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Abstract: (Aim) Unilateral sensorineural hearing loss is a brain disease, which causes slight 
morphology change within brain structure. Traditional manual method may ignore this change. (Method) 
In this work, we developed a novel method, based on the double-density dual-tree complex 
(DDDTCWT), and radial basis function kernel principal component analysis (RKPCA) and multinomial 
logistic regression (MLR) for the magnetic resonance imaging scanning. We first use DDDTCWT to 
extract features. Afterwards, we used RKPCA to reduce feature dimensionalities. Finally, MLR was 
employed to be the classifier. (Result) The 10 times of 10-fold stratified cross validation showed our 
method achieved an overall accuracy of 96.44± 0.88%. The sensitivities of detecting left-sided 
sensorineural hearing loss, right-sided sensorineural hearing loss, and healthy controls were 96.67± 
2.72%, 96.67± 3.51%, and 96.00± 4.10%, respectively. (Conclusion) Our method performed better than 
both raw and fine-tuned AlexNet, and eight state-of-the-art methods via a stringent statistical 10x10-
fold stratified cross validation. The MLR gives better classification performance than decision tree, 
support vector machine, and back-propagation neural network. 
 
Keywords: unilateral sensorineural hearing loss; dual-tree complex wavelet transform; kernel principal 
component analysis; multinomial logistic regression; double-density dual-tree complex wavelet 
transform; magnetic resonance imaging; AlexNet 
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1 Introduction 
 
Hearing loss is a partial or even inability to hear. It may be 
caused by a massive of different problems, such as birth 
complication (1), infection (2), medications (3), ageing (4), 
genetics, noise (5), trauma (6), toxins (7), etc. The hearing 
loss is defined when the subject cannot hear 25 decibels 
and above for more than one year. Disabling hearing loss 
is defined as hearing loss greater than 40 decibels (dB) in 
the better hearing ear in adults and a hearing loss greater 
than 30 dB in the better hearing ear in children. Until 2017, 
it is reported by word health organization (WHO) that there 
are about 466 million people suffering from disabling 
hearing loss, and 34 million of these are kids. According to 
the estimation made by WHO, there will be over 900 
million people have disabling hearing loss by 2050. 60% 
of childhood hearing loss is caused by preventable causes. 
The unaddressed hearing loss caused an annual global cost 
of 750 billion dollars every year. Interventions to prevent, 
identity and address hearing loss are cost effective and can 
bring great benefits to individuals. Therefore, in this paper, 
we proposed using machine learning method for the early 
detection of one specific type of hearing loss, which can be 
effectively visually inspected from Magnetic resonance 
imaging (MRI). 

Sensorineural hearing loss is a type of hearing loss. Its 
cause may lie in either sensory tissues or neural tissues (8). 
It may occur in one or both ears. In this study, we aim to 
detect unilateral sensorineural hearing loss (USHL) into 
two types: left-sided and right-sided. 

MRI is an efficient tool to help diagnose USHL, 
because the USHL patients have distinct difference with 
healthy controls from the view of brain structures (9). 
Nevertheless, these differences are slight and subtle 
especially in the prodromal stage in USHL disease. 
Therefore, computer vision techniques are essential to help 
neuro-radiologist to find those minor alterations.  

In the last decade, Li (10) used fractional Fourier 
transform (FRFT) to detect left-sided and right-sided 
hearing loss. Chen (11) used wavelet packet decomposition 
(WPD) technique and least-square support vector machine 
(LSSVM). Gorriz and Ramírez (12) combined wavelet 
entropy (WE) and directed acyclic graph support vector 
machine (DAG-SVM). Chen and Chen (13) employed 
three successful techniques: discrete wavelet transform 
(DWT), principal component analysis (PCA), and 
generalized eigenvalue proximal support vector machine 
(GEPSVM). Sun (14) employed wavelet energy, and 
proposed a quantum-behaved particle swarm optimization 
method. Wu (15) used contrast-limited adaptive histogram 

equalization approach. Lu (16) used radial basis function 
neural network. Chen (17) used fractal dimension based on 
Minkowski-Bouligand method to detect pathological 
brains. Lu (18) used wavelet packet entropy and back 
propagation (BP) algorithm. Pereira (19) used a Hu 
moment invariant (HMI) approach. Jia (20) used a deep 
autoencoder method. 

After studying above literatures, we found they share 
three common problems: (i) Their datasets are imbalanced. 
This is because healthy controls are easily enrolled, while 
hearing loss patients are usually with other brain diseases, 
and hence those patients are not obedient for MRI scanning. 
(ii) They used wavelet or its variant as the feature, but 
wavelet decomposition can only detect textures along 
horizontal, vertical and diagonal directions. (iii) The 
performance of these detector systems are not satisfying 
and can be improved. 

To solve these issues, Wang, Zhang (21), our previous 
work in IWINAC 2017, enrolled more USHL patients to 
balance the dataset. Besides, they proposed to combine 
dual-tree complex wavelet transform (DTCWT) and kernel 
principal component analysis to reduce the features. They 
chose the multinomial logistic regression as the classifier. 

