = (X,A, Pt, Rt, γt) with t ∈ 142

[T ] = {1, . . . , T }, with the same state-action space, but 143

different dynamics Pt and goals Rt . The objective of 144

MTRL is to exploit possible relationships between tasks 145

to improve the performance w.r.t. single-task learning. 146

In particular, we choose linear fitted Q-iteration as the 147

single-task baseline and we propose multi-task exten- 148

sions tailored to exploit the sparsity in the structure of 149

the tasks.

1We refer the reader to the technical report [5] for more details
about the theoretical results, which are mostly based on existing
results in multi-task regression and so they were omitted from this
version.
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2.2. Fitted Q-iteration with linear function150

approximation151

Whenever X and A are large or continuous, we need
to resort to approximation schemes to learn a near-
optimal policy. One of the most popular ADP methods
is the fitted-Q iteration (FQI) algorithm [7], which
extends value iteration to approximate action-value
functions. While exact value iteration proceeds by iter-
ative applications of the Bellman operator (i.e., Qk =
TQk−1), in FQI, each iteration approximates TQk−1

by solving a regression problem. Among possible
instances, here we focus on a specific implementa-
tion of FQI in the fixed design setting with linear
approximation and we assume access to a genera-
tive model of the MDP. Since the action space A
is finite, we approximate an action-value function
as a collection of |A| independent state-value func-
tions. We introduce a dx-dimensional state-feature
vector φ(·) = [ϕ1(·), ϕ2(·), . . . , ϕdx (·)]T with ϕi : X →
R such that supx ||φ(x)||2 ≤ L, while the corresponding
state-action feature vector is

ψ(x, a) = [
0, · · · , 0,︸ ︷︷ ︸
(a−1)×dx

times

ϕ1(x), . . . , ϕdx (x), 0, · · · , 0︸ ︷︷ ︸
(|A|−a)×dx

times

]T
,

with dimension d = |A| × dx. From φ we con-
struct a linear approximation space for action-value
functions as F = {fw(·, ·) = ψ(·, ·)Tw,w ∈ R

d} where
the weight vector w can be decomposed as w =
[w1, . . . , w|A|] so that for any a ∈ A, we have

fw(·, a) = φ(·)Twa. FQI receives as input a fixed set
of states S = {xi}nxi=1 (fixed design setting) and the
space F. Starting from w0 = 0 defining the function
Q̂0, at each iteration k, FQI first draws a (fresh) set
of samples (rki,a, y

k
i,a)

nx
i=1 from the generative model

of the MDP for each action a ∈ A on each of the
states {xi}nxi=1 (i.e., rki,a = R(xi, a) andyki,a ∼ P(·|xi, a)).

From the samples, |A| independent training sets Dk
a =

{(xi, a), zki,a}nxi=1 are generated, where

zki,a = rki,a + γ max
a′
Q̂k−1(yki,a, a

′), (1)

and Q̂k−1(yki,a, a
′) is computed using the weight vector

learned at the previous iteration asψ(yki,a, a
′)Twk−1 (or

equivalently φ(yki,a)
Twk−1

a′ ). Notice that each zki,a is an

unbiased sample of TQ̂k−1 and it can be written as

zki,a = TQ̂k−1(xi, a) + ηki,a, (2)

where ηki,a is a zero-mean noise bounded in the interval
[−Qmax;Qmax]. Then FQI solves |A| linear regression
problems, each fitting the training set Dk

a and it returns
vectors ŵka, which lead to the new action value function
f
ŵk

with ŵk = [ŵk1, . . . , ŵ
k
|A|]. Notice that at each iter-

ation the total number of samples is n = |A| × nx. The
process is repeated until a fixed number of iterations
K is reached or no significant change in the weight
vector is observed. Since in principle Q̂k−1 could be
unbounded (due to numerical issues in the regression
step), in computing the samples zki,a we can use a

function Q̃k−1 obtained by truncating Q̂k−1 within
[−Qmax;Qmax]. In order to simplify the notation, we
also introduce the matrix form of the elements used by
FQI as � = [φ(x1)T; · · · ;φ(xnx )

T] ∈ R
nx×dx , �′k

a =
[φ(yki,a)

T; · · · ;φ(yknx,a)
T] ∈ R

nx×dx , Rka = [rk1,a, . . . ,

rknx,a] ∈ R
nx, and the vector Zka = [zk1,a, . . . , z

k
nx,a

] ∈
R
nx obtained as

Zka = Rka + γ max
a′

(�′k
a′w

k−1
a′ ).

The convergence and the performance of FQI are 152

studied in detail in [21] in the case of bounded approx- 153

imation space, while linear FQI is studied in [18, 154

Thm. 5] and [24 Lemma 5]. When moving to the multi- 155

task setting, we consider different state sets {St}Tt=1 156

and each of the previous terms is defined for each 157

task t ∈ [T ] as �kt , �
′k
a,t , R

k
a,t , Z

k
a,t and we denote by 158

Ŵk ∈ R
d×T the matrix with vector ŵkt ∈ R

d as the t–th 159

column. The general structure of FQI in a multi-task 160

setting is reported in Fig. 1.
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Fig. 1. Visualization of ‖W‖2,1 penalties (high on the left and low
on the right).

Finally, we also introduce the following matrix161

notation. For any matrix W ∈ R
d×T , [W]t ∈ R

d is162

the t-th column and [W]i ∈ R
T the i-th row of the163

matrix, Vec(W) is the R
dT vector obtained by stack-164

ing the columns of the matrix one on top of each165

other, Col(W) is its column-space and Row(W) is166

its row-space. In addition to the classical �2, �1167

norm for vectors, we also use the trace (or nuclear168

norm) ‖W‖∗ = trace((WWT)1/2), the Frobenius norm169

‖W‖F = (
∑
i,j[W]2

i,j)
1/2 and the �2,1-norm ‖W‖2,1 =170 ∑d

i=1 ‖[W]i‖2. We denote by Od the set of orthonor-171

mal matrices. Finally, for any pair of matrices V and172

W , V⊥ Row(W) denotes the orthogonality between the173

spaces spanned by the two matrices.174

3. Fitted Q–iteration in sparse MDPs175

Depending on the regression algorithm employed at176

each iteration, FQI can be designed to take advantage177

of different characteristics of the functions at hand,178

such as smoothness (�2–regularization) and sparsity179

(�1–regularization). In this section we consider the180

standard high–dimensional regression scenario and we181

study the performance of FQI under sparsity assump-182

tions. Define the greedy policy w.r.t. a Qk function as183

πk(x) = arg maxa Qk(x, a). We start with the following184

assumption.185

Assumption 1. The linear approximation space F is
such that for any function fwk ∈ F, the Bellman oper-
ator T can be expressed as

Tfwk (x, a)

= R(x, a) + γEx′∼P(·|x,a)

[
Q(x′, πk(x′))

]
= ψ(x, a)TwR + γψ(x, a)TPπ

k

ψ w
k, (3)

where πk is greedy w.r.t. fwk .186

The main consequence of this assumption is that the
image of the Bellman operator is contained in F, since
it can be computed as the product between features
ψ(x, a) and a vector of weights wR and Pπ

k

ψ w
k. This

implies that after enough applications of the Bellman
operator, the function fw∗ = Q∗ will belong to F as a
combination ψ(x, a)Tw∗. The assumption encodes the
intuition that in the high–dimensional feature space F
induced byψ, the transition kernel P , and therefore the
system dynamics, can be expressed as a linear combina-
tion of the features using the matrixPπ

k

ψ . This condition
is usually satisfied whenever the space F is spanned by a
very large set of features that allows it to approximate a
wide range of different functions, including the reward
and transition kernel. The matrix Pπ

k

ψ is dependent on

the previous Qk approximation through the πk policy,
and on the feature representation ψ, since it effectively
encodes the operator

∫
x′ P(dx′|x, a)Qk(x′, πk(x′))dx′.

