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Abstract
In the past several years, various ontologies and terminologies such as the Gene Ontology have
been developed to enable interoperability across multiple diverse medical information systems.
They provide a standard way of representing terms and concepts thereby supporting easy
transmission and interpretation of data for various applications. However, with their growing
utilization, not only has the number of available ontologies increased considerably, but they are
also becoming larger and more complex to manage. Toward this end, a growing body of work is
emerging in the area of modular ontologies where the emphasis is on either extracting and
managing “modules” of an ontology relevant to a particular application scenario (ontology
decomposition) or developing them independently and integrating into a larger ontology (ontology
composition). In this paper, we investigate state-of-the-art approaches in modular ontologies
focusing on techniques that are based on rigorous logical formalisms as well as well-studied graph
theories. We analyze and compare how such approaches can be leveraged in developing tools and
applications in the biomedical domain. We conclude by highlighting some of the limitations of the
modular ontology formalisms and put forward additional requirements to steer their future
development.

1. Introduction
In the context of computer and information sciences, an ontology models a domain of
knowledge or discourse defined by a set of representative primitives such as classes (or
sets), attributes (or properties), and relationships (or relations among class members) [35].
They provide a standard way of representing these primitives thereby supporting easy
transmission and interpretation of data for various applications. Consequently, there has
been a significant body of work in recent years [66] on developing ontology modeling
languages [1,19,31], ontology editing environments [18,45,46], ontology reasoning
[10,36,40,65], ontology storage and retrieval systems [38], ontology alignment and
integration [22,23,43], as well as building ontology-based applications in various domains
such as bioinformatics [26] and information retrieval [25,60,70]. These efforts have
enhanced the power of the “traditional Web” by introducing a network effect caused by
linking of various knowledge sources [37].

In practice, much of this success depends on the ability to share, reuse and personalize
existing ontologies since designing and maintaining ontologies is deemed to be a time-
consuming and labor intensive task. The reuse of existing ontologies can occur either while
designing a new ontology or development of new applications. However, existing and
widely-used ontology languages such as OWL [1] do not support reuse (or partial import) of
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parts of other ontologies.1 This becomes a big problem because even if one would like to
use a single concept from a large ontology such as FMA,2 s/he would end up importing the
entire FMA ontology. Hence, much alike software engineering, where issues such as
software reuse, black-box behavior, and modules are important [72], the domain of
ontological engineering needs to adapt similar notions [30].

Toward this end, research in modular ontologies has drawn significant attention in the recent
past. Informally, a module can be considered to be a subset of a “whole” that makes sense
(i.e., is not an arbitrary subset randomly built) and can somehow exist separated from the
whole, although not necessarily supporting the same functionality as the whole. Thus, in the
context of ontologies, a module is a sub-ontology that “makes sense” either from an
application (e.g., answering certain queries) or systems (e.g., improving performance)
perspective [61]. Ideally, one would prefer modules that are compact, yet provide
guarantees to capture the meaning of the terms and concepts used. In other words, exactly
the same answers should be obtained when answering queries against a particular local
ontology that imports a module relevant to certain concepts from a foreign ontology, versus
the local ontology importing the entire foreign ontology. This ensures that importing the
module instead of the whole foreign ontology will have no observable and logical
consequence on the local ontology [29].

In general, modularization can be perceived in two orthogonal ways: independently
developing modules that can be integrated coherently and uniformly (ontology composition)
or extracting such modules from an integrated ontology for supporting a particular use case
(ontology decomposition). Addressing both these requirements is challenging because
traditional ontology formalisms such as description logics were primarily designed for
single/centralized ontologies rather than multiple/decentralized ones [71]. Furthermore,
support for dynamically handling interconnected modules is lacking: if Mi(O) and Mj(O) are
modules of an ontology O that are interconnected, how will the updates in Mi(O) reflect
changes in Mj(O)? Finally, traditional reasoner implementations (such as Pellet)3 were
developed to operate on a single ontology as opposed to multiple ontologies.

We believe that these issues are highly relevant in the biomedical domain since most of the
widely used ontologies such as SNOMED CT4 or NCI Thesaurus5 are large and complex,
and will therefore benefit from the development of tools and techniques that enable proper
development and management of multiple, distributed ontologies and corresponding
reasoning support. In this paper, we survey and investigate a representative set of
approaches for modular ontology languages and formalisms as well as provide use cases
from the biomedical domain and additional requirements to steer their future development.
While other survey work [34,61,71] in this topic has focused on rigorously evaluating
modular ontology techniques from a theoretical perspective, our objective is not meant to do
a comprehensive study of a handful of approaches with rigorous logical proofs. Instead, we
survey a wider range of modular ontology proposals and analyze their potential for
supporting novel applications to advance biomedical research.

1OWL provides an owl:imports construct that allows to combine ontologies by including all the axioms contained in an external
ontology in one’s local ontology. Consequently, everything in the transitive closure of the imported ontology becomes a part of the
local ontology.
2http://fma.biostr.washington.edu.
3http://pellet.owldl.com.
4http://www.snomed.org.
5http://nciterms.nci.nih.gov.
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1.1. Organization
The rest of the paper is organized as follows: Section 2 formulates the definition of an
ontology module within the scope of this paper, Section 3 introduces various modular
ontology formalisms, Section 4 discusses use cases and applications in biomedicine where
such formalisms can be leveraged, and finally Section 5 concludes the paper with a
summary and discussion.