This paper is an extension of Wang, Zhang (21). The 
new extensions include following eleven points: (i) We 
increase the 60-subject dataset to 90-subject. (ii) We 
replace dual-tree complex wavelet transform (DTCWT) 
with double-density DTCWT (DTCWT). (iii) We add 
contents describing discrete wavelet transform, double-
density DTCWT, principal component analysis. (iv) We 
add three simulation experiments. (v) We add an 
experiment to illustrate the decomposition result by 
double-density DTCWT. (vi) We add an experiment to 
show the statistical analysis of our method. (vii) We 
design an experiment to select the optimal feature 
extraction method and find the optimal decomposition 
level. (viii) We design an experiment to select the 
optimal feature reduction method and corresponding 
optimal thresholding. (ix) We compare proposed MLR 
to traditional classifier (decision tree, support vector 
machine, and back-propagation neural network). (x) We 
compare our proposed method to a pretrained deep 
learning method (AlexNet). (xi) We use GPU to 
accelerate our method and compared GPU with CPU in 
terms of computation time. 

The structure of this paper is organized as follows: 
Section 2 contains the demographics of 90 subjects. 
Section 3 shows the image preprocessing method. Section 
4 describes three feature extraction methods: discrete 
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wavelet transform (WT), dual-tree complex wavelet 
transform (DTCWT), and double-density DTCWT. 
Section 5 relates three dimensionality reduction methods: 
principal component analysis (PCA), and two kernel PCA 
methods. Section 6 presents the fundamental of 
multinomial logistic regression, and the implementation of 
our whole method. Section 7 offers the results of three 
simulation experiments. Section 8 gives the results over 
realistic data. Finally, Section 9 provides the conclusion of 
this paper. 
 
2 Subjects 
 
This study followed to use the 60 subjects in our previous 
work (21), and we enrolled 30 new subjects. Finally, we 
have a 90-subject dataset, including 30 healthy controls 
(HC), 30 left-sided sensorineural hearing loss (LSHL) 
patients, and 30 right-sided sensorineural hearing loss 
(RSHL) patients. The demographic data of the balanced 
new dataset is listed in Table 1, which clearly shows that 
all three classes are well matched with regards to gender, 
age, and education level. 

The inclusion and exclusion criteria, the pure tone 
audiometry implementation, the imaging parameters are all 
the same as in Reference (13). Ethics Committee of 
Southeast University approved this research. The 
audiograms of two patients are shown in Figure 1. 
 

Table 1 Demographics of the 90-subject dataset 
 LSHL RSHL HC 

Number 30 30 30 
Age (year) 51.6 ± 

9.6 
53.4 ± 

7.9 
53.8 ± 

6.1 
Gender (m/f) 14/16 13/17 14/16 

Education level 
(year) 

12.2 ± 
2.1 

12.4 ± 
2.3 

11.9 ± 
2.8 

Disease duration 
(year) 

17.9 ± 
17.1 

16.5 ± 
16.3 

- 

PTA of left ear 
(dB) 

79.1 ± 
15.8 

23.4 ± 
4.0 

21.9 ± 
2.1 

PTA of right ear 
(dB) 

21.5 ± 
3.7 

80.5 ± 
19.4 

21.2 ± 
2.0 

(Data are mean ± SD, PTA = pure tone average, m = 
male, f = female) 

 

 
(a) LSHL 

(b) RSHL 
Figure 1 PTA scores of two subjects 
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(c) healthy control  
Figure 2 Illustration of detected case of left hearing loss, 

right hearing loss and healthy case 
 
The images were obtained via a Siemens Verio Tim 

3.0T MR scanner (Siemens Medical Solutions, Erlangen, 
Germany). The parameters for imaging were set as Time of 
Echo (TE)=2.48 ms, Time of Repetition (TR)=1900 ms, 
Time of Inversion (TI)=900ms, Flip Angle (FA)=9°, Field 
of View (FOV)=256 mm × 256 mm, matrix=256× 256, 
slice thickness= 1mm. All the subjects are required to lie 
still and eyes closed but not fall asleep. Via the MP_RAGE 
sequence, we can get 176 sagittal slices for the whole brain. 
Figure 2 shows an example of left hearing loss, right 
hearing loss and healthy case. 
 
3 Image Preprocessing 
 
Image preprocessing follows the standard steps. First, the 
brain extraction tool (BET) v2.1 software (22)was 
employed to extract brain tissues. Figure 3(a) shows an 
original head image. Figure 3(b) gives the BET result, 
where the yellow line marks the brain area. Figure 3(c) 
shows the final extracted brain image. 

Second, all the brain images of 90 subjects were 
normalized to the Montreal neurologic institute 
(abbreviated as MNI) template by FMRIB’s Linear Image 
Registration Tool (FLIRT) (23, 24) and FMRIB’s 
Nonlinear Image Registration Tool (FNIRT) (25). Third, 
we resampled them to 2mm isotropic voxels, and smoothed 
them by Gaussian kernel. Finally, three experienced 
otologists were instructed to select the optimal slice for 
each subject that covers his/her majority tissues related to 
hearing. The selected slice was at Z = 88 (i.e., 16mm) in 
MNI coordinate space. 
 

  
(a) Original head image (b) BET 

 

 

(c) Selected brain image  
Figure 3 Brain Extraction Result (The yellow line marks 

the brain region) 
 

Here we select the slice at Z = 88 by experience of 
radiologists. In the experiment, we shall design an 
exhaustive search method, in which we extract different 
slices from Z = 30 (-42 mm) to Z = 150 (78 mm) with 
increase of 1. These slices are shown in Figure 4. Here the 
gap is every 10 slices for clear view.  
 

 
(a) Coronal view 
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(b) Sagittal view 

Figure 4 Illustration of potential selected slices 
 
4 Feature Extraction 
 

The physical structures of the brain are similar to 
fingerprints as they both have gyrus, which can be 
analyzed by wavelet successfully. Hence, in this paper, we 
proposed to use wavelet for the brain structure analysis. In 
this Section, we briefly introduced three wavelet 
transforms: discrete wavelet transforms, dual-tree complex 
wavelet transforms, and double-density dual-tree complex 
wavelet transform. 
 
