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Abstract. We propose a novel low-cost integrated system prototype able to recognize objects/lifeforms in underwater environ-

ments. The system has been applied to detect unexploded ordnance materials in shallow waters. Indeed, small and agile remotely

controlled vehicles with cameras can be used to detect unexploded bombs in shallow waters, more effectively and freely than

complex, costly and heavy equipment, requiring several human operators and support boats. Moreover, visual techniques can

be easily combined with the traditional use of magnetometers and scanning imaging sonars, to improve the effectiveness of the

survey. The proposed system can be easily adapted to other scenarios (e.g., underwater archeology or visual inspection of under-

water pipelines and implants), by simply replacing the Convolutional Neural Network devoted to the visual identification task.

As a final outcome of our work we provide a large dataset of images of explosive materials: it can be used to compare different

visual techniques on a common basis.
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1. Introduction

The widespread availability of relatively low-cost

underwater Remotely Operated Vehicles (ROVs) opens

interesting new possibilities about the exploration and

the (partial) automation of several tasks in underwater

environments, especially in shallow water. Such duties

include surveillance and repair activities of submarine

gas or electrical pipelines, inspection of submerged ar-

chaeological sites, etc.

Thus, in particular, there is a wealth of new applica-

tive scenarios for a large class of artificial vision algo-

rithms and solutions. Indeed, besides the technologi-

cal improvements that made possible the advent of so-

phisticated and compact underwater ROVs, there is the

need of making the latter “intelligent” and hopefully

autonomous, i.e., able to carry out their tasks with-

out the constant need of a human supervision. Along

this road, one of the first things to achieve is to let the
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ROVs to safely and efficiently explore and move in

their surroundings. In submarine environments, GPS

and/or Wi-Fi positioning techniques do not work (there

is no possibility to use GPS or Wi-Fi signals under-

water and working solutions require to combine trian-

gulation techniques by means of acoustic signals and

surface GPS). Hence, artificial vision algorithms and

solutions, alongside “classic” sonar-based techniques,

may come to help in detecting obstacles and recogniz-

ing several landmarks and useful objects during explo-

ration and pathfinding tasks (thanks to the availability

of high resolution optical sensors and cameras).

In this paper, we propose a low-cost yet effective in-

tegrated system for object detection in submarine en-

vironments. Its main components, from the hardware

point of view are an underwater mini-ROV, equipped

with sensors and cameras, and a Ground Control Sta-

tion (GCS) which allows the operator to pilot the mini-

ROV and to acquire, store and process images. From

a software standpoint, on the other hand, we have the

following components: (i) the operating system of the

mini-ROV with the related navigation software, (ii) the

piloting app which interfaces the user with the mini-

ROV and which stores the acquired images, and (iii)
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the image processing software which applies the filter-

ing/enhancing and classification algorithms to the set

of acquired images. More details will follow in Sec-

tion 3.

In particular, we addressed the problem of iden-

tifying unexploded ordnance (UXO) materials (also

known as OEW, i.e., Ordnance and Explosive Waste)

on the seabed (or the river/lake bottom). Indeed, this

represents a serious safety issue, in particular in the

summer period, in many countries which were bombed

during past or recent wars, when many people bathe at

the sea/river/lake.

It may happen that coastal erosion or drifting de-

bris (caused by natural phenomena like, e.g., storms)

expose partially or totally some unexploded bombs

(which were released by bomber planes or fired by

mortars). Findings of this type are rather common in

Italy: it is sufficient to read local and national chronicle

news. For instance, [2] reports the news about a World

War II unexploded bomb found at less than 20 m. from

the shore near Rome. Moreover, in 2017 the demining

division of Italian Navy removed about 22,000 bombs

across seas, lakes and rivers, and during the first half

of 2019 the bomb findings were more than 10,000.

The US Government’s Strategic Environmental Re-

search and Development Program (SERDP) estimates

that there are more than 10 million acres of coastal

waters contaminated by undetonated explosives [14],

without considering also ponds, lakes, rivers etc.

Beside the direct and immediate danger of undeto-

nated items (i.e., the possibility of devastating explo-

sions), there are also the damaging effects to the under-

water ecosystem caused by the leakage of consistent

amounts of dissolved explosive compounds, due to the

fact that such items rust and corrode at sea, eventually

breaking their cases.

Hence, it is clear that the goal of developing an au-

tonomous or, at least, a remotely controlled system be-

ing able to monitor and search for unexploded bombs

at the sea bottom would not be only an academic di-

version, but would contribute in a significant way to

public and environmental safety.

In this setting, the main innovative content of the

paper is represented by:

1. a low-cost integrated system, allowing one to

easily control a mini-ROV able to visually detect

in real-time the presence of unexploded ordnance

materials in shallow waters;

2. an extensive dataset of images of bombs (in var-

ious conditions) which does not exist in the liter-

ature and which can be used to effectively com-

pare different visual techniques on a common ba-

sis.

2. Related Work

Due to the severe implications of the problem, in

the literature there are plenty of systems and propos-

als aimed at the surveying and detection of OEW, es-

pecially in shallow water (i.e. up to 200 feet). Indeed,

as mentioned before, millions of acres of ponds, lakes,

rivers, estuaries and coastal ocean areas are scattered

with munitions, especially in the case they are adja-

cent to active and former military installations. One of

the first modern accounts of this kind of systems ap-

peared in [11], where the authors presented MUDSS

(Mobile Underwater Debris Survey System), i.e., a

multi-sensor system for the surveying of underwater

OEW. In particular, they resorted to a combination of

two different sonars with a laser line scanner, capa-

ble of 6 mm resolution, and a gradiometer. Such sen-

sors were depressed in shallow water by a mechan-

ical wing attached to the surface craft. The onboard

controls and electronics allowed the crew to read and

process in real-time the acquired sensor data. Target

detection was then improved by advanced processing

and data fusion techniques, because the presence of

clutter is a significant problem in shallow water. A 10

kW generator was needed to power all the equipment.