2. Background and preliminaries
2.1. Ontology modules

Although the notion of a module is well-understood in the software engineering community,
discussions on ontology modularization become murky since the concept can be understood
in rather different ways. For the purposes of this paper, we adopt the following definition of
an ontology module [21]: An ontology module is a reusable component of a larger or more
complex ontology, which is self-contained but bears a definite association to other ontology
modules, including the original ontology. This definition, in addition to implying that
modules can be reused “as-is” or extended by introducing new concepts and relationships,
asserts that they are not isolated entities or disjoint from each other. For example, assuming
that a module is entirely based on subsumption relationships, if a concept A has sub-
concepts B and C, such that B and C are disjoint siblings of A, creating a module centered on
A would include all three concepts, whereas creating a module on B would only include B,
thereby making both the modules not entirely disjoint. However, the general expectation is
that modules developed by an ontology engineer will be comprised of distinct concepts
rather than concepts that are closely related. In particular, we expect an ontology module to
be self-contained (i.e., given a set of relations, the ontology module should be transitively
closed with respect to those relations) and logically consistent (i.e., given an ontology that is
logically consistent, every module extracted from it should be logically consistent as well).
This would enable reasoning based on the axioms contained in just that module, ignoring the
rest of the axioms in the ontology. For example, in the Health-e-Child project,6 an ontology
for describing Juvenile Rheumatoid Arthritis (JRA; see Fig. 1) is being developed that
contains knowledge about different types of JRA distinguished by several factors such as
joints affected or the occurrence of fever, and each type of JRA requires a different
treatment [44]. However, some of this information is already modeled in existing ontologies
such as NCI Thesaurus and GALEN7 that are widely used, and hence can be potentially re-
used based on two important criteria: (i) when importing axioms from NCI-Thesaurus and
GALEN, the developers of the JRA ontology should not change the original meaning of the
re-used knowledge, and (ii) for efficiency, only those axioms should be re-used that are
relevant to the JRA ontology. The objective of the modular ontology formalisms is to
facilitate such a process.

More concretely, let O be an ontology comprising of a set of axioms (classes, relationships
such as subclass or equivalence, and individuals) and ∑(O) be the signature of O
constituting a set of entity names occurring in the axioms of O, i.e., its vocabulary. Given an
axiom α, we define an ontology module M i(O) of an ontology O, with ∑(Mi(O)) ⊆ ∑(O),
such that Mi(O) contains the same information about ∑(α) as O, and hence behaves in
exactly the same way as O in all applications using only the symbols in ∑(α). As illustrated
previously, the potential list of such applications include (i) importing Mi(O), instead of O,
into another ontology O’, and (ii) querying a database using Mi(O) instead of O. Intuitively,

6http://www.health-e-child.org.
7http://www.opengalen.org.
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if O’ imports Mi(O), O’ ∪ Mi(O) yields the same logical consequences as O’ ∪ O for those
axioms which are expressed using signatures from any subset of O’ ∩ Mi(O).

2.2. Goals of ontology modularization
To understand the exact notion of ontology modularization, and calibrate the pros and cons,
we outline a few goals that can drive a particular modularization task [61]:

– Partial Reuse: With the increasing popularity of Semantic Web and modern ontology
development languages such as OWL [1], there has been a proliferation of numerous
domain-specific ontologies in the recent years. Thus, to promote their adoption in
developing both intra- and inter-domain applications, reuse emerges as an important
issue. Since in many cases, only specific segments of a particular ontology might be
used by the services and applications, it becomes pivotal to develop rich mechanisms to
describe ontology modules. Unfortunately, as opposed to partial reuse, ontology
languages such as OWL only provide the option of including (via the owl:imports
construct) all the information present in an external ontology into one’s local ontology.

– Complexity: With the increasing size of an ontology, one is faced with the cognitive
burden of comprehending and managing the added complexity. Previous studies [2,56]
have shown that it is easier for ontology engineers to follow an approach for
collaboratively building individual modules which can later be integrated into a single
ontology. Arguably, such a divide-and-conquer approach also contributes to
management of the modules as well as improvements in the accuracy of their design.

– Ownership and Customization: Many ontology-based applications require
customization and personalization of available ontologies to meet their requirements.
This also influences various aspects of ownership which in practice can be attached to
existing modules to make them comply to a personalization environment.

– Efficient Reasoning: Even with the recent developments in ontology reasoning
techniques [55,65] and relatively easy access to large amounts of high-performance
computing and memory power, the performance of the existing reasoners decrease
significantly with the increasing size of the ontology. Consequently, if the amount of
ontological knowledge to be analyzed is limited via creation of relevant modules, one
can expect reasonable performance levels. However, at the same time, it remains to be
seen whether a given reasoning task that requires a distributed network of modules to be
analyzed is more efficient against reasoning with a single (large) ontology [64].

– Tooling Support: Similar to advances in building efficient reasoners, various other
tools such as ontology editing environments [18,45,46] and storage and querying
systems [38] have been developed over the last couple of years. However, despite the
continuous efforts to improve these tools, their performance is affected by the size and
complexity of the ontology which warrants developing effective techniques for
ontology modularization.

2.3. Properties of ontology modules and modularization techniques
The main properties that an ontology module needs to satisfy have been studied and
identified in previous work [30,34,47,61,67,71]. While there is no considerable agreement
on all the properties, there is a general consensus on some of the main aspects of an
ontology module:

– Size: A module Mi(O) of an ontology O should be as small as possible.
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– Correctness: A module Mi(O) of an ontology O should contain only the information
that is present in O. In other words, for any knowledge that can be inferred from Mi(O),
it should be possible to infer the same knowledge from O.

– Completeness: A module Mi(O) of an ontology O, extracted for a particular signature
∑, should contain all the information relevant to the elements of ∑. This ensures that
there is no difference in the logical consequence from importing Mi(O) versus O based
on ∑.

To ensure that most (if not all) of these properties are satisfied, we outline some evaluation
criteria and requirements for the modularization techniques [7,61]:

– Localized Semantics: In addition to being syntactically modular (i.e., represented in
separate XML namespaces), a modular ontology should also be semantically modular to
ensure that a global model is not required to integrate the individual ontology modules.

