
90 

INTRODUCTION 

ICCA Journal 

NEWS, INFORMATION, TOURNAMENTS AND REPORTS 

PARALLEL CHESS ON THE CRAY X-MP/48 

Robert H. Hyatt 
University of South Mississippi 

June 1985 

The chess program Cray Blitz is the current World Computer Chess Champion 

and became the current North American Computer Chess Champion in the 1984 

ACM tournament. The program has also played in human chess tournaments and 

has the strength of a chess master. At speed chess, where an ability to 

perform very accurate analyses is particularly important, it has maintained 

a performance rating of over 2600 for the past two years. This indicates 

that, at speed chess, the program is one of the top players in the world, 

either electronic or human. It is currently running on a Cray X-MP/48 compu

ter system and has been designed around the parallelism that the X-MP archi

tecture provides. 

There have been three major versions of the program that have used Cray 

computers. Version one was created for the Cray-1 and took advantage of some 

of the special Cray architectural features such as vector processing, in

struction overlap, and its large number of registers. Version two was de

signed for the X-MP/24, the first multiprocessing Cray computer system. 

Version three was designed for better use of the X-MP/24 and the new X-MP/48 

computers since version two failed efficiently to utilize both processors. 

VERSION ONE 

Version one of Cray Blitz was originated in 1980 by a conversion of Blitz, a 

computer-chess program written in 1976, to the Cray ~omputer system. The 

initial effort resulted in a substantial speed-up of t~e program and eventu

ally yielded a program that could examine approximately 1,000 chess posi

tions per second. Additional reprogramming to eliminate certain programming 

practices known to be time-consuming on the Cray-1 (mod function, integer 

divide and others) resulted in the present pure Fortran speed of approxima-



Parallel Chess on the Cray X-MP/48 91 

tely 4,500 nodes per second. The most successful chess program of the time 

was the program Chess 4.x written at Northwestern University and run on a 

CDC Cyber 176. It was examining approximately 2,600 nodes per second which 

made version one of Cray Blitz look quite good. However, study revealed that 

while CFT (Cray Fortran) was producing good code, careful hand coding of the 

routines frequently used could result in even further improvement. 

After considerable timing analysis was done, we carefully isolated those 

routines needing hand coding and methodically attacked the difficult and 

laborious task. Each new CAL (Cray Assembly Language) routine resulted in a 

measurable performance increase, and the end result was that the program 

analyzed over 20,000 nodes per second on a single processor. This effort is 

still ongoing and is continously increasing the performance of the program. 

However, there was a point beyond which additonal hand coding had no effect 

on the search time. As this point was reached, the older CAL routines were 

re-examined for better algorithmics, since the CAL routines were simply 

'conversions' of the FORTRAN routines they replaced. Bet ter algorithmics 

resulted in further increases in search speed, and in the area of CAL pro

gramming, this effort is still underway. 

Additionally, algorithms were developed specifically for the Cray (using 

CAL) effectively to take advantage of the vector hardware. By using the 

unusual properties of the vector hardware and of the parallel ism of the 

function~l units, further improvements were made as we discovered that some 

things could be added to the CAL, with no penalty whatsoever since a fair 

amount of time is spent waiting for memory accesses. 

Early in 1982, a new computer called Cray-X became available at the Mendota 

Heights computer center. As it was compatible with the Cray-l, we quickly 

moved the program to the new system and were happy to observe a 30 percent 

performance improvement with little work on our part. However, the machine 

had two processors and we were letting 50 percent of the total machine idle 

away when we were playing chess. Since there was little hope of more CAL or 

additional algorithmic improvements giving us a performance improvement of 

50 percent, we began to think about ways to use both processors in a paral

lel manner. 



92 ICCA Journal June 1985 

VERSION TWO 

As the Summer of 1983 passed, we progressed along our projected path of 

improvements while preparing for the upcoming World Computer Chess Champion

ship in October. Since Cray multitasking software was still under develop

ment during this time, our thoughts about parallelism were wishful at best. 

