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Abstract. Ensemble learning has demonstrated its efficiency in many computer vision tasks. In this paper, we address this
paradigm within content based image retrieval (CBIR). We propose to build an ensemble of convolutional neural networks
(CNNs), either by training the CNNs on different bags of images, or by using CNNs trained on the same dataset, but having
different architectures. Each network is used to extract the class probability vectors from images to use them as representations.
The final image representation is then generated by combining the extracted class probability vectors from the built ensemble.
We show that the use of CNN ensembles is very efficient in generating a powerful image representation compared to individual
CNNs. Moreover, we propose an Averarge Query Expansion technique for our proposal to enhance the retrieval results. Several
experiments were conducted to extensively evaluate the application of ensemble learning in CBIR. Results in terms of precision,
recall, and mean average precision show the outperformance of our proposal compared to the state of the art.
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1. Introduction

Content Based Image Retrieval (CBIR) is the pro-
cedure of automatically identifying images by the ex-
traction of their low-level visual features like color,
texture, shape properties or any other features being
derived from the image itself [1]. The well-known
’semantic-gap’ issue that exists between low-level fea-
tures of images and high-level semantic concepts per-
ceived by humans has been addressed through a vari-
ety of techniques [2,3,4,5,6].

However, the huge diversity of semantical concepts
contained in images suggest that many robust discrim-
ination and learning techniques are needed. In that re-
spect, deep learning has become a significant step for-
ward in the already developing fields of computer vi-

sion. It is a technique which includes a family of ma-
chine learning algorithms that attempt to model high-
level abstraction in data by employing deep archi-
tectures composed of multiple non-linear transforma-
tions [7,8]. These models are originated from com-
putational models inspired by the structure and func-
tions of the brain called artificial neural networks.
The main reasons behind its success are the availabil-
ity of large annotated datasets and the computational
power and affordability of GPUs. A typical example
of deep architectures are feed-forward neural networks
with many hidden layers, and backpropagation [9] as a
learning algorithm. Recent successes of deep learning
techniques, especially Convolutional Neural Networks
(CNNs) [10] in solving computer vision and image un-
derstanding tasks [11,12,13,14,15] have inspired us to
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explore this approach with aim to end up with more
robust and better performing CBIR systems.

In recent years, the study of CNN architectures for
classification problems is mainly divided into two di-
rections. One is to design a deep network structure to
study the effect of depth on classification. Another di-
rection is to optimize the network structure and inte-
grate the outputs of different network structures or dif-
ferent training methods as the final result. This paper is
based on the second idea because it is known that en-
sembles of neural networks are much more robust and
accurate than individual networks [16,17]. Ensemble
learning is a machine learning paradigm where mul-
tiple learners are trained to solve the same problem.
In this work the ensemble is composed of CNNs as
base learners. The employment of different base learn-
ers generation processes and/or different combination
schemes leads to different ensemble methods. Unlike
our previous work [18] which is based on the use of
individual CNNs, in this paper we propose to build an
ensemble of Convolutional Neural Networks to iden-
tify the most relevant images in the database for a
query image. To describe in detail the proposed model
as well as the experimental results, the article is or-
ganised as follows. Section 2 introduces some previous
related works. The methodological aspects associated
with the development of the mentioned neural network
system are detailed in Section 3. Experimental setup
and results are presented and discussed in Section 4.
Finally, conclusions are given in Section 5.

2. Related work

After the success of deep convolutional neural net-
works in large scale image classification [10], CNNs
have been applied successfully to many computer vi-
sion tasks [19,20,21,22,23,24,25] including image re-
trieval by content.

Early applications of CNNs in image retrieval con-
sisted in extracting features from fully connected lay-
ers [26,27]. However, due to the lack of spatial infor-
mation in deeper layers, later works used convolutional
layers instead [28,29,30].

Features can be extracted from either a pretrained
or a fine-tuned network. VGG [31] and RESNET [32]
are examples of pretrained networks, which are widely
used in the literature [33,34,35]. The experiments in
[36] do not only show the improvements that can
be achieved through deep learning in multimedia and
computer vision, but also show how to apply and adapt

an existing deep learning model trained in one do-
main to a new CBIR task in another domain. Fine-
tuning allows adapting the network to a desired task
such as landmark retrieval [37,38]. In [37] Babenko
et al. introduced “The Landmarks dataset” to eval-
uate fine-tuned CNNs and obtained good results. In
[38], another large-scale challenging dataset was intro-
duced, labeled “Google-Landmarks”. This dataset was
utilized to retrain Resnet50 for effective feature extrac-
tion.

In general, works in CBIR that adopt deep learning
focus on enhancing the discrimination power of ex-
tracted convolutional features. A variety of techniques
for improving the final image representation was pro-
posed. As examples, the work presented in [39] pro-
posed a CBIR system based on a CNN and a SVM,
where the CNN is used to extract the feature repre-
sentations and the SVM is used to learn the similar-
ity measures. In the training of the SVM, the gen-
eration of a validation set helps to tune the param-
eters. Another case can be found in [40], where a
Triplet-CNN model is employed. The latter contains
three identical CNNs sharing all the weights and bi-
ases. Additionally, it is trained considering intra-class
and inter-class distances. Furthermore, features were
regarded as heat sources and weighted with the heat
equation in [41]. So that the “hot” features were as-
signed larger weights to have an important impact in
the retrieval. An unsupervised strategy was proposed
in [42] to select the discriminative regions from which
features were extracted. These regional features were
weighted according to their corresponding regions and
aggregated into a single feature vector. Authors in [38]
proposed to extract feature maps from an image pyra-
mid, and then they fine tuned RESNET50 to improve
these features. Moreover, features were filtered using
an attention based keypoint selection mechanism so
that only the most powerful ones participated in the re-
trieval. In [43] three masks were presented for features
filtering: SIFT-mask, SUM-mask, and MAX-mask. In
addition, the authors used recent embedding and ag-
gregation methods for better performance.

