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Abstract. Consumer-centric energy management approaches are emerging as a major solution for future power systems. In this
context, intelligent home management systems should control different kinds of devices existing in the houses assuring convenient
comfort levels and understanding the users’ behaviour. At the same time, the home management systems should be able to interact
with other actors such as energy communities, aggregators, and system operators. The main contribution of this work is a new
methodology allowing intelligent management, in near real-time (1 minute), of different types of energy resources existing in
a smart home. The energy resources include appliances and other loads, micro-generation, and electric vehicles. The proposed
system includes a permanent evaluation of the operation state of each energy resource considering their functional model and the
behaviour and comfort level defined by the users. Participation in demand response programs reducing the power consumption
limits is also considered showing the advantage of the proposed approach. The case study contains two scenarios considering a
demand response program of power limitation with 120 minutes duration. To guarantee the participation in these demand response
events, the system should evaluate the priority of each device according to its model. A domestic consumer with 45 energy
resources (appliances, generation, and electric vehicles) is used for demonstration purposes.

Keywords: Demand response, dynamic energy resources priority, domestic consumer, electric vehicles, energy resources manage-
ment

Nomenclature

Indices
nDG Total number of micro-generation

units
nLoad Total number of loads
nEV Total number of electric vehicles
DG Micro-generation index (ID)
Load Load index (ID)
EV Electric vehicle index (ID)
Parameters
λDown(Load) Priority of regulation down of load

(Load)
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Electrical and Computer Engineering, Instituto Superior Técnico-
IST, Universidade de Lisboa, 1049-001 Lisbon, Portugal. E-mail:
hugo.morais@tecnico.ulisboa.pt.

λUP(Load) Priority of regulation up of load
(Load)

PLoad(Load) Active power of load (Load)
λCh(EV) Priority of charge of electric vehicle

(EV)
λDch(EV) Priority of discharge of electric vehicle

(EV)
λDG(DG) Priority of micro-generator (DG)
λGrid Priority of power provided by the main

network
ρRelax Penalization of relaxation variable
PMax

Load(Load) Maximum active power consumption
of load (Load)

PMin
Load(Load) Minimum active power consumption of

load (Load)
PMax

Ch(EV) Maximum active power charged in
electric vehicle (EV)
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PMax
Dch(EV) Maximum active power discharged in

electric vehicle (EV)
EMax

EV(EV) Minimum energy charged in the
electric vehicle (EV)

EMin
EV(EV) Maximum energy charged in the

electric vehicle (EV)
EInitial(EV) Initial energy charged in the electric

vehicle (EV)
ηCh(EV) Charging efficiency of electric vehicle

(EV)
ηDch(EV) Discharging efficiency of electric

vehicle (EV)
PMax

DG(DG) Maximum active power generated by
micro-generator (DG)

PMin
DG(DG) Minimum active power generated by

micro-generator (DG)
PMax

Grid Maximum active power exchanged
with the main grid

PMin
Grid Minimum active power exchanged

with the main grid
Variables
PDown(Load) Active power regulation down of load

(Load)
PUp(Load) Active power regulation up of load

(Load)
PCh(EV) Active power charge in electric vehicle

(EV)
PDch(EV) Active power discharge in electric

vehicle (EV)
PDG(DG) Active power generated in micro-

generator (DG)
PGrid Active power exchanged with the main

grid
PLimit Active power limit in the installation
PFixedLoads Active power consumption of non-

controlled loads
PRelax Active power relaxation
xLoad(Load) Binary variable of load (Load) to

define if the load is connected or not
xDG(DG) Binary variable of micro-generator

(DG) to define if the micro-generator
is connected or not

xCh(EV) Binary variable of electric vehicle
(EV) charging

xDch(EV) Binary variable of electric vehicle
(EV) discharging

1. Introduction

In smart grids, consumers can act as active actors

controlling their energy resources in an intelligent
way [1]. Consumers can manage the use of energy by
controlling consumption, generation, and storage. In
smart grids, consumers can act as active actors control-
ling their energy resources in an intelligent way [1].
Consumers can manage the use of energy by controlling
consumption, generation, and storage. To be possible
the effective participation of the consumers in future
power systems management, several approaches have
been proposed, with an emphasis on smart grids and
microgrids concepts [2]. In this context, smart home
management systems have been developed in the scope
of smart grids to provide more adequate and efficient
interaction between the system operator or aggregation
entities, and the consumers allowing the monitoring
and better control of the appliances and other energy
resources existing in the house.

Smart homes enable the monitoring and control of
appliances, generation and storage devices, installed
in the house. The monitoring is developed based on
sensors, the “Internet of Things” IoT and smart appli-
ances where several sensors are integrated into the de-
vice using low consumption solutions [3]. The control
is assured by the actuators and remote control (e.g.,
Zigbee). This concept can be extended considering the
integration of external communications [4]. External
communications allow the information exchange with
third party entities (energy communities, aggregators,
utilities, etc.). Among other services, external commu-
nications enable the interaction with other management
systems such as the ones used by energy communities,
virtual power plants or system operators, enabling the
possibility to participate in demand response (DR) pro-
grams/events. The conditions of participation in DR
services should be pre-established between the utilities
and the consumers and integrated into the smart home
management system (HMS) algorithms.

The advanced functions of the HMS should include
the management of the most important appliances, the
generation units, and the electric vehicles considering
the interactions with the external operators, security
functions, comfort levels among others [5]. These new
requirements imply the inclusion of new functions and
algorithms in the HMS existing until now. The main
focus of the new algorithms should be on the trade-off
between the comfort level for the users and the effi-
ciency of the use of existing devices. Regarding effi-
ciency, we are considering the energy efficiency and the
global costs of operation (energy bill) [6]. The HMS
should identify the operation context (e.g. number of
persons in the home) and try to adjust the comfort level
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accordingly. This identification can be done using learn-
ing algorithms such as the ones proposed in [7]. An-
other important aspect to be included in the HMS is
the energy cost in different periods of the day (Time-
of-Use DR programs) and the energy generated by the
internal generation units. According to the most recent
regulation, the consumers can not inject energy into the
network meaning that all the energy generated in the
house should be consumed in the house. In other words,
consumption should be adjusted to follow the genera-
tion. When incentive-based DR is activated, new power
limits can be imposed and the comfort levels can be
slightly changed minimizing the impact on the comfort
levels. In that case, the systems should have an intel-
ligent mechanism to identify the user profile adjusting
the importance of different actions [8]. This capacity
is important to increase the acceptance of the system
actions and the global performance of the systems.