The technique of deploying sensors (and in particular

sonars) from a shallow-draft surface vessel is rather

common even in the most recent scientific literature;

for instance, in [6] a sonar system, producing three-

dimensional synthetic aperture sonar (SAS) imagery,

allows the authors to detect fully buried underwater ob-

jects. The latter is only one of the many examples of

a long sequence of applications of acoustic and sonar

techniques in this field. For instance, an extensive work

has been funded by the USA Strategic Environmen-

tal Research and Development Program (SERDP) and

the Office of Naval Research about the acoustic de-

tection and classification of UXO in underwater envi-

ronments [5, 9, 31, 32]. Among the outcomes of this

research program there is a generative relevance vec-

tor machine (RVM) trained and used for identifying

rockets buried underwater. In [16], the authors pro-

pose an active learning algorithm for classifying mine-

like objects, without the need of any a priori training

set. Some works go even beyond the issue of detect-

ing/recognising OEW, being able to discriminate be-
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tween different types of ordnance materials: in [18] a

suitable matched subspace classifier (MSC) can distin-

guish between different classes of UXO based upon

the spectral content of the sonar backscatter. There are

also several approaches exploiting the visual analy-

sis of sonar images. For instance, two acoustic lens

sonars with high resolution and refresh rate are used

in [7], providing a suitable solution for substituting

optical systems in turbid waters. Moreover, sequences

of forward-looking sonar images are used in [10] to

implement a multiple tracking system, based on an

application of a probability distribution called PHD

(Probability Hypothesis Density): such sequences are

then aligned and fused to reconstruct a 3-D map of

the seabed. More recently, precise real-time or de-

layed real-time detection with sonar images is possible

thanks to approaches like those in [41], where high-

frequency data are combined with low frequency band

images (limiting the number of false alarms), or [43],

where issues due to object rotation, false targets and

complex backgrounds are avoided by estimating the

similarity of the extracted features with a previously

acquired template. Other techniques applied to sonar

data are features extraction and analysis by canonical

correlation ([27]) and neural networks ([28]). Indeed,

one of the advantages of this approach is that acous-

tic energy sensing does not suffer from range limita-

tions and it can penetrate through various sources of

turbidity, debris etc. in murky waters, where direct ob-

servations by means of acquired images are not viable.

In particular, applying advanced machine vision tech-

niques like, e.g., non-linear CNNs ([15]) to sonar im-

agery can lead to 99% of accuracy in distinguishing

UXO objects from environmental clutter. On the other

hand, direct optical observations, when there is a suf-

ficient degree of visibility, clearly outperform all the

other sensors (including sonars) in gaining meaningful

and effective information for target localization, dis-

crimination and identification, due to the visual cues

and high level of details that can be extracted from

high resolution images [3]. However, such wealth of

information requires to acquire the images at short dis-

tances (in order to have high resolution and details)

and without too much cluttering, thus limiting the vi-

sual perspective on the surroundings of the mapped re-

gion. Indeed, even the well-known and similar prob-

lem of object segmentation is more challenging under-

water, due to the haze effect [12]. Indeed, in an un-

derwater environment we must take into account the

fact that the light is highly attenuated, distorting the

colors and sometimes deforming the edges of the ob-

jects. Hence, color correction, contrast adjustment and

other image enhancement techniques have been inves-

tigated and applied in [1, 17]. Other more sophisticated

approaches are based upon convolutional neural net-

works for removing dust from images [23], on biolog-

ically inspired vision [22] or on conditional generative

adversarial network-based models [20]. Preprocessing

images, applying filters, is so common that in [24] a

dataset of 950 images is proposed as a benchmark for

comparing image enhancement algorithms and solu-

tions of this kind. Indeed, preprocessing is usually the

first step, in order to carry out object detection in im-

ages taken in an underwater environment. Several so-

lutions address the problem of detecting fishes, using

either statistical estimation techniques [8], or deep net-

work models [29, 36, 42].

As to the detection of underwater OEW, apart from

rather peculiar approaches like, e.g., the use of a tagged

neutron inspection system for the detection of TNT

explosives [37], one can find in the literature many

sonar based approaches (see, e.g., [16, 18, 38]), be-

cause, as we mentioned before, they allow one to de-

tect also buried or cluttered objects. In particular, in

[3], the authors present a system making two steps. In

the first step, underwater mosaicking techniques (ap-

plied to sonar images) are used in order to scan a large

area in search of zones with a potential presence of

munitions. Then, in the second step, a more careful

scanning is performed only in the suspicious zones

(target re-acquisition process). Applying similar mo-

saicking techniques to optical images can be difficult,

despite the much higher resolution of the latter w.r.t.

their sonar counterparts, because water turbidity heav-

ily impacts on visual cues and, consequently, hinders

the process of correctly aligning the images. However,

in case of good visibility conditions, the approach al-

lows one to make visual local searches for munitions

across a wide map.

