Space-efficient Indexing of Chess Endgame Tables

Article
Published Version

Nalimov, E. V., Haworth, G. M. ORCID: https://orcid.org/0000-0001-9896-1448 and Heinz, E. A. (2000) Space-efficient Indexing of Chess Endgame Tables. ICGA Journal, 23 (3). pp. 148-162. ISSN 1389-6911 Available at https://centaur.reading.ac.uk/4562/

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.
Published version at: http://ticc.uvt.nl/icga/journal/

Publisher: The International Computer Games Association

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

SPACE-EFFICIENT INDEXING OF CHESS ENDGAME TABLES ${ }^{1}$

E.V. Nalimov ${ }^{2}$, G.M ${ }^{c}$ C. Haworth ${ }^{3}$ and E.A. Heinz ${ }^{4}$
USA and England

Abstract

Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame's positions is crucial to meeting this objective. This paper updates Heinz' previous review of approaches to indexing and describes the latest approach by the first and third authors.

Heinz' and Nalimov's endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov's EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6×10^{9} elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.

1. INTRODUCTION

The method used to index an endgame positions' values and depths largely determines both the space required and the speed of access during play over the board. It may aim to optimise the one or the other. A variety of approaches have been adopted as the challenges of larger and more complex endgames have been faced.

In this paper, Section 2 is an update of Heinz' review of indexing methods and Section 3 describes in detail Nalimov's new and more compact index scheme. Section 4 describes results achieved and Section 5 summarises and looks ahead to potential developments.

2. A REVIEW OF SOME INDEX SCHEMES

A previous paper (Heinz, 1999) surveyed, highlighted and analysed interesting work in the EGT field by Ströhlein (1970), Van den Herik and Herschberg (1985, 1986), Stiller (1989, 1991, 1994, 1995), Thompson (1986, 1991, 1996; ICCA J. Editors, 1992, 1993) and Edwards (1995). It presented a quantitative comparison of the index methods of Thompson $(1986,1996)$, Edwards (1995) and Heinz for all 3-to-4-man endgames.

Table 1, q.v. also (Heinz, 2000), extends that comparison to 5 -man endgames using Thompson's indexes as the baseline. It infers the index range where the authors did not create the EGT, e.g., 4-1 and two-Pawn endgames. $X=Q, R, B$ or N in Table 1 which makes it clear that different constraints were used by the EGT authors to reduce the size of the set of positions which they indexed.

Table 2, which includes the work of Wirth (1999), elicits these constraints and defines which of them have, in effect if not literally, been used by the EGT authors. The list below indicates that Edwards constrains the possible positions the least and Nalimov constrains them the most. For this reason, Edwards' index ranges are the largest and Nalimov's are the smallest. Heinz' EGTs made savings on the indexes of Thompson and Edwards which increase with the number of men, e.g., 3.13% for $\mathrm{KxK}, 7.67 \%$ for KxKy and 13.44% for KxyKz relative to Thompson's indexes.

The next subsections explain the rationale for three of the constraints.

[^0]| End- | Edwards | | Thompson | Heinz | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| game | \# Elements | $+\Delta \%$ | \# Elements | $+\Delta \%$ | \# Elements |
| KPK | $32 * 64 * 64$ | 33.33 | $24 * 64 * 64$ | -11.82 | $3612 * 24$ |
| KXK | $10 * 64 * 64$ | 38.53 | $462 * 64$ | -3.13 | $462 * 62$ |
| KPKP | $32 * 64 * 64 * 64$ | 77.78 | $24 * 48 * 64 * 64$ | -13.65 | $3612 * 24 * 47$ |
| KPPK | $32 * 64 * 64 * 64$ | 77.78 | $24 * 48 * 64 * 64$ | -55.90 | $3612 * 576$ |
| KPKX | $32 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64$ | -15.95 | $3612 * 24 * 61$ |
| KPXK | $32 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64$ | -15.95 | $3612 * 24 * 61$ |
| KXXK | $10 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64$ | -53.83 | $462 * 1891$ |
| KXYK | $10 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64$ | -7.67 | $462 * 62 * 61$ |
| KXKY | $10 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64$ | -7.67 | $462 * 62 * 61$ |
| KPPKP | $32 * 64 * 64 * 64 * 64$ | 137.04 | $24 * 48 * 48 * 64 * 64$ | -58.63 | $3612 * 24 * 1081$ |
| KPPPK | $32 * 64 * 64 * 64 * 64$ | 137.04 | $24 * 48 * 48 * 64 * 64$ | -86.15 | $3612 * 8684$ |
| KPPKX | $32 * 64 * 64 * 64 * 64$ | 77.78 | $24 * 48 * 64 * 64 * 64$ | -58.66 | $3612 * 576 * 60$ |
| KPPXK | $32 * 64 * 64 * 64 * 64$ | 77.78 | $24 * 48 * 64 * 64 * 64$ | -58.66 | $3612 * 576 * 60$ |
| KPXKP | $32 * 64 * 64 * 64 * 64$ | 77.78 | $24 * 48 * 64 * 64 * 64$ | -19.05 | $3612 * 24 * 47 * 60$ |
| KPXXK | $32 * 64 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64 * 64$ | -60.60 | $3612 * 24 * 1830$ |
| KXXKP | $32 * 64 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64 * 64$ | -60.60 | $3612 * 24 * 1830$ |
| KPXKY | $32 * 64 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64 * 64$ | -21.20 | $3612 * 24 * 61 * 60$ |
| KPXYK | $32 * 64 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64 * 64$ | -21.20 | $3612 * 24 * 61 * 60$ |
| KXYKP | $32 * 64 * 64 * 64 * 64$ | 33.33 | $24 * 64 * 64 * 64 * 64$ | -21.20 | $3612 * 24 * 61 * 60$ |
| KXXXK | $10 * 64 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64 * 64$ | -85.57 | $462 * 37820$ |
| KXXKY | $10 * 64 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64 * 64$ | -56.72 | $462 * 62 * 1830$ |
| KXXYK | $10 * 64 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64 * 64$ | -56.72 | $462 * 62 * 1830$ |
| KXYKZ | $10 * 64 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64 * 64$ | -13.44 | $462 * 62 * 61 * 60$ |
| KXYZK | $10 * 64 * 64 * 64 * 64$ | 38.53 | $462 * 64 * 64 * 64$ | -13.44 | $462 * 62 * 61 * 60$ |

Table 1: Comparison of index range computations.