Most of CNN CBIR methods extract features from
a single CNN. Alternatively, features can be extracted
from several CNNs and then combined, which is the
idea of “ensemble learning”. The motivation behind
using an ensemble of CNNs is that the collaboration of
several CNNs helps reducing the bias and the variance
[44] and improving the accuracy.

Ensemble learning has been successfully applied to
many problems [45,46,47,48,49,50,51]. An example
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of this is the model called “Hydra" for land use clas-
sification in satellite images [52]. It uses two state-
of-the-art CNN architectures, which are ResNet and
DenseNet to create ensembles of CNNs, varying the
training set. During testing, each classifier output is
the probability of each class being the correct one. A
majority voting is then used to determine the final la-
bel. Very recently, some works were interested in ap-
plying ensemble learning in image retrieval by con-
tent [53,54]. In [53] images were represented by com-
bined hash codes, which were generated from multiple
views. The hash codes were learned using an ensem-
ble of classifiers, where each classifier was assigned a
different image view. In [54] the authors proposed to
learn images features using two different CNN archi-
tectures (NIN and Alexnet). Features vectors of each
image were then combined using the weighted average
of the outputs of each CNN.

Despite its demonstrated efficiency, ensemble learn-
ing is still poorly addressed in the area of image re-
trieval by content. However, it must be considered that
the most recent works focused on the search of crite-
ria to form a good ensemble: Dynamic ensemble learn-
ing algorithms [55]. This paper deals with the problem
of automatically detecting NN ensemble architectures
(number of NNs in the ensemble and number of hidden
neurons in individual NNs) with the variation of train-
ing examples for each individual NN. This idea draws
a promising future in the use of ensemble learning.

3. Methodology

We aim to design a Content Based Image Retrieval
(CBIR) system based on deep learning neural net-
works. We propose to build an ensemble of Convo-
lutional Neural Networks (CNNs), so that they col-
laborate to identify the most relevant images in the
database for a query image. To this end, the CNNs to
be combined must have an output layer with one out-
put neuron for each object class in the training image
database. They may have the same or different network
architectures and parameter settings. Let us denote D
the number of object classes. Before the ensemble is
built, each CNN is trained on the images of the training
database. One hot encoding is to be employed, i.e. the
desired output associated to each image is a unit vector
of size D with a one at the vector component corre-
sponding to the correct class, and zeros elsewhere. Un-
der this setup, each CNN is expected to approximate

the probabilities that the input object belongs to each
of the D classes under consideration:

f (X) = (P (C1|X) , ..., P (CD|X)) ∈ [0, 1]
D (1)

where X is the input image, and Ci is the i-th class,
with i ∈ {1, ..., D}.

After all the CNNs are trained under the above spec-
ifications, an ensemble can be built from them. Let us
denoteM the number of CNNs to be combined, i.e. the
ensemble size. Then the class probabilities can be es-
timated by the ensemble by averaging the estimations
coming from each ensemble member:

fMean (X) =
1

M

M∑
j=1

fj (X) ∈ [0, 1]
D (2)

where fj (X) is the output vector for the j-th CNN,
given the input image X. Another possibility is to use
the component wise median, and then renormalize to a
probability vector:

f̂ (X) = median ({fj (X) | j ∈ {1, ...,M}}) (3)

fMedian (X) =
1∥∥∥f̂ (X)
∥∥∥
1

f̂ (X) (4)

where ‖·‖1 stands for the L1-norm (Manhattan norm)
of a vector.

After the ensemble has been built, it can be em-
ployed to retrieve the most similar images in the
database, given a user query. Let us denote XQuery

the query image, and Xj the training database images,
where j ∈ {1, ..., N} and N is the number of images
in the database. We propose to rank the images in the
database according to the p-norm distances between
the ensemble probability vector fh (XQuery) which is
obtained from the ensemble as it processes the query
image, where h ∈ {Mean,Median} is the ensem-
ble type, and the probability vectors fh (Xj) that are
yielded by the ensemble as it processes the database
images. Given these considerations, the image in the
database with the best similarity to the query can be
computed as follows:
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s = arg min
j∈{1,...,N}

‖fh (XQuery)− fh (Xj)‖p (5)

where ‖·‖p stands for the p-norm of a vector. Here p is
a parameter which must be optimized by experimenta-
tion.

If we are interested in the k most similar database
images given a query image, a ranking list can be ob-
tained:

RQ = {X∗1,X∗2, ...,X∗k} (6)

RQ is a subset of the training image database {Xj :
j = 1, ..., N} where X∗i is ranked before X∗j when

‖fh (XQuery)− fh (X∗i )‖p <∥∥fh (XQuery)− fh
(
X∗j
)∥∥
p

Such a ranking process can be used to evaluate the
performance of our CBIR system or when a parameter
must be tuned.

If the number of results is not specified, then a sim-
ilarity threshold ν should be used. In this case, the
database images Xj ∈ RQ are regarded as close to the
input image if they satisfy the following condition :

‖fh (XQuery)− fh (Xj)‖p < ν (7)

It is possible to add a simple way to refine the search
of the closest images to a given query image using Av-
erage Query Expansion on the model proposed above.
The proposed method is inspired by KNORA-UNION
algorithm for dynamic ensemble selection [56]. The
basic idea is described below.

Given an ensemble of M CNNs, and a query image
XQuery, after retrieving the most relevant images for
this query (using our proposal: mean or median ensem-
ble) we obtain RQ = {X∗1,X∗2, ...,X∗k}.

We consider that a database image X∗j ∈ RQ which
belongs to the class m is correctly classified by a CNN
i in the ensemble if:

max
i=1,...,D

{
P i(Ci|X∗j )

}
= P i(Cm|X∗j ) (8)

Let Vij be the probability vector corresponding to
the output of CNNi that correctly classifies the image
X∗j ∈ RQ , that is:

Vij = (P i(C1|X∗j ), ..., P i(CD|X∗j )) = fi(X
∗
j ) (9)

In that situation we generate a new query image vec-
tor by taking the average of the original fh(Xquery)
and the selected vectors in the following set:

{Vij : i ∈ S1 ⊂ {1, ...,M} , j ∈ S2 ⊂ {1, 2, ..., k}}

(10)

Thus, the suppression of misclassified samples al-
lows the controlled construction of extended queries.