4.1 Discrete Wavelet Transform 
 

The discrete wavelet transform is a mathematical 
implementation of wavelet transform (26, 27) using 
discrete sets of various scales and translations. Assume I 
represent a given time-domain signal, k represents the 
sampling point with equal time interval, h and g represent 
a high-pass filter and low-pass filter, respectively,  
 ( ) (2 ) ( )

m

D k h k m I m    (1) 

 ( ) (2 ) ( )
m

A k g k m I m  �  (2) 

where D and A represents the detail and approximation 
coefficient sub-bands 

When I is extended to be a 2D image, we have four new 
sub-bands (28) (29). The horizontal H sub-band is obtained 
by passing image I through a high-pass filter along x-axis 
and low-pass filter along y-axis. The vertical V subband is 
obtained by passing the image s through a low-pass filter 
along x-axis and high-pass filter along y-axis. The 
approximation subband A is obtained by passing through 
low-pass filters along both axes (30). The detail sub-band 
is obtained by passing through high-pass filters along both 
axes (31). 

 
,

( , ) ( , ) (2 ) (2 )
m n

H x y I m n h x m g y n    �  (3) 

 
,

( , ) ( , ) (2 ) (2 )
m n

V x y I m n g x m h y n    �  (4) 

 
,

( , ) ( , ) (2 ) (2 )
m n

A x y I m n g x m g y n      (5) 

 
,

( , ) ( , ) (2 ) (2 )
m n

D x y I m n h x m h y n    �  (6) 

Among the four sub-bands, the H and V can detect 
horizontal and vertical orientations. The D sub-band mixes 
the -45° and +45° directions. 
 
4.2 Dual-tree Complex Wavelet Transform 
 
The dual-tree complex wavelet transforms (DTCWT) used 
two separate two-channel filter banks to improve the 
directional selectivity. In the implementation, we need to 
design two separate DWT decompositions (tree a and tree 
b) (32). Thus, the wavelet (33) and scaling filters of tree a 
can produce both scaling and wavelet function (34), which 
are approximate Hilbert transforms of tree b. Figure 5 
shows the two trees (a and b) used in a DTCWT, here ga(k) 
and ha(k) are the low-pass and high-pass filters for tree a, 
respectively. gb(k) and hb(k) are the low-pass and high-pass 
filters for tree b, respectively. 
 

 
Figure 5 Diagram of a 2-level DTCWT 

 
For a 2D DTCWT, it produces at each decomposition 

level 6 directionally selective sub-bands with six different 
rotation angles (35) for both real ( ) and imaginary (  ) 
components (36). The real and imaginary components can 
form the magnitude   by the following formula 

 2 2= +    (7) 

I(k)

ga(k)

ha(k)

gb(k)

hb(k)

↓2

↓2

↓2

↓2

ga(k)

ha(k)

↓2

↓2

ga(k)

ha(k)

↓2

↓2

gb(k)

hb(k)

↓2

↓2

gb(k)

hb(k)

↓2

↓2

Tree a

Tree b
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4.3 Double-density Dual-tree Complex Wavelet 
Transform 
 

The double-density dual-tree complex wavelet 
transform (DDDTCWT) used one scaling and two 
wavelets for each tree. The two wavelets serve for real and 
imaginary parts of a complex wavelet. Suppose we have 
two filter banks B and B̂, which are the primary and dual 
filter banks of a complex transformation. All the symbols 
associated with B̂ is the same with a hat symbol. Suppose 
analysis low-pass filters of B is denoted as H0(z), and the 
analysis high-pass filters of B is H1(z) and H2(z). We define 
h0(k), h1(k), and h2(k) as the impulse responses of H0(z), 
H1(z), and H2(z), respectively. Similarly, the synthesis low-
pass and high-pass filters are defined as F0(z), F1(z), and 
F2(z) with impulse responses as f0(k), f1(k), and f2(k), 
respectively. 

The one scaling function φh(t) and two wavelet 
functions ψh(t|1) and ψh(t|2) in the analysis side of filter 
bank B can be defined iteratively as: 
 0( ) 2 ( ) (2 )h

k

t h k s t k    (8) 

 ( | ) 2 ( ) (2 ), 1,2h i
k

t i h k s t k i     (9) 

The scaling and wavelet functions in the synthesis side of 
B can be defined in similar ways.  

To guarantee primary bank B and dual filter bank B̂ can 
form a dual-tree structure, ψĥ (t) must be Hilbert transform 
of ψh(t). The same requirement holds for ψf(t) and ψf ̂ (t). 
Mathematically,  

    
 ˆ

0

0
h

h
h

j

j

 




 

 
  

 (10) 

where ψĥ (ω) and ψh(ω) are the Fourier transform of 
wavelet functions ψĥ (t) and ψh(t), respectively. 

Patil, Kothari (37) summarized three important 
advantages of DDDTCWT: (i) double-density wavelets; (ii) 
directional-selectivity; (iii) shift-invariance. Those 
advantages guarantee that DDDTCWT will provide better 
performances than either DWT or DTCWT. Wavelet basis 
of traditional wavelet decomposition include Harr wavelet, 
db wavelet, bior wavelet, etc. Nevertheless, those wavelet 
bases are not suitable for DDDTCWT. The only wavelet 
basis can be used in this research is dddtf1. 