– Correct Reasoning: The logical consequences that can be deduced by reasoning on a
single large ontology should be semantically equivalent to what can be deduced by
reasoning over a collection of individual ontology modules extracted from the large
ontology. For example, consider Fig. 3 where an integrated ontology O contains the
axioms {P ⊑ Q, Q ⊑ R, R ⊑ S}, and modularized version of O has two modules O1 = {P
⊑ Q}, O2 = {R ⊑ S}, and a semantic connection , which represents the modularized
version of the axiom Q ⊑ R. The answer to any reasoning problem (e.g., is P ⊑ S?)

obtained by integrating O1, O2 and  should be the same as that obtained by
applying a sound and complete reasoner on O.

– Transitivity: It should be possible to reuse the knowledge contained in a particular
ontology either directly or indirectly. That is, for an ontology O, if a module Mk(O) is
imported by Mj(O), and Mj(O) in turn is imported by the module Mi(O), then Mi(O)
should be able to reuse the knowledge contained in Mk(O). For example, in Fig. 4,
knowledge in ontology module O1 (P ⊑ Q) may be used by the module O3 to infer that
P ⊑ S.

– Safe Reuse: In addition to enabling transitivity, it is important to ensure safe reuse by
guaranteeing that the meaning of the imported terms are not changed in the importing
ontology. Essentially, this means that while it is possible for the importing ontology to
define sub- and super-classes of the imported terms, defining relationships between two
imported terms is not allowed.

– Decidability: The modular ontology should be decidable so that one can do reasoning
on the ontology within a finite time period.

3. Techniques in modular ontologies
As mentioned in Section 1, many approaches and formalisms have been developed for
modular ontologies in the recent past. In this section, we review a representative set of such
techniques and analyze their fitness with respect to the requirements identified in Section
2.3. Specifically, we categorize these techniques into two sets: the first set of techniques are
based on rigorous logical foundations for extracting modules, and the second set of
approaches adopt graph-theoretic algorithms for traversing the ontology hierarchy and
applying heuristics to extract relevant modules.

3.1. Logic-based approaches
In this Section we discuss approaches that develop formal algorithms based on sound logical
foundations for module extraction that are correct and complete. Arguably, correctness of a
module (see Section 2.3) is trivial to satisfy since a module computed by extracting a subset
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of axioms from an ontology will only contain information about that ontology. Defining
completeness, on the other hand, is somewhat non-trivial, and has only been recently
defined formally based on conservative extensions by Grau et al. [28] (see Section 3.1.5 for
details). Briefly, an ontology O’ is considered a conservative extension of another ontology
O for a signature ∑, if the definition of the terms contained in ∑ remains unchanged in O’.
According to the authors in [28], this implies that if O contains a subset of axioms defined in
O’, such that O’ is a conservative extension of O with respect to the signature ∑, then O is
complete for the terms in ∑. To facilitate better understanding of these ideas as well as
modular ontology formalisms that we outline in the remainder of this section, we provide a
brief introduction to description logics.

3.1.1. Background on description logics—Description Logics (DL) [5] is a family of
knowledge representation languages which can be used to represent the terms and concepts
and relationships between them for a given domain in a structured and formally well-defined
manner. More specifically, the syntax of a DL is given by a signature ∑ which is a disjoint
union of a set AC of atomic concepts (A, B, …) representing a set of elements, a set AR of
atomic roles (r, s, …) representing binary relations between elements, and a set Ind of
individuals (a, b, …) representing the elements. Every DL provides constructors for
defining the set Rol(∑) of (general) roles (R, S, …), the set Con(∑) of (general) concepts (C,
D, …), and the set Ax(∑) of axioms (α, β, …) for a signature ∑ which is a union of role
axioms (RBox), terminological axioms (TBox), and assertions (ABox).

 [3,4] is the simplest DL language which allows conjunction of atomic concepts to
construct complex concepts (C1 ⨅ C2) as well as defining existential restriction (∃R.C)
starting with atomic concepts A, roles R, and the bottom concept ⊥. The axioms in an 
TBox can either be concept definitions (A ≡ C) or general concept inclusions (C1 ⊑ C2),
whereas  ABox concept assertions and RBox role assertions are of the form a : C and
r(a, b), respectively.

One of the most widely used DLs, which provides the foundation for other more expressive
DLs is  (Attributive Language with Completeness) [62], and is essentially obtained
from  this, by adding complement of concepts (¬C). Based on this,  introduces
various additional constructors such as the top concept ⊺ which can be represented by ¬⊥,
disjunction of concepts which can be represented by ¬(C1 ⨅ ¬C2), and universal restriction
∀R.C which can be represented by ¬(∃R.¬C). For example, a simple ontology in  is
shown in Fig. 2. The axioms in the ontology assert that Human is a Mammal (axiom 1); a
Woman is a Human who only eats Food (axiom 2); Laura is a Woman (axiom 3); and Laura
eats Pizza, which is an individual of type Food (axiom 4).

In addition to above, research by the DL community has proposed numerous extensions to
 meet the needs of applications that require more expressivity. In particular, the logic

 [41] is extended from  with transitive roles and role inclusions ( ). This is further
extended in [42] to propose the logic  by including nominals ( ), inverse roles ( ),
qualified number restrictions ( ). Notably,  provides the logical vides foundations
of the Web Ontology Language (OWL) [1]. Interested readers can refer to [5] to find further
details about other DL extensions.

The semantics of the DL languages are based on the usual Tarski-style set-theoretic
semantics as follows: an interpretation  of a description logic knowledge base is a pair

, where the interpretation domain  contains a non-empty set of objects and
the interpretation function  that maps every A ∊ AC to a subset , every r ∊ AR to
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a binary relation , and every a ∊ Ind to an element . Based on this, the
semantics of the  constructors is given in Table 1.

We further say that an interpretation  is a model of an ontology O if  satisfies all the
axioms in O. An ontology O implies an axiom α (denoted by O ⊨ α) if  for every
model  of O. Given a set I of interpretations, an axiom α is valid in I if every  is a
model of α. Furthermore, an axiom α is a tautology if it is valid in the set of all
interpretations. As mentioned above, more theoretical details can be referred from [5].

