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Abstract. In this paper, we propose a novel Reinforcement Learning (RL) algorithm for robotic motion control, that is, a constrained Deep
Deterministic Policy Gradient (DDPG) deviation learning strategy to assist biped robots in walking safely and accurately. The previous research
on this topic highlighted the limitations in the controller’s ability to accurately track foot placement on discrete terrains and the lack of consid-
eration for safety concerns. In this study, we address these challenges by focusing on ensuring the overall system’s safety. To begin with, we
tackle the inverse kinematics problem by introducing constraints to the damping least squares method. This enhancement not only addresses
singularity issues but also guarantees safe ranges for joint angles, thus ensuring the stability and reliability of the system. Based on this, we
propose the adoption of the constrained DDPG method to correct controller deviations. In constrained DDPG, we incorporate a constraint layer
into the Actor network, incorporating joint deviations as state inputs. By conducting offline training within the range of safe angles, it serves
as a deviation corrector. Lastly, we validate the effectiveness of our proposed approach by conducting dynamic simulations using the CRANE
biped robot. Through comprehensive assessments, including singularity analysis, constraint effectiveness evaluation, and walking experiments
on discrete terrains, we demonstrate the superiority and practicality of our approach in enhancing walking performance while ensuring safety.
Overall, our research contributes to the advancement of biped robot locomotion by addressing gait optimisation from multiple perspectives,
including singularity handling, safety constraints, and deviation learning.
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1. Introduction

Biped robots, with their high flexibility and mo-
bility, have vast potential for real-world applications.
For example, Atlas excels in challenging terrains,
making it suitable for search and rescue missions
[1]. Asimo serves as a household assistant and can
also showcase dance performances and other acts [2].
HRP-4 is suitable for various industrial applications
[3]. However, in the control of biped robot motion, en-
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suring the safety of system states poses a significant
challenge, thus making the control difficult [4,5,6,7].
Furthermore, gait deviations may result from factors
such as inaccurate modeling and unstable environ-
ments, leading to unexpected situations during robot
motion and posing safety risks for both the robot and
its surroundings [8,9,10,11,12]. Therefore, precise gait
control and correction are vital to ensuring the accu-
racy and stability of a robot’s motion trajectory and
execution results, and are crucial for efficient robot
operation and human-robot safety.

The locomotion of a robot can be divided into two
key components: planning and execution [13,14,15,
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16]. The planning phase addresses the mapping prob-
lem from the desired pose or position of the robot’s
end effector to the corresponding joint angles through
inverse kinematics [17,18,19,20,21]. The solution of
inverse kinematics plays a crucial role in achieving ac-
curate motion. In the execution phase, the controller
takes centre stage as it determines whether the control
objectives can be effectively realized. In the case of
biped robot gait control, ensuring both accuracy and
safety is of utmost importance. Therefore, incorporat-
ing joint angle constraints in both the planning and ex-
ecution phases is vital for effective control of biped
robots [22,23,24,25]. These constraints serve as cru-
cial guidelines by limiting the range of joint angles
that the robot can attain. In the control of biped robots,
joint angles play a fundamental role as basic param-
eters governing the robot’s motion. By applying con-
straints to the joint angles, we can effectively prevent
the robot from exceeding its range of motion, thereby
enhancing both the stability and safety of its move-
ments.

In our recent research, we have made significant
progress in enabling the dynamic walking of robots
through two essential steps [26]. Firstly, we imple-
mented an interpolation-based method to plan the tra-
jectory of footstep locations. By employing a direct
approach to solve the inverse kinematics problem, we
successfully obtained the desired joint trajectory. Sec-
ondly, to ensure smooth and stable robot motion, we
incorporated a human-simulated fuzzy (HF) controller
to accurately track the target joint trajectory. By im-
plementing this controller, we achieve precise control
over the robot’s motion, ensuring balance and stability
during walking actions. This substantial improvement
enhances the overall quality of robot locomotion. In
this research, it is crucial to consider several essential
factors for safe operation, such as singular value issues
and angle constraints, in order to prevent unforeseen
and unpredictable situations. Additionally, when deal-
ing with high-precision control over uneven terrains,
we face challenges in parameter tuning. Addressing
these issues holds great significance for the practical
application of robots.

To meet the high precision requirements of dis-
crete terrains, correcting deviations in the controller
is an effective and viable approach. Available options
include feedforward control, model predictive control

(MPC), and reinforcement learning (RL) [27,28,29],
combination control [30,31,32,33,34], among others
[35,36,37,38,39,40]. While feedforward control and
MPC rely on accurate modeling and complex com-
putational techniques, RL does not require precise
system modeling. RL is a field of machine learn-
ing [41,42,43,44,45,46,47,48] that involves interact-
ing with an environment and adjusting control policies
based on reward signals to achieve optimization objec-
tives.

RL achieves optimisation objectives by interact-
ing with the environment and adjusting control strate-
gies based on reward signals [49,50,51]. It excels in
learning complex control tasks without prior knowl-
edge and exhibits the ability to adapt to changing envi-
ronments. Consequently, it has emerged as a powerful
technique widely applied in the field of robotics. Its
applications encompass gait training [52,53], motion
strategy learning [54], trajectory optimisation [55],
automatic residual learning [56,57], and optimisation
control [58], among others. Through the use of rein-
forcement learning, robots can continuously learn and
improve their control strategies and behaviors by ac-
tively interacting with the environment.