Under this assumption, at each iteration of FQI, there
exists a weight vector wk such that TQ̂k−1 = fwk and
an approximation of the target function fwk can be
obtained by solving an ordinary least-squares prob-
lem on the samples in Dk

a. Unfortunately, it is well
known that OLS fails whenever the number of sam-
ples is not sufficient w.r.t. the number of features (i.e.,
d > n). For this reason, Asm. 1 is often joined together
with a sparsity assumption. Let J(w) = {i = 1, . . . , d :
wi /= 0} be the set of s non-zero components of vector
w (i.e., s = |J(w)|) and Jc(w) be the complementary
set. In supervised learning, the LASSO is effective in
exploiting the sparsity assumption that s 
 d and dra-
matically reduces the sample complexity, so that the
squared prediction error of Õ(d/n) of OLS decreases to
Õ(s log d/n) for LASSO (under specific assumptions),
thus moving from a linear dependency on the number of
features to a linear dependency only on the features that
are actually useful in approximating the target function.
A detailed discussion about LASSO, its implementation
and theoretical guarantees can be found in [4] and [12].
In RL the idea of sparsity has been successfully inte-
grated into policy evaluation [9, 13, 15, 23] but rarely
in the full policy iteration. In value iteration, it can be
easily integrated in FQI by approximating the target
weight vector wka through LASSO as2

2Notice that when performing linear regression, it is important to
include a constant feature to model the offset of the function. To avoid
regularizing this term in the optimization, we subtract its average from
the target of the regression, and then add it again when evaluating the
function. For this reason at iteration kwe may also store a bias bka ∈ R

for each action. Once the algorithm terminates it returns the weights
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ŵka = arg min
w∈Rdx

1

nx

nx∑
i=1

(
φ(xi)

Tw− zki,a

)2 + λ||w||1.
(4)

While this integration is technically simple, the con-187

ditions on the MDP structure that imply sparsity in the188

value functions are not fully understood. In fact, we189

could simply assume that the optimal value functionQ∗
190

is sparse in F, with s non-zero weights, thus implying191

that d − s features capture aspects of states and actions192

that do not have any impact on the actual optimal value193

function. Nonetheless, this would not provide any guar-194

antee about the actual level of sparsity encountered by195

FQI through iterations, where the target functions fwk196

may not be sparse at all. For this reason we need stronger197

conditions on the structure of the MDP. In [6,11], it198

has been observed that state features that do not affect199

either immediate rewards or future rewards through the200

transition kernel can be discarded without loss of infor-201

mation about the value function. Thus, we introduce the202

following assumption.3203

Assumption 2. (Sparse MDPs). Given the set of states
S = {xi}nxi=1 used in FQI, there exists a set J (set of
useful features) for MDP M, with |J | = s 
 d, such
that for any i /∈ J , and any policy π[

Pπψ

]i = 0, (5)

and there exists a function fwR = R such that J(wR)204

⊆ J .205

Assumption 2 implies that not only the reward func-206

tions are all sparse, but also that the features that are207

useless (i.e., features not in J) have no impact on the208

dynamics of the system. Building on the previous inter-209

pretation ofPπψ as the linear representation of the transi-210

tion kernel embedded in the high-dimensional space F,211

we can see that the assumption corresponds to imposing212

that the matrix Pπψ has all its rows corresponding to fea-213

tures outside of J set to 0. This in turn means that the214

future state-action vector E[ψ(x′, a′)T] = ψ(x, a)TPπψ215

depends only on the features in J . In the blackjack sce-216

nario illustrated in the introduction, this assumption is217

verified by features related to the history of the cards218

played so far. In fact, if we consider an infinite number of219

ŵKa together with the bias bKa , that can be used to determine the policy
in any state.

3Notice that this assumption can be interpreted as an explicit
sufficient condition for feature independency in the line of [11,
Equation 5], where a completely implicit assumption is formalized.
Furthermore, a similar assumption has been previously used in [10]
where the transition P is embedded in a RKHS.

decks, the feature indicating whether an ace has already 220

been played is not used in the definition of the reward 221

function and it is completely unrelated to the other fea- 222

tures and, thus it does not contribute to the optimal value 223

function. As an example of what constitutes a group of 224

similar tasks, we can consider the control of a humanoid 225

robot. Humanoid robots are equipped with a large num- 226

ber of sensors (both internal and external) and actuators 227

that allow them to perform a wide variety of tasks. In 228

tasks such as grasping objects, writing with a pen, tying 229

knots, and other manipulation tasks, the controller needs 230

to consider information about the surrounding environ- 231

ment and information relative to position, speed, and 232

acceleration of joints in robot upper-body. This means 233

that all the information coming from sensors positioned 234

in the legs of the robot can be ignored since they are not 235

relevant to accomplish such tasks. So, in the humanoid 236

robot context, manipulation tasks can be referred to as 237

a group of “similar” tasks since they share a subset of 238

features that are relevant for solving the different con- 239

trol problems. Although this may appear as an extreme 240

scenario, similar configurations may often happen in 241

robotic problems (or other domains where physical sys- 242

tems are considered) in which starting from the raw 243

reading of the sensors (e.g., position and speed), features 244

are built by taking polynomials of the basic state vari- 245

ables. In this situation, it is often the case that only few 246

polynomials are actually useful (e.g., the dynamics may 247

be linear in position and speed), while other polynomi- 248

als could be discarded without preventing the learning 249

of the optimal action-value function. Since such struc- 250

ture could be shared across multiple tasks, then the 251

shared-sparisty assumption would be verified and multi- 252

task approaches could be very effective. Two important 253

considerations on this Assumption can be derived by 254

a closer look to the sparsity pattern of the matrix Pπψ . 255

Since the sparsity is required at the level of the rows, this 256

does not mean that the features that do not belong to J 257

have to be equal to 0 after each transition. Instead, their 258

value will be governed simply by the interaction with the 259

features in J . This means that the features outside of J 260

can vary from completely unnecessary features with no 261

dynamics, to features that are redundant to those in J to 262

describe the evolution of the system. Another important 263

point is the presence of linear dependency among the 264

non-zero rows in Pπψ . Because it is often the case that 265

we do not have access to the Pπψ matrix, it is possible 266

that in practice dependent features are introduced in the 267

high-dimensional setting. In this case we could select 268

only an independent subset of them to be included in J 269

and remove the remaining,but this cannotbeeasilydone 270
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in practice without full access to the model. For the rest271