3. The Proposed System

In this section, we will provide a complete descrip-

tion of the proposed integrated system, including the

physical architecture (see Section 3.1) and the logic ar-

chitecture (see Section 3.2). From the hardware per-

spective, it is composed by the mini-ROV (with the

payload of the external camera and lights), the ground

control station (GCS, featuring a controller for the pi-

lot), a tablet (displaying the footage acquired by the

external camera), and a surface buoy (allowing the
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communication between the mini-ROV and the ground

control station). The software components are the pi-

loting app (running on the GCS), and an ad-hoc app

(running on the tablet to control the external camera

and to apply the recognition algorithm). It is impor-

tant to keep in mind that our proposal is not meant

as a strict alternative to common solutions like, e.g.,

systems based on magnetometers, sonars, etc. Indeed,

such sensors can be added to the payload of our mini-

ROV as well. Moreover, we think that it can be a good

complementary aid, providing users with the ability

to establish a visual detection of unexploded ordnance

materials, once an area has been marked as a poten-

tial site by means of some of the techniques outlined

in the previous section. Indeed, our mini-ROV is small

enough to explore underwater ravines or narrow tun-

nels and areas with too many debris to let a diver pass

without some risks. As we will see in later sections,

such maneuverability also allows us to pass very close

to the objects of interest, greatly reducing or removing

haze effects and distortions in acquired images. The

novelty of our approach, on the hardware perspective,

lies in the compact integration of a small vehicle with

the sensor (i.e., the camera) used to acquire the data.

The small dimensions of the assembled prototype al-

low the user to drive it in narrow spaces and to make

close passes near the objects of interest. On the other

hand, considering the software architecture, we have a

highly parametric system, where the algorithms used

in the preprocessing phase of data and the classifier

can be easily replaced by alternative versions, accord-

ing to specific needs. Moreover, we provide for the first

time (according to our knowledge) a sufficiently large

database of images of UXO materials which can be

used as a common benchmark to compare different so-

lutions in this field (see Section 4).

3.1. The Physical Architecture

A comprehensive scheme of the physical architec-

ture is depicted in Fig. 1. As anticipated in Section 3,

the reader may notice that the Ground Control Station

(GCS) allows the user to control the mini-ROV by es-

tablishing a Wi-Fi connection with the buoy which can

either be held on the ground or may be allowed to float

on the surface of the water (like it is depicted in the

previous figure). The buoy, in turn, is physically con-

nected by means of a 100 m long tethering cable to the

mini-ROV: all the commands and the video stream of

the built-in onboard camera are transmitted along the

Fig. 1. An overview of the physical architecture of the proposed sys-

tem.

cable (and then, via the Wi-Fi connection to and from

the GCS).

Since the built-in onboard camera of the mini-ROV

has a fixed orientation bearing forward (i.e., it is al-

ways pointing along the direction of movement of the

vehicle), we exploited the possibility of attaching to

the bottom of the mini-ROV another camera (hence-

forth denoted as external camera), pointing down-

wards, in order to be able to constantly monitor the

seabed (or the river/lake bottom) without the need to

carry out complicate maneuvers to tilt the onboard

camera. Of course, in order to monitor the footage

coming from this external camera we need a distinct

tethering cable, in order to convey the second Wi-Fi

link, avoiding dangerous interference with the mini-

ROV link. This means we also need a second device

(the tablet in Fig. 1) to control the external camera.

In Section 3.1.1, we will illustrate the features of the

mini-ROV, of the Ground Control Station, and of the

tablet with details about the two cameras used to ac-

quire the images (see Section 3.1.2). Finally, in Sec-

tion 3.1.3, we will describe the lighting system which

allows us to operate in poor visibility conditions.

3.1.1. The mini-ROV, the Ground Control Station,
and the tablet

As far as the mini-ROV, we opted for a low cost,

small and agile vehicle in order to have a rather high

degree of maneuverability, even in narrow spaces like,

e.g., in shipwrecks scenarios and in submarine caves

or ravines. More precisely, we customized the Trident
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Underwater Drone (see [39]), whose technical specifi-

cations appear in Table 7 of the Appendix.

The role of the Ground Control Station (GCS) is car-

ried out by the bundled Android OpenROV app, which

runs on a JXD S192K controller [21]. The latter fea-

tures ergonomic controls allowing the human opera-

tor to smoothly control the mini-ROV and the onboard

camera and lights (with the possibility to watch in real

time, on a 7” screen (or on attached video goggles), the

video footage captured by the onboard camera).

Finally, the tablet can be any Android device: its

purpose is to run an application allowing to display the

footage coming from the external camera on the bot-

tom of the mini-ROV and to apply the recognition al-

gorithm (see Section 3.2 for the details).

3.1.2. Cameras
We have a built-in camera in the front of the mini-

ROV pointing forwards: it is activated automatically

when the vehicle is turned on. Video registration and

image acquisition activities are controllable directly

from the Android OpenROV app. The technical fea-

tures of this camera are listed in Table 8 of the Ap-

pendix.

In order to leave the user free to pilot the mini-ROV,

without the hassle of performing at the same time com-

plicate maneuvers to point to the objects of interest on

the seabed (or the river/lake bottom), we opted for in-

stalling a second camera on the bottom hull of the ve-

hicle. This external camera is a GoPro 7, whose tech-

nical features are listed in Table 9 of the Appendix.

It has been chosen essentially for the compact dimen-

sions, the quality (much better than the built-in cam-

era) and the availability of 3D-printable supports that

can be easily attached to the bottom plate of the Trident

mini-ROV. Moreover, such supports are fully compat-

ible with the 60m waterproof encasing of the GoPro

7.

Other cameras can be easily added according to the

operative needs of the current deployment scenario

(Fig. 2).