The designed CBIR system is described in Fig. 1,
where a flowchart allows to follow the process from
training the model to testing it. In the training phase, if
the used CNNs share the same architecture, diversity is
achieved through splitting the training images into M
bags, which are used to train M classifiers. However,
if the CNNs have different architectures, each CNN is
trained on the whole training set, since the variation of
the architecture is supposed to make a diverse ensem-
ble. After that, the extracted class probability vectors
from the training images are combined and stored in
the database. In the testing phase, the trained classifiers
are used to extract the query class probability vectors.
Similarly to the training images vectors, the query vec-
tors are combined to generate a single query represen-
tation. The p-norm distance is then used for similar-
ity measurement in order to retrieve the k most sim-
ilar images. Optionally, we can enhance the returned
list of similar images using Average Query Expansion.
As explained above, the base vectors that belong to the
ranked list of images are selected and combined with
the query vector. Finally, the retrieval process is carried
out again.

4. Experiments and results

4.1. Methods

We have considered several recent well-known
methods from the literature in order to compare our
proposal with them. We took into consideration the
best results of each competitor. The first method that
we have selected is the approach that we denote as
Wan [36]. In this work, images features are extracted
from the last three fully connected layers and refined
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Fig. 1. Schema of our proposal. The dashed frame corresponds to the bagging technique which is carried out only if the ensemble is composed
of the same CNN architecture. The dashed arrows correspond to the Average Query Expansion process which can be applied on the query one
time.

by similarity learning using the Online Algorithm for
Scalable Image Similarity Learning (“OASIS”).

We also consider a method that we denote Cai [40].
In this algorithm, a triplet CNN-based architecture is
used for feature extraction. First, the triplet CNN is re-
trained on the used dataset. After that, the features are
extracted from the last two fully connected layers and
then combined in order to obtain an efficient represen-
tation with different semantic levels.

The last competitor method is denoted as Fu [39]. It
uses a CNN to extract images features. After that, an
SVM is trained on the dataset to differentiate between
similar images and dissimilar ones.

Regarding our proposal, it uses several CNNs hav-
ing the same or different architecture. This way, well-
known CNNs have been employed in the experiments:

– VGG [57]: This architecture is characterized by
the small size of convolutional filters receptive
field (3x3). Some of the convolutional layers are
followed by Max-pooling layers, which perform
the spatial pooling. The used variants of this ar-
chitecture are: VGG16 and VGG19. They consist
of 16 and 19 weights layers, respectively, hence
their names.

– ResNet [32]: The main characteristic of this net-
work is its depth which is up to 152 layers. More-
over, it has residual connections that decrease the
complexity of the network and make its training
easier. Similar to VGG, this architecture has 3x3
filter size for convolutional layers. We use sev-
eral variants of this architecture depending on the
network depth: ResNet50 (50 layers), ResNet101
(101 layers), and ResNet152 (152 layers).

– ResNetV2 [58]: ResNetV2 is an improved version
of ResNet. The main difference is in use of iden-
tity skip connections and identity after-addition
activation to fasten the propagation of informa-
tion. Similar to ResNet, this architecture is avail-
able with different depths, resulting in three vari-
ants: Resnet50V2 (50 layers), ResNet101V2 (101
layers), and ResNet152V2 (152 layers).

– Inception [59]: The variants that we use are
InceptionV3[60] and InceptionResNet [61]. The
latter are successors of InceptionV1 (GoogleNet)
and they inherit the use of special layers called
“Inception layers/modules". Instead of doing a
single operation on an input, an inception mod-
ule allows several operations in parallel: 1x1 con-
volution, 1x1 convolution followed by 3x3 con-
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volution, 1x1 convolution followed by 5x5 con-
volution, and max-pooling followed by 1x1 con-
volution. The outputs are then concatenated and
passed through the network. Moreover, the use of
convolutions of different filter sizes allows cap-
turing patterns at different scales. While, Incep-
tionV3 reduces the filter size to speed up the train-
ing, InceptionResNet benefits from both ResNet
and InceptionV1 architectures by using residual
inception layers, which reduces the architecture’s
complexity.

– Xception [62]: It is worth mentioning that Xcep-
tion is inspired by Inception architecture, i.e. it al-
lows using several operations in the same layer.
However, unlike Inception these operations are
restricted to convolutions. Thus, Inception mod-
ules are replaced by special convolutions called
“depthwise separable convolutions", where, in-
stead of having one convolution, several indepen-
dent convolutions followed by a pointwise con-
volution are carried out. Note that a pointwise
convolution has a filter size of 1x1. The replace-
ment of Inception modules by depthwise separa-
ble convolutions led to a decrease in the compu-
tational cost. Moreover, this architecture defeats
InceptionV3 on the ImageNet dataset in terms of
accuracy.

– MobileNet [63]: We use the two versions of Mo-
bileNet architecture: MobileNet and MobileNetV2.
This architecture is designed for mobiles and em-
bedded vision applications. Similar to Xception,
it uses depthwise separable convolutions to re-
duce the computational cost. However, the filter
size is fixed to 3x3. All layers (except the fully
connected layer) are followed by a batch normal-
ization and a relu non linearity activation. In ad-
dition, MobilenetV2 [64] improves this architec-
ture by the use of an inverted residual structure,
and the suppression of the non linearity, which
enhances the accuracy.

– Densenet [65]: The concept of Densenet architec-
ture is based on residual connections introduced
in ResNet. The idea is to connect each layer to
all subsequent layers, in a manner that every layer
has the outputs of all predecessor layers. This
leads to a better propagation of information and
speeds up the training. We use this architecture
with different depths: DenseNet-121 (121 lay-
ers), DenseNet-169 (169 layers), and DensNet-
201 (201 layers).

