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Abstract. Estimating the focus of attention of a person looking at an
image or a video is a crucial step which can enhance many vision-based
inference mechanisms: image segmentation and annotation, video cap-
tioning, autonomous driving are some examples. The early stages of the
attentive behavior are typically bottom-up; reproducing the same mech-
anism means to find the saliency embodied in the images, i.e. which parts
of an image pop out of a visual scene. This process has been studied for
decades in neuroscience and in terms of computational models for repro-
ducing the human cortical process. In the last few years, early models
have been replaced by deep learning architectures, that outperform any
early approach compared against public datasets. In this paper, we pro-
pose a discussion on why convolutional neural networks (CNNs) are so
accurate in saliency prediction. We present our DL architectures which
combine both bottom-up cues and higher-level semantics, and incorpo-
rate the concept of time in the attentional process through LSTM recur-
rent architectures. Eventually, we present a video-specific architecture
based on the C3D network, which can extracts spatio-temporal features
by means of 3D convolutions to model task-driven attentive behaviors.
The merit of this work is to show how these deep networks are not
mere brute-force methods tuned on massive amount of data, but repre-
sent well-defined architectures which recall very closely the early saliency
models, although improved with the semantics learned by human ground-
thuth.

Keywords: Saliency, Human Attention, Neuroscience, Vision, Deep Learn-
ing

1 Introduction

When humans look around the world, observing an image or watching at a
video sequence, attentive mechanisms drive their gazes towards salient regions.
Attentional mechanisms have been studied in psychology and neuroscience since
decades [17], and it is well assessed that the attentional mechanism is mainly
bottom-up in its early stages, although influenced by some contextual cues, and
guided by the salient points in the scene which is scanned very quickly by the
eyes (in about 25-50 ms per item). If the person has a task-driven behaviour, e.g.
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when one drives a car, top-down attentive process arise; they are slower (at least
200 ms of reaction in humans) and due to the learned semantics of the scene.
In general, the control of attention combines some stimuli processed in different
cortical areas to mix spatial localization and recognition tasks, integrating data-
driven pop outs and some learned semantics. It has also a temporal evolution,
since some mechanisms such as the inhibition of return and the control of eye
movements allow humans to refine attention during time.

Reproducing the same attentional process in artificial vision is still an open
problem. In the case of a static image, researchers have shown that salient re-
gions can be identified by considering discontinuities in low-level visual features,
such as color, texture and contrast, and high-level cues as well, like faces, text,
and the horizon. When watching a video sequence, instead, static visual features
have lower importance while motion gains a crucial role, motivating the need of
different solutions for static images and video. In both scenarios, computational
models capable of identifying salient regions can enhance many vision-based
inference mechanisms, ranging from image captioning [11] to video compres-
sion [13].

Since the seminal research of Kock, Ulman and Itti [23, 18], traditional pre-
diction models have followed biological evidences using low-level features and
semantic concepts [14, 22]. With the advent of Deep Learning (DL), researchers
have developed data-driven architectures capable of overcoming many of the lim-
itations of previous hand-crafted models. This is not only due to the brute-force
of DL architectures, with their capability of being trained by supervised data.
This is one area where these architecture are particularly suitable since they re-
call precisely the neural biological models. Still, it is surprising to see how much
today’s models share with those early works.

Motivated by these considerations, we present an overview of different solu-
tions that we have developed for saliency prediction on images and video with
DL, which represent now the state-of-the-art in public available benchmarks.
We compare the neural network model with the early models of computational
saliency map, to show similarities and differences. The main contribution of this
work is a discussion on why the model of attention prediction with Deep Learn-
ing is useful. The paper will show that today’s models, based on Convolutional
Neural Networks (CNNs) share many of the principles of early models, while
at the same time solving many of their drawbacks. Different convolutional ar-
chitectures will be presented, to deal with features extracted at multiple levels,
and to refine saliency maps in an iterative way. Eventually, a solution for video
saliency prediction will be discussed and analyzed in the case of driver attention
estimation.