3.1.3. Lighting System
The Trident mini-ROV is equipped with a lighting

system composed by six forward facing LEDs (three

on each side of the device) providing 360 lumens and

with a color temperature of 4000 K. Thus, the built-in

camera can benefit from those LEDs, in order to com-

pensate to the darkness in submarine environments.

Moreover, we added on the bottom part of the mini-

ROV hull a lighting panel composed by 84 LEDs pro-

viding 1800 lumens with a color temperature of 5500

Fig. 2. The bottom of the Trident mini-ROV with the standard pay-

load of Fig. 1 in our lab (top), and in action with an additional cam-

era on the upper front part (bottom).

K. Hence, also the external camera can benefit of a

lighting system pointing towards the seabed (or the

river/lake bottom).

3.2. The Logical Architecture

Besides the piloting software of the mini-ROV ven-

dor, which provides the user with an intuitive user in-

terface allowing him to move the vehicle and to con-

trol the lights and the front camera, we implemented a

tablet application receiving the video stream provided

by the GoPro camera, and extracting individual frames

from it. Those frames are then processed by a Convolu-

tional Neural Network (CNN), trained to recognize the

presence of unexploded ordnance materials. In the case

of a positive detection, the involved frames are saved in

the tablet file system for later inspection, with the de-

tected ordnance materials visually marked, and georef-

erenced with the current coordinates provided by the

tablet GPS. Moreover, a specific graphical element of

the app UI is highlighted and an alarm sound warns the

user. This data pipeline is depicted in Figure 3.

Since it is well known that underwater images are

subject to distortions in shape, colors and brightness,

we introduced a preliminary filtering step in the pro-

cessing pipeline of the system, in order to minimize

such effects, before feeding the image frames to the

CNN (both in the training step and, later, during the

classification activity).
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Fig. 3. The data pipeline of the proposed system.

In Fig. 4 we can see a running example of the pre-

processing phase. We selected a problematic case, in

order to illustrate the issues that may occur with un-

derwater images. First of all, the agility and small di-

mensions of the mini-ROV allow us to go very close to

the objects of interest; thus the vicinity and the pow-

erful lights on the bottom of the mini-ROV reduce

significantly all the haze effects and distortions. Then

(from top to bottom in Fig. 4), we equalise the his-

tograms of the three color channels (R, G, and B), and

we resize the image to the dimension required by the

CNN (i.e., 227×227). In this case the CNN classifier

has been able to recognize the presence of the hand

grenade1 with a degree of confidence greater than 0.9,

despite the partial occlusion due to the rock on the left,

and the fact that part of the grenade has been cropped

out. Moreover, the image has not being included in the

training set; hence, there is no overfitting here.

Before introducing the details of the CNN we used,

it is important to highlight that our system is paramet-

ric about the method (e.g., the above mentioned CNN)

used to recognize unexploded ordnance materials in

the processed images.

Of course, in order to teach a machine “what is a

bomb”, together with positive samples, we also have

to provide negative samples representing “what is not

a bomb”. This has been a hard challenge, due to the

difficulty of retrieving an adequate number of train-

ing images (see Section 4). Indeed, in order to have

a balanced training set, we had to limit the nega-

tive samples (which can represent whatever) to the

same size of the positive samples. Hence, we decided

to exploit a transfer learning from an already trained

model, namely, the BAIR/BVLC CaffeNet Model2

1Grenades, although being explosives, are not classified as bombs,

but for convenience, throughout the paper, with the word bomb we

also refer to grenades.
2This model is a slight variation of the AlexNet CNN and it

is available at https://github.com/BVLC/caffe/tree/master/models/

bvlc_reference_caffenet

Fig. 4. An acquired image with a partially exposed and cropped

UXO (top), with RGB color histograms equalised (middle) and re-

sized (bottom), before being fed to the CNN.

(using the Caffe Framework3 and trained on the Im-

ageNet dataset4 containing millions of images) which

can classify 1,000 categories (not including bombs).

Of course, we changed the number of outputs from

1,000 to 2 (bomb/not bomb): the resulting CNN model

3https://caffe.berkeleyvision.org/
4Available at https://image-net.org/download.php.
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Model BAIR/BVLC

CaffeNet Model

(AlexNet)

Layers 5 Conv/ReLU,

3 FC

Dimensions of input images 227×227

Training batch size 16

Testing batch size 24

Max iterations 40,000

Number of outputs 2 (0=bomb,

1=not bomb)

Table 1

Details of the CNN.

is depicted in Fig. 5 (due to lack of space, we arranged

the diagram layout in five rows), and the important de-

tails of the network are resumed in Table 1.

It is important to notice the values of two key pa-

rameters of the model, since they have a direct impact

on the overall performance of the resulting classifier.

In particular, the training batch size (i.e., the number

of images processed together during the training phase

in a single iteration) has been set (after some prelim-

inary experiments) to 16, which is a rather low value.

The reason of this choice is mainly due to the fact

that working with small batches of images favors the

ability of the resulting classifier to generalize beyond

the specific dataset used in the training phase. In other

words, it helps avoiding the overfitting phenomenon,

since small input sets introduce some noise in the gra-

dient estimation.

The other reason to keep the training batch size

small is to consume less memory: this is particularly

important when using GPUs to accelerate the training

process. Memory consumption is also the reason of

having set the value of the testing batch size to 24: this

is the maximum we could allow, in order to avoid the

“insufficient memory” error message during the vali-

dation phase5.