– NasNet [66]: The main novelty is that the archi-
tecture is learnt on a small dataset (Cifar [67]) us-
ing reinforcement learning, after that this archi-
tecture is used to train the network on a large scale
dataset (ImageNet). Moreover, it uses “Sched-
uledDropPath" as a new regularization technique,
which improves the model’s accuracy. The con-
cept of the variants NasNetMobile and NasNet-
Large is the same, with the difference that Nas-
NetMobile is conceived for mobile devices.

In order to code our approach, the used program-
ming language was Python with its machine learning
library Keras1 running on top of Tensorflow2.

The experiments have been conducted on Google
colab3 running on a NVIDIA Tesla k80 GPU.

4.2. Datasets

Our proposal is evaluated on two benchmark datasets:
Caltech2564 [57]: This dataset contains 30,608 im-

ages, grouped into 256 semantic categories. Moreover,
it exhibits at least 80 images per category.

ImageNet5 [68]: In order to evaluate our proposal
on a large number of classes, we use the “ILSVRC-
2010" dataset which is a subset from ImageNet. This
dataset contains 1.2 million images for training, 50,000
images for validation, and 150,000 images for testing,
all grouped into 1000 categories.

The great variety of categories included in both
datasets can be observed in Fig. 2, where some sam-
ples are shown.

In regards to Caltech256 dataset, for a fair compar-
ison with methods Wan [36], Cai [40] and Fu [39],
we follow the same experimental setting by using sub-
sets of 20 and 50 classes from Caltech256 dataset,
and images from each class were randomly split into
training and testing sets of 40 and 25 images, respec-
tively. Moreover, 15 images from each category were
randomly selected for validation. In each subset, the
classes were selected as suggested in [69]. The moti-
vation behind this selection is to include diverse cate-
gories in terms of their semantics and their classifica-
tion difficulty as measured by [57], where it is shown

1https://keras.io
2https://tensorflow.org
3https://colab.research.google.com
4https://kaggle.com/jessicali9530/

caltech256
5http://image-net.org/challenges/LSVRC/

2010/index
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(a) Caltech256

(b) ImageNet

Fig. 2. Samples of Caltech256 and ImageNet datasets

that the performance varies depending on the selected
class.

For ImageNet dataset, the validation set is split into
testing set and retrieval database. We select one query
per category to evaluate our proposal, that is 1000 test-
ing images. Moreover, we use 5000 images as a re-
trieval database, equally grouped into the 1000 cate-
gories. Images in both testing and validation sets were
randomly selected.

4.3. Parameter selection

In order to achieve diversity, we evaluated two en-
semble techniques to generate the pool of classifiers.
The first one is the bagging technique [70]. In the
corresponding experiments, M training different sets
of equal size (60% from the training data) were ran-
domly drawn with replacement, where M = 20. Af-
ter that, each classifier was trained on a different bag
of images with aim to generate an ensemble of M
classifiers. This technique is evaluated on Caltech256
dataset. This way, several networks with the same ar-
chitecture but different training data are considered in
this first technique. The deep convolutional neural net-
work architecture that we have employed using this
technique is VGG16 [31]. We have employed a fine-
tuning process, where we have removed the fully con-
nected layer from the original network and added 4
layers: A flatten layer, a dense layer with 256 neurons

and a relu activation function, a dropout layer with a
coefficient of 0.5 to prevent overfitting, and a last dense
layer to specify the number of classes where the used
activation function was softmax. The fine-tuning pro-
cess was performed by training the added layers on
the experimented dataset. The experimental fine tuning
setting consists of a batch size equals to 64, while the
loss function is the categorical cross entropy. Addition-
ally, the optimizer is the stochastic gradient descendant
(SGD) with a learning rate of 10−4 and a momentum
of 0.9.

The second ensemble technique is the use of classi-
fiers having different architectures. All available pre-
trained CNNs in Keras library are used in this sec-
ond technique, that is 18 different architectures. This
second technique is evaluated on ImageNet dataset.
Herein, no training phase is carried out, since the used
CNNs are already trained on this dataset.

In the rest of the paper, we denote both techniques
with the name of the used dataset in each experi-
ment. That is, Caltech256 (or ensemble with networks
with the same architecture) and ImageNet (or ensem-
ble with networks with different architectures).

4.4. Results

In order to evaluate our proposal from a quantita-
tive point of view, we have employed some well known
performance evaluation measures. These measures are:
Precision at k (P@k), Recall at k (R@k), where k is
the number of images to retrieve, Precision given a dis-
tance threshold (Pν), Recall given a distance thresh-
old (Rν), where ν is the threshold value, and Mean
Average Precision (mAP). They provide a real number
between 0 and 1, where higher is better, and they are
given in the following equations:

P@k, Pν =
Number of relevant images retrieved

Total number of retrieved images

(11)

R@k,Rν =
Number of relevant images retrieved

Total number of relevant images

(12)

mAP =
1

L

L∑
l=1

APl (13)
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whereAPl is the average precision for a query l, and
L is the total number of queries.

Additionally, the average precision is defined by:

APl =

K∑
k=1

Pl@k × (Rl@k −Rl@(k − 1)) (14)

Please note that the number of the required iterations
in equation (14) is the number of the retrieved images
k. Generally,K is the number of the required iterations
to achieve a perfect recall. In our proposal, setting K
to that value for all the conducted experiments is very
time consuming. Thus, we setK to the number of rele-
vant images given a query, which is 40 for Caltech256
dataset, and 5 for ImageNet dataset.

If the number of images to retrieve is defined, pre-
cision and recall are denoted as P@k and R@k, re-
spectively. If a distance threshold is given, then the two
measures are referred to as Pν for precision, and Rν
for recall.