\#	Identity	Constraint	KT	SE	EH	CW	EN
		Positions encoded					
1	$\mathrm{C}_{\text {W }}$	wtm positions indexed	-	yes	yes	yes	yes
2	C_{B}	btm positions indexed	yes	yes	yes	yes	yes
		Placement of the Kings					
		Pawnless endgames					
3	C_{8}	stmK in a $1-\mathrm{d} 1-\mathrm{d} 4$	used	used	used	used	used
4	$\mathrm{C}_{\mathrm{KK1}}$	stmK and sntmK on separate squares	used	-	used	used	used
5	$\mathrm{C}_{\text {TE }}$	if stmK on a1-d4, stmK in a1-h1-h8	used	-	used	used	used
6	$\mathrm{C}_{\mathrm{KKnP}}$	exactly 462 wK -bK positions used	used	-	used	used	used
		Endgames with Pawns					
7	$\mathrm{C}_{\text {ad }}$	stmK in a-d	used	used	used	used	used
8	$\mathrm{C}_{\mathrm{KK} 2}$	stmK and sntmK on separate squares	-	-	used	used	used
9	$\mathrm{C}_{\text {KKP }}$	exactly 1806 wK-bK positions used	-	-	used	used	used
		Encoding Pawn positions					
10	$\mathrm{CP}_{\text {P }}$	Pawns constrained to ranks 2-7	used	-	used	used	used
11	$\mathrm{C}_{\text {EP }}$	Pawns capturable en passant included	-	-	used	used	used
		Like men, i.e. of the same type and colour					
12	$\mathrm{C}_{\text {LM }}$	Saving of k ! for k like men	-	-	used	used	used
		Constraints on squares with more than one man					
13	CSI-MM	No square with two men	-	-	-	-	-
14	$\mathrm{C}_{\text {S2-KPC }}$	No square with K and another piece	-	-	used	used	used
15	$\mathrm{C}_{\text {S3-KPW }}$	No square with K and a Pawn	-	-	-	-	used
16	$\mathrm{C}_{\text {S4-L1 }}$	No square with two like pieces	-	-	used	used	used
17	$\mathrm{C}_{\text {S5-L2 }}$	No square with two like Pawns	-	-	-	used	used
18	$\mathrm{C}_{\text {S6-SNTM1 }}$	No square with stm man and sntm piece	-	-	used	used	used
19	$\mathrm{C}_{\text {S7-SNTM2 }}$	No square with man and sntm Pawn	-	-	-	-	-
		Unblockable checks by the stm					
20	$\mathrm{C}_{\text {UC }}$	No unblockable checks allowed	-	-	-	-	used
		Trimming the index-range					
21	$\mathrm{C}_{\text {F }}$	First positions in a range not broken	-	-	-	-	-
22	C_{L}	Last positions in a range not broken	-	-	-	-	used

Table 2: Constraints available to limit the position-sets indexed. ${ }^{5}$

[^1]
2.1 Constraining a King

A King is typically constrained to files a-d for endgames with Pawns and to the octant a1-d1-d4 for endgames without Pawns. The choice of the side-to-move King, stmK, as the man to constrain has two advantages:

- the stm King is always present so the constraint can always be exercised,
- there is only one stm King so the effect of the constraint is unambiguous.

In contrast, had a Rook been the constrained man, the software generating and accessing the EGTs would have to decide between the positions below with a Rook on b 1 and on d 3 respectively.

Figure 1: Version 1.

Figure 2: Version 2.

2.2 Like Men of the Same Type

Where one side has k men of one type, the index range may be reduced by a factor of $k!=k \times(k-1) \times \ldots \times 1$. The k ! arrangements of k like, labelled men on q given squares are equivalent if the like men are unlabelled. There are $d=\mathrm{C}_{\mathrm{q}, \mathrm{k}}=q!/[k!(q-k)!]$ placements of k like men on q squares where $0!\equiv 1$ by definition.

Let $0 \ldots(q-1)$ be the numbers of the available squares and $0 \ldots(d-1)$ the numbers of the k-tuple placements of the k like men. The method of transforming one k-tuple into the next determines the numbering:

$$
\begin{array}{ll}
\{0,1\} \rightarrow\{0,2\},\{0,3\},\{1,2\},\{1,3\},\{2,3\} & \ldots \text { advancing the highest-numbered man, } \\
\{0,1\},\{0,2\},\{1,2\},\{0,3\},\{1,3\} \leftarrow\{2,3\} & \ldots \text { retreating the lowest-numbered man. }
\end{array}
$$

For the first ordering, the placement $\left\{s_{1}, s_{2}, \ldots ., s_{k}\right\}$ of the men on squares $\left\{s_{i} \mid i<j \Rightarrow s_{i}<s_{j}\right\}$ is given index r by the algorithm:

```
\(r=0 ;\)
while \(k>0\) do
    while \(s_{1} \neq 0\) do \(r \leftarrow r+(q-1)!/[(k-1)!(q-k)!] ; q \leftarrow q-1\);
        \{'discard’ square 0\(\}\) for \(i=1\) to \(k\) do \(s_{i} \leftarrow s_{i}-1\) end_do;
    end_do;
    \{'discard' square 0 and the man on square 0 \}
    \(k \leftarrow k-1 ; q \leftarrow q-1\); for \(i=1\) to \(k\) do \(s_{i}=s_{i+1}-1\) end_do;
end_do
```

In the second ordering, the placement $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of the men on squares $\left\{s_{i} \mid i<j \Rightarrow s_{i}<s_{j}\right\}$ is preceded by placements $\left\{\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \mid t_{i}<s_{j}(i \leq j) \& t_{i}=s_{i},(i=j+1, \ldots, k) ; j=1, \ldots k\right\}$. It is therefore given index r by the succinct formula:
$n_{j}=$ the number of j-tuples of ordered integers taken from $\left[0, s_{j}-1\right]=s_{j} \times\left(s_{j}-1\right) \times \ldots \times \ldots\left(s_{j}-j+1\right) / j!; r=\Sigma_{j} n_{j}$.
Thompson, Stiller $(1991,1994,1995)$ and Edwards did not take advantage of this economy. Heinz (1999, 2000), Wirth (1999) and Nalimov (1999) do and constrain like pieces ${ }^{6}$, but not necessarily like Pawns, from sharing squares. The appendix features some studies with the theme of esoteric force, that is, unlikely numbers of like men.

[^2]
2.3 First and Last Index not Broken

If the highest indices in an addressable subrange of the index are marked broken ${ }^{7}$ during the EGT initialisation process, they may simply be removed. If the lowest indices in an addressable subrange are marked broken, they may also be removed but the baseline of the remaining index subrange must be correspondingly reduced. Some illegal positions need not require access to the EGT if the access code incorporates illegality tests.