 
5 Dimensionality Reduction 
 
5.1 Principal Component Analysis 
 

The principal component analysis (PCA) is a standard 
procedure that is commonly used for dimensionality 
reduction (38). Figure 6 gives an illustration of selecting 
the first two principal components (PCs) by PCA (39). The 
first PC has the largest variance (40), the second PC should 
be orthogonal to 1st PC and have the largest variance (41), 
and so on. The two lines in Figure 6 here denote for the 1st 
and 2nd PC, respectively. They are shifted to compensate 
the expected mean of (1, 2). 
 

 
Figure 6 Two PCs selected by PCA 

 
5.2 Kernel PCA 
 
The shortcoming of PCA is that it only deals well with 
dataset with linear structure. The kernel principal 
component analysis extends standard PCA, and it 
implements the same procedure but transforms the dataset 
into a higher dimensional space (42). Two important kernel 
PCAs are introduced below: One is polynomial kernel 
PCA (shorted as PKPCA): 

   3

1 2( , ) ( )
a

pz x y a x y a     (11) 

The other is radial basis function kernel PCA (shorted as 
RKPCA): 

 
2

2
4

( , ) expr

x y
z x y

a

 
   

 
 (12) 

Note zp and zr represents the polynomial kernel and 
radial basis function kernel, respectively. Here a1, a2, a3, 
and a4 are hyper-parameters. Their optimal values can be 
obtained by a grid searching approach. Note that KPCA is 

-2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

Sample
1st PC
2nd PC
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an important feature reduction method. In the future, we 
shall test feature selection methods, which are also 
efficient in reducing dimensionality of features. 
 
6 Classifier 
 
6.1 Logistic Regression Model 
 
Logistic regression (LR) extends traditional regression 
analysis to the binary situation. Assume we have M 
independent variable as 
  1 2, ,  , Mx x x x  (13) 

and assume  there is one dependent variable y with value 
of either 0 or 1. In this way, the decision can be regarded 
as in following way (43): 

 0 1 1 2 21 ... 0

0 o.w.
M Mx x x

y
         

 


 (14) 

where the values of the parameter vector β= [β0, β1, β2, …, 
βM] should be optimized, and β0 is the intercept. Besides, ε 
represents the unobservable Bayesian error. 

To create the LR model, we create a latent variable z as 
 0 1 1 2 2 ... M Mz x x x         (15) 
Obviously z is a linear combination of x. By mimicking the 
logistic sigmoid function µ(z) defined by 

   1

1 exp( )z
z 

 
 (16) 

We can finally define the binary LR model as  

 
 0 1 1 2 2

1
( )

1 exp ... M M

F x
x x x   


       

 (17) 

where F(x) represents the probability of dependent variable 
y = 1. The LR and support vector machine (SVM) are 
closely related, and both can be considered as probabilistic 
models (44) minimizing some loss function associated 
with misclassification that based on the likelihood ratio. 
However, LR gives calibrated probabilities which can be 
interpreted as confidence in a decision and an 
unconstrained smooth objective. Meanwhile, LR also can 
be used within Bayesian models. However, SVMs don’t 
penalize examples for which the correct decision is made 
with sufficient confidence, which is good for 
generalization. In summary, which method to be used 
depends on the specific problems. Another advantage of 
LR is that it is commonly used as the last layer of 
convolutional neural network (45-47). For the hearing loss, 
we found LR is better than SVM. 
 
6.2 Multinomial LR 
 

Traditional LR can only handles binary class problem. The 
multinomial logistic regression (MLR) generalizes 
traditional LR to multiclass problem (48), and it is widely 
used in academic and industrial fields. The idea of MLR is 
simple. Suppose we have C different classes, 

 

1 Class 1

2 Class 2

... ...

Class 

y

C C


 



 (18) 

then we can generate (C-1) LR regression models. Usually, 
the last class is chosen as the pivot, and the other (C-1) 
classes are regressed against the pivot class in sequence. In 
mathematical way, we have 

 

1,0 1,1 1 1,2 2 1,

2,0 2,1 1 2,2 2 2,

1,0 1,1 1 1,2 2

1,

( 1)
ln ...

( )

( 2)
ln ...

( )

...

( 1)
ln

...( )

M M

M M

C C C

C M M

P Y
x x x

P Y C

P Y
x x x

P Y C

x xP Y C
xP Y C

   

   

  


  




    




    


  


 

 (19) 

To simplify this expression, we let 
  1 21, , ,  , Mx x xx  (20) 

and 

 , ,,0 ,1 2, , ,  ,k k kk k M     β  (21) 

Afterwards, we can transform equation (19) as 

 
( )

ln ,   (1, 2,..., 1)
( ) k

P Y k
k C

P Y C


  


β x  (22) 

Using simple mathematical knowledge (49), we can solve 
equation (22) and deduce following result: 
  ( ) ( ) exp ,   (1,2,..., 1)kP Y k P Y C k C     β x (23) 

Finally, we can obtain the probability of the pivot class 
via basing on the fact that all of C classes should sum to 
one. We get 

 
 1

1

1
( )

1 exp
C

nn

P Y C 



 
 β x

 (24) 

and 

 

 
 1

1

exp
( ) ,   

1 exp

(1, 2,..., 1)

k

C

nn

P Y k

k C





 


 


β x

β x  (25) 

In this study, since we need to handle a 3-class problem 
(LSHL, RSHL, and HC), the multinomial logistic 
regression was employed. Some other classifiers can also 
handle the multi-class problem; nevertheless, the MLR has 
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several advantages: (i) It is one of the simplest classifiers, 
and (ii) it is fast to implement. Therefore, we chose MLR 
in this work. 