3.1.2. Distributed description logics—Distributed Description Logics (DDL) [11] is a
knowledge representation formalism for representing sets of ontologies and semantic
relations between them. It provides a mechanism for referring to ontologies and for defining
rules that connect “concepts” in different ontologies. This is achieved using the notion of
importing and reusing concepts between ontologies and enabling reasoning with multiple
ontologies interconnected by directional semantic mapping (called the bridge rules). In
particular, DDL extends the notion of interpretation introduced above to fit the distributed
nature of the model and to reason about concept subsumption across ontologies.

More formally, let I be a set of non-empty indices, such that {Oi}i∊I is a set of ontologies.
Concepts and axioms are represented with the index of the ontology they belong to such that
i : C denotes a concept in ontology Oi and j : C ⊑ D represents that concept C is a sub-
concept of D in ontology Oj, where i : C and j : C are different concepts. Semantic relations
between concepts in different ontologies are represented via axioms, called bridge rules, that
are of the following form:

where C and D are concepts in ontologies Oi and Oj, respectively. Furthermore, the derived
bridge rule  can be defined as a conjunction of the into- and onto-bridge rules.
These rules do not represent the semantic relations stated from an external observation point
of view such as the Web. Instead, a rule i to j expresses relations between i and j viewed

from j-th subjective point of view. Specifically, an into-bridge rule  states that,
from j-th point of view, the concept C in i is less general that its “local” concept D.

Equivalently, the onto-relation  expresses the more generality relation. In general,

note that the into-rule ( ) is not necessarily an inverse of the onto-rule ( )
since these rules reflect a subjective point of view. For example, consider fragments of class
hierarchies from two simple ontologies shown in Fig. 5. The following are some bridge rules
that can be defined:

Thus, a “distributed ontology”  can now be defined as a tuple, ({Oi}i∊I, {Rij}i≠j∊I), where
({Oi}i∊I is the set of ontologies, and {Rij}i≠j∊I) is the set of bridge rules between those
ontologies. Arguably, the notion of bridge rules in DDL has a semantic difference with
respect to the notion of concept inclusion in classical DLs, which is regarded as subset
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relation between concept interpretations (e.g., ). As mentioned in [71], depending
on the application context, this can be a limitation of DDL. For instance, even though subset
relations in classical DLs are transitive, the DDL domain relations are not transitive.
Consequently, the bridge rules cannot be transitively reused across modules. Furthermore,
DDL allows arbitrary domain relations which can create undesirable consequences from a
reasoning point of view (e.g., empty domain relations can be specified in DDL, although
general concept inclusions between satisfiable concepts in DL enforce restrictions on non-
empty interpretations). Additionally, DDL does not allow inter-module role
correspondences. For example, based on our example in Fig. 5, it is not possible to define
the following relation using DDL: GradStudent ⊑ ∃writes.Thesis, where writes is an inter-
module role.

3.1.3. -connections—As described above, DDL allows only one type of domain
relations. The -Connections approach [33], on the other hand, allows multiple
“connections” between modules. Informally, an -Connection is a set of “connected”
ontologies, wherein each -Connected ontology, similar to OWL, contains informations
about classes, properties and their instances, and additionally new kind of properties called
link properties. The link properties are logically interpreted as binary relations, where the
first element belongs to its source ontology and the second to its target ontology. Thus, in
essence, the link properties are used to relate individuals belonging to different ontologies in
combination. For example, consider the two ontologies in Fig. 6 which shows information
about Persons and Pets. Using -Connections and someValuesFrom OWL restriction, it is
possible to define links such as Dog_Owner ≡ Person ⨅ ∃owns.Dog and
Unhappy_Pet_Owner ≡ Person ⨅ ∃owns.Unfriendly_Pet.

More formally, let I be a set of non-empty indices, such that {Oi}i⊠I is a set of ontologies.
The semantics of the combined knowledge base is given with respect to a combined

interpretation , where  is a DL interpretation of the ontology Oi and
 is a cross-domain relation such that . The existential quantification (∃E.C)

and & value restriction (∀E.C), where  is a link and C is a concept in Oj, are
interpreted as subsets of  as follows:

However, -Connections require that the -Connected ontologies be disjoint from each
other, thereby enforcing strong restrictions in some applications [71]. For example, a
concept cannot be declared as subclass of another concept in a foreign module thereby
ruling out the possibility of asserting inter-module subsumption. Similarly, it does not allow
specification of relationships between other relationships belonging to different ontologies.
Both these constraints do not allow general support for transitive usability: foreign classes
and foreign properties cannot be instantiated, relations (e.g., sub-property) cannot be
specified between local and foreign properties, and cross-module conjunction and
disjunction are also not allowed. Furthermore, -connections do not allow a same term to be
used both as a link name, and also as a role name – a feature commonly referred to as
“punning” [32], where the same name can have different interpretations.

3.1.4. Package-based description logics—Package-based Description Logics (P-DL)
[8] overcomes the strong module disjointness limitations of DDL and -connections, and
OWL importing issues which only allows the model of an imported ontology to be
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completely embedded in a global model, thereby hindering partial reuse of ontologies. In P-
DL, an ontology comprises of a set of modules called packages where each concept, a
property or an individual is associated to a home package. P-DL introduces the notion of
importing relations such that a package can use terms defined in other packages (called as
foreign packages). That is, if a package Pj uses a term i : C, with the home package Pi such
that i ≠ j, then in P-DL, the term C is imported in Pj, and the importing relation is denoted

by . This relation is partial in that only the commonly shared terms are interpreted in the
overlapping part of the local models.