3. NALIMOV'S INDEX SCHEME

The first author has made publicly available an EGT generator and a complete set of 3-to-5-man and some 6man EGTs to the Distance to Mate metric (cf. Hyatt, 2000). The main objectives of their construction are that:

- the colours White and Black are treated symmetrically
separate indexes and files for wtm and btm positions; data on both 1-0 and $0-1$ wins,
- the EGTs should be practical and efficient to use during play over the board the index for each endgame is the most compact yet produced,
time-optimal 8KB EGT blocks of compressed data are decompressed in store, positions for a set configuration of the stm men are clustered together.

This latest index scheme uses the following approach, many of whose principles and optimisations were first articulated by Heinz (1999, 2000):

- the men are notionally placed on the board in the following order: stmK, sntmK, stm men (Q-R-B-N-P), sntm men (Q-R-B-N-P),
- the stmK-sntmK positions are used explicitly: 462 (no Ps) and 1806 (Ps) the index range therefore consists of 462 or 1806 index subranges,
- 'available' squares are numbered $0 \ldots q-1$ in order a1-...- h1-a2-... - h8,
- the number of squares available to men of a type is calculated knowing: the positions of the Kings and the presence of previously-placed men. Each index subrange for an stmK-sntmK placement is therefore an n-space
- $\quad k$ like men of one colour are placed as a set with economy factor k !
- stm men cannot be placed giving an unblockable check ${ }^{8}$ to the sntmK,
- positions allowing an en passant capture are indexed in a separate zone.

The net effect is that:

- the squares occupied by the two Kings are not available to any other man,
- the sntm's pieces occupy only previously-unoccupied squares,
- different types of stm pieces share squares in some indexed 'positions',
- 'positions' with Pawns on pieces' squares are indexed.

Nalimov's work can be seen as a significant evolution of Edwards' work which addressed the same objectives but which used less of the available constraints while indexing the positions. The next subsections focus on:

- avoiding unblockable checks, reducing the size of each index subrange
- calculating the dimensions of the n-space index subrange
- creating the complete EGT index
- calculating the index of a given position
- indexing positions with the features of en passant and/or castling rights
- improving the performance of EGT access.

3.1 Avoiding Unblockable Checks

Let us suppose White is to move: Black cannot be in check. Figure 3 shows that White's men cannot be placed on certain squares as they would give a check which could not be blocked by placing a further man on the board. Thus, Black's King and White's forces constrain the number of arrangements of White's men.

[^3]The index range for wtm positions will therefore in general be different from that for btm positions．Given the lexicographical way in which endgames are listed，the wtm index range is almost always ${ }^{9}$ less than the btm index range．Where White and Black have the same men，only the btm half of the EGT is computed：the access method flips colours if presented with a wtm position．

White checks from other squares，as in Figure 4，may or may not be blocked by the placement of further men． Positions featuring such checks are indexed but if the sntmK is in check，their indexes are marked as broken during the initialisation phase．

Figure 3：wtm，unblockable checks．

Figure 4：wtm，blockable checks．

wK	bK	wQ	wR	wB	wN	wP
any	a1	59	60	61	$60-61$	$47-48$
any	b1	57	59	60	$59-60$	$47-48$
any	c1	57	59	60	$58-59$	$47-48$
any	b2	54	58	58	$58-59$	$46-47$
a1	c2	54	58	58	56	47
a2	c2	54	58	58	56	46
a3	c2	54	58	58	57	46
any	a3	57	59	60	$58-59$	$45-46$
any	c3	54	58	58	$54-55$	$44-45$

Table 3：The squares＇available＇to each white man with wtm．

52	53	54	55	56	57	58	59
44	45	46	47	48	49	50	51
36	37	38	39	40	41	42	43
28	29	30	31	32	33	34	35
20	21	22	23	24	25	26	27
12	13	14	15	16	17	18	19
6	7	8	9	10	11	国	图
0	1	2	3	4	5	0	古

Table 4：wQ squares for bKh 1 ，wtm．

Table 5：wQ squares for bKc 2 ，wtm．

With White to move，each of the black King＇s 64 positions determines the number of squares available for each white man， $\mathrm{Q}, \mathrm{R}, \mathrm{B}, \mathrm{N}$ or P ，as in Table 3．To improve efficiency，Nalimov computes for each man a 64×64 table giving the reference numbers，for each position of the sntmK，of the squares available to that man．These numbers are modified，given the position of the stmK．

Thus，Tables 4 and 5 give the numbers of the squares available to the wQ in wtm positions with the bK on h 1 and c 2 respectively．When the square of the wK is known，the numbers of the higher－numbered squares decrement by one．The chief reason for the compactness of the indexes described here is the reduction in the number of squares available to men of type i by the avoidance of unblockable checks．

[^4]
3.2 The N-Space Index Subranges

The wtm and btm index ranges are 462 or 1806 subranges, each an n-space associated with a specific wK-bK placement. Let the qi squares available to the ki non-King men of type $i(i=1, \ldots t)$ be numbered $0 \ldots q i-1$. Then:

- $q i$ is determined as above by the stm, the King positions, the type i, and the prior men placed
- there are $d i=\mathrm{C}_{\mathrm{q} i}$, $\mathrm{ki}=q i!/[k i!(q i-k i)!]$ placements, $0 \ldots d i-1$, of the type i men
- the index subrange is the n-space $[d 1, d 2, \ldots, d t]$, dimension t, size $\Pi_{\mathrm{i}} d i$
- the subranges' first entries $\left\{i n d_{\mathrm{k} \mathrm{\kappa}}\right\}$ index the wK-bK-position subsets.

Figure 5:The wtm KQRPK index subranges for three bK positions.

Figure 5 illustrates the index subranges for wtm KQNPK with the wK on d 1 and the bK on $\mathrm{a} 1, \mathrm{~h} 2$ and f 3 . The wQ ranges in turn over 59,57 and 54 squares, the wN ranges over 60,59 and 54 squares, and the $w P$ ranges over 48,47 and 45 squares.

A more complex wtm example in the endgame KRRNKP illustrates a calculation involving two like men and also the wK occupying a square denied to the wN . With the wK on al and the bK on c 2 , the white Rooks have 58 squares available and, placed as a set, have $58 \times 57 / 2=1653$ placements. The wK occupies a square from which a wN would give an unblockable check. Therefore, the number of squares available to the wN, ignoring as Nalimov does the prior placement of the Rooks, is 57 . There are 47 squares at most available to the bP and on some of these, the bP will be sharing a square with a white man. This sub-index n-space therefore has dimensions and size $1653 \times 57 \times 47=4,428,387$.