In the field of RL, DDPG (Deep Determinis-
tic Policy Gradient) combines the advantages of deep
learning [59,60,61,62] and policy gradient methods
to address reinforcement learning problems in contin-
uous action spaces, making it highly favored by re-
searchers [63,64,65,66,67]. Tao et al. focused on uti-
lizing parallel DDPG strategies for gait control. How-
ever, in their Markov Decision Process model, the
primary aim was to address the issue of sparse re-
wards without explicitly defining safety-related states
or reward signals [63]. Gao et al. proposed an im-
proved DDPG algorithm that used a Long Short-Term
Memory (LSTM) network encoder to achieve dynamic
obstacle avoidance for mobile robots. Nevertheless,
their approach did not explicitly consider the safety
constraints of the robot’s motion, such as rotational
constraints, among other issues [66]. In the context
of multi-robot navigation tasks in positional environ-
ments, Chang et al. designed a learning network based
on DDPG to solve the global navigation task for a sin-
gle robot. However, the use of DDPG in their work
was primarily focused on global navigation tasks and
did not explicitly address constraints related to the
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robot’s own motion, such as rotation and velocity con-
straints [68]. In summary, while these methods each
have their unique focuses and contributions, they did
not directly or comprehensively consider safety con-
straint issues in the use of DDPG for motion control
[69,70].

This paper fills these gaps in the field by address-
ing the most important aspects of safety and precision
in gait optimisation and delving into comprehensive
research in both the planning and execution phases. In
the planning phase, we tackle inverse kinematics by in-
corporating constraints into the damped least squares
method [71,72,73,19,74]. During the execution phase,
we place special emphasis on rectifying deviations in
the HF controller. To achieve this, we introduce a con-
strained DDPG deviation learner.

The key contributions of this article are as fol-
lows:

1) In the process of solving inverse kinematics,
we introduce angle constraints based on the damped
least squares method to avoid singular value issues and
ensure safety constraints. This improvement aims to
restrict the range of joint angles during the optimisa-
tion process, ensuring system stability and reliability.

2) A constrained DDPG model is designed, and
an angle deviation learner is trained offline. The joint
angle deviation is utilised as the input state for the Ac-
tor network, and a constraint layer is added to restrict
the joint angles within a safe range and achieve a target
deviation of zero.

3) By incorporating the angle deviation learner
into the HF controller and conducting simulation ex-
periments on discrete terrains, the safety and accuracy
of walking on such terrains are ensured. This inno-
vative approach combines deviation learning and HF
control techniques, providing a better solution for en-
hancing the walking capabilities of robots on discrete
terrains.

The remaining sections of this article display the
following content. Section 2 describes the kinematic
model of a robot that walks on two legs and the state-
ment of the associated gait problem; section 3 presents
the design of gait optimisation; section 4 displays ad
comments the experimental results of this study; fi-
nally, section 5 summarises the conclusions of this
work.

2. Robot Model and Preliminaries

2.1. Dynamic Model of Biped Robot

The model of a walking biped robot with n-
degree of freedom (n-DOF) is here represented by a
hybrid dynamic model. This hybrid model includes
a continuous single-leg support phase (SSP) and dis-
crete impact events. In this model, one degree of free-
dom is removed from the robot’s model. If we con-
sider gravity, the dynamic equation of a joint can be
formulated by exploiting Lagrange’s method [75]:

D(q)q̈+C(q, q̇)q̇+G(q) = τ (1)

where τ ∈ Rn is the torque applied to each robot’s
joint; q, q̇, q̈ ∈ Rn represent position, velocity, and ac-
celeration of the joint (they are vectors as each joint is
in a 3D space); D(q) ∈ Rn×n and C(q, q̇) ∈ Rn×n de-
note the inertia matrix and the Coriolis and centripetal
forces; at last G(q) formalises the effect of gravity on
the robot.

The Lagrangian model presents a discontinu-
ity when the robot’s leg touches the ground. Let
us consider a function H describing the height of
the end of the swing leg above the ground. S =
{(q, q̇) | H(q) = 0,▽H(q)q̇ < 0} is the set of states
(q, q̇) occurring when the swinging leg touches the
ground.

The impact model from [75] is given by:{
q(t+) = q(t−)
q̇(t+) = Z(q(t−))q̇(t−), (q(t

−), q̇(t−)) ∈ S (2)

(-, +) and Z indicate, respectively, the state values and
transition matrix before and after the impact.

The complete dynamic model of the robot under
consideration is composed of (1) and (2).

2.2. Motion Planning Challenges and Preliminaries

2.2.1. Problem Statement

In the walking planning phase for biped robots,
the primary challenges involve designing appropriate
foot placement and computing target joint angles util-
ising inverse kinematics. During the inverse kinemat-
ics solution process, singular poses may arise, result-
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ing in control failure and the robot’s inability to walk.
Moreover, joint angle constraints are of vital impor-
tance for maintaining control safety. As such, circum-
venting singular poses while solving inverse kinemat-
ics under constraint conditions is a pressing issue that
must be addressed. The damped least squares method
is a classic approach for solving inverse kinematics,
which can effectively avoid singularities [19]. How-
ever, it does not account for constraints. To address
this issue, our study will adopt a strategy that incorpo-
rates joint angle constraints into the solution process.