The semantics of P-DL is given with respect to the domain relation, rij, between local
interpretations  and  (of packages Pi and Pj, respectively), where rij ⊆ Δi × Δj, such that:
(i) for any x ∊ Δi, there at most one y ∊ Δj, such that (x, y) ∊ rij, and vice versa; and (ii) rij =
○ rkj, where ○ denotes the transitive compositional function. As a consequence of (ii), P-DL
enables transitive reuse of knowledge in the sense that if a package Pi asserts that C ⊑ D,
and Pj directly imports that axiom from Pi, then C ⊑ D is also valid from Pj’s perspective.
Furthermore, P-DL facilitates contextualized interpretation of knowledge by ensuring that
the interpretation of assertions in each ontology module is constrained by their context. That
is, when knowledge in a particular module is reused by another module, the interpretation of
the reused knowledge should be constrained by the context in which the knowledge is being
reused. As an example, in western countries, the concept weekend typically refers to the
days Saturday and Sunday of a week, whereas in Islamic countries it is Friday and Saturday
[6]. Thus, depending on the context, the concept weekend has different interpretations, and it
is vital to preserve it. Additionally, P-DL semantics for less expressive logics ensure that
both distributed reasoning on modular ontologies and classical reasoning on an integrated
ontology comprised of the respective modules will yield the same conclusion; although for
more expressive logics this has not been investigated. For example, consider the ontologies
shown in Fig. 8: ontology P contains knowledge about People, and ontology W imports
some of the knowledge from P to describe new information. Here, the axioms 2:
MaleEmployee ⊑ 1: Man and 2: FemaleEmployee ⊑ 1: Woman illustrates that semantic
importing approach can realize concept specialization, whereas the axiom 1: Child ⊑ ¬2:
Employee illustrates concept generalization [8].

3.1.5. Conservative extensions and locality-based modularization—Grau et al.
[28–30] propose the notion of conservative extensions to support partial reuse of ontologies
where the objective is to extract from a “foreign ontology” a small fragment that captures
the meaning of terms used in a “local ontology”. For example, when building an ontology
about research projects, one may use terms such as CysticFibrosis and HeartFailure from a
separate ontology in the description of medical research projects. Conservative extensions
ensures that the nature of the modules extracted are as small as possible (ideally), yet
guarantee that querying using the modules provide the same answers as if the entire foreign
ontology was imported. In particular, the main intuition behind conservative extension is to
ensure local completeness of the modules such that the knowledge contained in each
individual module is not altered even after their integration. That is, integrating modules
cannot induce new relationships between existing concepts in any module. More formally,
for two ontologies O’ ⊆ O and a signature ∑, O is a deductive ∑-conservative extension of
O’, if for every axiom α with ∑(α) ⊆ ∑, we have O ⊨ α if and only if O’ ⊨ α. Furthermore,
O is a model ∑-conservative extension of O’, if for every model  of O’, there exists a
model  of O such that , where  and  are interpretations of O and O’ with
respect to ∑, respectively. Intuitively, given O’ ⊆ O, O is considered a deductive
conservative extension for a signature ∑ iff every logical consequence α of O constructed
using the symbols in ∑ can also be deduced from O’. Consequently, deductive conservative
extension depends on the description logic D in which O and α are expressed. On the other

Pathak et al. Page 9

Integr Comput Aided Eng. Author manuscript; available in PMC 2011 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hand, model conservative extension states that for O’ ⊆ O, O is a model conservative
extension if every model of O’ can be expanded to a model of O by interpreting new
symbols and leaving the interpretations of the old symbols unchanged. As a result, model
conservative extension is stronger that deductive conservative extension since it does not
depend on the expressivity of the description logic language [53]. For example, consider a
simple ontology T in Fig. 7 describing medical diseases and disorders, saying, e.g., that
Genetic Fibrosis is a Genetic Disorder. Suppose now that we want to create another
ontology R that describes research projects for these diseases and disorders. We extend the
signature of T by adding concepts Genetic Disorder Project and Cystic_Fibrosis_Project in R
by stating that these projects focus on Cystic Fibrosis and Genetic _Disorder, respectively.
Intuitively, this addition should not affect the knowledge present in T , thereby, stating that T
∪ R is a conservative extension of T .

However, the problem of determining model conservative extensions is computationally
unsolvable, and requires development of approximate algorithms. Toward this end, tractable
modularization algorithms based on the notion of locality have been proposed in [28,30],
where the idea is to, for a signature ∑, identify a set of axioms α ∊ A that do not change the
meaning of terms in ∑. Such axioms are called local to the terms in ∑, and the authors in
[28,30] define six different types of locality, out of which, the most commonly used are the
⊺-locality (top locality) and ⊥-locality (bottom locality): if an axiom does not define new
sub-concepts for a given concept C, then it is considered ⊺-local for C, and it is ⊥-local for
C if it does not define new super-concepts. Thus, for a given set of concepts, modules
extracted using ⊥-locality will contain all the super-concepts of those concepts, whereas,
modules containing sub-concepts can be extracted using ⊺-locality. More details on the
locality-based module extraction algorithms are presented in [30].

3.1.6. Module extraction algorithms for  ontologies—We introduced the 
description logic towards the beginning of Section 3.1. The  family of DLs restrict the
expressivity of OWL to gain tractability, but are yet widely used to develop some of the
important biomedical ontologies such as the Gene Ontology8 and SNOMED.9 Since
reasoning in  is polynomial time, recently there has been a significant research interest in
developing modularization algorithms for  and more expressive languages such as 
[49,69].

In particular, Konev et al. [48], proposed two algorithms, CEL and MEX, for extracting
relevant fragments from large  ontologies. CEL is based on the notion of connected
reachability [69] where, for a given reachability graph (comprising of nodes that correspond
to concepts in an ontology and edges representing the axioms) and signature ∑, a connected
node is reachable from x ∊ ∑ iff all the symbols in the node are reachable to x, such that
reachability between two concepts suggests a potential subsumption relationship between
them. By using heuristics to traverse this reachability graph, CEL identifies logically
complete modules for  ontologies. The MEX algorithm, similar to CEL, generates
modules, but of much smaller sizes, and can only operate on acyclic ontologies.