In late August, with the World Championship two months away, we decided to 

test our latest code by playing speed chess in Pasadena, California. We were 

using a Cray-1M, which seemed to be approximately 50 percent slower than the 

X-MP/24 (one processor, since we had no parallel algorithm) we would be 

using for the World Championship. Our goal was to test the program for bugs 

or weaknesses, not really caring how we would do in the speed tournament. 

The program performed quite well and lost only two games, showing that even 

in its 'slower' state on the Cray-1M, it was still quite dangerous, as seve

ral International Chess Masters found out. 

After the tournament, we were quite surprised when the people at Cray Re

search software development started asking 1£ we could use two processors 

simultaneously. It turned out that, while we were improving and debugging 

the program, Cray Research had developed the multitasking operating system 

and Fortran interface to it and were looking for applications to test it. 

Our dilemma was that we had only two months before the World Championship, 

and we had not even started on a parallel version. 

After discussing the possibilities for a day, and keeping the idle CPU in 

the back of our minds, we decided to emulate Rocky and go for it. Due to the 

extremely short time for writing, testing, and debugging a parallel program, 

with a brand-new operating system, and no experience in parallel program

ming, we decided that we had a chance of getting it together. Since planning 

dooms most projects, we felt that we were a cinch to succeed in the conver

sion since we had no time for planning or discussing our approach. 

Due to the short time available, we decided to take the··simplest approach to 

multitasking. The program had a list of n moves to examine in order to 

choose the move it would make. We elected to divide this search process be

tween the two processors and overlap examining two moves at a time. In order 

to avoid load-balancing problems, we also elected to use a self-scheduling 

algorithm where each processor took a move from the move list, and after 



Parallel Chess on the Cray X-MP/48 93 

examining it, took another. When no further moves were left, the results of 

the two processors (each one had found the best move of the ones it search

ed) were compared and the best move was selected. 

In order to implement such a parallel search on short notice, we decided to 

completely duplicate the tree-search code, and affix a 'z' to each module 

name that was duplicated and to each common block that was duplicated. We 

were wary of trying to debug a re-entrant code with task common, since we 

had a significant number of CAL routines that would have to be extensively 

modified to become re-entrant. This approach worked and actually gave very 

few problems that had not been anticipated. 

The first problem was performance and had been anticipated. With a chess 

position, the first move searched takes longer to examine than any of the 

remaining moves. The explanation is that when the first move is examined, 

a program (or a human) has no idea of how good or bad the position is. After 

examining the first move, and discovering that a pawn can be won, other 

moves can be examined much more quickly because if one of them seems to lose 

a pawn, no further analysis is needed since the first move wins one. How

ever, if the first move loses a pawn, the program (or the human) must still 

examine it carefully as ALL moves might lose a pawn, and it is still neces

sary to play the best move. Since each processor analyzed a different first 

move, they both had to search them carefully. After each had finished its 

first move, things proceeded quite rapidly and the remainder of the moves 

were examined essentially twice as fast as with one processor. The drawback 

is that the entire move list is not examined twice as fast due to the first 

two moves taking a substantial amount of time. 

This algorithm in some rare cases was no better than one processor (viz. 

when the re was only one legal move), but was generally 1. 5 to 1.8 times 

faster than one processor. In certain rare cases, this program was actually 

many times faster than one processor. If one processor selected its first 

move and had to spend minutes examining it due to the complexity of the 

resulting position, the other processor could finish its first move and 

continue processing the remaining moves. It might actually find a crushing 

move while the first processor is still working on the first move. Since a 

single processor. would have to work through the first move to get to the 

winning move, this case looked quite attractive for the parallel design. 

However, this was a rare case. 