2.2.2. Damped Least Squares with Constraints for
Inverse Kinematics

The damped least squares method is a common
numerical technique used to solve the inverse kine-
matics problems of robots. It achieves the desired end-
effector pose by adjusting the joint angles while ef-
fectively avoiding singularity issues through the intro-
duction of damping terms. In this paper, we introduce
angle constraints within this method, imposing limita-
tions on the robot’s joint angles. This ensures that the
robot consistently operates within a safe range of joint
motion, which is crucial for preventing damage or un-
expected accidents, particularly in extreme scenarios.
Additionally, it enhances stability and mitigates singu-
larity issues.

Inverse kinematics refers to the process of com-
puting robot joint angles to achieve a desired end-
effector position and orientation. In biped robot pos-
ture control, inverse kinematics is a critical issue that
requires accurate solutions for stable walking and bal-
ancing. The inverse kinematics problem involves find-
ing the joint angle vector q, such that the robot’s end-
effector reaches the target position and orientation.
The robot’s motion equation can be represented as fol-
lows:

x = f (q) (3)

where, x represents the position and orientation of the
end effector, q denotes the joint angle vector, and f is
a nonlinear mapping function.

In order to address the inverse kinematics prob-
lem, we utilise the Jacobian matrix, which signifies the
rate at which the end effector’s position and orienta-

tion change with respect to the joint angles. The Jaco-
bian matrix is delineated as follows:

J = ∂ f (q)/∂q (4)

In the damping and constraint-based least-squares
method, we aim to solve for the joint angle increment
∆q, which minimises the following objective function:

min∥J∆q− e∥2 +λ
2 ∥∆q∥2 (5)

where ∆q is the increment of joint angles, e represents
the error in the end-effector’s position and orientation,
and λ is the damping coefficient.To solve this prob-
lem, we can compute the joint angle increment ∆q as
follows:

∆q = (JT J+λ
2I)−1JT e (6)

In practical applications, robot joints often need
to satisfy certain constraints, such as joint angle and
velocity limits as well as collision avoidance. For ex-
ample, joint angle constraints: qmin ≤ q≤ qmax, where
qmin and qmax represent the minimum and maximum
limits of the joint angles, respectively. When joint an-
gle constraints are added to the damped least squares
method, the optimisation problem becomes a con-
strained optimisation problem. The formulation can be
expressed as follows:

min |J∆q− e|2 +λ
2 |∆q|2

s.t. qmin ≤ q+∆q≤ qmax
(7)

To solve the inverse kinematics problem with
constraints, we can introduce these constraints into the
least squares problem, forming a constrained optimi-
sation problem. By solving this optimisation problem,
we can obtain the joint angle increments ∆q that satisfy
the constraints, thus achieving the inverse kinematics
solution.

2.3. Walking Control and Preliminaries

2.3.1. Problem Statement

After determining the target foot placement and
target joint angles during the planning phase, the con-
troller enables biped robot walking by adjusting joint
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angles. In this stage, the main challenges lie in ensur-
ing control safety and achieving control precision. To
maintain safety, constraints are generally introduced
at the control level, while a well-designed controller
is crucial for control precision. In our prior research,
we primarily employed an HF controller (see Fig. 1),
which is a model-free control method. To further en-
hance the accuracy of robot gait control, we aim to
develop a constrained DDPG algorithm to correct the
robot’s gait, building upon our previous controller.
This method integrates the constraints with model-free
reinforcement learning, facilitating seamless integra-
tion with the previously designed controller.
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Figure 1. Human-simulated Fuzzy Controller.

In [26], the HF controller for gait control of a
biped robot was introduced. The HF controller ad-
dressed the jitter issue during mode switching in
human-simulated intelligent controllers using fuzzy
algorithms. As illustrated in Fig. 1 and Table. 1, this
controller employs PD (Proportional-Derivative) con-
trol when the value is greater than a certain threshold
of |e1| and switches to fuzzy control when the value is
less than |e1|.

Table 1. Control Law of HF

Feature State Control Law Remark

φ1 : eq ≥ e1 Kpeq +Kd ėq PD
φ2 :−e1 ≤ eq < e1 fuzzy control

φ3 : eq ≤−e1 Kpeq +Kd ėq PD

2.3.2. DDPG with constraints

DDPG algorithm is a method that combines deep
learning and reinforcement learning to solve the prob-
lem of continuous action space. DDPG is an extension
of deterministic policy gradient algorithm by introduc-
ing deep neural networks [76,77,78,79,80,81,82,83]
as approximators of actors (policy) and critics (value
functions). It mainly includes the following parts:

1) Network component
a.Actor Network: It is a deep neural network that

is responsible for learning strategies for choosing the
optimal action in a given state. It receives the current
state of the environment of s, as input and outputs a
deterministic action of a.

b.Actor Target Network: It is a copy of the Ac-
tor network, which is used to calculate the target value
during training to improve the stability of training. Its
weights are not updated as frequently as the Actor net-
work, but track the Actor network in smaller steps dur-
ing training.

c.Critic Network: It is a deep neural network,
which is responsible for learning the action value func-
tion Q(s,a) for a given state and action. It receives the
current state of the environment s and the action a ac-
tually performed as input, and outputs an estimate of
the action value function Q(s,a).

d. Critic Target Network: It is a copy of the critic
network that is used to calculate the current value Q′

during training. Its weights are not updated as fre-
quently as the critic network, but track the critic net-
work in smaller steps during training.