3.3 EGT Index Size

Table 6 illustrates, with the wtm index of endgame KQRK, the impact of minimising the number of squares qi available to men of type i. The economy of this index approach is clear when compared with other possibilities.

The lookup tables which effect and expedite the indexing occupy some 200KBytes per 3-2 endgame and up to 350KBytes for 4-1 endgames.

Constraints	Notes	Computation	Size
	The naive index-scheme	$64 * 64 * 64 * 64$	$16,777,216$
$\mathrm{C}_{\mathrm{sl} 1 \mathrm{~mm}}$	no square shared	$64 * 63 * 62 * 61$	$15,249,024$
C_{8}	Edwards' index-range	$10 * 64 * 64 * 64$	$2,621,440$
$\mathrm{C}_{8} \& \mathrm{C}_{\mathrm{sl} 1-\mathrm{mm}}$	wK in octant; no square shared	$10 * 63 * 62 * 61$	$2,382,660$
$\mathrm{C}_{\mathrm{KKnP}}$	Thompson's index-range	$462 * 64 * 64$	$1,892,352$
$\mathrm{C}_{\mathrm{KKnP}} \& \mathrm{C}_{\mathrm{sl} 1 \mathrm{~mm}}$	Heinz' and Wirth's index-range	$462 * 62 * 61$	$1,747,284$
$\mathrm{C}_{\mathrm{KKnP}} \& \mathrm{C}_{\mathrm{uc}(\mathrm{Q})}$	3 squares denied to the wQ	$462 * 59 * 61$	$1,662,738$
$\mathrm{C}_{\mathrm{KKnP}} \& \mathrm{C}_{\mathrm{uc}(\mathrm{QR})}$	\ldots and 2 sq. denied to the wR	$462 * 59 * 59$	$1,608,222$
$\mathrm{C}_{\mathrm{KKnP}} \& \mathrm{C}_{\mathrm{uc}} \& \mathrm{C}_{\mathrm{L}}$	Nalimov's index-range	$(57 * 58+\ldots)-366$	$1,500,276$
$\mathrm{C}_{\mathrm{KKnP}} \& \mathrm{C}_{\mathrm{uc}} \& \mathrm{C}_{\mathrm{sl} 1-\mathrm{mm}} \& \mathrm{C}_{\mathrm{L}}$	Nalimov, but no square shared	$(57 * 57+\ldots)-360$	$1,474,713$

Table 6: Index ranges for wtm KQRK positions under various constraints.

The calculations for different types of man allow men to occupy the same square, e.g., in KQRK, KQPK or KQKP. However, the net reduction in the index ranges is significant and certainly much greater than the workspace required for the lookup tables.

3.4 The Index of a Position

As in Subsection 2.2, let the men of type i be placed on squares $\left\{\mathrm{s}_{\mathrm{i}, 1}, \ldots, \mathrm{~s}_{\mathrm{i}, \mathrm{k} i}\right\}$ as numbered for their type given prior placements. Then:

- the type i men are deemed to be in placement $r i \in[0, d i-1], i=1 \ldots t$,
- the position has co-ordinates $[r 1, \ldots ., r t]$ in the n-space $[d 1, d 2, \ldots, d t]$,
- the position's n-space index, subind $=\sum_{i} r_{i} \times \Pi_{j>i} d_{j}$ where $j \leq t+1$ and $d_{t+1} \equiv 1$,
- assuming KK-placement $\kappa \kappa$, the position's index in the EGT is ind $d_{\kappa \kappa}+$ subind.

3.5 Indexing the En Passant Positions

RETRO (Forthoffer, Rasmussen and Dekker, 1989) uniquely generated EGTs recognising both en passant capture and castling. Recently, Heinz, Moreland, Nalimov (Heinz, 2000) and Wirth (1999) have indexed the positions featuring a possible en passant capture. Nalimov does so in a separate zone of the stm index after the main index. Let us assume that it is btm. A white Pawn will be on $x 4, x$ in a-h, and a black Pawn will be on an adjacent file, giving 14 potential placements of these two Pawns instead of 2,256 . Further, as White has just moved a Pawn from $x 2$ to $x 4$, squares $x 2$ and $x 3$ are not available to be occupied by other men.

Kings are still placed in their 1806 positions and stm pieces are still constrained by the avoidance of unblockable checks.

The concept of a separate index zone for positions with a specific feature, in this case potential e.p. capture, generalises to the provision of separate index zones for positions with specific subsets of the five features:
stm can make an en passant capture,
White and/or Black can castle on the a-side and/or the h-side.
The full representation of en passant and castling rights, not included in Nalimov's EGTs, involves 2^{5} zones of positions rather than the usual one zone. However, as each feature constrains at least one man and reduces the index range by a factor of at least 60,31 of the zones are relatively small. It may be helpful to place constrained men first but no fundamentally new principles of indexing are required.

3.6 EGT Access Performance

Because White, for example, submits a number of btm positions to the EGT, the placement of stm (black) men before their sntm equivalents also tends to cluster White's accesses to the file. Also, because chess engines probe the EGT at several nodes in their search tree, Nalimov wrote an efficient lookup function which manages an LRU, least-recently used, cache of EGT values. Experiments with Crafty show that the new index scheme facilitates much better caching behaviour than others, particularly with parallel search on symmetric multiprocessors.

Nalimov's EGT files are compressed into 8 KB blocks, the technique exploiting common sequences and Huffman coding. The block size optimises runtime performance rather than space. It is usually more efficient to decompress the blocks at runtime in store than to work with uncompressed files.

All Endgames	Nalimov	Heinz	Thompson	Edwards
\# Elements, wtm	$14,702,353,093$	$16,807,619,304$	$25,936,842,240$	$37,046,484,992$
Extra Elements	-	$2,105,266,211$	$11,234,489,147$	$22,344,131,899$
$+\Delta \%$	-	14.32	76.41	151.98
\# Elements, btm	$15,909,833,876$	$16,807,619,304$	$25,936,842,240$	$37,046,484,992$
Extra Elements	-	$897,785,428$	$10,027,008,364$	$21,136,651,116$
$+\Delta \%$	-	5.64	63.02	132.85
\# Elements, all	$30,612,186,969$	$33,615,238,608$	$51,873,684,480$	$74,092,969,984$
Extra Elements	-	$3,003,051,639$	$21,261,497,511$	$43,480,783,015$
$+\Delta \%$	-	9.81	69.45	142.04

Table 7: Summary of 3-to-5-man index range sizes.