2 Related Work

2.1 Saliency prediction on images

Early works on saliency prediction on images were based on the Feature Integra-
tion Theory proposed by Treisman et al. [32] in the eighties. Itti et al. [18], then,



Attentive Models in Vision 3

proposed the first saliency computational model: this work, inspired by Koch
and Ullman [23], computed a set of individual topographical maps representing
low-level cues such as color, intensity and orientation and combined them into
a global saliency map. The saliency map is a scalar map, as large as the im-
age, where each point represents the visual saliency, irrespective of the feature
dimension that makes the location salient. The locus of highest activity in the
saliency map is the most probable eye fixation point or is the point where the
focus of attention should be localized.

After this work, a large variety of methods explored the same idea of com-
bining complementary low-level features [5, 14] and often included additional
center-surround cues [38]. Other methods enriched predictions exploiting seman-
tic classifiers for detecting higher level concepts such as faces, people, cars and
horizons [22].

In the last few years, thanks to the large spread of deep learning techniques,
the saliency prediction task has achieved a considerable improvement. First at-
tempts of predicting saliency with convolutional networks mainly suffered from
the absence of fine-tuning of network parameters over a saliency prediction
dataset and from the lack of sufficient amount of data to train a deep saliency
architecture [33, 25]. The publication of the large-scale attention dataset SALI-
CON [20] has contributed to a big progress of deep saliency prediction models
and several new architectures have been proposed.

Huang et al. [16] introduced a deep neural network applied at two different
image scales trained by using some evaluation metrics specific for the saliency
prediction task as loss functions. Kruthiventi et al. [24] proposed a fully con-
volutional network called DeepFix that captures features at multiple scales and
takes global context into account through the use of large receptive fields. Pan et
al. [27] instead presented a shallow and a deep convnet where the first is trained
from scratch while some layers of the second are initialized with the parame-
ters of a standard convolutional network. Finally, Jetley et al. [19] introduced
a saliency model that formulates a map as a generalized Bernoulli distribution
and they used these maps to train a CNN trying different loss functions.

2.2 Saliency prediction in video

When considering video inputs, saliency estimation is quite different with respect
to still images. Indeed, motion is a key factor that strongly attracts human atten-
tion. Accordingly, some video saliency models pair bottom-up feature extraction
with a further motion estimation step, that can be performed either by means
of optical flow [39] or feature tracking [37]. Somehow differently, some models
have been proposed to force the coherence of bottom-up features across time. In
this setting, previous works address feature extraction both in a supervised [30]
and unsupervised [34] fashion, whereas temporal smoothness of output maps can
be achieved through optical flow motion cues [39] or explicitly conditioning the
current map on information from previous frames [28].

As previously discussed for the image saliency setting, the representation
capability of deep learning architectures, along with large labeled datasets, can
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Fig. 1: Overview of our Multi-Level Network (ML-Net) [8].

yield better results. However, deep video saliency models still lack, being the
work in [4] the only meaningful effort that can be found in the current literature.
Such model leverages a recurrent architecture iteratively updating its hidden
state over time, and emitting the saliency map at each step by means of a
Gaussian Mixture Model.

3 Saliency Prediction with Deep Learning Architectures

In this section we provide a detailed discussion of different deep learning archi-
tectures for saliency prediction on images and video. We will introduce a convo-
lutional model for images, which incorporates low and high level visual features,
and which, conceptually, extends the seminal work by Itti and Koch [18] by
means of a modern neural network. A discussion on the similarities and differ-
ences between these two models will follow, and forerun the presentation of a
second model, in which a recurrent convolutional architecture is used to refine
saliency maps in a way which is roughly similar to the human scanpath. Finally,
we will present an architecture for saliency prediction on video, and show how
this particular domain differs from that of images in the case of driver attention
prediction.

