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Abstract. In this paper, a noninvasive portable prototype is presented for biomedical audio signal processing. The proposed
prototype is suitable for monitoring the health of patients. The proposed hardware setup consists of a cost-effective microphone,
multipurpose microcontroller and computing node that could be a mobile phone or general-purpose computer. Using parallel
and high-performance techniques, this setup allows one to register and wirelessly multicast the recorded biomedical signals
to computing nodes in real time. The developed prototype was used as a case study to estimate the heart rate (HR) from the
captured biomedical audio signal. In this regard, the developed algorithm for estimating HR comprises three stages: preprocessing,
separation, and HR estimation. In the first stage, the signal captured by the microphone is adapted for processing. Subsequently, a
separation stage was proposed to alleviate the acoustic interference between the lungs and heart. The separation is performed by
combining a non-negative matrix factorization algorithm, clustering approach, and soft-filter strategy. Finally, HR estimation was
obtained using a novel and efficient method based on the autocorrelation function. The developed prototype could be used not
only for the estimation of the HR, but also for the retrieval of other biomedical information related to the recording of cardiac
or respiratory audio signals. The proposed method was evaluated using well-known datasets and compared with state-of-the-art
algorithms for source-separation. The results showed that it is possible to obtain an accurate separation and reliable real-time
estimation in terms of source separation metrics and relative error in the tested scenarios by combining multi-core architectures
with parallel and high-performance techniques. Finally, the proposed prototype was validated in a real-world scenario.
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1. Introduction

According to the World Health Organization (WHO),1

heart and lung diseases are among the leading causes of
death in the world. In addition to the fact that suffering
from these diseases reduces the well-being and qual-
ity of life of citizens, the medical treatment that must
be applied increases the costs of the health systems.
Consequently, one of the main challenges for current
biomedicine is to develop new methodologies that al-
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low monitoring and obtaining fast, reliable, and indi-
vidualized biomedical information using noninvasive
techniques as a strategy for sustainability and efficiency
in health systems.

Over the last few decades, many biomedical signal
processing techniques have been studied [1–6]. In par-
ticular, the field of biomedical signal recording has had
a major impact in modern societies, as most medical
care is provided based on this information, especially
in relation to heart and lung diseases [6–10]. However,
in many cases, obtaining such signals involves invasive
or semi-invasive techniques and, in others, especially
expensive and cumbersome setups.

The primary access to heart diagnosis has been
acoustic auscultation using classical stethoscopes, in
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use since 1816. This technique is yet to be used in mod-
ern clinical diagnosis since it has proven to provide
crucial information about heart and lung diseases. As
a special case, the analysis of the heart rate (HR) has
been proven to predict diseases such as sepsis [11], hy-
potension [12], or arrhythmias [13], and variations in
this parameter have been widely used as biomarkers
of hypoxemia at birth [14] to depth anesthesia [15] or
epilepsy [16] states, baro-oscillatory phenomenon fre-
quency in diabetic patients [17], sport performance [18],
etc. Moreover, there are also a huge number of short-
term extrinsic factors related to HR variations, indepen-
dent of the health baseline of the patient [19].

Auscultation is still a widely used and essential
method applied to patients who come to a health center
to assess their health status [20]. However, this method
is very subjective because it is conditioned by the skill,
experience, and training of each physician in the type
of sounds heard. One of the drawbacks of audio signals
obtained during auscultation is the acoustic interfer-
ence produced between sounds emitted by the heart and
lungs. Although both are produced by very different
physiological processes, heart and lung sounds share
important areas of the spectrum, and simple frequency
filtering is not sufficient to obtain a proper and clean
register [21,22]. Specifically, this interference reduces
the human cognitive ability of physicians when attempt-
ing to identify target sounds. This prevents the proper
diagnosis of patients. Consequently, several methods
have been developed in the last decade to separate or
independently process heart and lung sounds from aus-
cultation signals [6,22–32].

Many recent works have focused on improving sep-
aration; however, there are still important challenges
that need to be addressed to obtain optimal perfor-
mance. First, the computational burden of these meth-
ods makes real-time processing of biomedical signals
difficult and prevents their implementation in low-cost
devices. Moreover, registering biomedical sounds in-
volves adapted microphones capable of accurately cap-
turing the sources of interest and ignoring other noise
sources, such as tissue friction and voice.

In this sense, the scientific community is focused on
the development of sensor devices to monitor biomed-
ical signals. This can be observed in the huge number
of smartwatches and activity bands currently available
on the market. Together with the development of close-
range wireless technologies, such as Bluetooth (and
its power-sensitive LE version) and ANT+ (available
mainly in sensors for sports and fitness applications),
health monitoring has become mainstream, reducing the

cost of these devices. In this regard, several solutions
have been developed for measuring different biomedi-
cal signals, such as heart rate,2 periphery oxygen sat-
uration3 blood pressure,4 etc. However, there is still
room for researching in devices to monitor biomedi-
cal audio signals, as this field has not yet been widely
exploited. The Voqx smart stethoscope [33] is one of
the most relevant proposal on the market. This device
was developed by the consortium Bat-Call. Currently,
this consortium is developing an improved IA-based
device, called PyXy [34]. These approaches, together
with others, such as AliveCord [35], or the set of digital
stethoscopes from Littmann [36], automatically detect
HR and provide wireless connection with smartphones
or other intelligent devices. However, the main draw-
back of these systems is their high cost for primary care
diagnosis.