2) Experience Relay Buffer
DDPG uses an experiential replay buffer to store

the experiences (st ,at ,rt ,st+1) generated during the
agent’s interaction with the environment. During the
training process, the agent randomly selects a batch of
experiences from the buffer zone for learning, which
helps to break the time correlation between experi-
ences and improve the stability of training. 3) Policy
Gradient Optimisation

DDPG uses a deterministic policy gradient method
to optimise Actor network. The critic network is
trained by minimising the error between the predicted
value and the actual value. Meanwhile, the Actor net-
work is trained by maximising the value function of
the action predicted by the network of critics. By inte-
grating the target value network with the target policy
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Figure 2. The left diagram is the control framework. ∗ This represents the innovation points: 1) Obtaining joint target angles qr using constrained
damped least squares; 2) Processing the maximum error in joint angles, emax, as the state input to CDDPG (Constrained Deterministic Deep
Policy Gradient), enabling offline training to derive a deviation correction model. The right diagram illustrates the addition of a constraint layer
to the Actor network in CDDPG.

network, the Q value of the next state is calculated. It is
updated by minimising the mean square error (MSE)
loss L:

L =
1
N ∑

i

(
yi−Q

(
si,ai|θ Q))2

(8)

The policy loss is updated as:

∇θ µ J ≈ 1
N ∑

i
∇aQ

(
s,a|θ Q) |s=si,a=µ(si)∇θ µ µ (s|θ µ) |si

(9)
The only adjustable coefficient in Equations 8

and 9 is the number of samples, denoted as N. In Eq.
8, changing N impacts the MSE loss function. Increas-
ing N typically decreases MSE, enhancing stability
and robustness in model training. However, it also es-
calates computational costs and training time. Con-
versely, reducing N raises MSE, leading to a less sta-
ble loss function. In Eq. 9, increasing N improves gra-
dient estimate accuracy but at the expense of complex-
ity and computation time. Choosing an appropriate N
depends on the specific problem and available com-
puting resources.

DDPG algorithm is a reinforcement learning al-
gorithm in continuous action spaces, aiming to learn a
mapping from a continuous state space to a continuous
action space so that the agent can perform appropriate

actions in the environment to maximise the cumulative

reward. However, in practical applications, the agent

often needs to satisfy some constraints on states or ac-

tions, such as limiting the joint angles of a robot while

performing actions. In order to achieve state or action

constraints without affecting the performance of the

algorithm, this paper proposes a new method of adding

a constraint layer in DDPG algorithm to achieve action

constraints.

In the DDPG algorithm, the Actor network learns

the mapping from state to action, while the Critic net-

work learns the value function of state and action. To

impose constraints on actions, we can augment the Ac-

tor network with a constraint layer. This layer serves to

restrict the output actions within the designated con-

straint boundaries, thereby ensuring adherence to the

defined limits. Specifically, the constraint layer of the

Actor network limits the action increments within a

certain range and also limits the joint angles within the

predetermined constraint range after executing the ac-

tion increments.
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3. Gait Optimisation Design

3.1. Control scheme framework

In this section, we describe the workflow of the
proposed method of this paper. Combined with Fig.
2, firstly, the target joint angle qr (qrnew ) within the
constraint angle range was obtained through the con-
strained damping least square method, and the angle
error information e (∆q), ė was obtained and input to
the HF controller to control the robot motion. After ob-
taining the motion data, we can get the extreme value
emax of the two joint errors of the swinging leg, which
is processed as (|emax|(2rand−1),|emax|(2rand−1))
and input to the constrained DDPG for off-line train-
ing. This model can learn how to make the joint move
from the current error to the target value 0. The trained
model is combined with the HF controller so that the
motion deviation caused by the HF controller can be
compensated. Two of the main points are as follows:

1) The motion control of a biped robot can be
divided into two stages: foot trajectory planning and
control execution. As shown in Fig. 1, during the tra-
jectory planning stage, a cubic interpolation is utilised
to calculate the swing foot’s movement trajectory, re-
sulting in the desired foot placement position pr. Then,
the position error ∆p is calculated based on the actual
position p of the swing foot and the desired position
pr. By employing constrained damping least squares,
the target joint angles qr, are derived based on ∆p. qr,
along with the robot’s actual joint angles q, are then
input to the information processing module, enabling
the acquisition of angle error e and its derivative ė.
Finally, these inputs are passed to the HF controller,
which serves as the fundamental controller responsible
for executing motion control.

2) Furthermore, the composition of constrained
DDPG has been described in 2.3.2, and the absolute
values of the extreme errors in the hip and knee joints
are mapped to random values in four quadrants, serv-
ing as state inputs for the Actor network in the con-
strained DDPG. As depicted in Fig.2, the Actor net-
work of the constrained DDPG includes a constraint
layer inserted before the output layer. This constraint
layer plays a vital role in applying constraints to the
generated output actions, ensuring their adherence to
a safe range of angular motion. By incorporating the

constraint layer, the system guarantees that the gener-
ated actions operate within an acceptable angle range,
thereby enhancing both safety and reliability. Notably,
the purpose of deviation correction is to achieve zero
error in control. Therefore, the constrained DDPG
utilises a target value of 0 for training, which is per-
formed offline. The trained network is then integrated
with the angle deviation corrector, working in tandem
with the HF controller. This integration allows for the
realization of biped robot locomotion by leveraging
the combined functionality of the angle deviation cor-
rector and HF controller.