We have studied the impact of several parameters on
the performance of our proposal. The first parameter
p is used to compute the p-norm distance. In order to
improve the retrieval results, several p-norm distances
were evaluated in the retrieval step. Table 1 shows a
comparison between the p-norm distances for the con-
sidered p values on both Caltech256 and ImageNet
datasets. Depending on the parameter p, the consid-
ered distances are: Manhattan distance (p = 1), 1.5-
norm distance (p = 1.5), Euclidean distance (p = 2),
and Tchebychev distance (p = ∞). Results show
that Manhattan distance outperformed other tested p-
norm distances using both ensemble methods. Based
on this, in all subsequent experiments Manhattan dis-
tance is considered to measure the similarity between
the queries and the database images.

Moreover, we have studied the impact of the ensem-
ble size M on the mAP. The results are shown in Fig.
3. For Caltech256 dataset, we can observe a positive
correlation between the mAP and the parameter M ,
where for 20 classes 1 ≤ M ≤ 14 using the mean,
and 1 ≤ M ≤ 8 using the median. For 50 classes,
1 ≤ M ≤ 18 using the mean, and 1 ≤ M ≤ 13 using
the median. The highest mAP for 20 classes is 0.7370
using the mean, and 0.7442 using the median. The cor-
responding ensemble size is M = 18 for both methods.

For 50 classes, The highest mAP is 0.5749 using the
mean, where M = 18. Using and the median, the most
accurate ensemble is of size M = 17, the correspond-
ing mAP is 0.5640.

P Mean Median

1 0.7363 0.744
1.5 0.7275 0.7206
2 0.7209 0.7194
∞ 0.7079 0.7417

(a) Caltech256 20 classes

P Mean Median

1 0.5726 0.558
1.5 0.5597 0.5418
2 0.5514 0.5402
∞ 0.5419 0.5526

(b) Caltech256 50 classes

P Mean Median

1 0.4939 0.4904
1.5 0.4593 0.4657
2 0.4549 0.4642
∞ 0.4474 0.4649

(c) ImageNet

Table 1
A comparison between several p-norm distances in terms of mAP on
Caltech256 and ImageNet datasets, where M = 20 for Caltech256,
and M = 18 for ImageNet. Both mean and median are considered in
the comparison, best results are highlighted in bold.

For the same dataset, the most important margin in
terms of mAP was recorded between ensemble sizes
M=1 and M=2, where the mAP increased signifi-
cantly. We refer the reason for this to the evolution of
the architecture from individual CNN-based to CNN-
based ensemble. Moreover, we can observe that the
positive correlation is more significant for 1 ≤ M ≤
10. Outside this interval, the increase in performance
is less important. Thus, we stop the evolution of the
ensemble at M = 20.

Based on these results, the ensemble sizeM is set to
the value that corresponds to the highest mAP in all the
following experiments. That is, for 20 classes M = 18
using the mean and the median, for 50 classesM = 18
using the mean, and M = 17 using the median.

The general decrease in the classification perfor-
mance when we pass from 20 classes to 50 classes is
due to the greater difficulty in separating more classes.
Our ensemble proposal is not related to this perfor-
mance decrease, since it can be seen in Figure 3 that
the effect is present even for just a single CNN (ensem-
ble size M = 1), i.e. no ensemble. Moreover, accord-
ing to the study presented in [57], a negative correla-
tion is shown between the number of classes and the
measured performance, where a significant decrease in
performance was recorded between 20 classes and 50
classes.

Regarding ImageNet dataset, a significant improve-
ment is observed for 1 ≤ M ≤ 5 using the mean
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Fig. 3. Impact of the ensemble size on the mAP for Caltech256 and ImageNet datasets where the considered methods are mean and median.
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Fig. 4. Impact of the ensemble size with respect to the classifiers accuracy on the mAP for Caltech256 and ImageNet datasets, where the
considered methods are mean and median.

and the median. For 5 ≤ M ≤ 18, the correlation be-

tween the ensemble size M and the mAP is still posi-

tive. However, the improvement is less important. Note

that the highest mAP was reached with M = 18 for
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both mean and median, where mAP = 0.4939 for the
mean, and mAP = 0.4904 for the median. Even though
the accuracy is generally increased after increasing the
ensemble size M , the ensemble was outperformed by
the single best classifier (NasNetLarge) whose mAP
was 0.5178. Thus, we investigated two other ways for
ensemble construction. In the first one, the ensemble
was built with respect to the classifiers accuracy. B is
set to the number of the most accurate classifiers. the
B classifiers were sorted based on their top-5 accuracy
on the ImageNet validation set, from best to worst (B-
W). After that, several ensembles of size B were cre-
ated, whereB is set to the number of the most accurate
classifiers. Moreover, 1 ≤ B ≤ M . So that, B = 1
corresponds to the most accurate classifier, B = 2 cor-
responds to the two most accurate classifiers ensem-
ble and so on. These ensembles are evaluated in terms
of mAP as shown in Figure 4. This way, the ensem-
ble could achieve a better accuracy and outperformed
the single best classifier. The highest mAP reached by
the mean was 0.5306, which corresponds to B = 3. In
addition, the highest mAP reached by the median was
0.5284, where B = 2.

In the same way, we ordered the CNNs from worst
to best (W-B), and created ensembles of size W . Re-
sults can be observed in Figure 4. Generally, there is
an improvement in the mAP as the ensemble size W
increases. The highest mAP value was reached with
W=18 using the mean and the median, where it equals
0.4939 for the mean, and 0.4904 for the median. It
should be highlighted how the ensemble B-W per-
formance decreases when networks are added; on the
other hand, the ensemble W-B performance is higher
when networks are added. As it can be observed, the
performance of the ensemble not only depends on the
accuracy of the network which has been added to the
ensemble; it also depends on the networks which be-
long to it.

Based on these results, for ImageNet dataset M is
set to B in all subsequent experiments.