3.1 Incorporating low-level and high-level cues in a Multi-Level
Network

In [8], we proposed a Deep Multi-Level Network (ML-Net) for saliency prediction.
In contrast to previous proposals, in which saliency maps were predicted from
a non-linear combination of features coming from the last convolutional layer of
a CNN, we effectively combined feature maps coming from three different levels
of a fully convolutional network thus taking into account low, medium and high
level cues. Moreover, to model the center bias present in human eye fixations, we
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incorporated a learned prior map by applying it to the predicted saliency map.
Fig. 1 shows the overall architecture of our ML-Net model.

More in details, the first component of our architecture is a CNN based
on a standard convolutional network originally designed for image classifica-
tion and then employed in several other computer vision tasks. This network,
named VGG-16 [29], is composed by 13 convolutional layers, divided in 5 different
blocks, and 3 fully connected layers. Since we aimed at producing a 2-dimensional
map (i.e. the predicted saliency map), we removed the fully connected layers
thus obtaining a fully convolutional architecture. Several other deep saliency
models [16, 27, 19, 9] employ the VGG-16 as starting point for their architec-
tures and almost each of them combines feature maps coming only from the
last convolutional layer of the VGG-16 network differentiating from each other
by designing specific saliency component or by using different training strate-
gies. In contrast to this approach, the second component of our model took as
input feature maps coming from three different levels of the VGG-16 network:
the output of the third, fourth and fifth convolutional blocks. Our model ef-
fectively combined these feature maps through two specific convolutional layers
that merge low, medium and high level features and then produce a temporary
saliency map. Finally, we decided to incorporate an important property of hu-
man gazes in our model. In fact, when an observers looks at an image its gaze
is biased toward the center of the scene. To this end, the last component of our
architecture was designed to model this center bias through a learned prior map
which was applied to the predicted saliency map thus giving more importance
to the center of the image.

It is well known that at training time a deep learning architecture has to
minimize a given loss function that, in the saliency prediction task, aims at
effectively approaching the predicted saliency map to the ground-truth one ob-
tained from human fixation points. Previous deep saliency models were trained
with different strategies by using a saliency evaluation metric as loss function
or, more commonly, a square error loss (such as the euclidean loss). We instead
designed a specific loss function inspired by three different objectives: predicted
saliency maps should be similar to ground-truth ones, therefore a square error
loss was a reasonable choice. Secondly, predictions should be invariant to their
maximum, and there is no point in forcing the network to produce values in a
given numerical range, so predictions were normalized by their maximum. Third,
the loss should give the same importance to high and low ground-truth values,
even though the majority of ground-truth pixels are close to zero. For this reason,
the deviation between predicted values and ground-truth values was weighted
by a linear function, which tends to give more importance to pixels with high
ground-truth fixation probability. The overall loss function was thus

L(w) =
1

N

N∑
i=1

∥∥∥ φ(xi)
maxφ(xi)

− yi

∥∥∥2
α− yi

(1)
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Table 1: Comparison results on the MIT300 dataset [21].

SIM ↑ CC ↑ sAUC ↑ AUC ↑ NSS ↑ EMD ↓
Infinite humans 1.00 1.00 0.80 0.91 3.18 0.00

ML-Net 0.59 0.67 0.70 0.85 2.05 2.63

Itti 0.44 0.37 0.63 0.75 0.97 4.26

where xi are the predicted saliency maps while yi are the ground-truth ones.
The proposed architecture was trained with mini-batch of N samples by using
the Stochastic Gradient Descent as optimizer.

3.2 Deep Learning architectures vs. the Itti and Koch’s model

The first computational model for saliency prediction,and probably the most
famous, was presented in a seminal paper by Itti and Koch [18]. It proposed to
extract multi-scale low-level features from the input image which were linearly
combined and then processed by a dynamic neural network with a winner-takes-
all strategy to select attended locations in decreasing order of saliency. As we
have shown in the previous section, nowadays saliency prediction is generally
tackled via CNN architectures, therefore giving more importance to learning
than to hand engineering of features. However, today’s models share a lot with
that influential work.