This paper proposes a near real-time energy resources
management method with a dynamic evaluation of the
operation conditions of the energy resources existing in
a smart house. The system can manage different appli-
ances and other loads, distributed generation, electric
vehicles. The participation in demand response events
limiting the maximum power consumption is also in-
cluded in the proposed methodology. Bi-directional
flows of energy (network to house and house to the net-
work) have been introduced considering different prices
for buying and selling energy.

Demand Response can be implemented in different
ways according to the system operators’ and retail-
ers’ needs. DR can define load curtailment with mini-
mum event duration of 15 minutes up until more than
5 hours [9].

After the present introduction section, Section 2 sum-
marizes several concepts used in house management
systems in the domestic consumers’ context. The de-
scription of the methodology proposed in the paper for
the simulation platform of the intelligent management
system is introduced in Section 3. Section 4 describes
the case study with the characterization of the scenarios
and results of near real-time energy resources manage-
ment. The main conclusions and contributions of the
work are presented in the last section.

2. Home energy management systems – overview

The development and implementation of manage-
ment systems to control the energy consumption may
have an impact on the consumption efficiency and in the

efficient management of local power grids, avoiding or
delaying the need to reinforce the grid and at the same
time increasing the quality of service [10]. To improve
the efficiency of domestic consumers, the HMS aims
to provide required comfort levels, minimize energy
consumption, maximize energy production, and thus
reduce operation and maintenance costs. To assure ef-
ficient management it is important to identify the con-
sumptions by floor, room, device/load and electric vehi-
cle charge. Concerning the generation units, it is neces-
sary to characterize the stochastic behaviour of genera-
tion units by the type of technology (photovoltaic – PV,
wind, etc.), and finally, identify the characteristics of
electric vehicle discharge [11]. An overview of the in-
tegration in HMS of intelligent applications, distributed
generation, electric vehicles and demand response will
be detailed in the following subsections.

2.1. House management systems with advanced
methodologies

The HMS concept has been significantly developed
in recent years, for example, in [12], more accurate
communications, protocols and control methods are
proposed. In [13] the integration and virtualization of
residential gateways are specified and the robustness
and efficiency of IoT devices are discussed in [14].
In [15] is proposed the use of “intelligent” sockets,
enabling the control of devices and the measurement
of power consumption. Additionally, the system is ca-
pable to identify the consumption profiles considering
the users’ location through the installation of motion
sensors.

The integration of DR events in the HMS is an im-
portant challenge for future HMS, to take monetary ad-
vantages from the participation in DR events. The solu-
tions proposed in [16] allow a better understanding of
the energy usage of consumers with different profiles,
necessities, and use contexts, through the profiles col-
lected according to several factors which influence the
consumption [17]. Nowadays, several HMS solutions
are projected for companies and organizations but, the
wide use of HMS is still yet not a reality.

2.2. Management of distributed generation in HMS

The distributed generation systems in microscale al-
low the decentralization of electricity production and
make the end consumer an active participant in the
electric system. The micro or small-scale generation
resources, namely wind generators, photovoltaic pan-
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els and combined heat and power (CHP) unit, can be
included in the intelligent home management system.
Nevertheless, PV systems are more adapted for urban
use. The problem for the installation of micro wind gen-
erators in urban areas refers mainly to the turbulence
and lack of wind due to the presence of obstacles and
tall buildings [18]. With the installation of photovoltaic
micro-units in domestic consumers, the main goal is to
use the energy produced directly for consumer needs.
If was not possible to consume the generated energy,
the HMS should inject the energy into the main grid or
store this energy in residential batteries or electric ve-
hicles. In [19] is proposed a model including domestic
consumers connected to the grid in which each one has
installed photovoltaic panels to produce electricity.

Some works are developed to implement the micro
distributed generation in HMS of the house/buildings.
In [20] is introduced a tool that combines building,
utilities, and emissions databases, and building mod-
els in a user-friendly interface. Several strategies are
performed to obtain a dynamic dispatch of distributed
generation units from detailed physical modelling. To
minimize the building energy costs, [21] summarizes
the distributed generation performance capabilities by a
parametric study and it is developed using an economic
dispatch strategy. The strategy is to dispatch several
micro-generators, based on distributed generation (DG)
technologies, to meet the annual demand of the building
energy, exploring the impacts of distributed generation
(DG) and building characteristics on capacity factors.

2.3. Management of electric vehicles in HMS

Electric vehicles (EVs) can be classified into three
types, hybrid electric vehicles (HEVs), plug-in elec-
tric vehicles (PHEVs) and full battery electric vehicles
(BEVs). The HEVs have internal combustion allowing
a higher travelling range compared to the other two
technologies, but the battery of PHEVs and BEVs can
be externally recharged [22]. For the HMS in the do-
mestic consumers, it should be considered the charge
and discharge of the electric vehicles connected to their
electrical network. Electric vehicles can be seen as stor-
age units with the capacity to store energy when the
distributed generation is producing in excess or when
the energy prices are high [23]. However, it is important
to assure the necessary energy in the vehicle batteries
to the driving needs. Some authors proposed methods
to manage the charge and discharge of electric vehi-
cles in the context of the smart grids such as presented
in [24], considering the use of a hybrid metaheuristic

approach [25] with simulated annealing and ant colony
optimization techniques to manage the energy resources
in the virtual power player operating of a smart grid
considering vehicle-to-grid (V2G) technology. Other
technics such as the ones based on swarm optimiza-
tion [26,27], Spiking Neural P System [28], decom-
position techniques [29,30] or multi-objective func-
tions [31,32], can also be used for the same purpose.
Research on distributed computing and on on a clus-
ter of workstations [33–36] can also be useful for the
present application.