 
6.3 Implementation of Our Method 

 

Figure 7 Pipeline of proposed method 
 

Figure 7 presented the pipeline of proposed method. In 
the first step, we compared three different wavelet 
extraction methods: DWT, DTCWT, and DDDTCWT. 
Next, we compared three feature reduction methods: PCA, 
PKPCA, and RKPCA. Third, we employed multinomial 
logistic regression as the classifier. Finally, the stratified 
cross validation was utilized to output the generalization 
error. 

In the 10-fold stratified cross validation, we segment 
the entire dataset into ten folds randomly with equal 
distribution of each fold. Remember we have 90 subjects: 
30 LSHLs, 30 RSHLs, and 30 HCs. Then each fold will 
contain 3 LSHLs, 3 RSHLs, and 3 HCs. Figure 8 shows 
the indexes of two different 10-fold stratified cross 
validation. To further reduce the randomness, we repeat the 
10-fold stratified cross validation ten times.  

 

  
(a) Index of one 10-fold SCV (b) legend 

 

 

(c) Index of another 10-fold SCV  
Figure 8 A 10-fold stratified cross validation 

 
The platform was configured as 8GB RAM, Windows 

10 64-bit Operating System. One Intel Core i5-3470 CPU 
and one GeForce GTX 1050 GPU were used separately to 
perform this task, because GPU has already been applied 

Feature Extraction 

Feature Reduction

Multinomial 
Logistic Regression

Stratified Cross 
Validation

Brain Image

Performance

(i) DWT
(ii) DTCWT
(iii) DDDTCWT

(i) PCA
(ii) PKPCA
(iii) RKPCA
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to discrete wavelet transform (50), implement kernel PCA 
(51) and multinomial logistic regression (52). 
 
7 Experiments on Simulation Data 
 
7.1 Directional Selectivity Comparison 
 

  
(a) H (b) V 

 

 

(c) D  
Figure 9 Directional selectivity of DWT (H, V, and D 

represents horizontal, vertical, and diagonal, respectively) 
 
Standard DWT only has three directional selections 
(horizontal, vertical, and diagonal) shown in Figure 9. 
DTCWT has in total 12 directional selections shown in 
Figure 10. The proposed DDDTCWT has in total 32 
directional selections as shown in Figure 11. This 
comparison result gives an experimental that why 
DDDTCWT gives superior performance than both DWT 
and DTCWT. 

 
 

      

      
Figure 10 Directional selectivity of DTCWT 
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Figure 11 Directional selectivity of DDDTCWT 

 
7.2 Reconstruction Comparison 
 
We performed a comparison between standard DWT, 
DTCWT, and DDDTCWT over a decagon simulation 
image shown in Figure 12(a). Next, the decagon image 
was decomposed at a 4-level decomposition. Their 
reconstruction was performed based on the 4-th level detail 
subband. Figure 12(b-d) gives the DWT reconstruction, 
DTCWT reconstruction, and DDDTCWT reconstruction, 
respectively. 

We can observe easily from Figure 12 that the DTCWT 
yields better edge reconstruction than DWT. The DWT 
reconstruction has a discontinued edge, and yet the 
DTCWT reconstruction has a clear and solid contour line. 
In addition, the DTCWT has some aliases along the 
borders and suffers from slight checkerboard effect. While 
DDDTCWT solved above problems well. This result 
suggests us the superiority of DDDTCWT. 
 

(a) A decagon image (b) DWT reconstruction 

(c) DTCWT 
reconstruction 

(d) DDDTCWT 
reconstruction 

Figure 12 The reconstruction comparison between DWT 
and DTCWT 

 
7.3 PCA versus KPCA 
 
In the second experiment, we carried out a comparison 
among PCA, PKPCA, and RKPCA. Figure 13(a) shows 
the simulation data. Suppose we have three categories, and 
the number of each category is 361. The points in Class 1 
lie in a sphere with radius of 1. The points in Class 2 lie in 
a sphere with radius of 2. The points of Class 3 lie in a 
sphere with a radius of 3.5. The original matrix size is 3249. 
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(a) Simulation Data  (b) PCA Result with 2 PCs 

  
(c) PKPCA Result with 2 PCs (d) RKPCA Result with 2 PCs 

 

 

(e) RKPCA Result with 1 PC  
Figure 13 KPCA versus PCA (Here C1, C2, C3 represents the first class, second class, and third class, respectively) 

 
Table 2 The matrix size of the comparison of different 

PCAs 
Methods Matrix size 

Simulation data 1083*3 
PCA Result with 2 PCs 1083*2 

PKPCA Result with 2 PCs 1083*2 
RKPCA Result with 2 PCs 1083*2 

RKPCA Result with 1 PC 1083*1 

 
Table 2 shows the original size of the simulation data 

as 1083*3, after different types of PCA, the data can be 
reduced to either 1083*2 and 1083*1. 
 

-2 0 2 4 6 8 10
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Table 3 Linear separability (X means inseparable, √ 
means separable) 

Method 2 PCs 1 PC 
PCA X X 

PKPCA X X 
RKPCA(Ours) √ √ 

 
Figure 13(b) shows the PCA result, and Figure 13(c) 

shows the PKPCA results. The results suggest 2PCs 
selected by either PCA or PKPCA cannot segment different 
classes. Figure 13(d) and (e) shows the RKPCA result, 
which indicates that even 1 PC selected by RKPCA can 
segment the three classes. Table 3 shows whether it is 
separable via difference PCA. 
 