The model in [18] extracted three kinds of features from input images: color
(as a linear combination of raw pixels in color channels), intensity (again, com-
puted as a linear combination of color channels), and orientation, by means of
oriented Gabor pyramids [12]. It should be noted that all these features can
be easily extracted by a single convolutional layer, and, indeed, visualization
and inversion techniques [36] showed that filters learned in the early stages of a
CNN roughly extract color and gradient features. Also, the linear combinations
of color channels in [18] can be computed via a single convolutional layer with
channel-wise uniform weights or with a 1× 1 kernel.

One detail, however, is missing in current convolutional architectures: authors
of [18] extracted the same features at multiple scales, and then validated them
by performing central differences between adjacent scales. In a CNN, instead,
features are always computed at a single scale, even though the overall archi-
tecture extracts (different) features at different scales thanks to pooling stages.
Of course the multi-scale validation of features was also motivated by the need
of extracting robust features, something which comes almost for free in modern
architectures. Moreover, many state of the art CNN models are multi-scale by
construction, feeding a pyramid of images to the same convolutional stack. Even
in our model, we combine different features extracted at different scales to form
the final prediction, instead of taking only those produced by the last layer.

Conversely, the most evident characteristic that the Itti and Koch model
misses with respect to today’s architectures is the ability to extract higher level
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Image Itti ML-Net Ground-truth

Fig. 2: Qualitative comparisons between the Itti [18] and ML-Net [8] models.
Images are from the SALICON dataset [20].

features, and to detect objects and part of objects. This is achieved, in today’s
networks, by increasing the depth of the network (e.g. 152 layers in the ResNet
model [15]). This, given the big performance gap, clearly highlights the need of
high-level features for saliency prediction.

As a proof of concept, in Table 1 we compare the results of the model in [18]1

with those of our method. We use the standard performance indicators for
saliency: the Similarity, the Linear Correlation Coefficient (CC), the Area Under
the ROC Curve (AUC) and its shuffled version (sAUC), the Normalized Scan-
path Saliency (NSS) and the Earth-Mover Distance (EMD). We refer the reader
to the work by Bylinskii et al. [7] for a detailed discussion on these metrics. It
can clearly be seen that CNNs overcame that early model by a big margin, with
respect to all metrics, and this experimentally confirms the need of high-level
features for saliency prediction, rather than just employing low-level cues such
as in [18]. To give a better insight of the performance gain, we also report some
qualitative results on images randomly chosen from the SALICON dataset. We
show them in Fig. 2, along with the ground-truth saliency map computed from
human eye fixations. While the model of [18] tends to concentrate on color and
gradient discontinuities, which often do not match with the human fixation map,
our model can clearly guess most of the saliency maps in a way which is almost
indistinguishable from the ground-truth. The middle image, showing a pizza, is
also a good example to show the role of the center prior: when there is no a
clear object which stands out in the scene, human eyes tend to fix the center of
the image, as our model has learned to do. Also, predictions from our ML-Net
are particularly focused on small areas, similarly to the SALICON ground-truth.
This is due to the fact that, in absence of a task-driven attentive mechanism, the

1 Numerical and qualitative results of the Itti-Koch model have been generated using
the re-implementation of [14], which is also the one reported in the MIT Saliency
Benchmark [6].
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Image Itti ML-Net
SAM

GT
t = 1 t = 2 t = 3 t = 4

Fig. 3: Qualitative comparison between the Itti [18], ML-Net [8] and SAM [10]
models on images taken from the SALICON dataset [20]. For the SAM model,
we show predictions given by the recurrent attentive network at different steps.

focus tends to be directed on what is a-priori known, such as a person, a face,
a traffic sign. The architecture, trained on similar data, does not overfit specific
points, but tends to replicate the same semantic-based attentive behaviour.

3.3 Saliency map refinement via a convolutional recurrent
architecture

Models for saliency prediction can also go beyond feed-forward neural networks
and include recurrent components. Recurrent neural networks are usually em-
ployed to deal with time-varying input sequences, but can be used, in general,
to process any kind of sequence. Following this intuition, we proposed a second
model [10] in which we combined a fully convolutional network (similar to the
one described in the previous sections) with a recurrent convolutional network,
endowed with an attention mechanism. The recurrent network, instead of looping
on a time sequence as in the case of video captioning [3], performs an iterative
refinement of the saliency map by focusing on different part of the image. This
behaviour is encouraged by using a spatial attentive mechanism, inspired by the
machine translation literature [2]. We called the overall architecture SAM, i.e.
Saliency Attentive Model.