of the paper we assume for simplicity that the sparsity272

pattern J is unique. As we will see later, the presence273

of multiple possible Pπψ matrices and sparsity patterns274

J is not a problem for the regression algorithms that we275

use, and we will provide a longer discussion after intro-276

ducing more results on sparse regression in Remark 2 of277

Theorem 1. Assumption 2, together with Asm. 1, leads278

to the following lemma.279

Lemma 1. Under Assumptions 1 and 2, the application280

of the Bellman operator T to any function fw ∈ F, pro-281

duces a function fw′ = Tfw ∈ F such that J(w′) ⊆ J .282

Proof. As stated in Assumption 1, F is closed under the
Bellman operator T, i.e., fw ∈ F ⇒ Tfw ∈ F. We also
introduced the Pπ

k

ψ matrix that represents the expected
transition kernel in the High-Dimensional space. Using
this assumption, we have that, given a vectorwk, for all
x ∈ X there exists a wk+1 such that

fwk+1 (x, a) = ψ(x, a)Twk+1

= ψ(x, a)TwR + γψ(x, a)Pπ
k

ψ w
k

= Tfwk .

Clearly vector wk+1 = wR + Pπ
k

ψ w
k satisfies this con-283

dition. Under Assumption 2, we know that it exists284

a set of useful features J . Moreover, the assumption285

implies that the rows of the matrix Pπ
k

ψ corresponding286

to features outside the J set are equal to 0. The product287

Pπ
k

ψ w
k will therefore follow the same sparsity pattern288

of J , irregardless ofwk. This, in addition to the fact that289

J(wR) ⊆ J , proves the lemma. �290

The previous lemma guarantees that, at any itera-291

tion k of FQI, the target function fwk = TQ̂k−1 has a292

number of non-zero components |J(wk)| ≤ s. We are293

now ready to analyze the performance of LASSO-FQI294

over iterations. In order to make the following result295

easier to compare with the multi-task results in Sec-296

tions 4 and 5, we analyze the accuracy of LASSO-FQI297

averaged over multiple tasks (which are solved indepen-298

dently). For this reason we consider that the previous299

assumptions extend to all the MDPs {Mt}Tt=1 with a300

set of useful features Jt such that |Jt| = st and average301

sparsity s = (
∑
t st)/T . The quality of the action-value302

function learned after K iterations is evaluated by303

computing the corresponding greedy policy πKt (x) =304

arg maxa QK
t (x, a) and comparing its performance to305

the optimal policy. In particular, the performance loss is306

measured w.r.t. a target distribution µ ∈ P(X × A). To307

provide performance guarantees we have first to intro-308

duce an assumption used in [3] to derive theoretical 309

guarantees for LASSO. 310

Assumption 3. (Restricted Eigenvalues (RE)). For any
s ∈ [d], there exists κ(s) ∈ R

+ such that:

min

{ ‖��‖2√
n ‖�J‖2

: � ∈ R
d\{0},

|J | ≤ s, ‖�Jc‖1 ≤ 3 ‖�J‖1

}
≥ κ(s), (6)

where n is the number of samples, and Jc denotes the 311

complement of the set of indices J . 312

Theorem 1. (LASSO-FQI). Let the tasks {Mt}Tt=1 and
the function space F satisfy assumptions 1, 2 and 3 with
average sparsity s̄ = ∑

t st/T and features bounded
supx ||φ(x)||2 ≤ L. If LASSO-FQI (Algorithm 1 with
Equation 4) is run independently on all T tasks for K

iterations with a regularizer λ = δQmax

√
log d
n

, for any
numerical constant δ > 8, then, with probability at least
(1 − 2d1−δ/8)KT , the performance loss is bounded as

1

T

T∑
t=1

∥∥∥∥Q∗
t −Q

πKt
t

∥∥∥∥2

2,µ
(7)

≤ O
(

1

(1 − γ)4

[
Q2

maxL
2

κ4
min(s)

s log d

n
+ γKQ2

max

])
,

where κmin(s) = mint κ(st). 313

Remark 1 (concentrability terms). Unlike similar 314

analyses for FQI (see e.g., [21]), no concentrability 315

term appears in the previous bound. This is possible 316

because at each iteration LASSO provides strong guar- 317

antees about the accuracy in approximating the weight 318

vector of the target function by bounding the error 319

||wkt − ŵkt ||2. This, together with the boundedness of 320

the features ||φ(x)||2 ≤ L, provides an �∞-norm bound 321

on the prediction error ||fwkt − f
ŵkt

||2,∞ which allows 322

for removing the concentrability terms relative to the 323

propagation of the error. 324

Remark 2 (assumptions). Intuitively, Assumption 3 325

gives us a weak constraint on the representation capa- 326

bility of the data. In an OLS approach, the rank of 327

the matrix �T� is required to be strictly greater than 328

0. This can be expressed also as ‖��‖2 / ‖�‖2 > 0, 329

because the minimum quantity that this expression can 330

take is equal to the smallest singular value of �. In 331

a LASSO setting, the number of features d is usually 332

much larger than the number of samples, and the matrix 333
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�T� is often not full rank. The RE Assumption forces334