In this study, a low-cost portable prototype is pro-
posed for biomedical audio signal processing. The pro-
posed prototype consists of a cost-effective microphone
and multipurpose microcontroller, both responsible for
capturing and preprocessing audio signals, and some
computing nodes (mobile phone or general-purpose
computer), which receive the audio signal and process
it for a specific task. As a case study, the developed pro-
totype was used to estimate the HR from the captured
audio signal, although many other parameters based on
registered biomedical audio signals could have been
used for this purpose. In this regard, HR estimation is
performed based on previous stages in which the sepa-
ration of respiratory and cardiac sounds from an input
audio mixture is addressed. Similar to [28,32], the sep-
aration was carried out by integrating a non-negative
matrix factorization (NMF) algorithm, clustering ap-
proach, and soft-filter strategy. However, in this work,
significant improvements in the separation stage have
been made, which clearly differentiates it from these
previous works. First, an initialization method based on
singular value decomposition (SVD) was introduced to
avoid dependence on the initial values of the NMF pa-
rameters owing to the existence of local minima. Then,
the clustering procedure proposed in [28] was modified
to address the new formal and theoretical processing
aspects and reduce the computational burden of that
stage. Finally, the NMF formulation was redesigned to
reduce the size of its parameters and obtain fast and
better parameter estimation.

2MiTM Smart Band 6.
3Fitbit Charge 5TM.
4Omron heartguideTM blood pressure monitor bp8000-M.
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It is important to highlight that the main proposal
of this work lies in the design and development of a
portable, noninvasive, and cost-effective prototype that
is capable of monitoring and processing biomedical au-
dio signals. This prototype separates the heart and lung
signals in real time. This processing could be used for
the retrieval of biomedical information related to the
appearance of cardiac or respiratory risk factors, such
as the detection of heart murmurs, estimation of the
variability of the heart rate, or respiratory rate estimate.
Note that, for proper estimation of all these biomedi-
cal features, the separation of heart and lung sounds is
crucial. Therefore, this study is focused on the devel-
opment of a low-cost device that can provide a high-
quality separation of heart and lung signals in real time.
As a case study, the development of an algorithm for
HR estimation is proposed to show and validate the
prototype applicability in real-world scenarios.

The proposed system has been evaluated on sev-
eral state-of-the-art datasets created for several pur-
poses, including the classification of heart-sound sig-
nals and separation of heart and lung sounds. For these
databases, cardiologists are required to annotate all sig-
nals with ground-truth labels (i.e., heart rate), a process
that demands medical expertise and is time-consuming.
Finally, this work presents a new dataset for validating
the proposed prototype. The results show that reliable
real-time separation and HR estimation can be achieved
using the proposed portable prototype.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical formulation of the
signal model and baseline method for heart and lung
sound separation using NMF. The proposed prototype
is presented in Section 3. The experimental results are
presented in Section 4, and validation of the proposed
prototype is presented in Section 5. Finally, Section 6
concludes the paper and outlines future perspectives.

2. Background

This section presents a mathematical formulation of
the signal model used in this study. This formulation
serves as a reference for the mathematical description
in the remainder of the paper. In addition, the baseline
method used for the separation of heart and lung sounds
using NMF is also described.

2.1. Signal model

The problem considered in this study implies the
separation of the lung and heart sounds from the aus-

cultation signal recorded with a microphone placed on
the chest wall of the subject. Thus, the captured signal
y(m) can be formulated as follows:

y(m) = xH(m) + xL(m) (1)

where the time-domain sample index is denoted by
m, xL(m) and xH(m) are the lung and heart signals,
respectively.

Focusing on Eq. (1), the short-time Fourier transform
(STFT) of y(m) can be expressed as

Y (f, t) = XH(f, t) +XL(f, t) (2)

where Y (f, t), XH(f, t) and XL(f, t) represent the
magnitude spectrograms of y(m), xH(m), and xL(m),
respectively. Here, t ∈ [1, T ] denotes the time frame
indices and f ∈ [1, F ] represents the frequency bin.
Collecting T time frames and F frequency bins,
the magnitude spectrogram matrices Y ∈ RF×T

+ ,
XH ∈ RF×T

+ and XL ∈ RF×T
+ are defined, where

Y = [y(1), . . . ,y(t), . . . ,y(T )] and y(t) = [Y (1, t) ,
. . . , Y (f, t), . . . , Y (F, t)]

T , xH(t) and xL(t) are de-
fined similarly to y(t). Finally, XH and XL were de-
rived in a manner similar to that of Y.

2.2. Baseline method for heart and lung sound
separation by NMF

To process heart and lung signals, it is necessary to
acoustically cancel the interference between the lungs
and heart. Note that both sources are simultaneously
active in both time and frequency domains. In particular,
the main problem generated by this interference is that
heart sounds mask lung sounds and vice versa.

In [28], the separation of sounds generated by the
lungs from sounds generated by the heart was per-
formed using an NMF approach. Thus, the separation
problem relies on the following factorization model:

Y ≈ Ŷ = X̂H + X̂L = [WH WL]︸ ︷︷ ︸
W

[
HH

HL

]
︸ ︷︷ ︸

H

(3)

where Ŷ ∈ RF×T
+ , X̂H ∈ RF×T

+ and X̂L ∈ RF×T
+ are

the estimated magnitude spectrogram matrices of the
mixture, the heart and the lung signals. HH ∈ RKH×T

+

and WH ∈ RF×KH
+ are the activations and bases ma-

trices associated with the heart sounds, respectively, and
HL ∈ RKL×T+ and WL ∈ RF×KL

+ are the activations
and bases matrices associated with the lung sounds.
Note that K represents the number of NMF bases with
K = KH +KL.
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The authors proposed dealing with the factorization
in Eq. (3) by minimizing the Kullback-Leibler diver-
gence [37] and the sparsity constraint [38]. Therefore,
the update rules were computed as follows:

H←H�
WT Y

WH

WT1 + λ
(4)

W←W �
Y

WHHT

1HT (5)

where 1 ∈ NF×T represents an all-ones matrix com-
posed of T columns and F rows, W and H are ini-
tialized as random positive matrices and � denotes the
element-wise product.