3.2. Graph theory-based approaches
A common, and arguably, simple approach to modularize an ontology is to traverse the
ontology hierarchy (i.e., the set of axioms), and apply heuristics to identify a sub-graph.
Even though useful, such approaches do not take into consideration the underlying
semantics of the ontology, and hence do not generate modules that are complete (see Section

8http://www.geneontology.org/.
9http://snomed.org/.
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2.3). Nonetheless, these algorithms are tractable, intuitive to an user, and are widely used;
we discuss a representative set of graph traversal-based modularization algorithms in the
remainder of this section.

3.2.1. GALEN segmentation service—Seidenberg and Rector [63] developed a
methodology for extraction of related concepts from GALEN based on one or more classes
given as input by the user. Figure 9 (adopted from [63]) gives a pictorial representation of
the approach where starting from a “target” concept, the algorithm extracts all the concepts
in the paths to the root and all the leaf concepts. Additionally, any links across the hierarchy
from any of the previously traversed classes are followed, and the hierarchy is traversed
upwards (but not downwards) from any of these classes that the cross-links point to. Links
pointing at other classes from these newly traversed classes are also included. This continues
until there are no more links left to follow. The authors in [63] shows that using their
approach, the size of GALEN was reduced by a factor of 20 and the ontology segments
extracted could be classified within seconds. However, it is unclear how the algorithm can
be generalized and applied to other ontologies apart from GALEN.

3.2.2. ModTool: A module extraction tool—Doran et al. [21] propose another
technique for extracting ontology modules based on a graph/hierarchy traversal approach
similar to the GALEN segmentation service. However, unlike [63], the algorithm does not
allow upward navigation of the subclass hierarchy from the target concept based on the
justification that such a traversal will substantially increase the probability of extracting
modules that are as large as the whole ontology. Furthermore, the technique ensures that the
modules extracted are transitively closed with respect to the relations that are traversed. A
preliminary evaluation based on the NCI Oncology ontology showed that this approach
generated modules of smaller size compared to those generated by -Connections [33].

3.2.3. Modularization via dynamic selection—Similar to above approaches, authors
in [17] develop another mechanism for modularization that relies on exploiting the
hierarchical relationships in an ontology. Given a set of input terms, the objective is to
extract the smallest part of the ontology covering those terms via a fixed-point algorithm. In
particular, the algorithm recursively inspects the ontology expressions to include elements
that participate in the definition of the input terms. Although, unlike the GALEN
segmentation service [63], instead of including all super-concepts of a selected concept, only
the most specific common super-concepts are included. Furthermore, the algorithm removes
from the hierarchy all the intermediate concepts that do not participate in the semantic
definition of the considered terms, and only retains the hierarchical structure. While no
rigorous evaluation was presented in [17], the authors claim satisfactory results.

3.2.4. PATO: Partitioning tools for ontologies—Stuckenschmidt and Klein [68]
propose an approach for partitioning light-weight ontologies (primarily class hierarchies)
into disjoint and covering sets of concepts. Their approach is based on extracting a weighted
dependency graph, DG =< C,D,w >, from the class hierarchy, where C represents the set of
concepts, and links D between the concepts represent different types of dependencies that
can be derived from the ontology and weighted according to the strength of the dependency.
The weights, in particular, give an estimate of connectivity between concepts and is used to
determine sets or clusters of concepts that are strongly interconnected. The authors perform
experiments on realworld ontologies such as NCI Thesaurus and generated modules with an
average size of 57 concepts, although with a larger variance as module sizes ranged between
4 and 268 concepts. Figure 10 shows a screenshot of the PATO tool.
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3.2.5. Prompt traversal views—The Prompt Traversal View [57] is a Protégé [46]
plugin that allows a user to select target concept(s) of interest, and extract additional
concepts based on relationships that the user wants to explore until a particular traversal
depth is reached. It allows a user to tweak various additional traversal parameters manually
and is essentially a tool that is targeted to assist users in manually extracting and inspecting
smaller parts of the ontology. While useful for this specific use case, it is unclear how the
tool can be applied for (semi-) automatic ontology module extraction. Also, experimental
results were not presented in [57] which makes it harder to judge the performance of Prompt
compared to other tools, especially when dealing with large ontologies. Figure 11 shows a
screenshot of the Prompt Protégé plugin tool.

3.2.6. LexValueSets: Heuristics-based sub-graph extraction—Pathak et al. [59]
proposed an approach for extracting value sets from ontologies which are essentially an
uniquely identifiable set of valid values that can be resolved at a given point in time to an
exact set (collection) of codes or classes in the ontology. This subset of values can then be
used for various applications such as modeling a picklist for data entry. In particular, given a
signature ∑, the algorithm proposed in [59] identifies a set of “best paths” between the terms
in ∑, and extracts all the concepts in those paths to construct a value set. The criteria for
identifying a best path p between any two concepts x, y in an ontology O is captured as
follows: (i) p does not contain the root node/concept of hierarchy unless x or y is the root
node; (ii) p is not circular; and (iii) if there exists another path p’ between x and y, such that
it satisfies the above conditions and comprises of more granular nodes (i.e., sub-concepts of
x and y) than p, then p’ is the best path.

3.2.7. Taxonomy-based partitioning of gene ontology—Kunierczyk [51] described
an approach for partitioning the Gene Ontology (GO) by relating terms in GO to the
Taxonomy of Species (TS). This work is based on the premise that “GO Slims”, which are
essentially cut-down versions of GO containing a subset of terms that are created by users
according to their application needs, are imprecise with respect to their semantics, and
require error-prone manual construction. To reduce this effort, the author proposes the idea
of establishing explicit relationships between GO terms and taxa which are classes of
organisms, and leverage them to generate taxon-dependent (e.g., species-specific) views of
the GO on-demand. In particular, three different types of relationships, namely, validity,
specificity and relevance, are proposed that determine how the GO hierarchy should be
navigated to automatically generate different types of views. For example, if there is a valid
link between a GO term suckling behavior and the taxon Mammalia, then all the terms for
which suckling behavior is a successor can be automatically included in a “valid for
Mammalia” view of GO, even though none of those terms are explicitly marked as valid for
Mammalia.