a much weaker restriction focusing on a condition on335

‖��‖2 / ‖�J‖2, where in the denominator the norm336

||�J ||2 only focuses on the components of� in the set337

J . This vector is composed only by the non-zero groups338

of variable, and intuitively this norm will be larger than339

the smallest eigenvalue of the part of the matrix �340

related to the non-zero groups. κ(s) is therefore a lower341

bound on the capability of the matrix � to represent a342

solution not for the full OLS problem, but only for the343

sparse subspace that truly supports the target function.344

A number of sufficient conditions are provided in [29],345

among them one of the most common, although much346

stronger than the RE, is the Restricted Isometry Condi-347

tion. Assumptions 1 and 2 are specific to our setting and348

may provide a significant constraint on the set of MDPs349

of interest. Assumption 1 is introduced to give a more350

explicit interpretation for the notion of sparse MDPs.351

In fact, without Assumption 1, the bound in Equation 7352

would have an additional approximation error term sim-353

ilar to standard approximate value iteration results (see354

e.g., [21]). Assumption 2 is a potentially very loose suf-355

ficient condition to guarantee that the target functions356

encountered over the iterations of LASSO–FQI have a357

minimum level of sparsity. More formally, the neces-358

sary condition needed for Thm. 1 is that for any k ≤ K,359

the weight wk+1
t corresponding to f

wk+1
t

= Tfwkt (i.e.,360

the target function at iteration k) is such that there361

exists s 
 d such that maxk∈[K] maxt∈[T ] s
k
t ≤ s where362

skt = |J(wk+1
t )|. Such condition can be obtained under363

much less restrictive assumptions than Assumption 2 at364

the cost of a much lower level of interpretability (see365

e.g., [11]). Without this necessary condition, we may366

expect that, even with sparse Q∗
t , LASSO–FQI may367

generate through iterations some regression problems368

with little to no sparsity, thus compromising the per-369

formance of the overall process. Nonetheless, we recall370

that LASSO is proved to return approximations which371

are as sparse as the target function. As a result, to guar-372

antee that LASSO–FQI is able to take advantage of the373

sparsity of the problem, it may be enough to state a374

milder assumption that guarantees that T never reduces375

the level of sparsity of a function below a certain thresh-376

old and that theQ∗
t functions are sparse. As discussed in377

the definition of Assumption 2, we decided to consider378

J(wkt ) to be unique for each task. This is not guaranteed379

to hold when the rows of the matrixPπ
k

φ that are in J are380

not linearly independent. Nonetheless, if we consider381

that at each step the new weight vector wk+1 is chosen382

to be sparse, we see that LASSO will naturally disregard383

linearly correlated lines in order to produce a sparser 384

solution. On the other hand, not all sparsity patterns can 385

be recovered from the actual samples that we use for 386

regression. In particular, we can only recover patterns 387

for which Assumption 3 holds. Therefore the LASSO 388

guarantees hold for the sparsity pattern J(wk+1) such 389

that the ratio |J(wk+1)|/κ4(J(wk+1)) is most favorable, 390

while the patterns that do not satisfy Assumption 3 have 391

a 0 denominator and are automatically excluded from 392

the comparison. Finally, we point out that even if “use- 393

less” features (i.e., features that are not used in Q∗
t ) do 394

not satisfy Equation 5 and are somehow correlated with 395

other (useless) features, yet their weights would be dis- 396

counted by γ at each iteration (since not “reinforced” by 397

the reward function). As a result, over iterations the tar- 398

get functions would become “approximately” as sparse 399

asQ∗
t and this, together with a more refined analysis of 400

the propagation error as in [8], would possibly return 401

a result similar to Thm. 1. We leave for future work 402

a more thorough investigation of the extent to which 403

these assumptions can be relaxed. 404

Proof. We recall from Asm. 1 and Lemma 1, that at
each iteration k and for each task t, samples zki,a,t can
be written as

zki,a,t = fwkt
(xi,t, a) + ηki,a,t = [�t]iw

k
a,t + ηki,a,t,

where wka ∈ R
d is the vector that contains the weight 405

representing exactly the next value function for each 406

task. With this reformulation we made explicit the fact 407

that the samples are obtained as random observations 408

of linear functions evaluated on the set of points in 409

{St}t∈[T ]. Thus we can directly apply the following 410

proposition. 411

Proposition 1 [3]. For any task t ∈ [T ], any action
a ∈ A and any iteration k < K, let wka,t be sparse
such that |J(wa,t)| ≤ skt and satisfy Assumption 3 with
κkt = κ(skt ). Then if Equation 4 is run independently on

all T tasks with a regularizer λ = δQmax

√
log d
n

, for

any numerical constant δ > 2
√

2, then with probabil-
ity at least 1 − d1−2δ2/8, the function f

ŵka,t
computed in

Equation 4 has an error bounded as∥∥∥wka,t − ŵka,t

∥∥∥2

2
≤ 256δ2Q2

max

κ4(skt )

skt log d

n
. (8)

In order to prove the final theorem we need to adjust
previous results from [21] to consider how this error
is propagated through iterations. We begin by recalling
the intermediate result from [21] about the propagation
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8 D. Calandriello et al. / Sparse multi-task reinforcement learning

of error through iterations adapted to the case of action-
value functions. For any policy π, given the right-linear
operator Pπt : B(X × A) → B(X × A)

(Pπt Q)(x, a) =
∫
y

Pt(y|x, a)
∑
b

π(b|x)Q(y, b),

we have that after K iterations for each task t ∈ [T ]

|Q∗
t −Q

πKt
t | ≤ 2γ(1 − γK+1)

(1 − γ)2

[K−1∑
k=0

αkAtk|εkt |

+ αKAtK|Q∗
t −Q0

t |
]
,

with

αk =

⎧⎪⎨⎪⎩
(1−γ)γK−k−1

1−γK+1 , for 0 ≤ k < K,

(1−γ)γK

1−γK+1 , for k = K

Atk = 1 − γ

2
(I − γP

πKt
t )−1

×
[

(P
π∗
t

t )K−k + P
πKt
t P

πK−1
t

t . . . P
πk+1
t

t

]
,

AtK = 1 − γ

2
(I − γP

πKt
t )−1

×
[

(P
π∗
t

t )K+1 + P
πKt
t P

πK−1
t

t . . . P
π0
t

t

]
.

and with the state-action error εkt (y, b) = Q̂k(y, b) −
TtQ̂k−1(y, b) measuring the approximation error of
action value functions at each iteration. We bound the
error in any state y ∈ X and for any action b ∈ A as

|εkt (y, b)| = |fwkt (y, b) − f
ŵkt

(y, b)|
= |φ(y)Twkb,t − φ(y)Tŵkb,t|
≤ ||φ(y)||2||wkb,t − ŵkb,t||2
≤ L||wkb,t − ŵkb,t||2,

We notice that the operators Atk, once applied to a
function in a state-action pair (x, a), are well-defined
distributions over states and actions and thus we can
rewrite the previous expression as

|Q∗
t −Q

πKt
t |

≤ 2γ(1 − γK+1)

(1 − γ)2

[
K−1∑
k=0

αkAtkLmax
b

||wkb,t − ŵkb,t||2 + 2αKAtKQmax

]

≤ 2γ(1 − γK+1)

(1 − γ)2[
K−1∑
k=0

αkLmax
b

||wkb,t − ŵkb,t||2 + 2αKQmax

]
. (9)

Taking the average value, and introducing the bound
in Proposition 1 we have that

1

T

T∑
t=1

∥∥∥∥Q∗
t −Q

πKt
t

∥∥∥∥2

2,µ
≤
[

2γ(1 − γK+1)

(1 − γ)2

]2

×

[
K−1∑
k=0

αkL
2Q2

max
1

T

T∑
t=1

skt

κ4(skt )

log d

n
+ 2αKQ

2
max

]
.

holds. Since from Lemma 1, skt ≤ |Jt| = st for any iter- 412

ation k, this proves the statement. � 413

4. Group-LASSO fitted Q–iteration 414

After introducing the concept of MDP sparsity in 415

Section 3, we now move to the multi-task scenario and 416

we study the setting where there exists a suitable repre- 417

sentation (i.e., set of features) under which all the tasks 418

can be solved using roughly the same set of features, 419

the so-called shared sparsity assumption. We consider 420

that assumptions 1 and 2 hold for all the tasks t ∈ [T ], 421

such that each MDP Mt is characterized by a set Jt 422

such that |Jt| = st . We denote by J = ∪Tt=1Jt the union 423

of all the useful features across all the tasks and we state 424

the following assumption. 425

Assumption 4. We assume that the joint useful features 426

across all the tasks are such that |J | = s̃ 
 d. 427

This assumption implies that the set of features “use- 428

ful” for at least one of the tasks is relatively small 429

compared to d. As a result, we have the following result. 430

Lemma 2. Under Assumptions 2 and 4, at any iteration 431

k, the target weight matrix Wk ∈ R
d×T is such that 432

J(Wk) ≤ s̃, where J(W) = ∪Tt=1J([Wk]t). 433

Proof. By Lemma 1, we have that for any task 434

t, at any iteration k, J([Wk]t) ⊆ Jt , thus J(Wk) = 435

∪Tt=1J([Wk]t) ⊆ J and the statement follows. � 436

Finally, we notice that in general the number of 437

jointly non-zero components cannot be smaller than 438

in each task individually as maxt st ≤ s̃ ≤ d. In the 439

following we introduce a multi-task extension of FQI 440
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where the samples coming from all the tasks contribute441