The electric vehicles management in the context of
the HMS is also studied by several authors to analyze
the vehicle’s charge effect on total house consump-
tion, taking into account the time that vehicle leaves the
house, the time when arrives and the distance travelled
between the previous two times. The author in [37]
presents a method for smart charging of electric ve-
hicles according to the production of the photovoltaic
system, with the total consumption of consumer and
users preferences. The different user profiles of elec-
tric vehicles, which depend on users’ needs and their
driving patterns, can promote changes in the daily con-
sumption diagram if the penetration of electric vehicles
was high [38].

2.4. Management of demand response events in HMS

Small end consumers can offer more flexible partic-
ipation in DR events when compared with large con-
sumers (industry and large commerce) [39]. The au-
tomatic participation of advanced HMS in demand re-
sponse events, considering the consumers’ perspective,
enable the automatic management of the loads and gen-
eration units considering the user’s preferences and the
consumption/prices and limits.

Aggregation entities can manage the participation
of small consumers in DR programs. One of these en-
tities is the curtailment service provider (CSP) which
manages more than one consumer to participate in DR
programs, providing services to the consumers and sys-
tem operators [40]. Time-of-Use (ToU) program is the
most popular demand response program being avail-
able in most of the utilities. The main objective of the
ToU program is to decrease the consumption of en-
ergy in domestic consumers when the electricity price
is high [41].

2.5. State of the art summary and main contributions

The participation of HMS in DR events is a complex
process due to the inclusion of all resources, including

AU
TH

O
R 

CO
PY



F. Fernandes et al. / Near real-time management of appliances, distributed generation and electric vehicles 317

electric vehicles and microgeneration each one with
different operating conditions. The capacity of these
systems to aggregate functions to manage the consump-
tion and generation provided from different types of
resources can support the system operators. In [42], a
scheduling algorithm for electric vehicles used as a stor-
age system and appliances was proposed with the objec-
tive function of maximizing the use of generated energy
(self-consumption). The appliances used in the house
are divided into three types and the electric vehicles
have a distinct characterization. The system obtained
good results regarding resources scheduling, however, it
does not consider the interaction with demand response
programs. In this way, the work presented in [43], pro-
poses a system to reduce peak load consumption tak-
ing into account a house of a single-family managing
only two appliances. The work shows important results
to reduce the peak consumption by shifting the loads
with higher consumption, but several types of loads and
energy resources are not included.

Several authors have been contributing to the de-
velopment of house management systems improving
the architecture, security and protocols to achieve the
efficient management of a domestic consumer with a
different type of resources. However, the dynamic man-
agement of the different types of energy resources in
the domestic consumer, considering the diverse con-
ditions of operation of each resource to obtain better
comfort to the users is a lack in the context of the home
management system. All resources presented in do-
mestic consumers like generation systems, electrical
appliances, electric vehicles, among others, enables a
complex set of management strategies also from the
consumer’s point of view.

The main contributions of the present paper are:

i) The near real-time dynamic energy resources
management model implemented in-home man-
agement system enables the adaptive manage-
ment between all loads, micro-generation, electric
vehicles and grid connection.

ii) The dynamic scheduling of all resources in each
minute changing the weight factor of each one
in real-time ensures the impact minimization in
comfort levels of the user during demand response
events.

iii) The methodology applies the context identifica-
tion and the user’s profiles inputs to adapt the
resources scheduling, for example, adapting the
charge needs of electric vehicles with the avail-
able generation.

iv) The inclusion of operation requirement of loads,
micro-generation units, electric vehicles and grid
connection, to determine the minimum time of
functioning represents a crucial role of the pro-
posed methodology to participate in demand re-
sponse events.

v) Additionally, the house management system
adapts the power limit of the demand response
event with the consumption and generation ensur-
ing the power limit with variable values during
the event.

3. Near real-time energy resources management

The proposed methodology is initiated by an event
trigger that can be a time routine (in this paper the al-
gorithm is executed every minute), by a user’s inter-
action with the system or by a demand response event
(external event). The methodology is activated, at least,
every minute and the optimization considers this time
horizon. As presented in Fig. 1, and detailed described
in Section 3.1, after the trigger, the system evaluates if
the power consumption is higher than the defined power
limit. In this case, the system will update the status of
each device and according to its model, will define a
priority (weight). These values will be used in the opti-
mization to determine the control actions to be applied
to the energy resources. The update of the priorities is
managed by the algorithm and the users do not need to
change these priorities manually.

The two main algorithms included in the proposed
methodology are presented in Sections 3.1 and 3.2.
First, after each optimization, an algorithm will com-
pare the state of each device/resource with its model.
A priority level is determined considering the connec-
tion/disconnection time and the impact that the state
can have in the operation of the device as well as on the
comfort level of the users. The second method defines
the power consumption of each device/resource consid-
ering the priority level defined in the first algorithm.

3.1. Dynamic energy resources priority method

In the previous work [40], the priorities of the loads
are defined in a dynamic load priority approach accord-
ing to the user profile, comfort level and load models.
In the proposed work, the methodology is extended to
consider a more realistic scenario where the generation,
electric vehicles and bi-directional connection with the
main network are considered.
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Table 1
DERP decisions during power limit event

Resources decisions Need to reduce the consumption Need to increase the consumption
Loads consumption Turn off and/or reduce Turn on and/or increase
EVs charge mode Interrupt and/or reduce Turn on and/or increase
EVs discharge mode Turn on and/or increase Interrupt and/or reduce
Generation Turn on and/or increase Turn off and/or reduce
Inject power in the grid Turn off and/or reduce Turn on and/or increase

Fig. 1. Process of the DERP method to determine the priority of each
resource.