Canadas-Quesada et al. [28] proposed a clustering
process to classify the activations H and bases W cal-
culated using the NMF procedure. This clustering takes
advantage of both the temporal and spectral charac-
teristics of respiratory and cardiac sound sources to
distinguish between them. Three methods were used
for this purpose. First, the spectral similarity between
the bases W obtained in Eq. (5) and a dictionary of
pre-learned bases obtained from isolated heart-sound
signals belonging to a training database is measured.
Second, an analysis of the energy distribution of each
basis obtained in Eq. (5) was performed to discriminate
between heart and lung sounds. This analysis assumes
that heart sounds condense their energy below the max-
imum frequency of 260 Hz, whereas most lung sounds
condense their energy above that frequency. Note that
this threshold is in line with other works in the state-of-
the-art [29,30,39,40]. Then, the authors proposed a third
clustering method based on the temporal periodicity of
target sounds.

Finally, reconstruction of the target signals is per-
formed using a generalized Wiener filtering strategy.
This Wiener filtering strategy minimizes the mean-
square error between the estimated and desired signals.
The previously predicted parameters were used to esti-
mate the magnitude spectrograms of the lung and heart
signals by

X̂H = WHHH X̂L = WLHL (6)

Then, a generalized time-frequency mask over the
STFT domain is used to obtain the source signals
xH(m) and xL(m) from the mixture y(m). In this re-
gard, a Wiener filtering approach was used to ensure
that the reconstruction process was conservative [41].
Note that this approach works as a soft mask for the ob-
served mixed signal, which scales the magnitude of the
mixed signal at every frequency component with val-
ues between 0 and 1 to determine their corresponding
frequency component values in the estimated signals.

3. Proposed prototype

In this study, a prototype is designed to process
biomedical audio signals. The proposed hardware setup
consists of a cost-effective microphone, multipurpose
microcontroller and computing nodes. This setup allows
us to register and wirelessly multicast the recorded car-
diac and respiratory sounds to the computing nodes in
real time. The proposed approach consists of three main
stages: preprocessing, separation, and HR estimation.

In this section, the main contributions of the proposal
from the perspective of signal processing and hardware
prototypes are discussed. The prototype developed is
described in Section 3.1, and the proposed method is
presented in Section 3.2.

3.1. Hardware prototype

One of the main goals of this study is to design a
biomedical audio signal processing system that can be
run on portable low-cost systems. Therefore, the main
constraint of the development is that low-power mi-
crocontrollers do not provide sufficient computational
resources, both memory and processing power [42,43].
Therefore, additional hardware must be considered
when computing the proposed method.

To address the target problem, the following require-
ments for the proposed prototype have been set: 1) low
power consumption (suitable to be powered by a bat-
tery), 2) low cost (the total price of all components must
be less than a few tens of euros), and 3) wireless con-
nectivity, that is, Internet of Things enabled (embedded
connectivity is essential to run part of the algorithm on
the computing nodes). Based on these requirements,
the following components were selected to develop the
prototype.

One of the most popular devices for these types of
applications is the well-known ESP32 [44] developed
by Espressif Systems. This microcontroller offers a cost-
effective solution with several GPIO (general-purpose
input/output) pins and exposes different communica-
tion interfaces to attach peripherals: I2C, SPI, I2S, and
UART, in addition to wireless connectivity (Bluetooth
and Wi-Fi).

Regarding the microphone, the choice was made
based on a compromise between the suitability of the
device for this application and its price. Although
some microphones are specifically designed to capture
biomedical signals [45], the main drawback of these
devices is their high price, which makes them less at-
tractive for use in the proposed prototype. For this rea-
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Fig. 1. Block diagram of the proposed approach.

Fig. 2. INPM441 MEMS microphone.

Fig. 3. Low-cost prototype for monitoring and estimating the HR
and its main component: (A) INPM441 MEMS microphone, (B)
ESP32-based microcontroller and (C) power battery.

son, this research focused on finding a general-purpose
and low-cost microphone that can be directly attached
to the ESP32 using any of the available communication
interfaces. A cost-effective option is the INMP441 om-
nidirectional microphone [46], as displayed in Fig. 2.
The most relevant features of this microphone are sum-
marized in Table 1. This microphone was also selected
because of its bandwidth, from 60 Hz to 15 kHz. This
frequency range guarantees proper performance of the
proposed system. To capture the heart and lung signals,
an adapter made of cone-shaped plastic was used along
with a plastic film to place the microphone in contact

Table 1
INMP441 features

Interface Digital I2S interface (24-Bit)
Signal-to-noise ratio 61 dBA
Sensitivity −26 dBFS
Frequency response 60-15000 Hz
Power consumption 1.4 mA
Power supply rejection (PSR) −75 dBFS

with the skin. Note that this is how regular stethoscopes
work to match the impedance of the skin to that of air.

As previously mentioned, the ESP32-based micro-
controller does not have sufficient computational re-
sources to process the audio stream and to separate
the target sounds. Therefore, it serves as an acquisition
device that sends captured audio to an external agent.
Thus, data from the microphone are digitally sent to
ESP32 using an I2S connection. The audio stream is
converted from the original 32-bit format into 16-bit
for the processing algorithm that runs on computing
devices. This is accomplished in a separate task of the
FreeRTOS operating system, and is forced to run in a
different core from that used in the communication task.
Then, ESP32 streams the audio to the network using a
multicast connection. This vastly simplifies the entire
process, as no IP information is required to receive the
data on the different devices, thus enabling the possi-
bility of simultaneous access and recording of the data
stream on several devices. Finally, the audio stream is
processed on an Android phone (running the algorithm
in native C code) or a general-purpose computer.

The prototype is shown in Fig. 3. The total weight of
the prototype was 110 g with a battery and 65 g without
a battery. Finally, the total cost of the hardware involved
(phone and computer devices excluded) is less than 15
euros, which results in a low-cost solution and places it
well below current solutions on the market.