to take advantage of the shared sparsity assumption to442

reduce the sample complexity and improve the average443

performance.444

4.1. The algorithm445

In order to exploit the similarity across tasks stated
in Asm. 4, we resort to the Group LASSO (GL) algo-
rithm [12, 20], which defines a joint optimization
problem over all the tasks. GL is based on the observa-
tion that, given the weight matrixW ∈ R

d×T , the norm
‖W‖2,1 measures the level of shared-sparsity across
tasks. In fact, in ‖W‖2,1 the �2-norm measures the “rel-
evance” of feature i across tasks, while the �1-norm
“counts” the total number of relevant features, which we
expect to be small in agreement with Asm. 4. In Fig. 1
we provide a visualization on the case when ‖W‖2,1 is
small and large. Building on this intuition, we define the
GL–FQI algorithm in which, using the notation intro-
duced in Section 2.2, the optimization problem solved
by GL at each iteration for each action a ∈ A is

Ŵk
a =arg min

Wa

T∑
t=1

∥∥∥Zka,t −�twa,t

∥∥∥2

2
+ λ ‖Wa‖2,1. (10)

Further details on the implementation of GL–FQI446

are reported in [5].447

4.2. Theoretical analysis448

The multi-task regularized approach of GL–FQI449

is designed to take advantage of the shared-sparsity450

assumption at each iteration and in this section we show451

that this may lead to reduce the sample complexity w.r.t.452

using LASSO in FQI for each task separately. Before453

reporting the analysis of GL–FQI, we need to introduce454

a technical assumption defined in [20] for GL.455

Assumption 5 (Multi-Task Restricted Eigenvalues).
For any s ∈ [d], there exists κ(s) ∈ R

+ such that:

min

{ ‖�Vec(�)‖2√
n ‖Vec(�J )‖2

: � ∈ R
d×T \{0}, (11)

|J | ≤ s, ‖�Jc‖2,1 ≤ 3 ‖�J‖2,1

}
≥ κ(s),

where n is the number of samples, Jc denotes the com-456

plement of the set of indices J , and � indicates the457

block diagonal matrix composed by the union of the T458

sample matrices �t .

This assumption provides us with similar guarantees 459

as Prop. 1. 460

Proposition 2 [20]. For any action a ∈ A and any iter-
ation k < K, let Wk

a be sparse such that |J(Wk
a )| ≤

s̃k and satisfy Assumption 5 with κkt = κ(2skt ). Then
if Equation [10] is run with a regularizer λ =
LQmax√
nT

(
1 + (log d)

3
2 +δ

√
T

) 1
2

, for any numerical constant

δ > 0, then with probability�(1 − log(d)−δ), the func-
tion f

ŵka,t
computed in Equation 4 has an error bounded

as

1

T

T∑
t=1

∥∥∥[Wk
a ]t − [Ŵk

a ]t
∥∥∥2

2

= 1

T

∥∥∥Vec(Wk
a ) − Vec(Ŵk

a )
∥∥∥2

2

≤160L2Q2
max

κ4
Td(2s̃)

s̃

n

(
1 + (log d)3/2+δ

√
T

)
.

Similar to Theorem 1 we evaluate the performance of 461

GL–FQI as the performance loss of the returned policy 462

w.r.t. the optimal policy and we obtain the following 463

performance guarantee. The proof is similar to Thm. 1, 464

using Prop. 2 instead of 1. 465

Theorem 2 (GL–FQI). Let the tasks {Mt}Tt=1 and the
function space F satisfy assumptions 1, 2, 4, and 5 with
joint sparsity s̃ and features bounded supx ||φ(x)||2 ≤
L. If GL–FQI (Algorithm 1 with Equation 10) is run
jointly on all T tasks for K iterations with a regular-

izer λ = LQmax√
nT

(
1 + (log d)

3
2 +δ

√
T

) 1
2

, for any numerical

constant δ > 0, then with probability at least

1 −K
4
√

log(2d)[64 log2(12d) + 1]1/2

(log d)3/2+δ � 1 −K log(d)−δ,

the performance loss is bounded as

1

T

T∑
t=1

∥∥∥∥Q∗
t −Q

πKt
t

∥∥∥∥2

2,µ
(12)

≤ O
(

1

(1 − γ)4

[
L2Q2

max

κ4(2s̃)

s̃

n

(
1 + (log d)3/2+δ

√
T

)
+ γKQ2

max

])
.

Remark 1 (comparison with LASSO-FQI). We first
compare the performance of GL–FQI to single-task FQI
with LASSO regularization at each iteration. Ignoring
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all the terms in common with the two methods, con-
stants, and logarithmic factors, we can summarize their
bounds as