Beyond loads like refrigerators, EVs can contribute to
the event by discharging some energy if the EV battery
is sufficiently charged, instead of cutting consumption
in some loads. In this way, a dynamic energy resources
priority (DERP) variation is necessary to take adequate
decisions during the demand response event considering
two different situations as shown in Table 1.

where:

λi: Resource priority,
λf : New resource priority,
Resource: Resource index (ID),
nResource: Maximum number of resources,
kR: Resource priority factor,
fixedOn: Non-controlled resource On,
fixedOff: Non-controlled resource Off,
TOn: Resource time On,
TOn_ max: Maximum resource time On,
TOff: Resource time Off,
TOff_ max: Maximum resource time Off.

This algorithm can be activated in different operation
situations namely when:

– the grid operator or aggregator requires a con-
sumption reduction;

– a consumption reduction is required due to the
higher price of electrical energy;

– the reduction of the consumption defined by the
user;

– the consumption increases (including the EVs
charge or inject power in the grid) due to overpro-
duction (caused by wind or solar radiation excess)
to avoid the generation curtailment.

The dynamic variation has a characterization for each
energy resource that depends on the Toff_ max – the max-
imum time (in minutes) that each resource can be turned
off, and of the Ton_ max – the maximum time (in min-
utes) that each resource can be turned on. Toff_ max can
be seen as the maximum delay to turn on the energy
resources, and Ton_ max can be seen as the maximum
delay to turn off the energy resources.

The characterization of the loads are based on the
characteristics of the devices but also takes into account
the past consumption of each one. In the first approach,
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Fig. 2. Diagram of the battery state in electric vehicle [44].

Fig. 3. Production profile of the photovoltaic system on a winter day.

theoretical models are included as a reference. How-
ever, these models are updated, considering a learning
function that adjusts the initial models to the measured
consumptions.

The loads have some distinct characteristics, for ex-
ample, in the case of the refrigerators, according to the
system database presented in [40], the refrigerator is on
for 11 minutes (between 8:33 PM and 8:44 PM), and off
for 52 minutes (between 8:44 PM and 9:36 PM). In the
case of EVs, normally, the EVs are charging to achieve
maximum battery capacity, 7 hours if the battery is fully
discharged. With the application of the DERP method,
the EVs can have a variable charging with the appli-
cation of a Ton_ max and Toff_ max to the charge need.
Figure 2 shows a battery state diagram of an electric
vehicle for over 48 hours. In this case, it is only consid-
ered in the profile battery charging status. The different
lines of the figure represent different electric vehicles.

Analyzing Fig. 2, it is possible to see that the electric
vehicles are being charged from an initial value to full
charge before their departure time.

Figure 3 presents photovoltaic panels’ generation
profiles for a winter day in Porto-Portugal (PV system
installed in the roof of the research centre). The pro-
file shows that the photovoltaic system is producing for
about 540 minutes (between 8:00 AM and 5:00 PM).
The DERP method for this resource should maintain on
overall minutes to supply the loads and electric vehicles
charge, or to inject power into the grid. In the case of
injected power on the grid, the time on and off depends
directly on the load demand and micro-generation en-
ergy produced.

The proposed methodology evaluates the variation
on the energy resources priority factor λi provided by
the priorities definition module of the system and also
considers the on/off time of all resources connected to
the domestic consumer. The priority of the devices, as
well as the power limits, can change during the day,
considering the variations of prices due to time-of-use
demand response programs. In that case, in the periods
when the prices are high, the power consumption limit
can be lower and flexible loads such as EVs can have
low priority.
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The first step of the optimization process is to define
a final factor λf obtained from the initial resource pri-
ority factor λi, and from the factor (kR) that depends on
the on/off time. Running the optimization process, the
management system will evaluate the state of each re-
source. The proposed dynamic mechanism is illustrated
in Fig. 1. If the resource was turned off, the value kR
will decrease, decreasing the priority factor in the next
optimization. If factor kR was less than 0, the system
will consider the resource with a fixed state off. In this
case, the control of the resource is blocked in the next
optimization (in the next minute). On the other hand,
if the resource is connected and factor kR was higher
than 1, the system will consider the resource with a
fixed state. If the resource is on, factor kR will be in-
creased, also increasing the priority factor in the next
optimization.

3.2. Formulation of the optimization

The dynamic resources management considers an
optimization process with more complex information
due to the presence of different types of energy re-
sources which form the basis of the proposed algorithm.
The optimization algorithm is modelled as a mixed-
integer linear programming problem and has as the
main goal guarantee the electricity consumption limits
(PLimit) during the house management system operation,
considering all the resources, different types of events,
comfort levels, the user’s interaction and the grid needs.
All these aspects are reflected in the resources and loads
priority factors (λDown, λUp), EVs priority factors (λCh,
λDch), DGs priority factors (λDG) and grid priority fac-
tors (λGrid). The priority factors change between 0 and
10, being factor 10 used for lower priority resources
and factor 0 for the highest priority resources. When the
loads are not equipped with an actuator (uncontrollable)
or when the users do not want the automatic control of
the device, the corresponding power is included in the
parameter, and no priority is considered. The fixed loads
change every optimization process during the demand
response event. The optimization model was solved
using the CPLEX solver. However, other solvers can
be adopted to solve mixed-integer linear problems as
described in [45].

Besides, it is defined and incorporated in the prob-
lem formulation of the EVs priority factors. In the case
of vehicle charging, the system can stop the charging
process to reduce the total consumption in the house. If
eventually, the battery of the EV is sufficiently charged,
according to the user’s preferences, the management

system can discharge some energy instead of cutting
consumption in some loads or moments with a lack
of DG energy generation. In the formulation are also
defined and incorporated the priority factors for DG
resources allowing to inject power in the grid by incor-
porating the priority factor for the grid case.

As described above, the system should define the
importance for each load, for each electric vehicle, both
for charge and discharge, for each micro-generation
resource as well as for the injected power in the grid in
each specific context according to the dynamic method
developed.

The objective function to determine the resources
that should continue in service is presented in Eq. (1):

min
P

f =

nLoad∑
Load=1

PLoad(Load) + λDown(Load)×
PDown(Load) + λUP(Load)×
PUp(Load)

+

nEV∑
EV=1

(
λCh(EV) × PCh(EV)−
λDch(EV) × PDch(EV)

)
+

nDG∑
DG=1

(
λDG(DG) × PDG(DG)

)
+ λGrid×

PGrid + ρRelax × PRelax


(1)

where P stands for the vector of decision variables
composed by the active power of the devices and appli-
ances in the house. The values of λ, for the priority of
each device and the values of ρRelax, for a penalization
factor when the flexibilities are not enough to respect
the imposed active power consumption limit.