Figure 3 shows, for some images taken from the SALICON dataset, the pre-
diction from the model of Itti and Koch [18], that from our previous model [8],
and the output of the attentive network at each step, for t = 1, ..., 4, as well as
the ground-truth map. As it can be noticed, the refinement strategy carried out
by the network results in a progressive improvement of the prediction, which
overcomes the performance of a feed-forward neural network like the one in the
ML-Net model.

3.4 Estimating task-driven saliency in videos

In [26], we described a model devised for predicting saliency on the DR(eye)VE

dataset [1], and capable of replicating human attentional behavior while driv-



Attentive Models in Vision 9

AI*IA

conv3D

p
o

o
l3

D

p
o

o
l3

D

p
o

o
l3

D

p
o

o
l3

D

64 128 256 256 512 512

conv3D conv3D conv3D conv3D conv3D

256

conv2D

128

conv2D conv2D conv2D conv2D conv2D

64 32 16 1u
p

sa
m

p
le

u
p

sa
m

p
le

u
p

sa
m

p
le

u
p

sa
m

p
le

u
p

sa
m

p
le

Input Coarse Prediction Prediction Refinement Output

Cropped 
videoclip

Resized 
videoclip

RGB 
frame

112

112

112

112

448

448

Fig. 4: Illustration of the COARSE+FINE model depicting the both streams guiding
the optimization during training. Please note that in test stage the cropped
stream is not used. At the bottom, the architecture of the COARSE module is
illustrated.

ing. The need for a different model tailored for this specific context is twofold:
first, as anticipated, objects motion in videos tends to capture human attention.
Moreover, fixations recorded during the dataset acquisition in [1] are strongly
related to the driving activity, and call for a task-driven model and training
procedure.
Motivated by the insight that a small temporal window holds sufficient informa-
tion meaningful for the task of driving, our model captures short-term correla-
tions by means of 3D convolutions, which also stride along time axis. Accord-
ingly, it takes as input samples holding 16 consecutive frames (called clips from
now on) and provides a dense saliency probability map for the last (current)
frame of the clip. The network is jointly trained with two input streams (Fig. 4),
in order to tackle the central bias that usually affects saliency benchmarks in
general, and is even more noticeable in the driving task. Both streams rely on
the same backbone encoder, that we name COARSE module as provides a rough,
harsh saliency estimate. Such model is based on the work by Tran et al. [31]
and employs their C3D architecture to map pixels into a 512-dimensional en-
coding space. Being interested in spatially coherent feature maps, we drop the
top fully connected classification module. Moreover, we discard the deepest con-
volutional layer, which encodings are strongly tailored to the original action
recognition task, retaining only the most general features provided by previous
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Table 2: Evaluation of the proposed models against central baselines, both on
the test and attentive sequences of DR(eye)VE.