3.2. Proposed method

The system takes as input the cardiac and respiratory
sounds captured by a microphone attached to the surface
of the chest wall using previously described hardware.
The output of the system is the separation of the lung
and heart sounds. As a case study, a final stage for the
heart rate prediction has been also designed.
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A block diagram of the proposed method is shown
in Fig. 1. The framework consists of three main stages:
preprocessing, separation, and HR estimation. In the
following subsections, the main functions of each stage
are described in detail.

3.2.1. Preprocessing stage
As can be seen in Fig. 1, the preprocessing stage

must be computed beforehand, and it consists of three
successive steps: signal representation, normalization,
and parameter initialization.

First, considering the mixing problem in Eq. (1), the
STFT of the audio mixture y(m) was computed (see
details in Section 2.1). Then, a normalization process is
performed over the magnitude spectrogram of the input
signal, as follows:

Ȳ (f, t) =
Y (f, t)

β

√∑
ft Y (f, t)β

(7)

where the β-divergence value used in this work is one,
which is in accordance with the divergence used in the
separation method described in Section 2.2. Normaliza-
tion allows the algorithm to be independent of the norm
of the input signal. Thus, the normalized magnitude
spectrogram is computed considering its dependence
on the number of frames, number of frequency bins,
and constant β used in the β-divergence cost.

Then, an effective initialization step is proposed for
the NMF approach with the aim of reducing the com-
putational complexity and improving separation. NMF
is a powerful unsupervised learning method that ex-
tracts meaningful non-negative features from an ob-
served non-negative data matrix. However, the result
obtained by this algorithm always depends on the initial
values of the NMF parameters owing to the existence
of local minima. To solve this problem, this study pro-
poses a unique initialization for NMF parameters based
on singular value decomposition (SVD) [47]. It has
been proven that this initialization helps select the low-
est meaningful rank of the factorized matrices [47–49].
Thus, no random values or hyperparameters were re-
quired. The main feature of this approach is that the
NMF algorithm converges to the same solution while
rapidly providing an approximation with an error that
is almost as good as that obtained via the deployment
of alternative initialization schemes [47].

In this study, the bases W and activations H in
Eq. (3) are initialized using the left and right singular
matrices obtained by SVD. The basic property of the
SVD relies on the fact that every matrix Y ∈ Rm×n

of rank R can be expressed as the sum of R leading

singular factors:

Y =

R∑
r=1

αrurv
T
r (8)

where α1 > . . . > αR > 0 are the nonzero singular
values of Y and {ur,vr}Rr=1 the corresponding left
and right singular vectors. With the singular values
in a diagonal matrix ξ and the corresponding singular
vectors forming the columns of two orthogonal matrices
U and V, SVD decomposition can be expressed as

Y = UξVT (9)

In this regard, a primitive initialization for (W,H)
can be

(∣∣Uξ1/2∣∣ , ∣∣ξ1/2V∣∣). Note that, in this case, the
number of bases for the NMF algorithm matches the
rank R. However, a low-rank approximation of this ap-
proach can be used to reduce the size of the NMF pa-
rameters, and therefore, the computational complex-
ity of the separation stage. This approximation can be
obtained by following the approach described in [50].
Thus, the rank-k approximation of Y can be formulated
as

Y(k) = U

(
ξ(k)

0

)
VT (10)

where ξ(k) is a diagonal matrix compounded by the
first k singular values. Thus, the approximation error
committed can be computed as [50]∣∣∣∣∣∣Y(k) −Y

∣∣∣∣∣∣
F

= αk+1 + · · ·+ αR (11)

Finally, the optimal initialization for (W,H) is(∣∣∣∣∣U
(
ξ(k)

0

)1/2
∣∣∣∣∣ ,
∣∣∣∣∣
(
ξ(k)

0

)1/2

V

∣∣∣∣∣
)

, respectively. As

can be observed, in this case the number of bases for
the NMF algorithm is k, where k � R.

As can be observed, the computational complexity
of the preprocessing stage is primarily determined by
STFT and SVD computations. The FFTW package [51]
was used for STFT implementation. Thus, the overall
complexity of the sequential version for computing the
magnitude spectrogram of the input is given as

O (T (F log2(F ))) (12)

where F is the total number of frequency bins and T
is the number of frames. For the parallel design of the
STFT computation, the parallel and worksharing con-
structors of OpenMP [52] have been exploited, and
coarse-grained parallelism has been chosen for the pro-
posed implementation. Therefore, the parallel complex-
ity can be approximated as



A.J. Muñoz-Montoro et al. / A system for biomedical audio signal processing based on high performance computing techniques 7

O

(
T

p
(F log2(F ))

)
(13)

where p is the total number of used cores.
Regarding the parameter initialization step, the SVD

algorithm was implemented using the LAPACK im-
plementation based on the blocked Householder trans-
formations presented in [53]. Thus, the SVD of a ma-
trix A is first obtained by a bidiagonalization method
that involves applying orthogonal matrices on both the
left and right sides of A. These two orthogonal ma-
trices are represented as products of the elementary
Householder reflectors. After the bidiagonal reduction,
LAPACK solves the bidiagonal SVD using QR iter-
ations by applying Givens rotations. Finally, singular
vectors of A are obtained. The overall complexity of
the described implementation of the SVD algorithm is
O
(
T 3
)
, according to [53].

3.2.2. Separation stage
The goal of this stage is to extract heart-sound signals

from the input audio mixture. For this purpose, the
same framework presented in [28,32] is followed. This
framework is based on an NMF method and clustering
process in combination with soft-masking filtering (see
Section 2.2). However, significant changes have been
made to adapt this stage to the target problem, that is,
real-time estimation of health parameters on low-cost
devices. In this way, the main constraint imposed by
this problem is based on alleviating the computational
burden for two main reasons: 1) achieving real-time
behavior and 2) reducing the power consumption of the
computing nodes to respect the use of batteries.

To satisfy this requirement, the size of the NMF ma-
trices was reduced because of the new initialization de-
scribed previously. Moreover, this initialization strategy
results in faster convergence and better overall error at
convergence [50]. Therefore, the number of iterations
of the NMF algorithm was reduced to obtain a faster
performance.