94 ICCA Journal June 1985 

Figure 1 illustrates typical search improvements obtained with the parallel 

search by comparing total time (wall clock) required for one and two proces

sors. The exact chess positions are irrelevant in this story. Case 1 is the 

worst-case improvement where there is more than one legal move since only 

one move will result in no improvement. Since the program never changes its 

mind, a fair amount of time is wasted by the second processor while it is 

examining its first move. Case 2 is the optimum case, where the program 

changes its mind several times. This example results in a performance impro

vement of 2.0 over one processor. Again, this is optimum and reality lies 

between 1.5 and 1.8 during the course of a complete game. 

Case 1 (no multiprocessing) 

Depth Time Eval Variation 

Sa 0:01 0.383 Bxf3 Qxf3 0-0 0-0 cs 

6a 0:07 0.251 Bxf3 Qxf3 0-0 Nc3 cs 0-0 

7a 0:30 0.305 Bxf3 Qxf3 0-0 Nc3 cs 0-0 h6 

8a 2:46 0.221 Bxf3 Qxf3 es Be2 0-0 0-0 Ne4 fxes Nxes 

Time: 3:25 100% Nodes: 4,981,731 H 31% 99% 95% NPS: 24,242 

Case 1 (with multiprocessing) 

Depth Time Eval Variation 

5a 0:01 0.383 Bxf3 Qxf3 0-0 0-0 cs 

6a 0:04 0.251 Bxf3 Qxf3 0-0 Nc3 cs 0-0 

7a 0:19 0.305 Bxf3 Qxf3 0-0 Nc3 cs 0-0 h6 

8a 1:48 0.221 Bxf3 Qxf3 es Be2 0-0 0-0 Ne4 fxes Nxes 

Time: 2:13 199% Nodes: 6,545,639 H 25% 96% 92%:NPS: 49,123 

Net improvement with two processors: 1'.5 



Parallel Chess on the Cray X-MP/48 

Case 2 (no multiprocessing) 

Depth Time Eva1 Variation 

6a 0:01 0.504 Nd5 e4 fxe4 fxe4 Nf6 Re1 

6a 0:01 1.160 h6 Nh3 Re6 Nf4 Rxd6 Ke1 

7a 0:09 1.310 h6 Nh3 Re6 Nf4 Rxd6 Ke1 Rd8 

8a 0:44 1.120 h6 Nh3 Rac8 Nf4 Rc6 Ke1 Rxd6 Rc1 

8a 1:43 1.237 Bc4 Ke1 h6 Nh3 ••• 

8a 3:07 1.280 Rac8 a3 Rc2 Rc1 Ra2 Rc7 Ra1+ Bc1 Rxe3 Rxa7 

Time: 3:20 100% Nodes: 3.887.306 H 40% 99% 96% NPS: 19.606 

Case 2 (with multiprocessing) 

Depth Time Eva1 Variation 

6a 0:01 0.504 Nd5 e4 fxe4 fxe4 Nf6 ReI 

6b 0:01 1.160 h6 Nh3 Re6 Nf4 Rxd6 Ke1 

7a 0:04 1.310 h6 Nh3 Re6 Nf4 Rxd6 Ke1 Rd8 

8a 0:23 1.120 h6 Nh3 Rac8 Nf4 Rc6 Ke1 Rxd6 Rc1 

8b 0:51 1.237 Bc4 Ke1 h6 Nh3 ••• 

8a 1:31 1.280 Rac8 a3 Rc2 Rc1 Ra2 Rc7 Ra1+ Bc1 Rxe3 Rxa7 

Time: 1:41 197% Nodes: 3.987.721 H 40% 99% 96% NPS: 39,877 

Net improvement with two processors: 1.97 

Figure 1 

From the first box: 

Time: 3:25 is equivalent to 100% as fast as single processing; 

Nodes examined: 4,981.731; 

95 

Use of hash tables: 31% (Transposition table). 99% (Pawn table). 94% (King 

table); (cf. H.L. Nelson (1985). Hash Tables in Cray Blitz. ICCA Journal. 