We repeated the experiment where classifiers are
sorted from Best to worst on Caltech256 dataset. The
classifiers are sorted based on their accuracy on the
training and validation sets. We selected M classifiers
from the pool, where M = 10. As shown in Figure 4,
in most cases, there is a positive correlation between
the ensemble of the most accurate classifiersB and the
mAP, where even though a less performing classifier is
added to the ensemble, the larger-sized ensemble was
more accurate. However, for some cases, there was a
slight degradation in the performance after increasing

the ensemble size B, which is possibly due to the in-
clusion of a less accurate classifier in the pool. Note
that the highest mAP for 20 classes was reached with
B = 9 using the mean, where it equals 0.7142, and B
= 10 using the median, where it equals 0.7244. For 50
classes, B = 10 corresponds to the best performing en-
semble with 0.5428 for the mean and 0.5479 for the
median.

The retrieval of similar images can be done either by
defining the number of images to retrieve, or by con-
sidering a threshold for the distance between the query
and the database images. After deciding the ensemble
size M , we evaluated the distance threshold ν, which
is another important parameter that affects the retrieval
quality. In order to enhance the relevance of the re-
turned ranked list, we have experimented 20 threshold
values, where 0.1 ≤ ν ≤ 2 . The impact of the value
ν on both precision and recall is shown in Fig. 5. The
threshold ν was set to 1 for Caltech256 and ImageNet
datasets, which is a good compromise between preci-
sion and recall.

Taking into account these analyzed configurations,
the performance of our CNN-based methods is shown
in Table 2. We refer to the ensemble methods as Mean
and Median, where the mean and the median were used
to combine the extracted class probability vectors us-
ing each ensemble member, respectively. We refer to
the base classifier as base. This classifier was trained
on the whole training set and used individually to ex-
tract the class probability vectors from images. For
the two datasets, the results show that both ensemble
methods outperform significantly the base classifier in
terms of all performance evaluation measures. The ex-
ception occurs in Rν computed on ImageNet dataset,
which does not necessarily reflect the outperformance
of the base in terms of this performance evaluation
measure, since it depends on the used threshold value
ν.

The reason behind the outperformance of the en-
semble architecture is that the latter takes advantage of
the lack of correlation between the base learners. This
lack of correlation is produced by training the CNNs
on different bags of images. Thus, the CNNs are able
to learn different patterns from images and make inde-
pendent errors. For instance, if a CNN misclassifies a
given input, then the collaboration of other CNNs may
correct this error by combining their provided outputs
for this image. Consequently, the ensemble is able to
provide more powerful predictions, resulting in the im-
provement of the retrieval quality.
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Fig. 5. Precision and recall in terms of distance threshold on Caltech256 and ImageNet datasets. The considered methods are: Base, Mean, and
Median, where results are shown in the left, middle, and the right of the figure, respectively. Images from the first row correspond to Caltech256
with 20 classes, images from the second row correspond to Caltech256 with 50 classes, and images from the third row correspond to ImageNet
dataset
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Fig. 6. Impact of the number of neighbours considered in the Average Query Expansion technique on the mAP for Caltech256 dataset, where the
considered methods are mean and median.

Finally, we have applied the previously mentioned

post processing technique called Average Query Ex-

pansion. We investigated the impact of the parameter

k on the mAP. This parameter represents the number
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Method P@1 P@10 P@50 P@100 Pν R@1 R@10 R@50 R@100 Rν mAP

Base 0.692 0.6594 0.4925 0.2921 0.5401 0.0173 0.1649 0.6156 0.7302 0.5725 0.5265
Mean 0.848 0.8398 0.6596 0.3613 0.7753 0.0212 0.2099 0.8246 0.9032 0.7414 0.7370

Median 0.844 0.8296 0.6455 0.3554 0.7341 0.0212 0.2074 0.8068 0.8885 0.7609 0.7442

(a) Caltech256 20 classes

Method P@1 P@10 P@50 P@100 Pν R@1 R@10 R@50 R@100 Rν mAP

Base 0.6408 0.6269 0.4685 0.2762 0.509 0.016 0.1567 0.5856 0.6905 0.5767 0.4909
Mean 0.7456 0.7201 0.5483 0.3173 0.6248 0.0186 0.1800 0.6853 0.7932 0.6258 0.5749

Median 0.728 0.6958 0.5198 0.2994 0.5646 0.0182 0.174 0.6498 0.7485 0.6425 0.5640

(b) Caltech256 50 classes

Method P@1 P@10 P@50 P@100 Pν R@1 R@10 R@50 R@100 Rν mAP

Base 0.5970 0.3277 0.0761 0.0397 0.5161 0.1194 0.6554 0.7612 0.7950 0.6108 0.5178
Mean 0.6280 0.3352 0.0791 0.0419 0.5381 0.1256 0.6704 0.7914 0.8390 0.5972 0.5306

Median 0.6200 0.3332 0.0781 0.0412 0.5282 0.1240 0.6664 0.7814 0.8244 0.6046 0.5284

(c) ImageNet
Table 2

Image retrieval performance on the experimented datasets, best results are highlighted in bold.

of retrieved neighbours used to generate the new query
vector. Evaluated k values were: 1, 2, 5, 10, 15, and 20.
Fig. 6 shows the mAP in terms of k. For 20 classes, the
highest mAP was reached with k = 2 using the mean
and the median. For 50 classes, it was reached with k
= 2 using the mean and k = 5 using the median. Af-
ter applying the Average Query Expansion technique
to our architecture, both ensemble methods achieved
better results in terms of mAP, as shown in Table 3.

P mAP

Mean 0.7370
Mean + QE 0.7895

Median 0.7442
Median + QE 0.7759

(a) 20 classes

P mAP

Mean 0.5749
Mean + QE 0.6266

Median 0.5640
Median + QE 0.5889

(b) 50 classes

Table 3
mAP using the mean and the median with and without applying the
Average Query Expansion to Caltech256 dataset, best results are
highlighted in bold.

Results can be observed from a qualitative point of
view. Fig. 7 shows an example of a query and the top
10 retrieved images. In the given example, for Cal-
tech256, both mean and median performed equally in

terms of precision, where (p@10 = 0.9). For ImageNet
dataset, the same precision value was obtained by the
mean and the median, where (p@10 = 0.3). Note that
the Average Query Expansion is not applied in this re-
trieval example.