	1-0		0-1			1-0		0-1		Endgame	1-0		0-1	
Endgame	wtm	btm	wtm	btm	Endgame	wtm	btm	wtm	btm		wtm	btm	wtm	btm
KBBBK	16	19	-	-	KPPK	32	32	-	-	KQRK	6	16	-	-
KBBK	19	19	-	-	KРРKB	43	43	3	4	KQRKB	29	29	-	-
KВВКВ	22	22	1	2	KPPKN	50	50	16	17	KQRKN	40	40	0	1
KBBKN	78	78	0	1	KPPKP	127	127	42	43	KQRKP	40	67	35	43
KBBKP	74	73	82	83	KPPKQ	124	100	41	41	KQRKQ	67	67	37	38
KBBKQ	21	20	81	81	KPPKR	54	53	41	40	KQRKR	34	35	2	20
KBBKR	23	22	30	31	KPPPK	33	33	-	-	KQRNK	5	16	-	-
KBBNK	33	33	-	-	KQBBK	6	19	-	-	KQRPK	7	16	-	-
KBBPK	30	31	-	-	KQBK	8	10	-	-	KQRRK	4	7	-	-
KBK	-	-	-	-	KQBKB	17	17	1	2	KRBBK	12	19	-	-
KBKB	1	0	0	1	KQBKN	21	21	0	1	KRBK	16	16	-	-
KBKN	1	0	0	1	KQBKP	32	33	17	24	KRBKB	30	30	1	2
KBKP	1	0	19	29	KQBKQ	33	33	23	24	KRBKN	40	40	0	1
KBNK	33	33	-	-	KQBKR	40	40	25	30	KRBKP	28	36	65	70
KBNKB	39	39	1	2	KQBNK	7	33	-	-	KRBKQ	21	20	70	70
KBNKN	107	106	0	1	KQBPK	9	31	-	-	KRBKR	65	64	26	30
KBNKP	104	104	54	55	KQK	10	10	-	-	KRBNK	29	33	-	-
KBNKQ	36	35	53	53	KQKB	17	17	-	-	KRBPK	16	31	-	-
KBNKR	36	35	39	41	KQKN	21	21	-	-	KRK	16	16	-	-
KBNNK	34	34	-	-	KQKP	28	28	10	29	KRKB	29	29	-	-
KBNPK	33	33	-	-	KQKQ	13	12	12	13	KRKN	40	40	0	1
KBPK	31	31	-	-	KQKR	35	35	18	19	KRKP	26	32	42	43
KBPKB	51	50	2	3	KQNK	9	10	-	-	KRKR	19	19	19	19
KBPKN	100	96	7	8	KQNKB	17	17	0	1	KRNK	16	16	-	-
KBPKP	67	67	50	51	KQNKN	21	21	0	1	KRNKB	31	31	0	1
KBPKQ	35	34	50	50	KQNKP	30	41	22	29	KRNKN	37	40	0	1
KBPKR	45	44	38	39	KQNKQ	41	41	23	24	KRNKP	29	29	63	68
KBPPK	25	32	-	-	KQNKR	38	38	38	41	KRNKQ	20	19	69	69
KK	-	-	-	-	KQNNK	8	9	-	-	KRNKR	37	36	39	41
KNK	-	-	-	-	KQNPK	9	27	-	-	KRNNK	15	16	-	-
KNKN	1	0	0	1	KQPK	10	28	-	-	KRNPK	17	27	-	-
KNKP	7	6	28	29	KQPKB	28	29	1	2	KRPK	16	28	-	-
KNNK	1	0	-	-	KQPKN	30	30	7	8	KRPKB	73	73	1	2
KNNKB	4	3	0	1	KQPKP	105	122	14	34	KRPKN	54	54	7	8
KNNKN	7	6	0	1	KQPKQ	124	123	28	29	KRPKP	56	68	100	103
KNNKP	115	114	73	74	KQPKR	37	43	27	33	KRPKQ	68	59	103	104
KNNKQ	1	0	72	72	KQPPK	9	32	-	-	KRPKR	74	74	28	33
KNNKR	3	2	40	41	KQQBK	4	8	-	-	KRPPK	15	32	-	-
KNNNK	21	21	-	-	KQQK	4	10	-	-	KRRBK	10	16	-	-
KNNPK	28	28	-	-	KQQKB	15	17	-	-	KRRK	7	16	-	-
KNPK	27	28	-	-	KQQKN	19	21	-	-	KRRKB	29	29	-	-
KNPKB	43	42	8	9	KQQKP	22	30	2	13	KRRKN	40	40	0	1
KNPKN	97	97	3	7	KQQKQ	30	30	12	13	KRRKP	33	40	40	50
KNPKP	57	57	57	58	KQQKR	35	35	2	19	KRRKQ	29	28	49	49
KNPKQ	41	33	62	55	KQQNK	4	9	-	-	KRRKR	31	31	2	20
KNPKR	44	43	66	67	KQQPK	4	10	-	-	KRRNK	10	16	-	-
KNPPK	32	32	-	-	KQQQK	3	4	-	-	KRRPK	14	16	-	-
KPK	28	28	-	-	KQQRK	4	6	-	-	KRRRK	5	7	-	-
KPKP	33	33	33	33	KQRBK	5	16	-	-					

Table 8: Maximal DTM figures for 1-0 and 0-1 wins, wtm and btm.

4. RESULTS

The first author has computed all 3-to-5-man DTM EGTs (Hyatt, 2000; Tamplin, 2000). His robust code also generated KQQKQQ on request for the Kasparov-World game (Nalimov, Wirth, and Haworth, 1999) and has now produced further 6-man EGTs including the deepest to date, KRNKNN.

The space-efficient index scheme incorporates the en passant rule and requires only 30.6×10^{9} elements in total for the 3-to-5-man endgames. It is better for each endgame than previous schemes. By comparison, Heinz'
scheme would have required $33.6 \times 10^{9}(+9.81 \%)$, Thompson's 51.9×10^{9} elements $(+69.45 \%)$ and Edwards' 74.1×10^{9} elements $(+142.04 \%)$, see Table 7.

The question of data integrity always arises with results which are not self-evidently correct. Nalimov runs a separate self-consistency phase on each EGT after it is generated. Both his EGTs and those of Wirth (1999) yield exactly the same number of mutual zugzwangs of each type ($=/ 1-0,0-1 /=$ and $0-1 / 1-0$) for all 2 -to-5-man endgames (Haworth, 2000) and no errors have yet been discovered.