Finally, the clustering strategy was modified by con-
sidering only the energy distribution of the lung and
heart sounds in different frequency bands. The power
spectral density (PSD) of the lung and heart signals is
scattered in different frequency bands [39,54,55].

The energy of heart sounds is largely condensed in
the frequency range [0–260] Hz, whereas the energy of
lung sounds is largely located in the frequency range
[260− fs2 ] Hz [28,39], where fs denotes the sampling
rate. Therefore, the PSD of each NMF basis w(k) is
used to predict its source, that is, the heart or lungs. In
this proposal, a basis w(k) is classified as a heart sound

based on the following criterion [28]:{
w(k) ∈WH if θ(k) > ε(k)
w(k) ∈WL if θ(k) < ε(k)

(14)

where

θ(k) =

F0∑
f=1

T∑
t=1

‖W (f, k)H(k, t)‖2 (15)

ε(k) = µ

 F∑
f=1

T∑
t=1

‖W (f, k)H(k, t)‖2
 (16)

with F0 = 260 Hz, F = fs
2 and µ = 0.85. [28] showed

that the value of µ obtains the best results in heart and
lung discrimination.

Note that this clustering approach has been simplified
compared to [28] because it does not require neither
pretrained of the heart bases or temporal correlation of
NMF activations.

The implementation of (5) and (4) was carried
out using two parallelization techniques: (1) call-
ing BLAS [56], and (2) using OpenMP directives.
Both multiplicative update rules result in two matrix-
matrix products (calculated by calling BLAS subrou-
tine dgemm), along with other less computationally in-
tensive auxiliary operations. Thus, the computational
complexity of the parallel version is given by:

O

(
FTKNiter

p

)
(17)

where K represents the number of NMF bases and Niter
is the total number of iterations of the NMF algorithm.

For the parallel implementation of the clustering pro-
cess, a coarse-grained parallelism strategy was chosen
using BLAS routines and OpenMP directives. Thus, the
computational complexity of this stage is given by:

O

(
KFT 2 log2 (FT )

p

)
(18)

Then, fine-grain parallelism is considered for the
source signal reconstruction to compute the Wiener
masks. The computational complexity can be expressed
as:

O

(
FT

p

)
(19)

3.2.3. HR estimation stage
Herein, a simple and efficient method designed for

HR estimation is presented. Note that this method takes
as input the magnitude spectrogram of the heart signal
X̂H(f, t) estimated by the separation stage (see Sec-
tion 2.2). Therefore, substituting this last stage, the de-
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veloped prototype could also be used to monitor other
health parameters based on these audio biosignals. This
work is focused on HR estimation for the validation of
the prototype, because it is one of the most important
parameters for predicting cardiac diseases.

To estimate the HR, the first step consists of trans-
forming this input spectrogram into a more meaningful
compact representation from which to infer the heart-
beats. The new representation is computed by the Eu-
clidean norm of the estimated spectrum of the heart
signal for all temporal frames, as follows:

γ(t) =

F∑
f=1

∣∣∣X̂H(f, t)
∣∣∣2 (20)

Then, a linear interpolation process is performed over
γ(t) to use this function in the time domain to obtain
γ̃(m).

To estimate the HR, the autocorrelation function of
the current representation was used to determine the
periodicity of the signal obscured by noise. Thus, to
achieve an autocorrelation function with clear and well-
defined peaks, the values of γ̃(m) that are below a
specific threshold α must be set to zero to emphasize
the strongest and discard the least significant peaks.
Thus, the autocorrelation function can be computed as

Rxx(k) =
1

N

N−1−k∑
0

γ̃(m)γ̃(n+ k) (21)

k = 0, . . . , N − 1

where N is the sample length.
Finally, the strongest peak within the range of pos-

sible heart rates for a healthy heart must be selected,
that is, [40, 190] beats per minute. Therefore, HR can
be estimated as

ĤR =
60

kmaxTs
(22)

where kmax is the k index of the strongest peak and
Ts is the the sampling period. Figure 4 illustrates the
proposed HR estimation model.

The proposed method for HR estimation is summa-
rized in Algorithm 1.

Concerning the computational complexity of the HR
estimation stage, note that the implementation was per-
formed using BLAS routines and OpenMP directives.
Thus, the theoretical computational complexity of the
parallel version can be computed by considering the
property of the sum of the Big O notation as:

O

(
T log2(T )

p

)
(23)

Algorithm 1: HR estimation algorithm

1: Inputs: Mixture audio signal y(m).
2: Compute Y using the STFT to obtain the signal representation

in the frequency domain.
3: Normalize Y following the Eq. (7).
4: Compute the SVD of Y to obtain the orthogonal matrices U and

V, respectively.
5: Initialize NMF matrices W and H using the orthogonal matrices

U and V, respectively.
6: for iter = 1 to Niter do
7: Update W using the Eq. (5).
8: Update H using the Eq. (4).
9: end for

10: for i = 1 to k do
11: Determine if w(k) ∈WH (see Secion 3.2.2).
12: end for
13: Compute X̂H using the Eq. (6).
14: Obtain γ(t) from X̂H using Eq. (20).
15: Obtain γ̃(m) from the linear interpolation of γ(t).
16: Set the values of γ̃(m) below α to zero.
17: Compute the autocorrelation function Rxx(K) using Eq. (21).
18: Find the strongest peak of the autocorrelation function.
19: Estimate the heart rate ĤR using Eq. (22).
20: Outputs: The estimated heart rate ĤR.

4. Experimental results

In this section, the proposed algorithm is evaluated
for the heart and lung separation and real-time HR es-
timation. Two types of experiments were conducted.
First, the reliability of the proposed system was tested
using well-known datasets. Next, an analysis of the ob-
tained results in terms of execution times was performed
in a second experiment.