4. Applications of modular ontology techniques in biomedicine
The domain of life sciences, biology and medicine in particular, has a strong tradition of
structuring their terminological knowledge in terms of controlled vocabularies, thesauri or
classifications. Such scientific vocabularies have been successfully and widely used in
various applications ranging from clinical trials to patient billing. However, at the same
time, it has become apparent that the challenges for proper construction, management and
usage of biomedical ontologies is far from trivial as initially expected, in part due to their
sheer size and complexity. We believe that research in modular ontologies is poised to
address some of these challenges and can be leveraged for building novel applications. We
outline a few of them in the following.

Pathak et al. Page 12

Integr Comput Aided Eng. Author manuscript; available in PMC 2011 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.1. Ontology reuse
Knowledge-based systems that support applications such as decision support in healthcare
typically depend on large amounts of domain knowledge. However, capturing domain
knowledge, in the form of ontologies, is expensive and reuse is always encouraged. In
particular, the ability to partially reuse ontologies is vital because for many applications
only specific ontology segments are relevant as opposed to the entire ontology. However,
existing ontology languages such as OWL only support importing the whole ontology. As
illustrated earlier, modular ontology techniques such as P-DL natively support partial
ontology import with contextualized semantics, thereby ensuring that the inferences are
drawn from the point of view of the (local) ontology importing (foreign) ontologies.

4.2. Ontology alignment
Ontology alignment is the process of determining correspondences between multiple
concepts in multiple ontologies. Over the last several years, enormous amounts of effort
have been invested in aligning and harmonizing biomedical ontologies. However, manually
aligning ontologies is a labor intensive process and often semi-automatic approaches [19,52]
are sought. Nevertheless, in spite of many improvements, such systems generate incorrect
mapping to varying degrees. Consequently, to avoid incorrect utilization of mappings (e.g.,
for query answering) it is vital to detect and fix defective mapping elements. Recently,
techniques [54] based on DDL have been proposed to address this problem where logical
reasoning is used to analyze the impact of mapping to ontologies it connects where the
assumption is that a mapping, if incorrect, will cause inconsistency (unsatisfiability) in
mapped ontologies.

4.3. Value set construction
In the context of vocabularies, a value set is an uniquely identifiable set of valid values that
can be resolved at a given point in time to an exact set (collection) of codes. The main
objective of modeling value sets is to specify a concept domain with certain attributes of
interest such that the attribute-values can be obtained from one or more vocabularies of
interest. An example of a concept domain could be “world countries”, and the representative
value set will include countries such as USA and UK. In practice, these value sets are
constructed manually from pre-existing ontologies such as SNOMED and ICD by
constraining the value selection based on logical expressions (e.g., all sub-concepts of the
concept ColonCancer) which, arguably, is a tedious and cumbersome process. We believe
that all the techniques for ontology segmentation introduced earlier can be leveraged for
semiautomatic value set construction. In particular, given a set of target concepts, the
algorithms in [17,21,59,63] can act as a guide in traversing the hierarchy and select super-,
sub-, sibling-concepts etc., and extract an initial value set that can be validated and refined
by a domain expert.

4.4. Secure information exchange
Addressing issues related to privacy and selective sharing of information in the biomedical
domain is of utmost importance. In particular, the ability to develop techniques for privacy-
preserving query answering with ontologies, where the objective is to enable “selective”
answering of queries against ontologies, will be of immense benefit in a healthcare setting.
Toward this end, recent research in privacy-preserving reasoning with hidden knowledge
using P-DL [9] has shown promising results. The crux of the technique is to divide an
ontology into two mutually exclusive parts, visible and hidden, and answering queries by
inferencing on both the visible and hidden parts, however at the same time ensuring that the
hidden knowledge is never revealed. The approach is based on an Open World Assumption,
and hence, a query that cannot be answered without disclosing the hidden knowledge to the
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reasoner will be answered such that the reasoner is lacking the complete information to
answer the query. While there are other approaches [24] that also prevent unwanted
inference, they are based on a Closed World Assumption which make them overly
restrictive for querying purposes.

4.5. Collaborative authoring
The process of building large ontologies such as SNOMED is often collaborative and
involves a team of experts that communicate and reconcile their changes. Since their
objective is to follow principled approaches to generate, manage, and integrate multiple
components of the ontology, there is a requirement to minimize the impact of changes
performed by a modeler on other parts of the ontology developed by other modelers. We
believe that this is a major application area for modular ontologies where individual
ontology mod- ules can be extracted (ontology decomposition), modified and updated, and
then combined to form an integrated ontology (ontology composition). While other
techniques for collaborative ontology authoring, such as Collaborative Protégé [56] and
Semantic Wiki [50] exists, they cannot support modular representation of an ontology, and
hence lack a principled way for controlling conflicts in editing or propagation of editing
errors.

4.6. Distributed and incremental reasoning
In practice, various biomedical ontologies are autonomously created, maintained and
interlinked/reused within different application contexts. This results in the formation of a
distributed information resource thereby necessitating the support for distributed reasoning
(as opposed to global reasoning) to address scalability and context-specific nature of the
ontologies involved. Recently, distributed reasoning techniques such as DRAGO [64] based
on DDL have been proposed where reasoning with multiple ontologies is accomplished by
leveraging the bridge rules.

On a different note, modular ontology formalisms are playing a key role in providing
support for incremental reasoning with changing knowledge bases [27]. The idea behind
incremental classification is to persist the reasoner state such that in the event of an update,
the previous classification tree can be reused. Arguably, if the classification tree can be
partitioned into modules, the updates can be applied to the targeted module(s) and changes
propagated to other relevant module(s). Such an approach is highly relevant in dealing with
ontologies such as the Gene Ontology (GO) which are revised constantly since loading a
new version of GO can easily be handled as an incremental update to the previous version.