The second key parameter is the maximum number

of iterations (max_iter) which we changed to 40,000

(the original value is 450,000), since during our exper-

iments we noticed that after 10,000 iterations there are

no significant improvements.

5The validation dataset is used to provide an unbiased evaluation

of a model fit on the training dataset, allowing to tune the model

parameters. As the training progresses, the “skills” on the valida-

tion dataset is incorporated into the model configuration, making the

evaluation more biased.

The remaining parameters are set according to the

original trained model6. Dataset images are resized to a

227x227 spatial resolution and divided as follows: one

set for training (85% of the total set of images, includ-

ing positive and negative examples of the presence of

bombs) and the other (the remaining images) for vali-

dation. Thus, the former set is used to train the model,

and the other one is used to calculate its accuracy. Both

sets are stored as LMDB7 databases.

In particular, a fine-tuning of the trained model is

performed by continuing the backpropagation on an

initial dataset of 4,600 images (2,300 images with

bombs and 2,300 without bombs). We attained an ac-

curacy in the training phases higher than 0.9, after only

10,000 iterations over the maximum of 40,000 which

we programmed (see Fig. 6).

Hence, our network started to be quite effective in

recognizing bombs (see Section 5), even when par-

tially cluttered by debris or dirt (like it happens when

we are searching for OEW with our mini-ROV). A

complete training over our dataset of 4,600 images

requires less than 30 minutes on a Linux System

equipped with an Intel Core i9-10900KF CPU with 32

GB of RAM and a Nvidia RTX 2080 GPU card with 8

GB of memory and Turing microarchitecture.

4. The Dataset

Unfortunately, as far as the availability of image

datasets of OEW, there are two kinds of issues to

consider. First of all, there are no publicly accessible

databases of this kind which can provide more than a

few dozens of images. For instance, one of the largest

online databases of unexploded ordnance is [40] and

the underwater ordnance category provides only 49

images. The second issue is that images of underwater

OEW are even rarer. Obviously, this affects negatively

the training phase of supervised algorithms. Hence, we

decided to build our own dataset of ordnance materi-

als. We adopted two strategies: first of all, we started

crawling the web. We developed some Python scripts

using the Selenium library, in order to simulate a user

6The solver parameters can be found at the following

URL: https://github.com/BVLC/caffe/blob/master/models/bvlc_

reference_caffenet/solver.prototxt
7Lightning Memory-Mapped Database (LMDB) is a software li-

brary written in C with bindings available for several programming

languages, providing an embedded transactional key-value store. It

is very convenient to use in a multi-threaded environment where high

read performances are requested.
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5

Fig. 5. Model of the proposed CNN.
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Fig. 6. Training curve with a dataset of 4,600 images.

session with common browsers (e.g., Chrome or Fire-

fox) and querying Google Images with keywords like

UXO, unexploded bombs, unexploded ordnance and

so on (both in English and Italian languages, in or-

der to exploit also websites of local newspapers8). The

second strategy was suggested by the fact that most of

the available images on the Web depict bombs pulled

ashore; hence, colors and other visual features of the

objects are significantly different than when underwa-

ter. Hence, we envisaged a procedure, in order to en-

rich our training dataset with underwater images of al-

ready recovered bomb shells. In particular, we started

adding images of real bomb shells which were pro-

vided to us for the experiments by the Italian Army.

Subsequently, we started acquiring images of those

same bomb shells immersed in different underwater

scenarios with varying conditions of visibility and clut-

tering. More precisely, we considered in a first series

of experiments a clean water tank with clean water.

Then, we started filling the tank with murky water and

adding debris and various forms of cluttering. In a sec-

ond phase, we replicated the experiments on a real

seabed, starting from shallow waters (with clear visi-

bility conditions) to continue with a deep seabed with

poor visibility conditions. Finally, we moved to under-

water regions with some debris and cluttering. Sum-

ming up, we considered the following conditions:

1. a clean tank filled with clean water;

2. a clean tank filled with murky water;

3. a cluttered tank filled with clean water;

4. a cluttered tank filled with murky water;

8As we noticed in the introduction, unexploded bomb findings are

rather common in Italy.

Fig. 7. Some bomb shells and replica images acquired ashore (up-

per row) and underwater (bottom row) in different conditions (on the

bottom of a swimming pool and on the sea bottom in shallow wa-

ters).

5. a shallow seabed with good visibility conditions

and no cluttering;

6. a cluttered shallow seabed with good visibility

conditions;

7. a deep seabed in murky waters, but no cluttering;

8. a cluttered deep seabed in murky waters.

At the end we generated a database of underwater im-

ages of several ordnance materials in different condi-

tions. Some of them are reported in Fig. 7, while Ta-

ble 2 reports the composition of the whole dataset (in-

cluding photos downloaded from the Web) which can

be freely downloaded from [44]. Such images were

then fed to the Neural Network Classifier (NNC), in

order to train the network.

Thus, we aimed to “reuse” the knowledge gained

while learning to visually recognize unexploded bombs

in land environments, applying and modifying the pre-

viously built neural network classifier to underwater

environments. So doing, we expect in the long term to

improve the effectiveness of our system in detecting

bombs in underwater scenarios.