The power balance constraint is presented in Eq. (2)
where the energy consumed should be provided by the
available supplying sources. When the balance cannot
be achieved, the variable PRelax will be higher than zero
penalizing the objective function.

PFixedLoads −
nDG∑

DG=1

(
PDG(DG)

)
− PGrid +

nLoad∑
Load=1

(
PLoad(Load) + PDown(Load) − PUp(Load)

)
+

nEV∑
EV=1

(
PCh(EV) − PDch(EV)

)
− PRelax = 0 (2)

Whereas Eqs (3) and (4) refer to the maximum and
minimum limits of loads, respectively. If the load is
discrete (On/Off ), the variable PMax

Load is equal to PMin
Load. In

this case, the decision is imposed by the binary variable
xLoad.
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PLoad(Load) + PUp(Load) 6 PMax
Load(Load)

(3)
× xLoad(Load),∀Load ∈ {1, . . . , nLoad}

PLoad(Load) − PDown(Load) > PMin
Load(Load)

(4)
× xLoad(Load),∀Load ∈ {1, . . . , nLoad}

In the case of electric vehicles, the charge and dis-
charge mode of the battery depends directly on the pri-
ority factors associated with them which are compared
with the loads’ priority factors, as well as the technical
constraints that limit the amount of the charge (5) and
discharge (6) energy. Equation (7) refers to the charge
limit of the EVs batteries up to its maximum capacity
whereas Eq. (8) refers to the discharge limits of EVs
batteries up to its minimum energy imposed by vehicle
owners, taking into account the minimization of the bat-
teries degradation. Equation (9) refers to the power bal-
ance of EVs and Eq. (10) imposes that the EV battery
cannot charge and discharge simultaneously.

PCh(EV) 6 PMax
Ch(EV) × xCh(EV),

(5)
∀EV ∈ {1, . . . , nEV}

PDch(EV) 6 PMax
Dch(EV) × xDch(EV),

(6)
∀EV ∈ {1, . . . , nEV}

PCh(EV) ×∆t 6 EMax
EV(EV) − EInitial(EV),

(7)
∀EV ∈ {1, . . . , nEV}

PDch(EV) ×∆t 6 EInitial(EV) − EMin
EV(EV)

(8)
if EInitial > EMin

EV(EV)

EEV(EV) = EInitial(EV) + ηCh(EV) ×

PCh(EV) ×∆t− 1

ηDch(EV)
× PDch(EV) ×∆t, (9)

∀EV ∈ {1, . . . , nEV}

xCh(EV) + xDch(EV) 6 1,
(10)

∀EV ∈ {1, . . . , nEV}

In the case of distributed generation constraints,
Eqs (11) and (12) refer to the maximum and minimum
limit of micro-generation, respectively. In this case, the
decision is imposed only for combined heat and power
systems (CHP) by the binary variable xDG(DG).

PDG(DG) 6 PMax
DG(DG) × xDG(DG),

(11)
∀DG ∈ {1, . . . , nDG}

PDG(DG) > PMin
DG(DG) × xDG(DG),

(12)
∀DG ∈ {1, . . . , nDG}

In the case of power exchange with the main grid
constraints, Eq. (13) indicates the maximum and mini-
mum power limit that the management system can in-
ject/absorb which is defined by contract or by techni-
cal limits. Equation (14) stands for the cases where an
additional active power limit PLimit, such as demand
response, is imposed on the system.

PMin
Grid 6 PGrid 6 PMax

Grid (13)

PGrid 6 PLimit (14)

4. Case study

The case study presents the application of the pro-
posed methodology with participation in a demand re-
sponse event. Two different scenarios are tested with
different energy resources taking into account the same
demand response information: 120 minutes (2 hours)
after 7:30 PM and a limited power consumption reduc-
tion.

In the case study, a domestic consumer of a multi-
family building considers 45 resources divided into 40
loads, 2 EVs, 2 DG units and grid connection (to sell
energy). The domestic consumer has different condi-
tions to change profile consumption. Thus, each re-
source considers individual characteristics to implement
the DERP method namely, the type of resource (loads,
EVs, etc.), the type of use (lights, Heating, Ventilating
and Air Conditioning (HVAC), Vehicle-to-Grid (V2G),
PV, etc.), the maximum power (consumption/genera-
tion), the amount of time on or off for each resource
(resources models), the priority for each resource, the
resources which can be turned off (non-priority loads)
and the control type for each resource (variable or dis-
crete). This dataset intends to model a domestic con-
sumer, however, consumers with different characteris-
tics or devices can be easily implemented.

4.1. Domestic consumer characteristics

The case study considers a simulation of an active
domestic consumer. Some of the devices are real and
others are virtual simulations of the devices considering
the measurement of their real behaviour. The values
have been obtained in measurement campaigns. The
domestic consumer simulation considers the profile of
different appliances and devices such as refrigerators,
microwaves, photovoltaic panels, wind generators and
electric vehicles. The general information of the do-
mestic consumer is presented in Table 2.
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Fig. 4. Diagram with the identification of the characteristics of each resource.

Table 2
General information of the domestic consumer

Information Detail
Family type Multi-family
House residents 4 (1 couple and 2 sons)
Day of the week Weekend day
Month February (2)
Loads 40
EVs 2
Micro-generation 2
Grid connection Bi-directional
House divisions 16

The resources management module uses the diagram
presented in Fig. 4 to characterize the domestic con-
sumer resources considering different aspects namely:
type, control, classification, time, and power. In Table 3,
the loads are divided by house division. In the other
away, Table 4 presents the classification of all the re-
sources according to the characterization mechanism.
The characteristics of each device/resource can be ob-
tained and adjusted based on its historical behaviour.