In order to further check the performance of our pro-
posal, we compared it against relevant retrieval meth-
ods. The comparison is carried out on Caltech256
dataset in terms of mAP. In order to be comparable
with the selected methods, the parameter k defined in
equation 14 was set to the number of iterations re-
quired to achieve a perfect recall. In addition, no post
processing technique is applied to our method. Re-
sults shown in Table 4 confirm the efficiency of our
method where both mean and median outperform the
competing methods. We can also observe that the mean
achieved the best mAP with a slight difference com-
pared to the median on 20 classes. However, when
evaluated on 50 classes, this outperformance was more
significant.

5. Conclusions

A novel architecture for image retrieval by content
has been presented. This architecture is based on an
ensemble of CNNs, which are trained on different bags
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(a) Query

(b) Mean

(c) Median
Caltech256 dataset

(a) Query

(b) Mean

(c) Median
ImageNet dataset

Fig. 7. A query image and the top 10 returned images from both
Caltech256 and ImageNet datasets using the mean and the median.

of images, so that a variety of class probability vectors
could be acquired from each image. The obtained im-
age probability vectors are then combined into a sin-
gle vector as a final image representation. Finally, we

Method mAP

Wan [36] 0.7388
Cai [40] 0.6726
Fu [39] 0.6106
Mean 0.8158

Median 0.8126

(a) 20 classes

Method mAP

Wan [36] 0.5410
Cai [40] 0.5532
Fu [39] 0.4264
Mean 0.6713

Median 0.6456

(b) 50 classes
Table 4

Comparison between our proposal (mean and median) and related
methods in terms of mAP, best results are highlighted in bold. Re-
sults indicated in percentage in original papers are converted to dec-
imal fractions.

applied an Average Query Expansion technique to our
proposal to improve the retrieval quality.

The averaging of the class probability vectors com-
ing from an ensemble of CNNs has the beneficial ef-
fect that the expected error of the average probabil-
ity vector with respect to the true probability vector is
lower than the expected error of any individual prob-
ability vector coming from a single CNN and the true
probability vector.

Results show that our method outperforms the state
of the art in terms of mAP. However, ensemble based
architectures are computationally expensive, i.e. our
architecture takes more time in the output prediction
depending on the ensemble size. The delay in the re-
sponse time will be more significant for larger-sized
ensembles. Thus, employing the proposed architecture
depends on how critical the response time is in the de-
sired CBIR system.

The key idea of our contribution is to build an ac-
curate classifier by combining several weak learners.
In this regard, it should be emphasized that it is pos-
sible to address this issue within CBIR, i.e. enhanc-
ing the class probability vector using other techniques.
Away from ensemble methods, EPNN [71] and NDS
[72] are individual classifiers that aim at enhancing
the classification accuracy. In EPNN, the improve-
ment in the classification is achieved through consid-
ering local information and heterogeneity in the train-
ing data. In addition, NDS aims at discovering feature
spaces that maximize margins between clusters and
minimize them between classmates. Thus, our contri-
bution leaves open the possibility of exploring other
classification models within the CBIR area.

Finally, it can be interesting to study possible im-
provements in this proposed architecture. One idea
could be a dynamic selection of an ensemble of classi-
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fiers from the pool. Dynamic ensemble selection may
empower the proposed architecture by selecting the
most powerful classifiers for each image and reducing
the computational cost.

Acknowledgments

This work is partially supported by the Ministry of
Economy and Competitiveness of Spain under grants
TIN2016-75097-P and PPIT.UMA.B1.2017. It is also
partially supported by the Ministry of Science, In-
novation and Universities of Spain [grant number
RTI2018-094645-B-I00], project name Automated de-
tection with low cost hardware of unusual activities
in video sequences. It is also partially supported by
the Autonomous Government of Andalusia (Spain) un-
der project MA18-FEDERJA-084, project name De-
tection of anomalous behavior agents by deep learn-
ing in low cost video surveillance intelligent systems.
All of them include funds from the European Re-
gional Development Fund (ERDF). In addition, this
work is partially supported by DGRSDT - Ministry of
Higher Education and Scientific Research of the Alge-
rian Government through a PRFU project [grant num-
ber A10N01UN2101201800001]. The authors thank-
fully acknowledge the computer resources, technical
expertise and assistance provided by the SCBI (Super-
computing and Bioinformatics) center of the Univer-
sity of Málaga. They have also been supported by the
Biomedic Research Institute of Málaga (IBIMA). They
also gratefully acknowledge the support of NVIDIA
Corporation with the donation of two Titan X GPUs
used for this research. The authors also thankfully ac-
knowledge the support of the Universidad de Málaga.
Authors are also immensely grateful for ERASMUS+
program, CEI.MAR (Campus de Excelencia Interna-
tional del Mar), and University of 20 August 1955 for
making this collaborative work possible.

References

[1] G.L. Ying Liu Dengsheng Zhang and W.-Y. Ma, A survey of
content-based image retrieval with high-level semantics, Pat-
tern Recognition 40(1) (2007), 262–282.

[2] D. Zhang and G. Lu, Shape-based image retrieval using generic
Fourier descriptor, Signal Processing: Image Communication
17(10) (2002), 825–848.

[3] G.-H. Liu, L. Zhang, Y.-K. Hou, Z.-Y. Li and J.-Y. Yang, Image
retrieval based on multi-texton histogram, Pattern Recognition
43(7) (2010), 2380–2389.

[4] C.-C. Lai and Y.-C. Chen, A user-oriented image retrieval sys-
tem based on interactive genetic algorithm, IEEE transactions
on instrumentation and measurement 60(10) (2011), 3318–
3325.

[5] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, A simul-
taneous feature adaptation and feature selection method for
content-based image retrieval systems, Knowledge-Based Sys-
tems 39 (2013), 85–94.