8 Experiments on Realistic Data 
 

In the experiment, our method used the following 
setting by the grid searching method. We used three-level 
DDDTCWT and used RKPCA with threshold of 99% of 
total variance. Our results were compared to eight state-of-
the-art approaches. The 10 repetitions of 10-fold cross 
validation were used. The overall accuracy was used as the 
measure. 
 
8.1 Decomposition of DDDTCWT 
 

Take the photo in Figure 3(c) as an example, we show 
its 1-level and 2-level DDDTCWT results in  

(a) Tree 1 
(R) 

(b) Tree 1 
(I) 

(c) Tree 2 
(R) 

(d) Tree 2 
(I) 

Figure 14 and Figure 15, respectively. In each figure, 
the first column shows the real part of tree 1, the second 
column shows the imaginary part of tree 2, the third and 
last column shows the real and imaginary part of tree 2, 
respectively. Obviously, each level decomposition will 
generate 32 sub-bands (eight orientations multiplied by 
two trees multiplied by two parts). 
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(a) Tree 1 (R) (b) Tree 1 (I) (c) Tree 2 (R) (d) Tree 2 (I) 
Figure 14 One-level DDDTCWT decomposition 
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(a) Tree 1 (R) (b) Tree 1 (I) (c) Tree 2 (R) (d) Tree 2 (I) 

Figure 15 Two-level DDDTCWT decomposition 
 
8.2 10 runs of cross validation 
 
Considering the dataset sample is small, the cross 
validation was employed to validate the proposed method. 

The 10x10-fold stratified cross validation results of our 
proposed method are listed below in Table 4. In this study, 
we set the C1, C2, and C3 as LSHL, RSHL, and HC, 
respectively. 

 
Table 4 10 runs of 10-fold stratified cross validation 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 
R1 3+3+3 

=9 
2+3+3 
=8 

3+3+3 
=9 

3+3+2 
=8 

3+2+3 
=8 

3+3+3 
=9 

3+3+2 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

29+29+28 
=86 

R2 3+3+2 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

2+3+3 
=8 

29+30+29 
=88 

R3 2+3+3 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

2+3+2 
=7 

3+3+3 
=9 

28+30+29 
=87 

R4 3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+2+3 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+2+2 
=7 

3+3+3 
=9 

3+3+3 
=9 

30+28+29 
=87 

R5 3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+2 
=8 

3+3+3 
=9 

3+3+2 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

30+30+28 
=88 

R6 2+2+3 
=7 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+2+3 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+2+3 
=8 

29+27+30 
=86 

R7 3+3+2 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+2 
=8 

3+3+2 
=8 

3+3+2 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

30+30+26 
=86 

R8 3+2+3 
=8 

3+3+3 
=9 

1+3+3 
=7 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

28+29+30 
=87 

R9 2+3+3 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

2+3+3 
=8 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+2 
=8 

3+2+3 
=8 

28+29+29 
=86 

R10 2+2+3 
=7 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+3+3 
=9 

3+2+3 
=8 

3+3+3 
=9 

29+28+30 
=87 

Total 
          

290+290+288 
=868 

(a+b+c = d represents a, b, and c samples are correctly identified as C1, C2, and C3, respectively. d is the number of total 
corrected samples) 

 
The sensitivities of each class based on 10 runs are 

offered in Table 5. Here we see the LSHL has a sensitivity 
of 96.67± 2.72%, the RSHL has a sensitivity of 96.67± 
3.51%, and the healthy control has a sensitivity of 96.00± 
4.10%. Table 6 gives the overall accuracy based on 10 runs. 
It shows that our method achieves an average accuracy 
with value of 96.44± 0.88%. 
 

Table 5 Sensitivities of each class (Unit: %) 
 C1 C2 C3 
R1 96.67 96.67 93.33 
R2 96.67 100.00 96.67 
R3 93.33 100.00 96.67 
R4 100.00 93.33 96.67 

R5 100.00 100.00 93.33 
R6 96.67 90.00 100.00 
R7 100.00 100.00 86.67 
R8 93.33 96.67 100.00 
R9 93.33 96.67 96.67 
R10 96.67 93.33 100.00 
Average 96.67± 2.72 96.67± 3.51 96.00± 4.10 

 
Table 6 The overall accuracy (Unit: %) 

 Accuracy 
R1 95.56 
R2 97.78 
R3 96.67 
R4 96.67 
R5 97.78 
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R6 95.56 
R7 95.56 
R8 96.67 
R9 95.56 
R10 96.67 
Average 96.44± 0.88 

 
8.3 Comparison of Decomposition Level and Feature 
Extraction Methods 
 
We tested the performance of DWT, DTCWT, and 
DDDTCWT, and let their corresponding decomposition 
level (L) vary from 1 to 5 with increment of 1. The results 
are presented in Table 7, and a graphical chart is shown in 
Figure 16. 
 

Table 7 Overall accuracy of different decomposition 
levels and different feature extraction methods (Unit: %) 
Feature extraction L = 1 L = 2 L = 3 L = 4 L = 5 
DWT 90.44 92.44 93.22 93.56 92.56 
DTCWT 93.33 94.56 96.11 95.11 94.89 
DDDTCWT (Proposed) 92.44 95.78 96.44 95.33 95.44 

 

 
Figure 16 Select the best feature extraction method and 

the optimal decomposition level 
 

Figure 16 shows the overall accuracy under different 
decomposition levels and different feature extraction 
methods. As is seen, the best decomposition level for DWT 
is 4, and the best decomposition level for DTCWT and 
DDDTCWT are three. The reason may be two folds: On 
one hand, more decomposition level will give better 
analysis of the brain image. On the other hand, too large 
decomposition level will introduce calculation error, thus 
decreasing the performance. In all, we found from Figure 
16 that 3-level DDDTCWT achieves the highest overall 

accuracy than other settings. 
 