3.2. Inverse kinematics of a biped robot based on
least square method with damping and
constraints

This section describes in detail the process of us-
ing the damped least square method to solve the tar-
get joint angles in the angle constraint range of 90°-
180°, which can ensure that the singularity problem is
avoided in the safe angle range. First, we need to set
the target foot placement pd of the robot, then add an-
gle constraints to the joints, and finally apply a con-
strained damped least square method to compute the
target joint angles.

(1) Set the foot placement pd for the biped robot:
The foot placement pd is a predetermined end effector
position that can be set based on the robot’s motion re-
quirements and terrain features. In this paper, to fully
validate the control accuracy, we designed a discrete
point terrain device and fixed foot placement,where
pd = Ts/2 ∗ v, Ts is the single step time, and v is the
target velocity of the biped robot.

(2) Add angle constraints to the joints: The joint
angles q of a biped robot are often restricted by phys-
ical limitations, such as maximum and minimum lim-
its. To ensure the robot’s safe and normal operation, it
is necessary to consider these constraints when solv-
ing the inverse kinematics problem. In this paper, we
added angle constraints of 90° to 180° to the joints.
This means that the joint angles solved must fall within
this range.

(3) Calculate target joint angles using a con-
strained damped least squares method: To begin with,
we calculate the difference between the current end ef-
fector position p and the target end effector position
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pd : ∆p = pd − p. Here, pd is the predetermined foot
placement, and p is the current end effector position.
Next, we use the damping least squares method (DLS)
to calculate the variation of joint angle deviation, ∆q:

∆q = (JT J+λ
2I +Φ(q))−1JT

∆p (10)

where, J is the Jacobian matrix, λ is the damping co-
efficient, I is the identity matrix, and Φ(q) is the joint
angle constraint matrix, which contains information
about the upper and lower limits of the joint angles.

For a planar robot with n joints, the Jacobian ma-
trix J is a 2n matrix, where each column represents
the Jacobian elements of a joint. Specifically, we can
express it as:

J = [J1,J2, ...,Jn] (11)

where, Ji is the Jacobian element of the ith joint, which
can be represented as:

Ji =

[
∂ px

∂qi
,

∂ pz

∂qi

]
(12)

where, px and pz represent the position of the end ef-
fector on the x and z axes, respectively, and qi is the
angle of the ith joint. The Jacobian matrix J can be
used to describe the relationship between the change
in joint angles and the change in end effector position
for the robot.

Φ(q) represents the joint angle constraint matrix,
which is typically a diagonal matrix with diagonal el-
ements used to apply constraints to the angle of each
joint. For a robot with n joints, Φ(q) is an n×n matrix,
expressed as follows:

Φ(q) = diag(φ1(q1),φ2(q2), · · · ,φn(qn)) (13)

where, diag represents a diagonal matrix, φi(qi) is the
constraint function for the ith joint, which can be de-
fined based on the limits of the joint angle. In this
study we restrict the joint angle within a certain range
as [qmin,qmax], the constraint function can be expressed
as:

φi(qi) = k(qi−qmin)(qmax−qi) (14)

where, k is a weighting coefficient used to control the
strength of the constraint, qmax = 180◦ and qmin = 90◦.
As the joint angle approaches the boundary of the
limit, the value of the constraint function increases,
thereby strongly maintaining the joint angle within the
allowable range during inverse kinematics computa-
tion. Finally, we update the current joint angle q:

qrnew = q+∆q (15)

Through this process, we can obtain the target
joint angles qrnew that satisfy the constraint conditions.
These angles can be used to control the biped robot’s
walking during the planning phase.

3.3. Application of Constrained DDPG Algorithm for
Gait Optimisation of Biped Robot

To apply the constrained DDPG algorithm for
gait optimisation, we first use the least square method
with damping and constraints to calculate the target
joint angles. Then, we use an HF controller to com-
plete the basic posture control, followed by using the
constrained DDPG algorithm to compensate for joint
errors. In this way, we can achieve precise control of
the posture of the swinging leg of the biped robot
while ensuring that the actual constraints of joint an-
gles are satisfied during its movement. In our research,
the environment is a simulation that represents the
physical system of the robot, including two joint an-
gles (hip and knee). We utilized the DDPG algorithm
to train a model correcting joint angle deviations by in-
teracting with the environment.The DDPG agent inter-
acts through time steps, adjusting movements to mini-
mize deviations and maximize long-term rewards, op-
timizing performance toward zero joint angle devia-
tion.

In Fig.2, the joint angle error of the swing leg is
processed as |emax|(2rand−1) and then input into the
Constrained DDPG for training as the initial state.The
design process of the DDPG algorithm with added
constraint layer is as follows:

1) Define the Actor and Critic network structure;
2) Add a constraint layer to the Actor network

structure. In the constraint layer, action increments are
calculated based on input state s, and then the action
increments are limited to a preset range, ∆q is the
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joints angle error, and ∆qmax is the maximum joints
angle error.

∆q = max(−∆qmax,min(∆qmax,∆q)) (16)

3) Calculate the post-execution joint angle based
on the current state and the post-execution action in-
crement and limit it to a preset constraint.

s′ = max(qmin,min(qmax,s+∆q) (17)

4) The joint angle after execution is regarded as
the state of the next moment, and the main process of
DDPG algorithm is continued.