DarkTHought (Heinz, 1997), using Heinz' index-scheme and EGTs, competed in WMCC 1997 (Hamlen and Feist, 1997) and WCCC 1999 (Beal, 1999). Nalimov's new index scheme has proved its practicality over the board, particularly in WCCC 1999 where it was used by ten competitors including the leading SHREDDER, Fritz, Junior and Nimzo.

Table 8 gives the depths of DTM-maximal 1-0 and $0-1$ wins, wtm and btm . The tables in the Appendix compare Nalimov's index sizes with others' and the statistics on residual broken positions in Nalimov's EGTs. This is the most complete tabulation of 2-5-man endgame data published so far.

5. SUMMARY

The index design is the key to computing compact and efficiently used chess endgame tables. The first author has exploited the available constraints on the positions to be indexed in the best way to date.

The result is that a robust and efficient EGT generation code, a complete suite of 145 3-to-5-man EGTs, and some 30 6-man EGTs are now publicly available.

Further progress in the compression of index ranges is possible. There can be less occurrences of men sharing squares if Pawns are notionally placed first (Karrer, 2000) and the presence of prior stm men is recognised.

6. ACKNOWLEDGEMENTS

Our thanks to an anonymous referee who contributed the succinct formula of Subsection 2.2 for indexing k like men. Also, thanks to Helmut Conrady, Peter Karrer and Lars Rasmussen whose combined contribution confirmed the maxDTM figures of Table 8 with two corrections, and substantiated them with the sets of maxDTM positions.

7. REFERENCES

Beal, D.F. (1999). The $9^{\text {th }}$ World Computer-Chess Championship: the Search-Engine Features of the Programs. ICCA Journal, Vol. 22, No. 3, pp. 160-163. ISSN 0920-234X.

Beasley J. \& Whitworth, T. (1996). Endgame Magic, esp. p. 158. Batsford. ISBN 0-7134-7971-X.
Bondar, I. (1998). Four Queen study. Shakhmatnaya kompozitsia No. 22. See also EG No. 137, p. 188 (2000).
Edwards, S.J. (1995). Comments on Barth’s Article "Combining Knowledge and Search to Yield Infallible Endgame Programs." ICCA Journal, Vol. 18, No. 4, p. 219-225.

Elkies, N. (2000). SSSS-Q. EG, No. 137, p. 158. ISSN-0012-7671.
Forthoffer, D., Rasmussen, L. and Dekker, S.T. (1989). A Correction to Some KRKB-Database Results. ICCA Journal, Vol. 12, No. 1, pp. 25-27.

Hamlen, J. and Feist, M. (1997). Report on the $15^{\text {th }}$ World Microcomputer Chess Championship. ICCA Journal, Vol. 20. No. 4, pp. 254-255.

Haworth, G.M ${ }^{\mathrm{c}} \mathrm{C}$. (2000). Private communication to Karrer, Nalimov, Rasmussen and Wirth.

Heinz, E.A. (1997). How DarkTHought plays Chess. ICCA Journal, Vol. 20, No. 3, pp. 166-176.
Heinz, E.A. (1999). Endgame Databases and Efficient Index Schemes for Chess. ICCA Journal, Vol. 22, No. 1, pp. 22-32.

Heinz, E.A. (2000). Scalable Search in Computer Chess. Vieweg Verlag (Morgan Kaufmann), Braunschweig/Wiesbaden. ISBN 3-5280-5732-7.

Herik, H.J. van den and Herschberg, I.S. (1985). The Construction of an Omniscient Endgame Database. ICCA Journal, Vol. 8, No. 2, pp. 66-87.

Herik, H.J. van den and Herschberg, I.S. (1986). A Data Base on Data Bases. ICCA Journal, Vol. 9, No. 1, pp. 29-34.

Hyatt, R. (2000). ftp://ftp.cis.uab.edu/pub/hyatt/TB/. Server providing CRAFTY and Nalimov's EGTs and statistics.

ICCA J. Editors (1992). Thompson: All About Five Men. ICCA Journal, Vol. 15, No. 3, pp. 140-143.
ICCA J. Editors (1993). Thompson: Quintets with Variations. ICCA Journal, Vol. 16, No. 2, pp. 86-90.
Karrer, P. (2000). KQQKQP and KQPKQP \approx. ICCA Journal, Vol. 23, No. 2, pp. 75-84.
Nalimov, E.V., Wirth, C., and Haworth, G.M ${ }^{\mathrm{c}} \mathrm{C}$. (1999). KQQKQQ and the Kasparov-World Game. ICCA Journal, Vol. 22, No. 4, pp. 195-212.

Savin, P.I. and Plaksin, N.M. (1987). The Art of Chess Composition. Kishinev.
Stiller, L.B. (1989). Parallel Analysis of Certain Endgames. ICCA Journal, Vol. 12, No. 2, pp. 55-64.
Stiller, L.B. (1991). Group Graphs and Computational Symmetry on Massively Parallel Architecture. The Journal of Supercomputing, Vol. 5, No. 2, pp. 99-117.

Stiller, L.B. (1994). Multilinear Algebra and Chess Endgames. Games of No Chance (ed. R.J. Nowakowski), pp. 151-192. MSRI Publications, v29, CUP, Cambridge, England. ISBN 0-5215-7411-0. Reprinted in paperback (1996). ISBN 0-5216-4652-9.

Stiller, L.B. (1995). Exploiting Symmetry of Parallel Architectures. Ph.D. Thesis, Department of Computer Sciences, The John Hopkins University, Baltimore, Md.

Ströhlein, T. (1970). Untersuchungen über kombinatorische Spiele. Dissertation, Fakultät für Allgemeine Wissenschaften der Technischen Hochschule München.

Tamplin, J. (2000). http://chess.liveonthenet.com/chess/endings/index.shtml. Access to Thompson's 5-man EGTs and maxDTC positions, and to Nalimov's 3- to 6-man EGTs.

Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal, Vol. 9, No. 3, pp. 131-139.
Thompson, K. (1991). Chess Endgames Vol. 1. ICCA Journal, Vol. 14, No. 1, p. 22.
Thompson, K. (1996). 6-Piece Endgames. ICCA Journal, Vol. 19, No. 4, pp. 215-226.
Troitzkiĭ, A.A. (1912). KNNNNKQ Study. Deutsche Schachzeitung.
Troitzkiĭ, A.A. (1934). Два коня против пешек (теоретический очерк). Сборник шахматных этюдов, pp. 248-288. Leningrad. [Dva Konya protiv pešek. Sbornik šakhmatnykh étyudov.] Partly republished (1937) in Collection of Chess Studies, with a Supplement on the Theory of the End-Game of Two Knights against Pawns. (trans. A.D. Pritzson), David McKay Company, the latter again re-published (1985) by Olms, Zürich.