After several tests, we are confident that our system

can indeed be useful as a low cost aid for the detec-

tion of OEW materials in shallow waters. Fortunately,
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Total images 4,600 (a+b)

Total UXO images 2,300 (a=c+d+e)

Images without UXO 2,300 (b)

UXO web images 1,957 (c)

Underwater UXO web images 283 (d)

Underwater UXO images acquired by mini-ROV 60 (e)

Table 2

Composition of the UXO images dataset.

the transfer learning from an existing model trained on

the ImageNet database helped us, raising significantly

the test accuracy of our CNN, while containing the

test loss. We still have some false positives and false

negatives with certain inputs, but they are decreasing

with each iteration. Thus, the system effectiveness is

heavily dependent on the training of the CNN, i.e., on

the quality and size of the dataset. Hence, the usage

we propose is an incremental one: start with an ini-

tial dataset and use transfer learning from an already

trained model (see Section 3.2) to begin with (as we

explained in the previous section). Then improve it by

repeating the training phase with a new bunch of im-

ages acquired either from the field or from publicly

available databases (e.g., crawling the web). Finally,

if you have some empty bomb shells or even some

collector’s replicas you can follow the procedure pre-

viously described in this section, in order to progres-

sively enlarge your training dataset.

5. Experimental Tests

We tested our trained CNN against new sets of im-

ages taken from bomb findings published over the In-

ternet and images of bomb shells provided to us by the

Italian Army, which were not used during the training

phase. During our tests, we had a very high accuracy

in detecting bombs. Indeed, the only misclassified im-

ages are rather confusing even for a human being try-

ing to guess which object is displayed. Usually they

are photos of objects with so much dirt that they can

be confused with bricks, rocks or debris.

Fig. 8 shows three detections in experiments made

directly using the mini-ROV and our UXO replicas,

in the settings mentioned in Section 4, i.e., deploying

our replicas and bomb shells underwater in different

conditions. The bounding box has been generated after

the classification, using a tool available in the Caffe

framework. Next to it there are the classification label

and the related confidence degree.

Fig. 8. Detections on images of bomb shells acquired using our

mini-ROV, according to the procedure described in Section 4.

Apart from those experiments, we also checked the

effectiveness of our CNN in detecting bombs in im-

ages found on the web. In particular, Table 3 (where

TP, FP, TN, FN stand, respectively, for True Positive,

False Positive, True Negative, and False Negative) re-

ports the outcomes of two extensive bomb detection

tests made with our network. Test 1 was conducted on

a dataset of 4,264 images. Such images were randomly

downloaded using the Google search engine: half of

them were pictures featuring bombs of generic nature

(not necessarily underwater), whereas the other half

were pictures without bombs. Moreover, we carefully

checked that none of the images were already used
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in our training set9. Instead, the dataset of Test 2 was

composed by underwater bombs for 50%, whereas the

rest were, again, images without bombs in underwater

environments (all images were again randomly down-

loaded from the Internet and we checked that they did

not occur in the training set). As we can see, in both

cases the behavior of the CNN features good scores of

precision, recall, accuracy and F1-measure (always at

or above 90%).

Since in our code we handle images in RGB for-

mat, we also tested the sensitivity of the accuracy of

the CNN classifier, w.r.t. the insertion of gaussian noise

into the three color channels of the input images. We

selected a balanced dataset of 300 images downloaded

from the web and acquired by our mini-ROV: 150 of

them were images of UXO materials, correctly recog-

nised by the CNN classifier, while the remaining 150

were images not related to the UXO category, correctly

discarded by our CNN classifier. According to [30],

Gaussian RGB noise is applied to each image color

channel independently, with mean 0 and standard de-

viation σ. As it can be seen from Table 4 (where the

value 0.0 of σ means absence of noise, i.e., the origi-

nal image is left unchanged) and Fig. 9, the accuracy

is very stable (above 0.9) with σ ≥ 100, while it con-

siderably degrades only for values greater than 100:

in [30] the tested values of σ are less than 40 and at 35

the accuracy drops to 0.4. The good behaviour of our

CNN classifier is probably due to the preprocessing

phase, where we equalize the histograms of the RGB

channels (see Section 3.2).

We conclude this section with the description of the

last benchmark we made to test the flexibility of our

system and, in particular, of the CNN classifier we

adopted. Indeed, although we said that it can be easily

replaced by other (possibly better) solutions, we want

to convince the reader that good results can already be

achieved with the current setup.

Hence, we considered an application scenario where,

beside discriminating UXO materials from other kinds

of objects, it is needed to also classify the latter as be-

longing to a certain set of categories. In order to make

things more difficult, we chose to consider ImageNet

classes of underwater elements which may be visually

confused with UXO. Moreover, where possible, we

used the EUVP dataset10 for testing, since it provides

9To guarantee that no images are present both in the training set

and in the test set, we name the files with the hash values of their

contents.
10Available at http://irvlab.cs.umn.edu/resources/euvp-dataset.

Fig. 9. Sensitivity of accuracy w.r.t. gaussian noise applied to input

images.

a mix of poor quality images with enhanced (or better

quality) images. The categories we considered are as

follows:

1. UXO: UneXploded Ordnance materials in under-

water environments, i.e., the main focus of our

work;

2. Coral11: since UXO underwater materials are of-

ten covered by marine encrustations, corals may

easily induce a classifier in error;

3. Sea Turtle12: this category of animals can be ex-

changed for grenades or other kinds of explosive

materials, due to their carapace;

4. Pufferfish13: this kind of fish may resemble to a

bomb in certain circumstances (especially when

it inflates its body);

5. Torpedo14: another kind of animal which can

be exchanged for a bomb (especially when it

plunges into the sand of the seabed);

6. Sea Anemone15: a lifeform which may grow near

or on bomb shells in the seabed;

7. Anemone Fish16: a kind of fish usually living

among sea anemones (it has been considered to

add another kind of difficulty for the CNN clas-

sifier);