Algorithm 1 Constrained DDPG

1: Define Actor with constraint layer; Define Critic.
2: Initialize Q(s,a|θ Q),µ(s,a|θ µ) with random

weights.
3: Initialize target Q′, µ ′ with θ Q

′
← θ Q, θ µ

′
← θ µ .

4: Initialize relay buffer R.
5: for episode = 1 to M do
6: Reset environment s; Initialize cumulative re-

ward rm.
7: for step = 1 to maxSteps do
8: at = µ(st |θ µ)+Nt ▷ Action selection

with noise
9: Execute at , get reward rt , observe new

state st+1.
10: Store (st ,at ,rt ,st+1) in R.
11: if size of R≥ miniBatch then
12: Sample minibatch from R.
13: Compute targetAction using Q

′
, tar-

getQ using µ
′
.

14: Update Critic and Actor networks.
15: Soft update: θ µ ′ ← τθ µ +(1− τ)θ µ ′ ,

θ Q′ ← τθ Q +(1− τ)θ Q′ .
16: end if
17: end for
18: end for

Algorithm 1 presents the pseudo-code for the
training of Constrained DDPG algorithm. A cus-
tomized constraint layer is integrated into the Ac-
tor network, enabling training of the neural network
within the specified angle boundaries, that is 90°-180°.
This model not only considers the movement towards

the target position (the joints angle errors move from
the initial state to the target state 0) but also incor-
porates decision-making related to safety constraints.
By incorporating the constraint layer, the agent’s ex-
ploration range in action spaces is restricted, thereby
reducing algorithmic uncertainty and volatility. This
mechanism facilitates the agent in learning reasonable
and viable strategies more effectively, leading to accel-
erated learning. Moreover, it ensures that the agent’s
actions remain within the designated safe range, min-
imising potential risks and losses.

4. Experimental Results

To verify the control effectiveness of the scheme
proposed in this paper, based on the biped robot Crane
dynamics model, we used Matlab R2019a to construct
the model for numerical simulation. Parameters are
shown in Table 2: to verify the effectiveness of the in-
novation subpart and the overall scheme, the verifica-
tion is carried out in four parts: 1) constraint damping
least square method verification; 2) constrained DDPG
training results; 3) experiments of a biped robot up and
down stairs; 4) experiments of a biped robot walking
on discrete terrains. In experiments 3) and 4), our pri-
mary focus is to benchmark our approach against the
HF control method, which is considered an advanced
solution for addressing the specific problem under in-
vestigation [26] since it recently displayed a superior
performance with respect to state-of-the-art methods,
e.g., [75,84,85,86]. By comparing our method with
HF, we aimed to demonstrate the effectiveness of our
proposed enhancements and validate their impact on
improving the existing state-of-the-art solution.

Table 2. Parameters of Biped Robot Crane

Biped
Mass
(kg)

Length
(m)

Inertia
(kg ·m2 )

Torso 5.580 0.257 0.043320
Thigh 0.548 0.401 0.000680
Shank 0.813 0.300 0.000034

The experimental model has 4 active joints, and
the corresponding control joint angles are q1, q2, q3,
q4, corresponding to the hip joint of the knee joint of
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the left leg, and the hip joint and knee joint of the right
leg. The controller’s input is the error of the joint angle
ei (i = 1,2,3,4)and error derivative ėi (i = 1,2,3,4).
The output is joint torque τi.

The extrema of joint angle errors were used as
the state input for constrained DDPG, with a training
objective of achieving zero error. Then, offline training
was conducted, and the trained network was utilised to
correct the angle deviations based on the fundamental
HF control implementation.

4.1. Verifications of constrained damping least
squares method

To validate the effectiveness of the constrained
damping least squares method, we performed two ver-
ification steps. Firstly, we examined the efficacy of the
damping least squares method in addressing singular
values. Subsequently, we assessed the effectiveness of
the constraint conditions.

1) In order to validate the effectiveness of this
method, considering that singular values can lead to
control failures, a specific target singular state was in-
tentionally established in this study. This involved ad-
justing the knee joint of the swinging leg to 0

◦
, and

subsequently observing the control results from the
initial state to the target state. Fig. 3 depicts the time-
varying curves of joint angular velocities under the
direct inverse kinematics method. According to the
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Figure 3. Joint angular velocities under the direct inverse kinemat-
ics method.

figure, at 0.63 seconds, there is a sudden change in
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Figure 4. Joint angular velocities under constrained damped least
square method.
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Figure 5. The target joint angle without constraints.

joint angular velocity, accompanied by severe shak-
ing, leading to instability and control failure. Fig. 4 il-
lustrates the time-varying curves of joint angular ve-
locities when employing the method proposed in this
study. After introducing damping, the joint angular ve-
locities are significantly constrained within the singu-
larity region of the Jacobian matrix. The curves of joint
angular velocities exhibit smoother behavior. Through
this validation, it is demonstrated that this method ef-
fectively avoids the occurrence of singular values.

2) In this study, a safety constraint angle range of
[0◦− 100◦] was established. Without the inclusion of
constraints, Fig. 5 indicates that the computed target
joint angle q4 exceeds the imposed limit of 100 de-
grees. Such an occurrence poses a significant risk of
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Table 3. Joint Angle Error Performance of Up and Down
Stairs.This table shows the error data of joint angle in experiments
with different stair heights (0.01 m, 0.02 m, 0.03 m), that is, the
Mean Error (ME) ± Standard Deviation (SD). SAME is the sum of
absolute values of ME for each joint.