Vol. 8, No.1. pp. 3-13). NPS means nodes per second. 



96 ICCA Journal June 1985 

We were succesfu1 in developing, coding, testing and debugging the new pa

rallel program during the next two months. We did experience substantial 

problems with the CAL routines. Removing the CAL slowed the program by a 

factor of 4.5, so it was obvious that in making a choice between CAL or a 

parallel search, we would choose CAL. 

With the first round game scheduled for Saturday night, Friday morning found 

us without a working version of the program. A concentrated effort Saturday 

afternoon allowed us to get enough of the CAL working in the parallel ver

sion such that we were faster with some CAL and parallelism than we were 

with all CAL and no parallelism. Without having played a game of any kind, 

and only having tested on a set of problem positions, we started round one. 

Two dozen packs of Lifesavers, 18 soft drinks, and a gross of Tylenol later, 

we had picked up our first win. After the round-one game, we stayed up all 

night and got all of the CAL operational (minus one fairly important rou

tine) for the next round. The rest is history as Cray Blitz went on to de

feat Belle (from Bell Labs) and won the tournament. It looked FAR easier 

than it actually was! 

VERSION THREE 

Early in 1984, the newly announced X-MP/48 was installed in the Mendota 

Heights computer center. The availability of this machine had two important 

features that would assist us. First, it was a four-processor machine with 

eight million words of memory. Second, it had two new instructions. GATHER 

and SCATTER which we felt would be of benefit in the CAL routines. 

It was obvious to us that the algorithm used to win the world championship 

was poorly suited to more than two processors. We were already experiencing 

load-balancing problems when one processor started examining a move that 

required a tremendous tree search while the other processor would finish the 

rest of the moves and have nothing left to do. Since the work was being di

vided up into rather coarse chunks, we began to redesign the tree search to 

be more efficient on four (and more) processors. 

Since maintaining two separate copies of the tree-search code was inconve

nient and resulted in numerous problems where one copy was modified and the 

other was delayed (and eventually forgotten), the decision was made to de-



Parallel Chess on the Cray X-MP/48 97 

sign a re-entrant code using the features of CFT, such as task common, local 

data, and shared or globol common. The program was reduced from approximate

ly 20,000 lines of Fortran and 20,000 lines of CAL to approximately 14,000 

lines of Fortran and 10,000 lines of CAL. This was much more convenient than 

having two of everything to change. 

The algorithm we finally used allowed all processors to work on the first 

move together, and then look at the remaining moves independently as before. 

This prevented much duplication of effort and also made the analysis of the 

first move proceed four times faster than before. 

To explain the algorithm, assume the program is doing an eight-ply exhaus

tive search. That is, it is searching everything to a depth of eight half

moves and then searching beyond that point very selectively to make sure it 

is not overlooking something. The new algorithm forces one processor to 

follow the tree through the first seven levels while the other processors 

remain idle. At depth eight, the other three processors join the search and 

each processor looks at the next available move at depth eight and searches 

as deeply as is necessary. When all moves at depth eight have been examined, 

all processors synchronize and compare results. The best move is reported 

back to the previous level. This move completes the analysis for the first 

move at the previous level, and now the three remaining processors join the 

first in examining the remaining moves at depth seven. l-1hen they finish, 

they back up to depth six and search the remaining moves there. This pro

ceeds until they finally get back to depth one and divide up the remaining 

moves there after they have all worked on the first move. 

Early performance measurements with this algorithm on the X-MP/48 yielded 

performance improvements of 3.5 to 4 over the one-processor code. It was 

apparent that the new algorithm was far superior to the old one, and was 

actually smaller in terms of lines of code. Figure 2 illustrates the results 

obtained by running the same two tests of Figure 1 on the new algorithm. As 

expected, case two shows no improvement, since it was already optimal, but 

case one shows that the factor 1.5 could be improved upon quite a bit. 