4.2. Scenarios description

In the present case study, two scenarios are presented
considering long-duration demand response events.
Both scenarios are compared with the Base Scenario
presented in Figs 5 and 6 which corresponds to the
scenario without the optimization system and demand
response event.

The case study is performed on a winter day. To ob-
tain the power limit during the DR event, the proposed
system uses the conditions according to Table 5. The
characteristics of the two scenarios are the following:

– Scenario A: considering the optimization of loads,
electric vehicles and microgeneration;

– Scenario B: considering the optimization of loads
and microgeneration.

The power limit is 1600 W when the difference be-
tween the consumption and generation is higher than
1600 W. If the difference is less than 1600 W, the power
limit corresponds to the value of this difference, and, if
generation is higher than consumption, the power limit
is indicated by the generation value. In the present case,
the demand response event has 120 minutes of time
duration starting at 7:30 PM which corresponds to a
peak consumption time. Being a winter scenario, in this
period the PV generation is 0.

These scenarios have been proposed to demonstrate
the applicability of the proposed methodology in differ-
ent contexts of operation and consider a realistic dura-
tion of demand response events [46]. The EVs are not
connected to the installation between 8:00 and 19:00.

4.3. Results of scenario A

The results obtained in scenario A of the case study
are presented and discussed in the present subsection.
An optimization process for a DR event of 120 minutes
with the power limit indicated in Table 5 is considered.
Figure 7 shows the resources profile of the domestic
consumer between 7:30 PM and 9:30 PM, representing
the detailed consumption and generation for each re-
source. Also, it is compared the results with the Normal
Consumption (the resources consumption before the
use of the DERP).
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Table 3
Loads for each domestic consumer division

House division Loads House division Loads
Garage Electric Space Heating

Light Garage
Couple Room (CouRo) TV CouRo

Light CouRo 1
Light CouRo 2
Light CouRo 3

Adult Sun Room (AdSunRo) Light AdSunRo 1
Light AdSunRo 2

Teenager Sun Room (TeSunRo) Light TeSunRo 1
Light TeSunRo 2

Suite Bathroom (SuBath) Light SuBath 1
Light SuBath 2

Common Bathroom (ComBath) Light ComBath 1
Light ComBath 2

Service Bathroom (SeBath) Light SeBath Living Room (LiRo) TV LiRo
TV Receiver
Light LiRo

Dinner Room (DiRo) Light DiRo Kitchen TV Kitchen
Microwave
Kettle
Dishwasher
Refrigerator
Light Kitchen

Laundry Iron
Washing machine
Light Laundry

Storage Room (StoRo) Chest freezer
Vacuum
Light StoRo

Hall Light Hall Hallway Light Hallway
Office Answer machine

Clock
PC
Light Office 1
Light Office 2

Garden Water Bomb
Light Garden

Fig. 5. Consumption profile considering the charge of EVs for a winter profile.

Figure 7a shows that the power supplied by the grid is
used when the generation is not enough for all consump-
tion including the EVs charge. For example, between
7:30 PM and 7:50 PM, the consumption of the domestic
consumer is guaranteed by wind generation. The EV
discharge is used at the end of the DR event to support
the loads in this period. It happens when the generation
reaches a lower capacity during the event. Comparing

the power profile before and after the application of the
DERP method, it is possible to see the change in the
power profile due to the capacity of the DERP method
to adapt the power consumption to the power genera-
tion. This causes a more constant consumption profile,
contradicting the variable consumption represented in
Fig. 7a by the red line.

The profile presented in Fig. 7b represents the in-
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Table 4
Characteristics of the resources in the domestic consumer

Name Resources ID Type Control Classification
Ton

(minutes)
Toff

(minutes)
T

(minutes)
Maximum
power (W)

Chest freezer 1 1 7 1 2 7 45 52 100
Refrigerator 1 2 7 1 2 10 40 50 120
Answer machine 1 3 8 1 1 1440 0 1440 1
Clock 1 4 8 1 1 1440 0 1440 2
Iron 1 5 9 1 2 40 0 40 1000
Vacuum 1 6 9 1 2 30 0 30 2000
PC 1 7 8 1 2 1440 0 1440 141
TV LiRo 1 8 4 1 2 1440 0 1440 138
TV CouRo 1 9 4 1 3 1440 0 1440 138
TV Kitchen 1 10 4 1 2 1440 0 1440 124
TV Receiver 1 11 4 1 2 1440 0 1440 27
Microwave 1 12 6 1 3 3 0 3 991
Kettle 1 13 6 1 3 4 0 4 1800
Dishwasher 1 14 5 1 3 32 60 92 2000
Washing machine 1 15 5 1 3 10 15 25 400
Electric Space Heating 1 16 3 1 1 9 7 16 2000
Water Bomb 1 17 1 0 1 4 10 14 300
Light DiRo 1 18 2 1 1 1440 0 1440 120
Light LiRo 1 19 2 1 1 1440 0 1440 60
Light Kitchen 1 20 2 1 1 1440 0 1440 100
Light Office 1 1 21 2 1 1 1440 0 1440 40
Light Office 2 1 22 2 0 1 1440 0 1440 72
Light Hall 1 23 2 0 1 1440 0 1440 5
Light Hallway 1 24 2 0 1 1440 0 1440 60
Light SuBath 1 1 25 2 1 1 1440 0 1440 60
Light SuBath 2 1 26 2 1 1 1440 0 1440 60
Light ComBath 1 1 27 2 1 1 1440 0 1440 40
Light ComBath 2 1 28 2 1 1 1440 0 1440 40
Light SeBath 1 29 2 1 1 1440 0 1440 40
Light AdSunRo 1 1 30 2 0 1 1440 0 1440 60
Light AdSunRo 2 1 31 2 1 1 1440 0 1440 35
Light CouRo 1 1 32 2 0 1 1440 0 1440 60
Light CouRo 2 1 33 2 1 1 1440 0 1440 35
Light CouRo 3 1 34 2 1 1 1440 0 1440 35
Light TeSunRo 1 1 35 2 0 1 1440 0 1440 60
Light TeSunRo 2 1 36 2 1 1 1440 0 1440 60
Light Garage 1 37 2 1 2 1440 0 1440 60
Light Laundry 1 38 2 1 1 1440 0 1440 60
Light StoRo 1 39 2 1 1 1440 0 1440 40
Light Garden 1 40 2 0 2 1440 0 1440 200
EV 1 2 41 12 0 2 20 20 40 2300
EV 2 2 42 12 0 2 20 20 40 2300
Photovoltaic 3 43 13 1 1 1440 0 1440 3000
Wind generator 3 44 14 1 1 1440 0 1440 4000
Grid connection 4 45 16 0 3 30 30 60 7000