GL–FQI : Õ
( s̃
n

(
1 + log d√

T

))
,

LASSO-FQI : Õ
( s̄ log d

n

)
,

where s̄ = 1/T
∑
t st is the average sparsity. The first466

interesting aspect of the bound of GL–FQI is the467

role played by the number of tasks T . In LASSO–468

FQI the “cost” of discovering the st useful features469

is a factor log d, while GL–FQI has a factor 1 +470

log(d)/
√
T , which decreases with the number of tasks.471

This illustrates the advantage of the multi–task learn-472

ing dimension of GL–FQI, where all the samples of all473

tasks actually contribute to discovering useful features,474

so that the more the number of features, the smaller475

the cost. In the limit, we notice that when T → ∞,476

the bound for GL–FQI does not depend on the dimen-477

sionality of the problem anymore. The other aspect of478

the bound that should be taken into consideration is479

the difference between s̄ and s̃. In fact, if the shared-480

sparsity assumption does not hold, we can construct481

cases where the number of non-zero features st is very482

small for each task, but the union J = ∪tJt is still a483

full set, so that s̃ ≈ d. In this case, GL–FQI cannot484

leverage on the shared sparsity across tasks and it may485

perform significantly worse than LASSO–FQI. This is486

the well–known negative transfer effect that happens487

whenever the wrong assumption over tasks is enforced488

thus worsening the single-task learning performance.489

Remark 2 (assumptions). Assumption 5 is a rather490

standard (technical) assumption in Group-LASSO and491

RL and it is discussed in detail in the respective litera-492

ture. The shared sparsity assumption (Assumption 4) is493

at the basis of the idea of the joint optimization defined494

in GL–FQI.495

5. Feature learning fitted Q–iteration496

Unlike other properties such as smoothness, the spar-497

sity of a function is intrinsically related to the specific498

representation used to approximate it (i.e., the func-499

tion space F). While Assumption 2 guarantees that F500

induces sparsity for each task independently, Assump-501

tion 4 requires that all the tasks share the same useful502

features in the given representation. As discussed in503

Rem. 1, whenever this is not the case, GL–FQI may be504

affected by negative transfer and perform worse than 505

LASSO–FQI. In this section we further investigate an 506

alternative notion of sparsity in MDPs and we intro- 507

duce the Feature Learning fitted Q-iteration (FL–FQI) 508

algorithm, and derive finite–sample bounds. 509

5.1. Sparse representations and low rank 510

approximation 511

Since the poor performance of GL–FQI may be due 512

to a representation (i.e., definition of the features) which 513

does not lead to similar tasks, it is natural to ask the ques- 514

tion whether there exists an alternative representation 515

(i.e., a different set of features) that induces a high-level 516

of shared sparsity. Let as assume that there exists a lin- 517

ear space F∗ defined by features φ∗ such that the weight 518

matrix of the optimal Q-functions is A∗ ∈ R
d×T such 519

that J(A∗) = s∗ 
 d. As shown in Lemma 2, together 520

with Assumptions 2 and 4, this guarantees that at any 521

iteration J(Ak) ≤ s∗. Given the set of states {St}Tt=1, let 522

� and�∗ be the feature matrices obtained by evaluating 523

φ and φ∗ on the states. We assume that there exists a lin- 524

ear transformation of the features of F∗ to the features 525

of F such that � = �∗U with U ∈ R
dx×dx . In this set- 526

ting, at each iteration k and for each task t, the samples 527

used to define the regression problem can be formu- 528

lated as noisy observations of �∗Aka for any action a. 529

Together with the transformation U, this implies that 530

there exists a weight matrix Wk defined in the original 531

space F such that �∗Aka = �∗UU−1Aka = �Wk
a with 532

Wk
a = U−1Aka. It is clear that, although Aka is indeed 533

sparse, any attempt to learn Wk
a using GL would fail, 534

since Wk
a may have a very low level of sparsity. On 535

the other hand, an algorithm able to learn a suitable 536

transformationU, it may be able to recover the represen- 537

tation�∗ (and the corresponding space F∗) and exploit 538

the high level of sparsity of Aka. This additional step of 539

representation or feature learning introduces additional 540

complexity, but allows to relax the strict assumption 541

on the joint sparsity s̃. In particular, we are interested 542

in the special case when the feature transformation is 543

obtained using an orthogonal matrixU. Our assumption 544

is formulated as follows. 545

Assumption 6. There exists an orthogonal matrix U ∈ 546

Od (the block matrix obtained by having transforma- 547

tion matrices Ua ∈ Odx for each action a ∈ A on the 548

diagonal) such that the weight matrix A∗ obtained as 549

a transformation of W∗ (i.e., A∗ = U−1W∗) is jointly 550

sparse, i.e., has a set of “useful” features J(A∗) = 551

∪Tt=1J([A∗]t) with |J(A∗)| = s∗ 
 d. 552
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Coherently with this assumption, we adapt the multi-
task feature learning (MTFL) problem defined in [1]
and at each iteration k for any action a we solve the
optimization problem

(Ûka , Â
k
a) = (13)

arg min
Ua∈Od ,Aa∈Rd×T

T∑
t=1

||Zka,t −�tUa[Aa]t||2 + λ ‖A‖2,1 .

In order to better characterize the solution to this553

optimization problem, we study more in detail the554

relationship between A∗ and W∗ and analyze the two555

directions of the equality A∗ = U−1W∗. When A∗ has556

s∗ non-zero rows, then any orthonormal transforma-557

tion W∗ will have at most rank r∗ = s∗. This suggests558

that instead of solving the joint optimization problem in559

Equation 13 and explicitly recover the transformation560

U, we may directly try to solve for low-rank weight561

matricesW . Then we need to show that a low-rankW∗
562

does indeed imply the existence of a transformation to563

a jointly-sparse matrix A∗. Assume W∗ has low rank564

r∗. It is then possible to perform a standard singular565

value decomposition W∗ = U�V = UA∗. Because �566

is diagonal with r∗ non-zero entries, A∗ will have r∗567

non-zero rows. It is important to notice that A∗ will568

not be an arbitrary matrix, but since it is the product of569

an orthonormal matrix with a diagonal matrix, it will570

have exactly r∗ orthogonal rows. Although this con-571

struction shows that a low-rank matrix W∗ may imply572

a sparse matrix A∗, the constraint coming from the573

SVD argument and the fact thatA∗ has orthogonal rows574

may prevent from finding the representation that indeed575

leads to the most sparse matrix (i.e., the matrix recov-576

ered from the SVD decomposition of a low-rank W577

may lead to a matrix A which is not as sparse as the A∗
578

defined in Assumption 6). Fortunately, we can show that579

this is not the case by construction. Assume that start-580

ing from W∗ an arbitrary algorithm produces a sparse581

matrix A′ = U−1W∗, with sparsity s′. Again, given582

a SVD decomposition A′ = U ′�′V ′ = U ′A′′. Because583

the rank r′ of matrix A′ is surely equal or smaller than584

s′, we have that by construction A′′ is an orthogonal585

matrix with at most s′ non-zero rows. Finally, since586

A′′ = U ′−1
A′ = U ′−1

U−1W∗, and since U ′−1
U−1 is587

still an orthonormal transformation, it is always pos-588

sible to construct an orthogonal sparse matrix A∗ that589

is not less sparse than any non-orthogonal alternatives.590

Based on such observations, it is possible to derive the591

following equivalence (the proof is mostly based on the592

results from [1] and it is available in full detail in [5]).

Proposition 3. Given A,W ∈ R
d×T , U ∈ Od , the fol-

lowing equality holds

min
A,U

T∑
t=1

||Zka,t −�tUa[Aa]t||2 + λ ‖A‖2,1

= min
W

T∑
t=1

||Zka,t −�t[Wa]t||2 + λ‖W‖1. (14)

The relationship between the optimal solutions isW∗ = 593

UA∗. 594

In words the previous proposition states the equiv- 595

alence between solving a feature learning version of 596

GL and solving a nuclear norm (or trace norm) regular- 597

ized problem. This penalty is equivalent to an �1-norm 598

penalty on the singular values of the W matrix, thus 599

forcing W to have low rank. 600

This is motivated by the fact that if there exists a 601

representation F∗ in whichA∗ is jointly sparse and that 602

can be obtained by transformation of F, then the rank of 603

the matrixW∗ = U−1A∗ corresponds to the number of 604

non-zero rows inA∗, i.e., the number of useful features. 605

Notice that assuming that W∗ has low rank can be also 606

interpreted as the fact that either the task weights [W∗]∗t 607

(the columns ofW∗) or the features weights [W∗]i (the 608

rows of W∗) are linearly correlated. In the first case, it 609

means that there is a small dictionary, or basis, of core 610

tasks that is able to reproduce all the other tasks as a 611

linear combination. As a result, Assumption 6 can be 612

reformulated as Rank(W∗) = s∗. Building on this intu- 613

ition we define the FL–FQI algorithm that is identical 614

to the GL–FQI except for the optimization problem, 615

which is now replaced by Equation [14]. 616

5.2. Theoretical analysis 617

Our aim is to obtain a bound similar to Theorem 2 for 618

the new FL-FQI Algorithm. We begin by introducing 619

a slightly stronger assumption on the data available for 620

regression. 621

Assumption 7 (Restricted Strong Convexity). Under
Assumption 6, let W∗ = UDVT be a singular value
decomposition of the optimal matrix W∗ of rank
s∗, and Us