8.4 Optimal Setting of Feature Reduction 
 

In this experiment, we compared PCA, PKPCA and 
RKPCA at different thresholds (T): 90%, 95%, 99% and 
99.9% respectively. Other parameters kept the same during 
this experiment, i.e., we still use 3-level DDDTCWT as the 
feature extraction method. The results are listed in Table 8 
and the picture is presented in Figure 17. 
 

Table 8 Overall accuracy of different feature reduction 
methods with different threshold setting 

Feature Reduction T = 90% T = 95% T = 99% T = 99.9% 
PCA 94.33 94.78 95.00 95.11 
PKPCA 94.56 96.00 96.22 95.89 
RKPCA 95.00 96.11 96.44 95.78 

 

 
Figure 17 Select the best feature reduction method with 

optimal threshold. 
 

Figure 17 shows that the optimal feature reduction 
method is to use RKPCA with threshold as 0.99. The 
superiority of RKPCA to PCA and PKPCA is in line with 
the simulation result in Section 7.3. The RKPCA has a 
better capability of mapping data from linear space to 
nonlinear space, so as to unwrap the interwoven data. 
 
8.5 Classifier Comparison 
 

In this experiment, we compared the MLR with other 
commonly used classifiers, including C5.0 decision tree 
(DT), support vector machine (SVM) (53), and back 
propagation neural network (BPNN) (54). The features 
were obtained by (i) three-level DDDTCWT, and (ii) 
RKPCA with threshold of 99% of total variance. The 

1 2 3 4 5

Decomposition Level

90

92

94

96

98

100

DWT
DTCWT
DDDTCWT

0.9 0.95 0.99 0.999

Threshold (Variance)

94

95

96

97

98

PCA
PKPCA
RKPCA
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overall accuracy of 10x10-fold cross validation of all 
methods were listed in Table 9. 
 

Table 9 Classifier Comparison 
Classifier Overall Accuracy 
DT  86.67±1.74% 
SVM 94.11±1.05% 
BPNN 92.56±1.39% 
MLR (Proposed) 96.44±0.88% 

 
The overall accuracy results of different classifiers in 

Table 9 show that our MRL method got the best overall 
accuracy, and the least standard deviation (only 0.88), 
although it is a rather old technique. In addition, the SVM 
obtained an overall accuracy of 94.11±1.05%, the BPNN 
obtained an overall accuracy of 92.56±1.39%, and the DT 
performed worst with the lowest overall accuracy and 
largest standard deviation of 86.67±1.74%. Nevertheless, 
Du, Zhang (55), Bui, Le (56), and Khoja, Chipulu (57) all 
reported situations where (multinomial) logistic regression 
gives better performances than latest classifiers. Hence, 
this result gives us an indication that even old method (like 
MLR) can give a better result.  

Currently, MLR is also widely applied in the last layer 
of the convolutional neural network, which is the most 
successful tool in the field of deep learning. Therefore, we 
cannot refer SVM is better or MLR is better without 
considering the exact problems. In this paper, we applied 
the algorithm to a multi classification problem. According 
to the test based on our dataset, the MLR outperforms the 
SVM. 
 
8.6 Comparison with AlexNet 

 
Table 10 Statistical analysis(Unit: %) 

 AlexNet (raw) 
(58) 

AlexNet (fine-
tuned) (59)  

Ours 

R1 92.22 94.44 95.56 
R2 92.22 96.67 97.78 
R3 94.44 95.56 96.67 
R4 92.22 95.56 96.67 
R5 91.11 93.33 97.78 
R6 95.56 96.67 95.56 
R7 92.22 94.44 95.56 
R8 95.56 95.56 96.67 
R9 93.33 95.56 95.56 
R10 92.22 94.44 96.67 
P Value 0.0039<0.05 0.0234<0.05  

 
Table 10 shows the accuracy of each run performed by 

AlexNet (raw), AlexNet (fine-tuned) and our proposed 
method. In order to validate our proposed method, we test 
the statistical significance for our method. The p value in 

the 2-group as 0.0039 for AlexNet (raw) and Our method, 
0.0234 for AlexNet (fine-tuned) and our proposed method. 
As both p values are less than 0.05, which indicates the 
statistical significance of the performance of our proposed 
method. 

In this experiment, we compared our method with 
AlexNet (58), which is a well-pretrained 25-layer neural 
network in the field of deep learning. The AlexNet model 
in Matlab is trained on a subset of ImageNet database, and 
it can classify 1000 object categories (for instance, pencil, 
mouse, keyboard, etc.). We invoked the model by Matlab 
command of “alexnet” and compared with our method. 
The parameter settings were the same as previous sections. 
The raw AlexNet (58) and fine-tuned AlexNet (59) are both 
tested in this experiment. The fine-tuned AlexNet retrains 
the last three layers.  
 