Wirth, C. and Nievergelt, J. (1999). Exhaustive and Heuristic Retrograde Analysis of the KPPKP Endgame. ICCA Journal, Vol. 22, No. 2, pp. 67-80.

APPENDIX

This appendix provides complete data covering all 2-to-5-man endgames. Tables 9-13 compare the index sizes of Thompson's, Edwards' and Heinz' EGTs with the index size of Nalimov's EGTs as follows:

3-man endgames (Table 9), 4-man endgames (Table 10), 3-2-man pawnless endgames (Table 11),
3-2-man endgames with Pawns (Table 12) and 4-1 man endgames (Table 13).
Tables 14 a and 14 b give the number and $\%$ of residual broken positions per endgame in Nalimov's EGTs.
Three studies with unlikely numbers of like men are featured here, q.v. Figures 6-8 below.

	wtm	KT	SE	EH	btm	KT	SE	EH
Endgame	\# Elements	$+\Delta \%$	$+\Delta \%$	$+\Delta \%$	\# Elements	$+\Delta \%$	$+\Delta \%$	$+\Delta \%$
KBK	27,243	8.53	50.35	5.14	28,644	3.23	43.00	0.00
KNK	26,282	12.50	55.85	8.99	28,644	3.23	43.00	0.00
KPK	81,664	20.38	60.50	6.15	84,012	17.01	56.02	3.19
KQK	25,629	15.37	59.82	11.76	28,644	3.23	43.00	0.00
KRK	27,030	9.39	51.54	5.97	28,644	3.23	43.00	0.00
Aggregate	187,848	15.29	57.00	7.14	198,588	9.06	48.50	1.35

Table 9: Comparison of index sizes for 3-man endgames.

	wtm	KT	SE	EH	btm	KT	SE	EH
Endgame	\# Elements	$+\Delta \%$	$+\Delta \%$	+ $\square^{\%}$	\# Elements	$+\Delta \%$	$+\Delta \%$	+ $\Delta \%$
KBBK	789,885	139.57	231.88	10.60	873,642	116.60	200.06	0.00
KBKB	1,661,823	13.87	57.74	5.14	1,661,823	13.87	57.74	5.14
KBKN	1,661,823	13.87	57.74	5.14	1,603,202	18.04	63.51	8.99
KBKP	5,112,000	23.07	64.10	3.44	4,981,504	26.30	68.40	6.15
KBNK	1,550,620	22.04	69.06	12.68	1,747,284	8.30	50.03	0.00
KBPK	4,817,128	30.61	74.14	9.77	5,124,732	22.77	63.69	3.19
KNKN	1,603,202	18.04	63.51	8.99	1,603,202	18.04	63.51	8.99
KNKP	4,931,904	27.57	70.09	7.22	4,981,504	26.30	68.40	6.15
KNNK	735,304	157.36	256.51	18.81	873,642	116.60	200.06	0.00
KNPK	4,648,581	35.34	80.46	13.75	5,124,732	22.77	63.69	3.19
KPKP	3,863,492	22.13	117.13	5.46	3,863,492	22.13	117.13	5.46
KPPK	1,806,671	161.18	364.31	15.16	1,912,372	146.74	338.65	8.79
KQBK	1,512,507	25.11	73.32	15.52	1,747,284	8.30	50.03	0.00
KQKB	1,563,735	21.01	67.64	11.74	1,661,823	13.87	57.74	5.14
KQKN	1,563,735	21.01	67.64	11.74	1,603,202	18.04	63.51	8.99
KQKP	4,810,080	30.80	74.40	9.94	4,981,504	26.30	68.40	6.15
KQKQ	1,563,735	21.01	67.64	11.74	1,563,735	21.01	67.64	11.74
KQKR	1,563,735	21.01	67.64	11.74	1,649,196	14.74	58.95	5.95
KQNK	1,459,616	29.65	79.60	19.71	1,747,284	8.30	50.03	0.00
KQPK	4,533,490	38.78	85.04	16.64	5,124,732	22.77	63.69	3.19
KQQK	698,739	170.82	275.17	25.03	873,642	116.60	200.06	0.00
KQRK	1,500,276	26.13	74.73	16.46	1,747,284	8.30	50.03	0.00
KRBK	1,594,560	18.68	64.40	9.58	1,747,284	8.30	50.03	0.00
KRKB	1,649,196	14.74	58.95	5.95	1,661,823	13.87	57.74	5.14
KRKN	1,649,196	14.74	58.95	5.95	1,603,202	18.04	63.51	8.99
KRKP	5,072,736	24.02	65.37	4.24	4,981,504	26.30	68.40	6.15
KRKR	1,649,196	14.74	58.95	5.95	1,649,196	14.74	58.95	5.95
KRNK	1,538,479	23.00	70.39	13.57	1,747,284	8.30	50.03	0.00
KRPK	4,779,530	31.63	75.51	10.64	5,124,732	22.77	63.69	3.19
KRRK	777,300	143.45	237.25	12.39	873,642	116.60	200.06	0.00
Aggregate	72,662,274	34.34	87.60	9.97	76,439,484	27.70	78.33	4.54

Table 10: Comparison of index sizes for 4-man endgames.