∗
, V s

∗
the submatrices associated with

the top r singular values. Define B = {� ∈ R
d×T :

Row(�)⊥Us∗ and Col(�)⊥Vs∗}, and the projection
operator onto this set �B. There exists a positive con-
stant κ such that
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min

{
‖�Vec(�)‖2

2

2nT‖ Vec(�)‖2
2

: � ∈ R
d×T , (15)

‖�B(�)‖1 ≤ 3‖�−�B(�)‖1

}
≥ κ

The RSC assumption plays a central role in recent622

developements in high-dimensional statistics in regres-623

sion, matrix completion and compressed sensing [22].624

The corresponding proposition is625

Lemma 3. For any action a ∈ A and any iteration
k < K, let Wk

a satisfy Assumption 6 with Rank(Wk
a ) ≤

s∗, Assumption 7 with κ and T > O(log n). Then if
Equation 14 is run with a regularizer λ ≥
2LQmax

√
d+T
n

for any numerical constant δ > 0

and the noise is symmetric4, then there exists con-
stants c1 and c2 such that with probability at least
1 − c1 exp{c2(d + T )} the function f

ŵka,t
computed in

Equation 4 has an error bounded as

1

T

T∑
t=1

∥∥∥[Wk
a ]t − [Ŵk

a ]t
∥∥∥2

2

= 1

T
‖Ŵ −W∗‖2

F ≤ 4048L2Q2
maxr(d + T )

Tκ2n

We can now derive the main result of this section.626

Theorem 3 (FL–FQI). Let the tasks {Mt}Tt=1 and the
function space F satisfy assumptions 1, 2, 6, and 7 with
s∗ = Rank(W∗), features bounded supx ||φ(x)||2 ≤ L

and T > O(log n). If FL–FQI (Algorithm 1 with Equa-
tion 13) is run jointly on all T tasks forK iterations with

a regularizer λ ≥ 2LQmax

√
d+T
n
, then there exist con-

stants c1 and c2 such that with probability at least (1 −
c1 exp{c2(d + T )})K, the performance loss is bounded
as

1

T

T∑
t=1

∥∥∥∥Q∗
t −Q

πKt
t

∥∥∥∥2

2,ρ

≤ O
(

1

(1 − γ)4

[
Q2

maxL
4

κ2

s∗

n

(
1 + d

T

)
+ γKQ2

max

])
.

4The requirement on the noise to be drawn from a symmetric dis-
tribution can be easily relaxed but the cost of a much more complicated
proof. In fact, with an asymmetric noise, the truncation argument used
in the proof of Lemma 3 would introduce a bias. Nonetheless, this
would only translate in higher order terms in the bound and they would
not change the overall dependency on the critical terms.

Remark 1 (comparison with GL-FQI). From the pre- 627

vious bound, we notice that FL–FQI does not directly 628

depend on the shared sparsity s̃ of W∗ but on its rank, 629

that is the value s∗ of the most jointly-sparse repre- 630

sentation that can be obtained through an orthogonal 631

transformation U of the given features X. As com- 632

mented in the previous section, whenever tasks are 633

somehow linearly dependent, even if the weight matrix 634

W∗ is dense and s̃ ≈ d, the rank s∗ may be much 635

smaller than d, thus guaranteeing a dramatic perfor- 636

mance improvement over GL–FQI. On the other hand, 637

learning a new representation comes at the cost of 638

increasing the dependency on d. In fact, the factor 639

1 + log(d)/
√
T in GL–FQI, becomes 1 + d/T , imply- 640

ing that many more tasks are needed for FL–FQI 641

to construct a suitable representation (i.e., compute 642

weights with low rank). This is not surprising since 643

we added a d × d matrix U in the optimization prob- 644

lem and a larger number of parameters needs to be 645

learned. As a result, although significantly reduced by 646

the use of trace-norm instead of �2,1-regularization, the 647

negative transfer is not completely removed. In partic- 648

ular, the introduction of new tasks, that are not linear 649

combinations of the previous tasks, may again increase 650

the rank s∗, corresponding to the fact that no alterna- 651

tive jointly-sparse representation can be constructed. 652

Another way to interpret this is by imagining a small 653

set of fundamental tasks. For example, recalling the 654

humanoid robot case mentioned in Section 3, let us 655

consider the basic tasks of grasping, picking up, and 656

throwing. If, starting from the features that we pro- 657

vide, it is possible to extract a concise description of 658

the optimal value function (e.g. in the rotated feature 659

space) for all of these basic tasks and more complex 660

tasks have optimal value functions that can be well 661

approximated by a linear combination of the solutions 662

to the basic tasks, then samples collected from the lat- 663

ter can be effectively reused to learn solutions to the 664

former. 665

Remark 2 (assumptions). Assumption 7 is directly 666

obtained from [22]. Intuitively, the top s∗ singular val- 667

ues play the role of the non-zero groups, the space B is 668

perpendicular to the non-zero part of the column space 669

and row space (i.e., the submatrix of � with positive κ 670

in RE). Then the residual�−�B(�) (that is parallel to 671

the space spanned by the top s∗ singular values because 672

is perpendicular to B) must be greater than the pro- 673

jection. This is similar to ‖�Jc‖2,1 ≤ 3 ‖�J‖2,1 where 674

we have spaces parallel and perpendicular to the top r 675

subspace instead of group J and its complement.
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6. Experiments676

We investigate the empirical performance of GL–677

FQI, and FL–FQI and compare their results to678

single-task LASSO–FQI. First in Section 6.1 we report679

a detailed analysis in the chain walk domain, while in680

Section 6.2 we consider a more challenging blackjack681

domain.682

6.1. Chain walk683

In the chain walk domain, the agent is placed on a684

line and needs to reach a goal from a given starting685

position. The chain is a continuous interval with range686

[0, 8], and the goal can be situated at any point in the687

interval [2, 6]. The agent has 2 actions at her disposal,688

a1 and a2, that correspond to a step in each direction.689

When choosing action a1 the state of the environment,690

represented by the agent’s position, transitions from x691

to x′ = x+ 1 + ε (respectively x′ = x− 1 + ε for a2),692

with ε a Gaussian noise. Given a goal g = y, the agent693

receives a reward 0 for every step, and a reward 1 when694

the future state x′ is close to g, according to the formula695

|x′ − y| ≤ 0.5.696

We generate T tasks by randomly selecting a posi-
tion for the goal from U(2, 6), and we randomly select
n = 30 samples for each task, starting from random
positions and taking a random action. We force the
inclusion of at least two transitions with reward equal
to 1 to characterize each task. The average regret, eval-
uated by taking a set of random points {xi}Ni=1 and
simulating many trajectories following the proposed
policy and the optimal policy, is computed as:

R̃ = 1

T

T∑
t=1

1

N

N∑
i=1

[
Eπ∗

t

[ K∑
j=0

γjrj|x0 = xi

]

− Eπt

[ K∑
j=0

γjrj|x0 = xi

]]
. (16)