HF HFCDDPG
0.01 0.02 0.03 0.01 0.02 0.03

q1 -0.0865± 0.1362 -0.0973±0.1405 -0.1121±0.1521 -0.0775±0.1148 -0.0910±0.1006 -0.1008±0.1348
q2 0.1342±0.1604 0.1200±0.1662 -0.2403±0.1855 -0.1280±0.1449 0.0899±0.1526 -0.1730±0.1692
q3 0.0081±0.2750 0.1580±0.2853 0.2589±0.2967 -0.0017±0.2083 0.1072±0.2112 0.1161±0.2238
q4 0.2124±0.2492 0.4743±0.2538 0.2965±0.2598 0.1508±0.2328 0.4062±0.2371 0.2852±0.2531

SAME 0.4412 0.8496 0.9078 0.35800.35800.3580 0.69430.69430.6943 0.67510.67510.6751
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Figure 6. The target joint angle with constraints.

instability and potential robot falls. To ensure system
stability and safety, the introduction of constraint con-
ditions was necessary.

Fig. 6 illustrates the target joint angles after the
incorporation of constraints, effectively constraining
them within the designated safety range. This con-
straint implementation serves to protect the robot from
excessive joint angles, mitigating unsafe movements.

4.2. Constrained DDPG training

In this section, we conducted a comparison be-
tween the common angle constraint method and the
method proposed in this study. We utilised the angle
deviations of the knee and hip joints of the swinging
leg as the state inputs for the Actor network. To en-
sure a comprehensive assessment of the method’s ef-
fectiveness, we randomly selected four sets of state

values from the four quadrants of these deviations for
training. In the common constraint method, training is
halted and restarted with a new training session when-
ever the constraints are violated. In contrast, this study
incorporates a constraint layer into the Actor network
to ensure compliance with the constraint conditions.
By comparing Fig. 7, it is evident that the proposed
method achieves the maximum reward value more
rapidly and attains a higher maximum reward com-
pared to the conventional approach. Additionally, the
state transition plot in Figs. 8 and 9 clearly illustrate
that, although both methods operate within the safety
constraints, the proposed method converges faster and
demonstrates greater stability throughout the conver-
gence process.

By incorporating the constraint layer into the
training process, the proposed method in this study not
only complies with the constraints but also brings ad-
vantages in two aspects. Firstly, it enables faster attain-
ment of the maximum reward value, specifically, the
convergence rate ratio between CDDPG and DDPG in
Fig. 7(a) is 3/2, that of Fig. 7(b) is 2.5, and that of Figs.
7(c) and (d) is 2. Therefore, these results show that the
method of CDDPG can effectively learn control strate-
gies. Secondly, the increase in the maximum reward
value signifies that the system exhibits improved exe-
cution of desired actions during training, thereby en-
hancing control accuracy and stability.

4.3. Up and down stairs

In the up and down stairs experiments (see Fig.
10), our aim is to evaluate the performance of differ-
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(a) The rewards of state 1. (b) The rewards of state 2.

(c) The rewards of state 3. (d) The rewards of state 4.

Figure 7. Rewards for different states.

ent control methods, particularly comparing the HF
and HFCDDPG control methods. Three different stair
heights (0.01 m, 0.02 m, and 0.03 m) provided a di-
verse set of challenges, requiring the robot to exe-
cute tasks with stability and precision across varying
heights.

First, let’s focus on the performance of the HF
control method. As seen in Fig.11, while the robot is
capable of navigating the stairs, significant issues be-
come apparent. Firstly, the foot placement and height
of the first step are not accurately maintained, poten-
tially affecting the precision of the robot’s stride. In
Figs.11 (a) and (b), the sixth and seventh steps dis-
play sudden increases in stride, resulting in an uneven
gait that impacts the robot’s balance. Most notably, in
Fig.11 (c), the fourth step exhibits two landing points,
indicating an inconsistency in the robot’s stride during
this phase. Additionally, the sixth step also displays
two landing points, attributed to the robot’s backward
motion at the final step, a clear sign of task failure.

Particularly at a stair height of 0.03 m, the robot’s per-
formance is notably inferior, highlighting the limita-
tions of the HF control method under challenging con-
ditions.

In contrast, the HFCDDPG control method excels
in the task of up and down stairs. As seen in Fig. 12,
regardless of the stair height, the robot can smoothly
complete the task. Unlike HF, the HFCDDPG method
does not exhibit multi-step actions, sudden increases
in stride, or noticeable backward movements. Foot
placement data indicates overall uniformity and stabil-
ity, demonstrating that HFCDDPG can maintain ex-
cellent control precision across varying stair heights.

Table. 3 presents the average and standard devi-
ation of joint errors for the three stair heights. Fur-
thermore, the Sum of Absolute values of Mean Er-
rors (SAME) over all the joints has been calculated as
an aggregated metric of the accuracy of the controller.
Observing Table. 3, we can clearly see the significant
advantage of the HFCDDPG control method in terms
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Figure 8. Training curve of different states under conventional constraints.

of joint errors. Not only the average error is smaller,
but the standard deviation is also lower, indicating that
HFCDDPG can maintain more consistent joint posture
control across different stair heights. This result is of
paramount importance, as stable joint control is cru-
cial for the safety and successful completion of robotic
tasks. In contrast, the HF method exhibits greater vari-
ability in terms of joint errors, with larger average er-
rors and higher standard deviations. This implies that
under HF control, the robot may demonstrate signifi-
cant variations across different trials, which could be
deemed unacceptable for practical applications. Fur-
thermore, this observation corroborates the previously
noted irregular and unstable gait in Fig.11, suggesting
a potential connection between the variability in joint
errors and these gait issues.