[6] P. Liu, J.-M. Guo, K. Chamnongthai and H. Prasetyo, Fusion
of color histogram and LBP-based features for texture image
retrieval and classification, Information Sciences 390 (2017),
95–111.

[7] Y. Bengio, A.C. Courville and P. Vincent, Unsupervised feature
learning and deep learning: A review and new perspectives,
CoRR abs/1206.5538(52) (2012), 123–456.

[8] H. Chang and D.-Y. Yeung, Kernel-based distance metric
learning for content-based image retrieval, Image and Vision
Computing 25(5) (2007), 695–703.

[9] D.H. Ackley, G.E. Hinton and T.J. Sejnowski, A learning algo-
rithm for Boltzmann machines, Cognitive science 9(1) (1985),
147–169.

[10] A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet clas-
sification with deep convolutional neural networks, NIPS 25
(2012), 1106–1114.

[11] O.M. Manzanera, S.K. Meles, K.L. Leenders, R.J. Renken,
M. Pagani, D. Arnaldi, F. Nobili, J. Obeso, M.R. Oroz, S. Mor-
belli et al., Scaled Subprofile Modeling and Convolutional
Neural Networks for the Identification of Parkinson’s Disease
in 3D Nuclear Imaging Data, International journal of neural
systems 29(09) (2019), 1950010.

[12] Y. Gao and K.M. Mosalam, Deep transfer learning for image-
based structural damage recognition, Computer-Aided Civil
and Infrastructure Engineering 33(9) (2018), 748–768.

[13] S. Bang, S. Park, H. Kim and H. Kim, Encoder–decoder net-
work for pixel-level road crack detection in black-box images,
Computer-Aided Civil and Infrastructure Engineering 34(8)
(2019), 713–727.

[14] R.-T. Wu, A. Singla, M.R. Jahanshahi, E. Bertino, B.J. Ko and
D. Verma, Pruning deep convolutional neural networks for ef-
ficient edge computing in condition assessment of infrastruc-
tures, Computer-Aided Civil and Infrastructure Engineering
34(9) (2019), 774–789.

[15] A.H. Ansari, P.J. Cherian, A. Caicedo, G. Naulaers, M. De Vos
and S. Van Huffel, Neonatal seizure detection using deep con-
volutional neural networks, International journal of neural sys-
tems 29(04) (2019), 1850011.

[16] L.K. Hansen and P. Salamon, Neural networks ensembles,
IEEE transactions on pattern analysis and machine intelli-
gence 12 (1990), 993–1001.

[17] A. Krogh and J. Vedelsby, Neural network ensembles, cross
validation, and active learning, NIPS 7 (1995).

[18] S. Hamreras, R. Benítez-Rochel, B. Boucheham, M.A. Molina-
Cabello and E. López-Rubio, Content Based Image Retrieval
by Convolutional Neural Networks, in: International Work-
Conference on the Interplay Between Natural and Artificial
Computation, Springer, 2019, pp. 277–286.

[19] T. KarpathyA et al., Large-scale video classification with con-
volutional neural networks, in: Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, 2014,
pp. 1725–1732.

[20] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional



Safa Hamreras et al. / Content based image retrieval by ensembles of deep learning object classifiers 15

networks for biomedical image segmentation, in: Interna-
tional Conference on Medical image computing and computer-
assisted intervention, Springer, 2015, pp. 234–241.

[21] Y.-z. Lin, Z.-h. Nie and H.-w. Ma, Structural Damage Detec-
tion with Automatic Feature-Extraction through Deep Learn-
ing, Computer-Aided Civil and Infrastructure Engineering
32(12) (2017), 1025–1046.

[22] M. Koziarski and B. Cyganek, Image recognition with deep
neural networks in presence of noise–Dealing with and tak-
ing advantage of distortions, Integrated Computer-Aided Engi-
neering 24(4) (2017), 337–349.

[23] P. Wang and X. Bai, Regional parallel structure based CNN
for thermal infrared face identification, Integrated Computer-
Aided Engineering 25(3) (2018), 247–260.

[24] U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan and H. Adeli,
Deep convolutional neural network for the automated detec-
tion and diagnosis of seizure using EEG signals, Computers in
biology and medicine 100 (2018), 270–278.

[25] F. Vera-Olmos, E. Pardo, H. Melero and N. Malpica, DeepEye:
Deep convolutional network for pupil detection in real environ-
ments, Integrated Computer-Aided Engineering 26(1) (2019),
85–95.

[26] Y. Gong, L. Wang, R. Guo and S. Lazebnik, Multi-scale or-
derless pooling of deep convolutional activation features, in:
European conference on computer vision, Vol. 8695, Springer,
2014, pp. 392–407.

[27] A.S. Razavian, J. Sullivan, S. Carlsson and A. Maki, Visual in-
stance retrieval with deep convolutional networks, ITE Trans-
actions on Media Technology and Applications 4(3) (2016),
251–258.

[28] A. Babenko and V. Lempitsky, Aggregating deep convolutional
features for image retrieval, arXiv preprint arXiv:1510.07493
(2015).

[29] G. Tolias, R. Sicre and H. Jégou, Particular object retrieval
with integral max-pooling of CNN activations, arXiv preprint
arXiv:1511.05879 (2015).

[30] Y. Kalantidis, C. Mellina and S. Osindero, Cross-dimensional
weighting for aggregated deep convolutional features, in: Eu-
ropean conference on computer vision, Vol. 9913, Springer,
2016, pp. 685–701.

[31] K. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv preprint
arXiv:1409.1556 (2014).

[32] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for
image recognition, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[33] V. Chandrasekhar, J. Lin, Q. Liao, O. Morere, A. Veillard,
L. Duan and T. Poggio, Compression of deep neural networks
for image instance retrieval, in: Data Compression Conference,
IEEE, 2017, pp. 300–309.

[34] P. Napoletano, Visual descriptors for content-based retrieval of
remote-sensing images, International journal of remote sens-
ing 39(5) (2018), 1343–1376.
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