Table 5
Power limit conditions

DR limit Power limit (W)
PLoad − PDG > 1600 1600
PLoad − PDG < 1600 PLoad − PDG
PDG > PLoad 0

stant demand power consumed by the loads. The pro-
file shows the use of EV charge in moments when the
other loads have less needed to be used. With electric
vehicles, the management system can store the power
generated provided by a wind generator and afterwards,

the power can be used the next day by the user through,
for example, the travel to own job, instead of charging
the EVs during the night using the power provided by
the grid, which is more expensive for the consumer. At
the same time, in some moments of the DR event, the
domestic consumer inject power into the grid instead
charge the EV due to the need for the grid in a peak
period of the day (can provide the active participation
of domestic consumer using the system in the context
of the smart grids).

The effectiveness of the DERP method is verified
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Fig. 6. Energy profile of the domestic consumer comparing the generation with consumption for a winter day.

Fig. 7. Power results profile for each resource type in the point of view of Supplied Power (a) and Consumed Power (b) with demand response
event of 2 hours in scenario A.
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Fig. 8. Power results profile for each resource type in the point of view of Supplied Power (a) and Consumed Power (b) with demand response
event of 2 hours in scenario A.

Fig. 9. Generation mode results of the dynamic resources priorities for EV1 discharge (a) and wind (b) in demand response event.

by the results presented in Figs 8 and 9 with the ap-
plication of the method considering six resources with
characteristics presented in Subsection 5.1:

– ElecSpaceHeating (heating/cooling type, discrete
control, permanent resource, Ton: 9, Toff: 7)

– RoGenTs (light type, variable control, permanent
resource, Ton:∞, Toff: 0)

– EV1 discharge (V2G type, variable control, essen-
tial resource, Ton: 20, Toff: 20)

– EV2 charge (V2G type, variable control, essential
resource, Ton: 20, Toff: 20)

– Injected in the grid (grid type, variable control,
non-priority resource, Ton: 30, Toff: 30)

– Wind (wind generator type, discrete control, per-
manent resource, Ton:∞, Toff: 0)

Figures 8 and 9 show the different resource results
comparing the power state with the priority to analyze
the evolution of the resource priority for each resource.
The results obtained depends directly on the character-
istics of the resource. To better understand the method
applied it is important to analyse it. The priority values
change between 0 and 10 but it has two distinct condi-
tions that depend on the resource types and characteris-
tics:

– Consumption mode (loads, EVs charge mode, in-
jected in the grid): being the factor 10 used for the
lowest priority loads and factor 0 for the highest
priority ones;

– Generation mode (micro-generation and EVs dis-
charge mode): being the factor 0 used for the low-
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est priority loads and factor 10 for the highest pri-
ority ones.

In Eq. (1) of Section 4, the optimization process uses
a priority value λ to determine the resource with higher
priority for the user/domestic consumer. The resources
with a lower λ factor, in the case of consumption mode,
will still be connected. The analysis for each resource
priority is determined as follows:

– ElecSpaceHeating (ID Load 16): priority is be-
tween 2 and 10 during the demand response event.
Between 7:30 PM and 8:43 PM, the user does not
need the load in the state on although with prior-
ity value 2. When the user turns on the load, the
priority value changes according to the dynamic
method (Fig. 8a);

– RoGenTs (ID Load 35): priority is between 1 and
2 due to its characteristics. Lights only are dis-
connected by the user indication, so it should be
connected (on) the entire time. In the dynamic
method, it is possible by factor k which is always
equal to 0: final resource priority λf equal to the
initial resource priority λi (Fig. 8b);

– EV2 charge (ID EV 2): The resource priority value
change between 9 to 10 and the power value de-
pends on the other resources of the house causing
a variable power charge of the EV. It is impor-
tant to verify the higher charge of EV when the
micro-generation increases (Fig. 8c);

– Energy Sale (ID Grid 1): is a resource with a
constant priority being it always 9.8. Being this
resource a non-priority resource, the system de-
pends directly on other resources to turn on the
injected in the grid. It happens when the when
micro-generation is higher and with decreasing of
power generated, this resource is no more used
(Fig. 8d).

In the case of generation mode, the resources with a
higher λ factor (10 value) will still be connected. The
analysis for each resource priority in the scenario is as
follows:

– EV1 discharge (ID EV 1): priority is 1 and the
only change is at the end of the DR event when the
power provided by micro-generation is less and
the domestic consumer has a power limit of 2000
W. In this case, the system needs to supply the
other loads of the house with higher priority using
the power stored in the battery of EV1 (Fig. 9a);

– Wind (ID DG 2): it is the resource with high pri-
ority in the domestic consumer being it always
10 (higher priority in the case of generation side).

The system uses the maximum power generated by
the wind generator due to the maximum priority
for the system. In this case, the dynamic method
always set the factor k equal to 0: final resource
priority λf is equal to initial resource priority λi
(Fig. 9b).

4.4. Results of scenario B

The results obtained in scenario B of the case study
are presented and discussed in the present subsection.

It is considered an optimization process like in sce-
nario A with the power limited indicated in Table 3 but
without electric vehicles. Figure 10 shows the resources
profile of the domestic consumer between 7:30 PM and
9:30 PM, representing the detailed consumption and
generation for each resource. Also, it is compared the
results with the Normal Consumption (consumption
before the application of the DERP).