4.7. Scalable querying
As more and more instance data gets tagged with concepts from ontologies (e.g.,in
biomedical grids), the ability to efficiently and effectively support ontology-based querying
is pivotal. Since reasoning is required for instance-level querying (e.g., if X ⊑ Y and x ∊ X,
where X, Y are classes and x is an instance of X, querying for all instances of Y should also
return x), modularized ontology reasoning support becomes important. Specifically, the
ability to compute modules on-demand based on the queries asked and classifying such
modules on-the-fly will allow one to efficiently reason about the relationships that may exist
among the instance data resident in the data nodes. Such reasoning could be used for
example to determine if data tagged with a given concept code is also a member of the set of
instances belonging to other concept(s). However, to the best of our knowledge, none of the
tools can provide such a support for querying based on modularized ontology reasoning,
although promising results have been demonstrated by IBM’s SHER reasoner [20,39,58]
where the main idea is to group together individuals which are instances of the same class
into a single individual to generate a “summary” ABox of smaller size. Then, reasoning can
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be done (e.g., for query answering) on the simplified summary ABox, thereby improving
query performance by a significant degree.

4.8. Semantic information integration
The explosion of massive amounts of biomedical data over the last several years has posed
the challenge of integrating and querying distributed, and often, semantically heterogeneous
“information silos”. Our previous work in this area [12,13,15] has led to the development of
approaches for explicitly associating ontologies to the database schemas as well as the
content, and leveraging the ontologies for integration and querying of information. In
particular, we demonstrated novel approaches for information extraction by proposing
ontology-aware classifiers [14,16]. However, the work was based on associating one single
global ontology to a data source (its content and schema), which could be a limitation in
representing, for example, patient records containing information about demographics,
diseases, medication, and drugs. Consequently, modular ontologies formalisms can be
extended such that relevant fragments of a particular ontology (or a set of ontologies) can be
associated to data repositories and enable semantics-based querying.

5. Summary and discussion
As new ontologies in the biomedical and life sciences domain begin to populate and existing
ones continue to grow and become more complex, there is an increasing need to leverage,
develop and expand modular ontology formalisms for a wide variety of applications. In this
paper, we reviewed some of the recent developments in modular ontology formalisms
beginning with a widely accepted definition of ontology modules and illustrating the
important goals of ontology modularization. We identified several properties, namely size,
correctness, and completeness, that need to be satisfied by the ontology modules. Even
though module correctness can be trivially satisfied by all the algorithms we evaluated,
satisfying module completeness and identifying minimal modules are much harder
problems.

Based on these important properties, we analyzed a representative set of research work on
modular ontologies, which were primarily categorized into logic-based approaches
comprising of techniques that are based on rigorous logical foundations for extracting
modules, and graph traversal-based approaches comprising of algorithms that apply
heuristics to navigate the ontology hierarchy and identify relevant modules. While our
preference would be to propose the adoption of logic-based approaches since they guarantee
correctness and completeness of the extracted modules, some of the techniques such as -
connections and P-DL are based on non-standard semantics, and hence will require the
development of new ontology editors, reasoners as well as standards (apart from OWL),
making them less attractive. The only exception to this is the approach based on
Conservative Extensions and Locality-based Modularization since it ensures semantic
modularity under classic first-order semantics. We also introduced various application
scenarios, albeit not only specific to the biomedical domain, but nonetheless highly relevant,
that could benefit from further development of modular ontology formalisms. We argue that
with the increasing maturity of the modular ontology languages and tools, they are poised to
address various challenges in the development, management and usage of large biomedical
ontologies in particular for collaborative ontology authoring and partial ontology reuse.

However, at the same time, there are many potential areas of future development that have
to be pursued for modular ontology approaches to become mainstream. For instance, even
though the techniques for ontology segmentation based on graph traversal algorithms
[17,21,63] are efficient and useful in practice, they have the risk of generating incomplete
results since the hierarchy traversal is done without considering the semantics of the
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underlying ontology language. This is in particular true for OWL ontologies because
depending on the presence or absence of OWL defined and primitive classes in a particular
ontology, its asserted class hierarchy will be different compared to an inferred hierarchy
(obtained after classification). Since the traversal algorithms cannot make a distinction
between defined and primitive classes, they ignore classes and relationships between them.
As illustrated above, logic-based approaches such as conservative extensions address this
issue by generating complete modules. However, on the other hand, they suffer from the
lack of user-intuitiveness that the graph-based techniques provide to an ontology developer.
Also, as mentioned earlier, all the modularization techniques focus on generating modules
from the ontology and reasoning on them (known as TBox modularity). It is unclear what
role modular ontology formalisms will play when dealing with instance data (known as
ABox modularity). Addressing this issue is important because many applications (e.g.,
distributed data retrieval in a grid) require interaction with multiple data nodes storing
instance information. Another shortcoming of modular ontology formalisms is the lack of a
query language, unlike SPARQL which is the query language for RDF graphs. Just like
SPARQL can be used to express queries across diverse data sources, whether the data is
stored natively as RDF or viewed as RDF via middleware, it should be feasible to query
distributed ontology modules (TBoxes) and corresponding instance data (ABoxes) in a
principled way. Finally, since many modular ontology languages such as DDL and ε-
Connections leverage mappings or bridge rules, the ability to detect, and potentially rectify,
inconsistent mappings is vital. While approaches such as [54] have been proposed for
debugging DDL bridge rules, there is a requirement to expand such work in a more general
setting that will enable resolution of inconsistencies between ontology modules that are
interlinked.
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Fig. 1.
Modular ontology example.
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Fig. 2.
Example ontology expressed in DL .
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Fig. 3.
Exact reasoning example.
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Fig. 4.
Knowledge transitivity example.
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Fig. 5.
Sample class hierarchies.
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Fig. 6.
-Connections example.
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Fig. 7.
Conservative extensions example.
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Fig. 8.
Package-based description logics example.
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Fig. 9.
GALEN segmentation algorithm.
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Fig. 10.
PATO: Partitioning tools for ontologies.
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Fig. 11.
Prompt traversal views.
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