In summary, the HFCDDPG control method
showcases outstanding stability and precision in the
task of ascending and descending stairs. Compared
to the HF method, it demonstrates a higher degree of

adaptability when facing challenges posed by varying
stair heights.

4.4. Walking on discrete terrains

To verify the effectiveness of the entire control
scheme, this study conducted tests on two types of dis-
crete terrains: uniform (Fig. 13) and non-uniform (Fig.
15).

In the uniform terrain, three different lengths of
discrete points were set. In the top of Fig. 14, the step
length is 0.2 m, in the middle of Fig. 14, the step length
is 0.23 m, and in the bottom of Fig. 14, the step length
is 0.3 m. In the figures, the blue color represents the
target values, the green color represents the control ef-
fect of HF method, and the red color represents the
effect of the method proposed in this study. Through
comparison, it is evident that the proposed method en-
sures the precision of the foot placement, enabling sta-
ble walking on discrete terrains. On the other hand, the
HF method cannot guarantee that all foot placements
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Figure 9. Training curve of different states with constrained layer.

Table 4. Joint Angle Error Performance of Uniform Discrete Terrain. This table shows the error data of joint angle in experiments with different
discrete terrain lengths (0.2 m, 0.3 m, 0.4 m), that is, the Mean Error (ME) ± Standard Deviation (SD). SAME is the sum of absolute values of
ME for each joint.

HF HFCDDPG
0.2 0.3 0.4 0.2 0.3 0.4

q1 -0.0780±0.0879 -0.1328±0.1532 -0.1558±0.1818 -0.0641± 0.0662 -0.0967±0.1031 -0.1397±0.1648
q2 -0.0036±0.0160 -0.0060±0.0262 -0.0069±0.0304 -0.0029±0.0103 -0.0043±0.0134 -0.0055±0.0172
q3 -0.0814±0.2180 -0.1848±0.3069 -0.2287±0.3434 0.0189±0.1419 -0.0248±0.1960 -0.1156±0.3381
q4 0.0763±0.1742 0.0602±0.1738 0.0524±0.1843 0.0655±0.2036 0.0387±0.1910 0.0073±0.1812

SAME 0.2393 0.3838 0.4438 0.15140.15140.1514 0.16450.16450.1645 0.26810.26810.2681

reach their target positions, thus leading to unsuccess-
ful locomotion on discrete terrains. Table. 4 shows the
performance of joint error in the experiment of three
uniform discrete terrains (0.2 m, 0.3 m, 0.4 m). Com-
pared with the HF data, it can be seen that the error and
standard deviation of HFCDDPG are smaller. HFCD-
DPG control is more accurate than HF.

In the non-uniform discrete terrain, we intro-

duced discrete points with varying heights and lengths.
Similarly, the proposed method demonstrated success-
ful locomotion, while the HF method failed to guaran-
tee successful walking. On both, uniform and nonuni-
form discrete terrains, in Fig.s 14 and 16, we may ob-
serve that the HF-controlled robot misplaced the foot
on average in the 30% of the steps, thus being in prac-
tice unusable. Conversely, HFCDDPG appears to land
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Figure 10. Uniform discrete terrain walking.

the foot in close proximity to the target points, thus
displaying much better stability performance.

These results confirm the effectiveness and supe-
riority of the proposed method. By utilising the con-
straint DDPG control strategy, stable and precise walk-
ing on discrete terrains was successfully achieved. In
comparison to the traditional HF approach, the pro-
posed method overcomes the difficulties encountered
during walking on discrete terrains, resulting in higher
success rates and improved accuracy.

In conclusion, the control scheme proposed in
this study has achieved satisfactory results on discrete
terrains. This achievement holds significant implica-
tions for the walking capability and stability of robots
in real-world scenarios.

5. Conclusion

In this study, ensuring safety throughout the
entire operation process was a paramount concern.
To address the singularity issue within a defined
safe range of angles, we incorporated the constraint-
damping least squares method during the planning
phase. During the control process, we initially imple-
mented an HF controller to establish basic control and
subsequently integrated a designed constraint DDPG
learner to rectify joint angle deviations. Constraint
DDPG combines the ideas of Reinforcement Learn-
ing and security constraint. The neural network within
the constraint DDPG learner aimed to maximise long-
term rewards by minimising target deviations within
the safe angle range. This approach facilitated safe
learning during the training process. By constraining
the range of actions through the constraint layer, we
maintained system stability while ensuring safety, ul-
timately enhancing training efficiency.

We conducted a comprehensive evaluation of the
proposed method’s effectiveness, assessing its perfor-
mance in handling singular states, the efficacy of the
constraints, and its ability to achieve stable up and
down stairs and walking on discrete terrains. Encour-
aging results were obtained across all evaluations.
Looking ahead, our future plans involve implementing
this control framework on a physical robot to further
validate its practical applicability.
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Figure 11. Foot placement up and down stairs with HF.
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Figure 12. Foot placement up and down stairs with HFCDDPG.
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