Figure 10a shows the external supplier is used when
the generation is not enough to supply all the load de-
mand. It is also important to verify in Fig. 10a the higher
use of the energy sale due to the lack of EVs storage
capacity, so the systems need to inject power in the grid
or curtail the generation units. Comparing the power
profile before and after the application of the DERP
method without EVs, it is possible to see the end of the
peak consumption, corresponding now to the maximum
of the wind production (4000W). Therefore, when the
generation is equal to 4000W, most of the energy is
injected into the main grid. The DERP method results
in a more constant consumption profile compared with
the variable consumption of the normal consumption
(red line).

The results presented in Fig. 10b are the power de-
mand for different devices. The use of energy sales in
this scenario increases significantly. The management
system of the domestic consumer needs to inject power
into the grid instead of charging the EVs due to the lack
of the last one.

The effectiveness of the DERP method is verified by
the results presented in Fig. 11 with the application of
the method considering four resources with character-
istics presented in Subsection 5.1:

– ElecSpaceHeating (heating/cooling type, discrete
control, permanent resource, Ton: 9, Toff : 7)

– RoGenTs (light type, variable control, permanent
resource, Ton:∞, Toff : 0)

– Injected in the grid (grid type, variable control,
non-priority resource, Ton: 30, Toff: 30)

– Wind (wind generator type, discrete control, per-
manent resource, Ton:∞, Toff: 0)
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Fig. 10. Power results profile for each resource type in the point of view of Supplied Power (a) and Consumed Power (b) with demand response
event of 2 hours in scenario B.

Figure 11 shows the obtained results comparing the
power state with the priority to analyse the evolution of
the resource priority for each resource. The results de-
pend directly on the characteristics of the resource and
to better understand the method applied it is important
to analyse it. The priority values change between 0 to
10 but it has two distinct conditions that depend on the
type of resource and its characteristics:

Consumption mode (loads and power injected in the
grid): being the factor 10 used for the lowest priority
loads and the factor 0 for the highest priority ones;

Generation mode (micro-generation): being the fac-
tor 0 used for the lowest priority loads and factor 10 for
the highest priority ones.

The analysis for each resource priorities as follows:
– ElecSpaceHeating (ID Load 16): obtain the same

result of scenario A when priority is between 2 and
10 during the demand response event (Fig. 11a);

– RoGenTs (ID Load 35): obtain the same results
of scenario A. In the same way. lights only are
disconnected by the user interaction (Fig. 11b);

– Energy Sale (ID Grid 1): the resource has a con-
stant priority (always 9.8). Without EVs, this re-
source represents higher importance on the con-
sumption side. With the capacity to inject power
in the grid, the system uses the excess of genera-
tion, in this scenario provided by the wind genera-
tor, injecting the power in the grid instead charge
EVs which happens in scenario A. The energy sale
is used when the wind generator provides more
power than the power demand. So, the power not
used by loads is injected into the grid. This im-
poses a contract between the consumer and the
grid operator (Fig. 11d).

– In the case of generation mode, the analysis for
each resource priority in the scenario is as follows:
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Fig. 11. Consumption and generation mode results of the dynamic resources priorities for ElecSpaceHeating (a), RoGenTs (b), energy sale (c) and
wind (d) in demand response event.

– Wind (ID DG 2): it is the resource with high prior-
ity in the domestic consumer being it is always 10
(higher priority in the case of generation side) and
the system uses the maximum power generated by
them (Fig. 11b).

4.5. Case study conclusion

The proposed methodology is applied in two different
scenarios comparing the results with the base scenario
(without application of the DERP method). In both
scenarios, a demand response event is considered with
120 minutes time duration with different power limits
during the event. The power limits are defined by the
DR program and previous agreements. When the power
generation is higher than the power consumption, the
power limit corresponds to the power generation. The
main difference between scenarios is the presence of
EVs which make changes in the sale of energy. The
energy sale is more used in the scenario without EVs
(scenario B), otherwise, the system uses the excess of
power to charge the own EVs (scenario A). The scenario
considering the EVs also considers the V2G capability
allowing the use of some loads which is not possible,
through the power limit, at times when the generation
is lower than consumption or does not exist.

The method was applied in the demand response
event of long duration being the results important to

verify the importance of the EVs and the grid connec-
tion to sell energy. Another important result is the use
of the storage in the moments with high DG generation
namely the charge of EV when the wind generator is
producing in maximum instead of charge EV in night
periods. This result represents the use of power when it
is free for the user (only considering the marginal costs)
and not when the need to buy energy (night periods).
Also, the EV charge is more used than sale energy in
moments with high DG generation because is cheaper
for the user to charge EV instead of sale energy than
sale energy and after charge the EV. This information
is guaranteed by the system through priority value for
each one. A final consideration is the capacity of the
system to guarantee the consumption limit.

5. Conclusions

The new vision of domestic consumers shows the
need to manage not only the demand but also the
generation and the storage systems. The present pa-
per presents a dynamic energy resources management
method to control different types of resources in a do-
mestic consumer (loads, distributed generation, elec-
tric vehicles and grid connection). In this way, it is im-
portant to discuss the impact of the different resources
of domestic consumers from the point of view of the
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bi-directional power management (consumption and
generation).

This paper presents a dynamic energy resources pri-
ority (DERP) method with the main goal to change the
resource priorities during the demand response event.
The priority is changed taking into account the charac-
teristics of each resource namely, the loads, distributed
generators, electric vehicles and grid connection. The
optimization module uses the resource priorities for
each instant to optimize the use of power (generation
and consumption). In this way, for each minute, re-
sources with higher priority are scheduled instead of the
resources with lower priority. The proposed methodol-
ogy can obtain a better management of the consumer
with different types of resources in demand response
events of a long duration.

To apply the methodology, a case study with two sce-
narios is presented. The scenarios show good results be-
ing the electric vehicles and grid connection important
resources to adapt to the excess of energy produced. At
the same time, even the less power generation, the man-
agement system guarantees the power limit following
the user preferences.

It is important to mention that the proposed method-
ology is very flexible and can be used in other types
of houses, with different devices, and commercial and
industrial installations. The main difference will be in
the modelling of devices behaviour that should be mea-
sured and included in the library of the device available
in the solution.
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