Table 11 Comparison to AlexNet 
Method Overall Accuracy 
AlexNet (raw) (58) 93.11±1.55% 
AlexNet (fine-tuned) (59) 95.22±1.05% 
DDDTCWT + RKPCA + MLR (Our) 96.44±0.88% 

 
Here we see that raw AlexNet (58) gives an overall 

accuracy of only 93.11%, and the fine-tuned AlexNet (59) 
yields an overall accuracy of 95.22%. Both methods 
perform less than our MLR method of 96.44%. The reason 
is three folds. First, the raw AlexNet (58) is pretrained to 
identify natural images, and our MLR method is trained 
particularly to accomplish the hearing loss identification 
task. Second, raw AlexNet (58) can identify 1000 types of 
objects, but none of them are brain magnetic resonance 
images. Third, the input size of raw AlexNet (58) and the 
fine-tuned AlexNet (59) are 227x227x3, not suitable to the 
size of input image in our dataset. Fourth, retraining 
AlexNet (59) usually needs a median-size dataset, but our 
90-image dataset is too small in terms of size, due to the 
difficulty of collecting medical data. Therefore, our 
method can give better performance than both raw and 
fine-trained pretrained CNN. This suggests that hand 
engineering is still quite important in classification on 
small-size dataset. 
 
8.7 Comparison to State-of-the-Art Approaches 
 

Table 12 offers our proposed method with eight 
methods: FRFT + PCA + SFN (10), WPD + LS-SVM (11), 
WE + DAG-SVM (12), DWT + PCA + SVM (13), DWT 
+ PCA + GEPSVM (13), WPE + BP (18), HMI (19), and 
DTCWT + KPCA + MLR (21). All the results were 
obtained by our in-house programming over the same 
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dataset with the same cross validation settings. 
 

Table 12 Algorithm comparison based on 10-fold cross 
validation over our 90-image dataset 

Method Overall 
Accuracy 

Rank 

FRFT + PCA + SFN (10) 95.11% 4 
WPD + LS-SVM (11) 95.44% 3 
WE + DAG-SVM (12) 95.11% 4 
DWT + PCA + SVM (13) 94.11% 6 
DWT + PCA + GEPSVM (13) 92.22% 7 
WPE + BP (18) 87.11% 8 
HMI (19) 77.44% 9 
DTCWT + KPCA + MLR (21) 96.11% 2 
DDDTCWT + RKPCA + MLR 
(Proposed) 

96.44± 0.88% 1 

 
The comparison results in Table 12 show that our 

proposed DDDTCWT + RKPCA + MLR method yielded 
the largest accuracy of 96.44%. Next is DTCWT + KPCA 
+ MLR (21) with an overall accuracy of 96.11%. The third 
is WPD + LS-SVM (11) algorithm that yielded an accuracy 
of 95.44%. Both FRFT + PCA + SFN (10) and WE + DAG-
SVM (12) ranked fourth with an accuracy of 95.11%. The 
DWT + PCA + SVM (13) ranked the sixth with an 
accuracy of 94.11%. DWT + PCA + GEPSVM (13) 
performed the seventh, and WPE + BP (18) performed the 
eighth. Finally, HMI (19) yielded the worst result. 

As three main advantages of DDDTCWT are 
summarized in Patil, Kothari (37): (i)  double-density 
wavelets; (ii) directional-selectivity; (iii) shift-invariance. 
Those advantages guarantee that DDDTCWT will provide 
better performances than either DWT or DTCWT.  
 
8.8 Time Analysis 
 

We used our trained classifier on 1000 new brain 
images and calculated the average time. The computation 
time on CPU and GPU at each stage is listed in Table 13. 
 
Table 13 Time analysis for predicting a new brain image 
Stage CPU Time 

(Unit: 
millisecond) 

GPU Time 
(Unit: 
millisecond) 

Acceleration 

DDDTCWT 24.98 0.83 30x 
PC coefficient 
extraction 

5.71 0.16 36x 

MLR prediction 2.96 0.07 42x 
Total 33.65 1.06 32x 

 
8.9 Validation of Optimal Slice 
 

This experiment aimed to seek the optimal slice from Z 

= 30 to Z = 150. The settings are the same as previous 
Sections: We used three-level DDDTCWT and used 
RKPCA with threshold of 99% of total variance. We used 
10 repetition of 10-fold cross validation was used. The 
overall accuracy was pictured in Figure 18. 
 

 
Figure 18 Overall accuracy changes with selected slice 

 
Here we can see from Figure 18 that, 88-th slice 

achieves the highest overall accuracy. This is in line with 
the result suggested by experienced radiologists. It 
indicates that 88-th slice contains the most distinguishing 
brain tissues between left hearing loss, right hearing loss, 
and healthy control. The lobe containing 88-th slice shows 
that the neighboring slices of 88-th slice also contribute to 
the identification but are not as efficient as 88-th slice. For 
those slices far away from 88-th slice, the overall accuracy 
decreased to 33.3%, which is the overall accuracy for a 
random-guess classifier for a three-class task. 

Nevertheless, the optimal slice may be chosen vertical 
to X or Y axes, or it can be even an oblique plane to all three 
axes. Here we choose a slice vertical to Z axis, is for the 
ease of radiologists since they usually read the axial slices. 
In the future, we shall develop techniques to handle with 
multi-slices, and we may develop surface analysis 
techniques.  
 
9 Conclusion 
 

In this study, we proposed a novel unilateral 
sensorineural hearing-loss detection method, which can 
identify left-sided hearing loss and right-sided hearing loss 
from healthy controls. Our method is based on three 
successful techniques: double-density dual-tree complex 
wavelet transform, kernel principal component analysis, 
and multinomial logistic regression. The results showed 
our method is superior to both raw and fine-tuned AlexNet, 
and eight state-of-the-art approaches. 

In the future, we may apply our method to other brain 
disease detection, such as Alzheimer’s disease and 



19 
 

Parkinson’s disease, etc. Other research directions contain 
multi-slice processing and surface analysis.  
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