11ImageNet classes n01917289 (“brain coral”) and n09256479

(“coral reef”).
12ImageNet classes n01664065 (“loggerhead, loggerhead turtle,

Caretta caretta”) and n01665541 (“leatherback turtle, leatherback,

leathery turtle, Dermochelys coriacea”).
13ImageNet class n02655020 (“puffer, pufferfish, blowfish, globe-

fish”).
14ImageNet classes n01496331 (“electric ray, crampfish, numb-

fish, torpedo”) and n01498041 (“stingray”).
15ImageNet class n01914609 (“sea anemone, anemone”).
16ImageNet class n02607072 (“anemone fish”).
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Total TP FP TN FN Precision Recall Accuracy F1-measure
Test 1 4,264 2,047 86 2,046 85 0.959 0.960 0.959 0.959

Test 2 210 99 11 94 6 0.900 0.942 0.919 0.920

Table 3

Tests of bomb detection in images downloaded from the Web.

Gaussian Noise σ Accuracy

0.0 1

0.1 1

1.0 0,96

10.0 0,94

100.0 0,92

500.0 0,88

1000.0 0,82

2500.0 0,76

5000.0 0,68

7500.0 0,64

10000.0 0,61

Table 4

Gaussian noise σ vs. Accuracy.

8. Rock Beauty Fish17: a kind of fish which may be

confused with anemone fishes (it has been con-

sidered to add another type of difficulty for the

CNN classifier).

Having to deal with eight categories of items, we re-

trieved as many images as possible, either from Ima-

geNet or from the Web (using our crawler). Thus, we

set up the dataset described in Table 5 with a total of

26,880 images (3,360 for each category). As for the

former experiments of binary classification, 85% of the

total set of images (equally partitioned among all the

eight classes) was used to train the CNN, while the re-

maining images were used for validation.

The test set has been taken from the ImageNet sec-

tion of the EUVP dataset (100 images of poor qual-

ity and 100 images of high quality) for each of the

following classes: corals, sea turtles, torpedoes, sea

anemones, anemone fishes and rock beauty fishes. For

the remaining classes of UXO and pufferfishes the

200 images per class have been downloaded from the

Web. Thus the test set amounts to a total of 1,600 im-

ages. Every image downloaded with the crawler (for

the training, validation, and test sets) has been checked

and labeled by a human operator. All the images can

be downloaded from [44].

17ImageNet classes n02606052 (“rock beauty, Holocanthus tri-

color”).

Table 6 provides the final statistics for this multi-

class classification experiment. As we can see, accu-

racy is good (greater than 0.9) for all the categories

taken under consideration. F1-measure is lower (but

still higher than 0.8) for the following classes: corals,

sea anemones and anemone fishes. Looking also at the

confusion matrix reported in Appendix B, this was not

an unexpected result, and the reason behind that may

be the fact that the elements belonging to those cat-

egories often are present together in the same envi-

ronment. Indeed, images depicting sea anemones of-

ten contain also anemone fishes and viceversa. Corals

often share their environment with those categories as

well.

UXO materials have the second best results for ac-

curacy and F1-measure, directly behind rock beauty

fishes which are easily recognisable, because of their

peculiar combination of colors.

Looking at the state-of-the-art in the field of UXO

detection and recognition by means of computer vi-

sion techniques, a closely related paper is [13], where

a CNN is used to identify “improvised explosive de-

vices” (IEDs) in “rural or built-up urban environ-

ments”, i.e., an out of the water version of our exper-

iments. However, the input data of the CNN are har-

vested by an ad-hoc sensor which is composed by a

ground penetrating radar, a thermal sensor, an infrared

sensor, an ultraviolet sensor and a camera. Hence,

there is a wealth of data which allows one to detect

buried objects too, yielding an accuracy of 98.7%, in

well-lit conditions. Of course, using a simple camera

in our setup, we cannot detect buried or strongly oc-

cluded objects; however, looking at Table 6, the overall

accuracy of our test is still a good one (always above

90% for all classes of objects), and it achieves a score

just below 98.7% for the UXO class (to be precise

the actual precision value is 0.986875 which has been

rounded to 0.987 in Table 6).

Other significative, but less related, works are de-

voted to visually recognising objects either for zone

safety purposes ([34]), or for structural health assess-

ments of infrastructures ([25]). They resort to sophisti-

cated techniques which go beyond to the use of CNNs

and they achieve precision scores of 97.2% and accu-

racy scores of 95.99%.
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Another kind of studies focuses on damage detec-

tion in civil structures ([33]), and anomaly detection in

video surveillance ([35]) or in a wider range of appli-

cations ([26]).

Finally, in the field of content based image retrieval,

there are rather sophisticated studies as far as image

classification is concerned. For instance, in [19], the

authors adopt an ensemble learning approach: they in-

troduce an architecture leveraging on an ensemble of

CNNs. Such networks are either built on the same

model, but they are then trained on different sets of im-

ages, or are trained on the same dataset, but they dif-

fer from the architectural point of view. The ensem-

ble of CNNs thus generates a final image representa-

tion which is more general and robust for the purpose

of image classification, outperforming many individ-

ual CNN architectures.

However, leaving out the above mentioned works

(which are rather different and difficult to compare),

if we focus on the task of recognising UXO in under-

water environments and we look at the attained accu-

racy scores of our tests, we can say that our approach is

quite effective and comparable to state-of-the-art per-

formances, although striving for simplicity and low

cost.