We define two experiments to test GL–FQI and 697

FL–FQI. In both cases, the chain is soft-discretized 698

by defining 17 evenly spaced radial basis functions 699

N(xi, 0.05) on [0, 8]. To these 17 informative dimen- 700

sions, we added noisy features U(−0.25, 0.25), for 701

a total d ∈ 17, . . . , 2048. In the first experiment, the 702

features are inherently sparse, because the noisy dimen- 703

sions are uncorrelated with the tasks. Since s = 17 
 d 704

we expect a clear advantage of GL–FQI over LASSO. 705

The averages and confidence intervals for regret are 706

plotted in Figure 2. As expected, the GL–FQI solution 707

outperforms LASSO–FQI when the number of tasks 708

increases. In particular we can see that when T = 10, 709

the term log(d)/
√
T remains small and the performance 710

of GL–FQI remains stable. 711

In the second experiment, we introduced a rotation 712

in the features, by randomly generating an orthonor- 713

mal matrix U. This rotation combines the RBFs and 714

the noise, and s̃ grows, although the rank s∗ remains 715

small. Results are reported in Fig. 3, where, as expected, 716

the low rank approximation found by FL–FQI is able 717

to solve the tasks much better than GL–FQI, which 718

assumes joint sparsity. Moreover, we can see that the 719

stability to the number of noisy dimensions grows when 720

T increases, but not as much as in the first experiment. 721

Fig. 2. Results of the first experiment in the chain walk domain comparing GL–FQI and LASSO–FQI. On the y axis we have the average regret
computed according to Equation (16). On the x axis we have the total number of dimensions d, including noise dimensions, on a logarithmic
scale. For each graph, T corresponds to the number of tasks learned at the same time in the experiment.
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Fig. 3. Results of the second experiment in the chain walk domain comparing GL–FQI and FL–FQI. On the y axis we have the average regret
computed according to Equation (16). On the x axis we have the total number of dimensions d, including noise dimensions, on a logarithmic
scale. For each graph, T corresponds to the number of tasks learned at the same time in the experiment.

6.2. Black jack722

We consider two variants of the more challeng-723

ing blackjack domain. In both variants the player can724

choose to hit to obtain a new card or stay to end the725

episode, while the two settings differ in the possibility726

of performing a double (doubling the bet) on the first727

turn. We refer to the variant with the double option as728

the full variant, while the other is the reduced variant.729

After the player concludes the episode, the dealer hits730

until a fixed threshold is reached or exceeded. Different731

tasks can be defined depending on several parameters732

of the game, such as the number of decks, the threshold733

at which the dealer stays and whether she hits when the734

threshold is reached exactly with a soft hand.735

Full variant experiment. In the first experiment we736

consider the full variant of the game. The tasks are gen-737

erated by selecting 2, 4, 6, 8 decks, by setting the stay738

threshold at {16, 17} and whether the dealer hits on soft,739

for a total of 16 tasks. We define a very rich description740

of the state space with the objective of satisfying Asm. 1.741

At the same time this is likely to come with a large742

number of useless features, which makes it suitable for743

sparsification. In particular, we include the player hand744

value, indicator functions for each possible player hand745

value and dealer hand value, and a large description746

of the cards not dealt yet (corresponding to the his-747

tory of the game), under the form of indicator functions748

for various ranges. In total, the representation contains749

d = 212 features. We notice that although none of the750

features is completely useless (according to the defini-751

tion in Asm. 2), the features related with the history of752

the game are unlikely to be very useful for most of the 753

tasks defined in this experiment. We collect samples 754

from up to 5000 episodes, although they may not be 755

representative enough given the large state space of all 756

possible histories that the player can encounter and the 757

high stochasticity of the game. The evaluation is per- 758

formed by simulating the learned policy for 2,000,000 759

episodes and computing the average House Edge (HE) 760

across tasks. For each algorithm we report the perfor- 761

mance for the best regularization parameter λ in the 762

range {2, 5, 10, 20, 50}. Results are reported in Fig. 4a. 763

Although the set of features is quite large, we notice 764

that all the algorithms succeed in learning a good pol- 765

icy even with relatively few samples, showing that all of 766

them can take advantage of the sparsity of the represen- 767

tation. In particular, GL–FQI exploits the fact that all 16 768

tasks share the same useless features (although the set 769

of useful feature may not overlap entirely) and its per- 770

formance is the best. On the other hand, FL–FQI suffers 771

from the increased complexity of representation learn- 772

ing, which in this case does not lead to any benefit since 773

the initial representation is already sparse. Nonetheless, 774

it is interesting to note that the performance of FL–FQI 775

is comparable to single-task LASSO–FQI. 776

Reduced variant experiment. In the second experi- 777

ment we construct a representation for which we expect 778

the weight matrix to be dense. In particular, we only 779

consider the value of the player’s hand and of the 780

dealer’s hand and we generate features as the Carte- 781

sian product of these two discrete variables plus a 782

feature indicating whether the hand is soft, for a total of 783

280 features. Similar to the previous setting, the tasks 784
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Fig. 4. Results of the experiment comparing FL–FQI, GL–FQI and
LASSO–FQI. On the y axis we have the average house edge (HE)
computed across tasks. On the x axis we have the total number of
episodes used for training.

are generated with 2, 4, 6, 8 decks, whether the dealer785

hits on soft, and a larger number of stay thresholds in786

{15, 16, 17, 18}, for a total of 32 tasks. We used regu-787

larizers in the range {0.1, 1, 2, 5, 10}. Since the history788

is not included, the different number of decks influ-789

ences only the probability distribution of the totals.790

Moreover, limiting the actions to either hit or stay fur-791

ther increases the similarity among tasks. Therefore, we792

expect to be able to find a dense, low-rank solution. The793

results in Fig. 4b confirms this guess, with FL–FQI per-794

forming significantly better than the other methods. In795

addition, GL–FQI and LASSO–FQI perform similarly,796

since the dense representation penalizes both single-797

task and shared sparsity. This was also observed by the798

fact that both methods favor low values of λ, indicating 799

that the sparse-inducing penalties are not effective. 800

7. Conclusions 801

We studied the problem of multi-task reinforcement 802

learning under shared sparsity assumptions across the 803

tasks. GL–FQI extends the FQI algorithm by intro- 804

ducing a Group-LASSO step at each iteration and it 805

leverages over the fact that all the tasks are expected to 806

share the same small set of useful features to improve 807

the performance of single-task learning. Whenever 808

the assumption is not valid, GL–FQI may perform 809

worse than LASSO–FQI. With FL–FQI we take a 810

step further and we learn a transformation of the given 811

representation that could guarantee a higher level of 812

shared sparsity. This also corresponds to find a low- 813

rank approximation and to identify a set of core tasks 814

that can be used as a basis for learning all the other 815

tasks. While the theoretical guarantees derived for the 816

presented methods provide a solid argument for their 817

soundness, preliminary empirical results suggest that 818

they could be a useful alternative to single-task learning 819

in practice. Future work will be focused on providing 820

a better understanding and a relaxation of the theoreti- 821

cal assumptions and on studying alternative multi-task 822

regularization formulations such as in [31] and [14]. 823
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