4.1. Datasets

The performance of the proposed HR estimation ap-
proach was assessed using three different databases.
The database developed by Yaseen et al. [57] was used
first. This database consists of a normal and abnormal
set of heart sounds, classified into five categories: nor-
mal, aortic stenosis, mitral stenosis, mitral regurgita-
tion, and mitral valve prolapse. For the evaluation of
the proposal, a subset of normal heart sounds was used,
consisting of 200 audio samples with a duration be-
tween 2 and 3 s with an 8 kHz sampling frequency. Be-
cause this dataset does not include lung sounds, it was
only used for validating the proposed HR estimation
method.

Second, a public dataset of heart sounds released in
the Classifying Heart Sounds Pascal Challenge com-
petition [58] was used. This competition provides two
datasets, Dataset A and Dataset B. Here, Dataset A
was used because it was generated in conditions sim-
ilar to those pursued by the proposal, unlike Dataset
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Fig. 4. Proposed HR estimation model. a) Input estimated heart signal. b) Magnitude spectrogram of the estimated heart signal. c) Euclidean norm
of magnitude spectrogram. d) Autocorrelation function with the beat period.

B, which is a set collected in a hospital environment.
Dataset A was obtained from volunteers and recorded
with the iStethoscope (i.e., a mobile application) in real-
world conditions. The dataset contains 176 audio sam-
ples with a duration between 5 and 10 s in wav format
with 44.1 kHz sampling frequency, and is organized as
four categories: normal, murmur, extra heart sound, and
artifact. Once again, 21 audio samples categorized as

normal sounds were selected for the validation of the
proposal.

Finally, the database collected by Canadas-Quesada
et al. [28] (APAC) is used. This database consists of a
selection of 72 audio samples with a duration of 7 s in
wav format with 8000 Hz sampling frequency. Audio
files were generated using real-world heart and lung
sound signals. Therefore, this database is suitable for
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Table 2
NVPModel mode definition

NVPModel configuration
Mode No. CPUs Power budget (W) Max. frequency (MHz) 1st Equiv. architecture

0 8 n/a* 2266 ARMv8 (2016)
1 2 10 1200 ARMv7 (2011)
2 4 15 1200 ARMv7 (2012)
3 8 30 1200 ARMv8 (2015)
4 6 30 1450 ARMv8 (2016)
5 4 30 1780 ARMv8 (2013)
6 2 30 2100 ARMv8 (2016)

*NVIDIA does not provide the power budget value for Mode 0. Some experimental measurements
under different configurations and load conditions were conducted to infer that this value is 40 W.

demonstrating the need to first separate heart and lung
sounds before estimating the HR.

These previously described datasets were created for
several purposes, including the classification of heart-
sound signals and separation of lungs and heart-sounds.
However, in this study, the aim was to evaluate the
proposed HR estimation task. Hence, cardiologists are
required to label all audio files with the ground-truth
heart rate. It is important to note that some samples
were discarded by specialists because the heartbeat was
not distinguishable. However, it was decided to test the
proposed algorithm using all audio files.

4.2. Experimental setup

In this study, the time-frequency representation is
obtained using a 512-point STFT and half overlap be-
tween adjacent frames. The sampling rate is 8 kHz.
With regard to the signal model, convergence of the
NMF decomposition was empirically observed after
100 iterations. Thus, this value was chosen as the num-
ber of iterations required for the factorization process.
Moreover, it was found that the optimal value of α was
0.2 (see Section 3.2.3).

For experimentation, the NVIDIA Jetson AGX
Xavier development kit was used as testbed. This kit
consists of a system-on-chip (SoC) with an eight-core
ARM v8.2 CPU that operates at 2.26 GHz. This testbed
supports several operating modes configured using the
NVPModel command tool. This enables simulation of a
wide range of mobile devices and embedded systems.
The details of all operating modes are listed in Table 2.
For each mode, the first equivalent ARM architecture
with its market release year is also included. Seven op-
eration modes and four power envelopes were defined.
The possible numbers of running cores are eight, six,
four, and two with different CPU frequencies.

4.3. Evaluation metric

The source-separation performance of the proposal

was objectively evaluated using the objective measures
provided by the BSS_Eval toolbox [59]. These metrics
are commonly accepted and represent a standard ap-
proach in the specialized scientific community for test-
ing the quality of separated signals, allowing fair com-
parison with other state-of-the-art methods. BSS_EVAL
provides the following metrics based on the energy ra-
tios for each separated signal: the source to distortion
ratio (SDR), the source to interference ratio (SIR) and
the source to artifacts ratio (SAR) [59]. SDR reports
on the overall quality of the separation process, SIR
provides a measure of the presence of lungs in heart
sources and vice versa, and SAR reports on the arti-
facts in the separated signal due to separation and/or
resynthesis.

For quantitative evaluation of the reliability of the
proposed HR estimator, the relative error metric was
chosen. Thus, the estimated heart rate from the audio
signal is denoted as HRest, the ground truth is denoted
as HRgt and the relative error rate between the two is
denoted as HRerr and can be expressed as

HRerr =
|HRest − HRgt|

HRgt (24)

4.4. Algorithms for comparison

To demonstrate the benefits of the proposed method,
its separation performance is compared with that of
other state-of-the-art algorithms. The different ap-
proaches compared here are as follows:

– SSA [60]. This method uses singular spectrum
analysis (SSA) to separate heart and lung sounds.
This is based on the fact that despite the frequency
overlap of the heart and lung sound components,
two different trends can be recognized in the eigen-
value spectra, which leads to finding a subspace
containing more information about the underlying
heart sound.
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Fig. 5. Heart sound separation results using the BBS_Eval metrics averaged over the APAC dataset [28]. The error bars represent 95% confidence
intervals.

Fig. 6. Lung sound separation results using the BBS_Eval metrics averaged over the APAC dataset [28]. The error bars represent 95% confidence
intervals.