6. Conclusion and Future Work

We proposed a low cost system for detecting UXO

(OEW) in underwater scenarios, by means of a mini-

ROV (with an attached camera) and a suitably trained

CNN classifier. Despite it is well-known that the lack

of clarity in the acquired images makes segmentation

and recognition more difficult in underwater environ-

ments, our experiments suggest that there is an ad-

vantage in applying an image-based approach to this

task. Indeed, even if we cannot achieve results compa-

rable with solutions based on georadar/sonar, we can

still provide an inexpensive and effective alternative to

these approaches. It is sufficient to think that a cheap

sonar for underwater navigation costs around 3,000

USD, which is a price far higher than the cost of our

whole prototype. Indeed, as far as experiments are con-

cerned, the only other real cost is the training phase

of the CNN (executing the resulting classifier can be

done on cheap hardware, such as a common tablet),

but it is possible to train the network exploiting some

free test accounts of a cloud solution like, e.g., Amazon

AWS or Paperspace18 (the latter offers a free account

including the availability of a GPU with a Python pro-

gramming environment). Hence, the system can be af-

fordable even for people living in third world countries

(think, e.g., of the navy, coast guard, fishermen etc.).

Moreover, there is also the advantage of the small di-

mensions and of the maneuverability of the mini-ROV

which can be easily transported and deployed by a sin-

gle person, without the need of huge boats and large

crews.

Another contribution of this paper is the beginning

of the definition of a reference dataset of UXO materi-

als, in order to provide a common benchmarking plat-

form for researchers working in this field. In particu-

lar, besides crawling and downloading from the Web

available UXO images, we started adopting the incre-

mental approach described in Section 4 to build a pro-

gressively larger and more representative database of

OEW.

Due to the large variety of OEW (e.g., aircraft

bombs, high-explosive bombs, land and water mines,

hand grenades, mortar bombs, etc.), a possible future

work could be to specialize the CNN to classify bombs

in different categories, according to an existing and

standard classification. This would help users to have

a more precise evaluation of the kind of detected ex-

plosive item (e.g., detecting the presence of a hand

grenade requires a complete different approach and

resources to secure the area and defuse it w.r.t. the

procedure involving a large high-explosive bomb). Of

course, another possibility of future work will be the

testing of other types of deep machine learning archi-

tectures, in order to find the best performing one for

the purpose of UXO identification.

Finally, in order to make the whole system even

more economical, it would be interesting to explore

the possibility to use boosting techniques with the im-

provements suggested in [4], as they are far less de-

manding in terms of the hardware resources (like, e.g.,

GPUs) needed in the training phase.
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Appendix A. Technical Specifications of Hardware

The following tables report some technical data about the Trident mini-ROV and the two cameras used in our

experiments. Data are taken from the websites of the respective producers.
External dimensions [ L X W X H] 410 mm x 205 mm x 86 mm

Weight (ballasted for freshwater) 3.4 kg

Weight (ballasted for seawater) 3.5 kg

Depth rating 100 m

Thrusters 3 brushless motors

Maximum speed 2 m/s

Battery architecture 3S4P Li-NMC 18650 cells with built-in PCM

Capacity 95 WH

Charge time 1.5 hr from 20% to 80%, 3 hr from 0% to 100%

Nominal run time 3-4 hours, normal operation

Power consumption 30 W nominal

Charge power requirements 120VAC to 240VAC

Topside WiFi interface 802.11 b/g/n

IMU 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer

Depth/temperature 1cm-resolution depth sensor with temperature calibration and display

Other sensors Internal barometer, battery meter

System requirements Android (min. 5.1) device through the OpenRov App.

Vehicle payload data interface Wi-Fi

Operating water temperature rating -2°C to 40°C

Storage temperature 0°C to 25°C

Chemical resistance Seawater, diluted Chlorine

Table 7

Trident Technical Specifications.

Resolution 1080p @ 30fps recorded, 720p @ 30fps live on device

Video Latency ∼120 ms

Video compression H.264

Video export format MP4

Features High color rendition and dynamic range, optimized for low-light underwater,

wide angle field-of-view and scratch-proof sapphire window. 100m Waterproof

Table 8

Onboard Camera Technical Specifications.

Resolution 4K @ 60fps, 2.7K1 @ 20fps, and 1080p @ 240fps. Capture 12MP up to 30 fps

Video Latency ∼16.7 ms

Video compression H.264

Video export format MP4

Field of View (FOV)
https://gopro.com/help/articles/question_answer/hero7-field-of-view-

fov-information?sf96748270=1

Features HyperSmooth Video Stabilization, SuperPhoto Auto HDR Photo Enhancement,

10m Waterproof without a Housing, 60m Waterproof with Housing

Table 9

External Camera (GoPro Hero 7 Black) Technical Specifications.
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Appendix B. Multiclass underwater classification data

The following table reports the confusion matrix of the multiclass classification experiment described at the end

of Section 5:
UXO Coral Sea Turtle Pufferfish Torpedo Sea Anemone Anemone Fish Rock Beauty

Pred. UXO 185 1 1 2 1 0 0 1
Pred. Coral 8 173 1 2 5 4 1 0

Pred. Sea Turtle 5 0 178 6 2 0 0 0
Pred. Pufferfish 0 4 12 183 9 0 0 0

Pred. Torpedo 1 2 6 3 178 0 0 0
Pred. Sea Anemone 0 19 0 2 1 171 18 0

Pred. Anemone Fish 0 0 0 2 0 24 177 0
Pred. Rock Beauty 1 1 2 0 4 1 4 199