Notice that there is a fairly uniform improvement when adding processors, 

although each processor accumulates some idle time due to improper load

balancing and conflicts with other processors over shared-memory data struc

tures. 



98 ICCA Journal June 1985 

Case 1 Case 2 

CPUs time improvement factor CPUs time improvement factor 

1 3:25 1 3:20 

2 1:44 1.92 2 1:42 1.95 

3 1:13 2.80 3 1:09 2.88 

4 0:55 3.71 4 0: 52 3.85 

Figure 2 

Load balancing is now the major concern of our new programming developments. 

The tree being searched is not a perfectly symmetrical tree where each 

branch goes to exactly the same depth (or height), and each node does not 

have the same number of moves to examine. The probability is high that if 

there are exactly four moves at a level, and each processor examines one in 

parallel, the processors will not complete at the same time, and the cumula

tive wait times can actually become quite large. As an example, in the first 

round of the 15th Annual North American Computer Chess Championship, we saw 

a total wait time for the game of 40 percent of one processor, which corres

ponds to running approximately 3.6 times faster than a single processor 

would have. However, in the next round, the game was more complicated which 

aggravated the load-balancing problem and resulting in the performance drop

ping off to 'only' 3.1 where we lost 90 percent of one processor due to lack 

of work for it. 

The major problem seems to center around the concept of each processor look

ing at a different ply-one move (after they all look at the first one). In 

the case where they each start on one of the last four· moves at ply one, it 

is highly probable that they will not finish at the same time. If the diffe

rence in times between the longest and shortest is substantial, a severe 

performance penalty is incurred, as we saw in the second round of the tour

nament. To help minimize this discrepancy in times between moves, each pro

cessor searches its move with a very narrow search window. This tends to 

minimize the timing differences among the moves. If one processor then finds 

that its move is better than the current best move, the other processors are 

stopped and then they all work on this new candidate before continuing on 

the moves they were working on. 



Parallel Chess on the Cray X-MP/48 99 

A final technique that is being used is to count the number of nodes exa

mined when searching each move when doing a depth n-l search. Then, when the 

depth n search starts, we order the ply-one moves in order of decreasing 

node counts. This puts the complicated moves at the top of the list and 

minimizes the difference in time required for the moves near the bottom of 

the list. Of course, a move that appeared simple at depth 7 might turn out 

to be extremely complicated at depth 8 and disrupt this planning, but in 

general the idea has proven effective in actual tests. 

THE FUTURE 

It is apparent that additional parallelism is around the corner with a six

teen-processor Cray coming soon and no limit in sight. The concept of each 

processor working at the same depth begins to fail beyond four processors. 

For example, the average number of moves at any level averages 38 for the 

entire game. If more than 38 processors are available, the probability is 

high that many of them will reach positions where there are not enough moves 

to go around and they must sit idle. Tests with more than four processors on 

an X-t-1P/48 have verified that there is a point beyond which additional pro

cessors will yield no performance improvement with the present algorithm. 

An attempt at using a large number of processors is currently under investi

gation and is based upon the idea of dividing the large group of 'n' proces~ 

sors into 'm' smaller groups of 'n/m' processors. Each group would be given 

a sub-tree to examine, and then divides that sub-tree up into 'n/m' sub-sub

trees for analysis by each processor. The effect is to reduce the number of 

processors evaluating a particular node to a number far less than the number 

of moves to be examined. 

Each attempt at better load balancing seems to bring out two harmful side 

effects; namely, more overhead due to multiprocessing synchronization, and 

less efficiency where additional nodes are examined that would not be exa

mined by a uniprocessor search. The extra nodes have historically remained 

well below one percent of the total nodes searched, but the more recent 

algorithms seem to let this percentage grow unnecessarily. Some extra work 

is permissible as long as the extra work done does not consume the processor 

time gained by reducing the cumulative idle times through trying to perform 

better load balancing. 