– AFT [61]. This algorithm is based on adaptive
Fourier decomposition (AFD) to separate heart and
lung sounds. First, a segmentation method based
on the energy distribution in the time domain and
a low-pass filter were applied to protect the heart
sounds and reduce the lung sound energy. Then,
an AFD-based extraction method was applied to
reconstruct the heart-sounds. Finally, based on this
extraction and the original mixed signal, the lung
sounds can be extracted.

– EMD [62]. This method is based on the empirical
mode decomposition (EMD) technique for demix-
ing heart and lung sound signals. In this study, the
mixed signal was split into several components
without any prior information about the data to be
analyzed.

– NMF [27]. This method performs blind recovery
of the original cardiac and respiratory sounds from

a single observation mixture in the NMF frame-
work. The method learns the basis spectra of the
mixing sources in an unsupervised or semi su-
pervised fashion depending upon the application.
Subsequently, a clustering approach was applied
to the learned basis spectra to obtain the target
signals.

– NMCF [31]. This approach is based on non-
negative matrix co-factorization (NMCF) to sep-
arate heart and lung components. This method
achieves separation by training with high-quality
heart and lung sounds and factorizing the sounds
of the input recording in parallel.

– Baseline [28]. The method described in Section 2.2
is also incorporated to the comparison.

4.5. Results and discussion

This section presents the results obtainedfrom the



12 A.J. Muñoz-Montoro et al. / A system for biomedical audio signal processing based on high performance computing techniques

evaluation of the proposed method in terms of source
separation. The proposed HR estimation algorithm was
then evaluated using the datasets presented in Sec-
tion 4.1. Finally, the results in terms of execution times
are presented to demonstrate the feasibility of the pro-
posed algorithm in real-time.

4.5.1. Heart and lung separation results
The separation performance of the proposed method

is shown in Figs 5 and 6. Both show a comparison
of state-of-the-art methods presented in Section 4.4,
and the proposed method without considering SVD
initialization (Proposal) and considering it (Proposal-
SVD).

Regarding the proposed variants, Proposal-SVD
achieves better results than Proposal, regardless of the
metric and target signal (i.e., heart or lung signal).
This is because of the robustness of SVD initializa-
tion, which avoids the problem of the existence of local
minima in the NMF model [47].

Proposal-SVD obtains competitive results in terms
of SDR, outperforming state-of-the-art methods, except
Baseline. The slight underperforming with respect to
Baseline is mainly due to the clustering strategy. Note
that Baseline combines three clustering approaches at
the expense of increasing algorithm complexity. In ad-
dition, Baseline only achieves optimal results when the
entire audio signal is available because it is an offline
algorithm (i.e., a non-causal algorithm that prevents its
implementation in real time).

On the other hand, the proposed system outperformed
all other methods in terms of added artifacts for both
heart and lung sounds, as demonstrated by the SAR
score. This is a key point of the proposal because the
addition of artifacts in the separate signals degrades the
performance of subsequent stages (such as HR estima-
tion).

Finally, NMCF achieved the best results in terms
of the SIR score for heart-sounds. This was expected
because this method uses clean heart and lung signals
to guide the factorization. This provides better isolation
at the expense of artifact addition. With regard to lung
sounds, the proposed method clearly obtained the best
results in terms of SIR, resulting in a very good isolation
of the lung signal.

4.5.2. HR estimation results
The results obtained for each dataset presented in

Section 4.1 are shown in Fig. 7. First, the perfor-
mance of the proposed HR estimation method (see Sec-
tion 3.2.3) is analyzed. As can be observed, the results

Fig. 7. Averaged relative errors in HR estimation results over the
datasets described in Section 4.1.

obtained for the Yanseen dataset reveal a reliable per-
formance of the HR estimation stage, as the maximum
error in the 200 samples that compose the dataset is
less than 5%. Note that the separation stage was not
required because lung sounds were not included in the
dataset. Therefore, this measure informs us about the
best estimation that can be achieved in the absence of
noise-masking heart sounds, that is, using clean heart
sound signals.

The results for the Pascal and APAC datasets showed
the important role of the separation stage in the HR
estimation task. As can be seen, the results significantly
improve when the separation process is included in the
algorithm for both datasets. In the case of the Pascal
dataset, 9 of the 21 audio samples obtained a relative
error greater than 5% when the separation was not per-
formed. However, when the separation was applied,
only 4 audio samples obtained a relative error greater
than 5%, and the improvement was not more signifi-
cant because the audio samples were recorded under
highly noisy conditions. Note that the demanding 5%
threshold was chosen as a benchmark to validate the
reliability of the estimator. In the APAC case, 32 audio
samples obtained a relative error greater than 5% when
the separation was not performed. On the other hand,
the relative error for the 72 audio samples is less than
3% when the separation of lung and heart sounds is
performed.

4.5.3. Execution time
To assess the possibility of estimating the HR in real

time using the developed prototype (i.e., low-cost de-
vices), the execution time of the proposed algorithm
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Fig. 8. Experimental results in terms of execution times measured in
seconds as a function of the operating mode of the NVIDIA AGX
Xavier.

was measured over NVIDIA AGX Xavier. As the ob-
jective is to measure a subject’s heart rate periodically
in real time, it is assumed that the algorithm should
provide an estimate at least every second. Moreover,
for proper estimation of the HR, an audio sample of
approximately ten seconds long was considered in this
experiment. Therefore, the HR was estimated every
second using the previous ten seconds. Thus, the algo-
rithm will be able to respond in real time if it is able
to process ten seconds of audio in less than a second.
The choice of this window is justified by the criterion
of lower estimation error (the longer the window, the
lower the error).

The results obtained in terms of the execution times
are summarized in Fig. 8. These results are presented
as functions of the operation mode of the NVIDIA
AGX Xavier (see Table 2). As expected, the execution
time increases as the CPU frequency and the number of
cores decrease. Note that real-time is reached for CPU
frequencies higher than 1200 MHz, regardless of the
number of cores and power budget.