Test seq Att. seq

CC ↑ DKL ↓ CC ↑ DKL ↓
Baseline (gaussian) 0.33 2.50 0.22 2.70

Baseline (mean train GT) 0.48 1.65 0.17 2.85

Wang et al. [35] 0.08 3.77 – –

Wang et al. [34] 0.03 4.24 – –

ML-Net 0.41 2.05 0.29 2.49

COARSE 0.44 1.73 0.19 2.74

COARSE+FINE 0.55 1.42 0.30 2.24

layers. Eventually, we modify the last pooling layer to cover the whole time axis,
and therefore squeeze out the temporal dimension from the output features. The
resulting map, which is reduced by a 16x factor along spatial dimension and lacks
the temporal axis due to pooling layers, is then processed to produce a saliency
estimate as big as the original image and featuring a single probability channel.
This is achieved by means of a series of upsampling followed by convolutions.
During training, the model is fed with two streams. The first stream encour-
ages the model to learn saliency estimation given visual cues rather than prior
spatial bias, and feeds the COARSE model with random crops. Cropping is also
employed in the original C3D training process. Indeed, in [31] authors perform a
tensor resize to 128× 128 and then a random 112× 112 crop. In our experience,
this cropping policy is too polite, and yields models strongly biased towards the
image center since ground-truth maps still suffer a poor variety. The policy we
employ is immoderate, and features a 256×256 resize before the crop. This way,
samples cover a small portion of the input tensor and allow variety in prediction
targets, at the cost of a wider attentional area. Intuitively, the smaller crops are,
the larger the attentional map will appear. Thus, the trained model was able to
escape the bias when required, but unfortunately provided over-rough estimates.
To address this issue, we feed the COARSE model with a second stream providing
images resized to match the crop size. The prediction, after being resized and
concatenated with the last frame of the clip, than undergoes a further block
of convolutional layers (FINE module) that refine the map. Estimates from both
streams are modeled as a probability density P over pixels, and optimized jointly
against a ground-truth map Q by means of the Kullback-Leibler divergence:

DKL(P,Q) =
∑
i

Qi log

(
ε+

Qi
ε+ Pi

)
(2)

where the summation index i spans across image pixels and ε is a regularization
constant.



Attentive Models in Vision 11

Frame GT COARSE+FINE ML-Net

Fig. 5: Representation of differences in the video saliency estimation. This quali-
tative assessment indicates the suitability of the COARSE+FINE model in encoding
temporal information. On the other hand, the ML-Net model processes still im-
ages and is more influenced by low-level non temporal features.

Evaluation Here we discuss the experiments performed in order to assess the
design choices of our architecture for video saliency. As common in public bench-
marks, we first compare our model against two central baselines. The first one
represents the central bias as a Gaussian N (µ,Σ), being µ the image center and
Σ a diagonal covariance matrix whose variances are coherent with the image
aspect ratio. A more precise, task-driven baseline is obtained by averaging all
training ground-truth maps, and two unsupervised state-of-the-art video saliency
models [35, 34] are also included in the comparison. The evaluation has been car-
ried out comparing the shift between predicted and ground-truth maps both in
terms of Pearson’s correlation coefficient (CC) and Kullback-Leibler divergence
(DKL). We report such measures evaluated both in the whole test set and in the
attentive subsequences only2 in Tab. 2. Moreover, we report the results of the
ML-Net model, that was originally proposed for image saliency and has been
properly trained from scratch on the DR(eye)VE dataset.
Several conclusions can be drawn from this evaluation. Firstly, from the poor
performances of unsupervised models emerges the peculiar nature of the driv-
ing context, that demands for task-driven supervision. Moreover, it can be no-
ticed that the attentive subset of samples is crucial for the evaluation, as simple
input-agnostic baselines perform positively overall. Finally, an important remark
is revealed by the superior performance of the proposed model w.r.t ML-Net.
The gap in performance is due to the temporal nature of video data: indeed,
COARSE+FINE profitably learned to extract temporal features that are meaning-
ful for video saliency prediction, whereas the design of ML-Net cannot capture
such precious dependencies. A qualitative illustration of the difference in predic-
tions is illustrated in Fig. 5.

2 attentive subsequences in DR(eye)VE are clips in which the driver is looking far from
the image center due to a peculiar maneuver he is performing. We refer the reader
to [26] for details.
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4 Conclusions

In this work we presented different deep learning architectures for saliency pre-
diction on images and video, showing the importance of multi-level features
and the ability of recurrent architectures to enhance saliency prediction results.
We also shown, with experiments on a driving dataset, that dealing with video
sequences requires ad-hoc architectures due to the need of extracting motion
features. The comparison between today’s models and the early model by Itti
and Koch [18] revealed several similarities in the way feature are extracted, and
motivated the gap in performances with current models, which is not merely due
to the their brute-force nature, but also to their ability to recall very closely early
saliency and biological models, although improved with the semantics learned
on the ground-thuth.
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