For low-cost devices with four available cores (i.e.,
Mode 5), the proposed parallel approach allows the
execution of the application in real time. It is important
to note this configuration because most current mobile
devices satisfy this requirement.

5. Prototype validation

In this section, experiments conducted to evaluate
the proposed prototype in a real-world scenario are
presented. Moreover, the performance of the proposed

Table 3
Average HR measured for each power zone and subject in terms of
BPM

Power zones
Subject 1 (0 W) 2 (50 W) 3 (100 W) 4 (200 W)

1 72 92 130 147
2 66 83 99 113
3 62 79 102 127
4 82 108 124 140

prototype was compared with that of a commercial HR
estimator based on ECG.

5.1. Experimental setup

To evaluate the prototype, a real-world scenario was
designed in which a subject performed a stress test on
a bicycle while his or her HR was estimated. Thus, a
setup was defined to adjust the physical strain and con-
sequently modulate the cardiac response. This setup
consists of a smart home trainer (Elite Direto) and a
conventional bicycle. The main advantage of this trainer
is that it is fully software controlled, which means that
the resistance to a pedal stroke can be tuned and ad-
justed to achieve the desired power development and
keep it steady over a period of time. The experiment
was carried out with four healthy male subjects (authors
of this work), aged between 25 and 48 years. It con-
sisted of cycling for four minutes under different levels
of pedal resistance (i.e., power zones). Four different
power zones were defined and set using trainer software
by means of a feature known as the ERG mode [63].
The first power zone (idle or 0 W) was introduced to
measure the heart rate of subjects in the absence of
physical activity. The other three zones were established
at 50 W, 100 W, and 200 W. The duration of each zone
was set as one minute.

As a reference, the HR was measured by a standard
bluetooth low energy (BLE) HR monitor based on ECG
and attached to the chest. These data were recorded,
along with the estimation provided by the proposed
prototype. Table 3 shows the average HR measured for
each power zone and subject in terms of BPM.

The overall setup is illustrated in Fig. 9 and explained
as follows: a cycling simulator (Bkool) [64] was in-
stalled on a tablet and wirelessly connected to the smart
trainer and the BLE HR monitor. The simulator was in
charge of displaying the reference HR and controlling
the resistance of the smart trainer in response to the pro-
vided target power. On the other hand, the microphone
of the proposed prototype was attached to the subject’s
chest and the ESP32 microcontroller (connected to the
network by Wi-Fi) sent the audio stream to the chosen
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Fig. 9. Diagram of the prototype validation setup.

Fig. 10. Averaged HR estimation results for each power zone and subject in terms of relative error taking the ECG-based estimator as reference.

multicast address. Then, an Android phone and/or a
computer were also connected to the same network to
receive the data and estimate the HR using Algorithm 1.

5.2. Results

Figures 10 and 11 summarize the results obtained
from the experiment described in Section 5.1. As shown
in Fig. 10, the relative error compared with the ECG-
based estimator depends on two main factors. First,
worse performance was obtained for the first power
zone (or idle) because the heart beats with less energy
and are masked by external noise. However, for zones
of physical activity (i.e., power zones 2, 3, and 4), the
deviation from the ECG was well below 5%. Second,
it was found that the physical shape of the subjects

affected the HR estimation. This can be observed in the
estimations of subjects 3 and 4 for zone 1, where the
error is higher. Both subjects had a higher body mass,
which made it difficult to determine the optimal point
for microphone location. Even so, the median error
for both subjects is close to 5%, which is acceptable
for low-cost devices. Regarding gender bias, previous
studies on auscultation signals showed no statistically
significant differences between the male and female test
groups [65]; therefore, similar results are expected to
be obtained with a broader and more diverse sample.

Figure 11 shows the HR estimation of the proposed
prototype compared with that of the ECG-based estima-
tor. In general, the results obtained using the proposed
method are in line with the ECG-based estimation, and
discrepancies are only observed for a few instants of
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Fig. 11. HR estimation of our prototype compared to the ECG-based estimator. The HR is estimated every second and represented by a dot.

time. It should be noted that this is a strong point of the
proposal, as it achieves similar results to commercial
proposals, but at a much lower cost.

Finally, to measure the power consumption of the
prototype, a 18650 battery (3.7 V) was used (see
Fig. 3). The system was then operated uninterrupted at
2200 mAh for 16 h and 36 min until the battery charge
was completely depleted.

6. Conclusion

In this paper, In this paper, a noninvasive system that
can be used to monitor patient health is presented. The
proposed prototype consists of a cost-effective micro-
phone and a multipurpose microcontroller, both respon-
sible for capturing and preprocessing audio signals,

and some computing nodes (mobile phone or general-
purpose computer), which receive the preprocessed au-
dio signal and deal with the post-processing stages. In
this manner, the recorded heart sounds are registered
and wirelessly multicast to the computing nodes in real
time. In particular, as a case study, an algorithm for
estimating the HR is proposed, which is composed of
three stages: preprocessing, separation, and HR esti-
mation. In this regard, the separation stage consists of
combining an NMF method and a clustering strategy,
together with a generalized Wiener filter. The HR esti-
mation was then obtained using a novel method based
on the autocorrelation function.

The proposed method was evaluated over well-
known datasets obtaining relative error rates below 5%
compared to ground-truth annotation. Moreover, exper-
imentation showed that reaching real-time behaviour
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is possible by combining multi-core architectures with
parallel and high-performance techniques. Finally, the
proposed prototype was validated in a real-world sce-
nario, in which subjects performed a stress test on a bi-
cycle. To the best of our knowledge, this is the first low-
cost prototype that uses auscultation signals and can be
implemented in real time to obtain reliable results in
real-world scenarios.

For future work, the current framework will be ex-
tended by incorporating multichannel processing to
make the method more robust to noisy environments.
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