	wtm	KT	SE	EH	btm	KT	SE	EH
Endgame	\# Elements	$+\Delta \%$	$+\Delta \%$	$+\Delta \%$	\# Elements	$+\Delta \%$	$+\Delta \%$	$+\Delta \%$
KBBKB	47,393,100	155.54	254.00	10.60	49,854,690	142.93	236.52	5.14
KBBKN	47,393,100	155.54	254.00	10.60	48,096,060	151.81	248.83	8.99
KBBKQ	47,393,100	155.54	254.00	10.60	46,912,050	158.17	257.63	11.74
KBBKR	47,393,100	155.54	254.00	10.60	49,475,880	144.79	239.10	5.95
KBNKB	93,037,200	30.17	80.33	12.68	99,709,380	21.46	68.26	5.14
KBNKN	93,037,200	30.17	80.33	12.68	96,192,120	25.90	74.41	8.99
KBNKQ	93,037,200	30.17	80.33	12.68	93,824,100	29.08	78.82	11.74
KBNKR	93,037,200	30.17	80.33	12.68	98,951,760	22.39	69.55	5.95
KNNKB	44,118,240	174.51	280.28	18.81	49,854,690	142.93	236.52	5.14
KNNKN	44,118,240	174.51	280.28	18.81	48,096,060	151.81	248.83	8.99
KNNKQ	44,118,240	174.51	280.28	18.81	46,912,050	158.17	257.63	11.74
KNNKR	44,118,240	174.51	280.28	18.81	49,475,880	144.79	239.10	5.95
KQBKB	90,750,420	33.45	84.87	15.52	99,709,380	21.46	68.26	5.14
KQBKN	90,750,420	33.45	84.87	15.52	96,192,120	25.90	74.41	8.99
KQBKQ	90,750,420	33.45	84.87	15.52	93,824,100	29.08	78.82	11.74
KQBKR	90,750,420	33.45	84.87	15.52	98,951,760	22.39	69.55	5.95
KQNKB	87,576,960	38.29	91.57	19.71	99,709,380	21.46	68.26	5.14
KQNKN	87,576,960	38.29	91.57	19.71	96,192,120	25.90	74.41	8.99
KQNKQ	87,576,960	38.29	91.57	19.71	93,824,100	29.08	78.82	11.74
KQNKR	87,576,960	38.29	91.57	19.71	98,951,760	22.39	69.55	5.95
KQQKB	41,944,320	188.74	299.99	24.97	49,854,690	142.93	236.52	5.14
KQQKN	41,944,320	188.74	299.99	24.97	48,096,060	151.81	248.83	8.99
KQQKQ	41,944,320	188.74	299.99	24.97	46,912,050	158.17	257.63	11.74
KQQKR	41,944,320	188.74	299.99	24.97	49,475,880	144.79	239.10	5.95
KQRKB	90,038,460	34.51	86.33	16.44	99,709,380	21.46	68.26	5.14
KQRKN	90,038,460	34.51	86.33	16.44	96,192,120	25.90	74.41	8.99
KQRKQ	90,038,460	34.51	86.33	16.44	93,824,100	29.08	78.82	11.74
KQRKR	90,038,460	34.51	86.33	16.44	98,951,760	22.39	69.55	5.95
KRBKB	95,673,600	26.59	75.36	9.58	99,709,380	21.46	68.26	5.14
KRBKN	95,673,600	26.59	75.36	9.58	96,192,120	25.90	74.41	8.99
KRBKQ	95,673,600	26.59	75.36	9.58	93,824,100	29.08	78.82	11.74
KRBKR	95,673,600	26.59	75.36	9.58	98,951,760	22.39	69.55	5.95
KRNKB	92,308,740	31.20	81.75	13.57	99,709,380	21.46	68.26	5.14
KRNKN	92,308,740	31.20	81.75	13.57	96,192,120	25.90	74.41	8.99
KRNKQ	92,308,740	31.20	81.75	13.57	93,824,100	29.08	78.82	11.74
KRNKR	92,308,740	31.20	81.75	13.57	98,951,760	22.39	69.55	5.95
KRRKB	46,658,340	159.57	259.58	12.35	49,854,690	142.93	236.52	5.14
KRRKN	46,658,340	159.57	259.58	12.35	48,096,060	151.81	248.83	8.99
KRRKQ	46,658,340	159.57	259.58	12.35	46,912,050	158.17	257.63	11.74
KRRKR	46,658,340	159.57	259.58	12.35	49,475,880	144.79	239.10	5.95
Aggregate	2,917,997,520	66.02	129.98	14.97	3,109,418,880	55.80	115.82	7.89

Table 11: Comparison of index sizes for pawnless 3-2 endgames.

Figure 6: Troitzkiĭ (1905).

Figure 7: Troitzkiĭ (1912).

Figure 8: Bondar (1998).

Beasley and Whitworth (1996), referring also to Savin and Plaksin (1987), cite the Troitzkiĭ study of 1905, q.v. Figure 6, with 5 black-square Bishops as follows:
"1. Bce5 a5 2. Ba1 a4 3. Bbe5 Ka2 4. Kc2 a3 5. Kc3 K \times a1 6. Kb3+ Kb1 7. Ba1 a2 8. Kc3 K \times a1 Kc2\#."
Elkies (2000) recalls the Troitzkiĭ (1912) study, q.v. Figure 7, noting that Troitzkiĭ (1934) includes four pages of analysis proving the 4 N -win:
"1. a8N+ Kd7 2. f8N+ Kc8 3. N×g6 Ne3+ 4. N×e3 (not 4. Ke4 N \times g4 5. Kf3 Ne3 6. Kg3 Nd5 =) h2 5. Nb6+ Kc7 6. Kc5 h1Q 7. Ned5+ Kd8 (7. ... Kb8 8. Nge7 Qg1+ 9. Kb5 Qf1+ 10. Nbc4 wins) 8. Nc6+ Ke8 9. Nce5 winning as Black is pushed slowly off the board, e.g. 9. ... Qc1+ 10. Kd6 Qa3+ 11. Kc6 Qc1+ (11. ... Qb3 12. Ngf4 Qc2+ 13. Kd6 Qd2 14. Ne6 Qb4+ 15. Nc5 Qa3 16. Nbd7 Qg3 17. Nc7+ Kd8 18. N5e6+ Kc8 19. Nd5 Qa3+ 20. Ndc5 wins ${ }^{10}$) 12. Nbc4 Kd8 13. Ngf4 Kc8 14. Ne6 Kb8 15. Kd7 wins ${ }^{11}$."

Bondar (1998) composed the study of Figure 8 featuring four losing black Queens:

1. f7 e1Q+2. Ka6 f1Q+3. Ka7 g1Q+4. Ka8 Q×f5 5. g×f5 h5 6. g6 Q $\times \mathrm{g} 6$ 7. f8Q+ Kh7 8. f $\times \mathrm{g} 6+\mathrm{Kh} 69$. Qf4+K×g6 10. Qf5+ Kh6 11. Ra6+ wins.

	wtm	KT	SE	EH	btm	KT	SE	EH
Endgame	\# Elements	$+\Delta \%$	$+\Delta \%$	$+\Delta \%$	\# Elements	$+\Delta \%$	$+\Delta \%$	$+\Delta \%$
KBBKP	148,223,520	171.65	262.20	7.03	149,445,120	169.43	259.24	6.15
KBNKP	290,989,584	38.37	84.50	9.03	298,890,240	34.72	79.62	6.15
КВРКВ	289,027,680	39.31	85.75	9.77	306,720,000	31.28	75.04	3.44
KBPKN	289,027,680	39.31	85.75	9.77	295,914,240	36.07	81.43	7.22
KBPKP	227,896,016	32.51	135.58	7.27	231,758,952	30.30	131.65	5.48
KBPKQ	289,027,680	39.31	85.75	9.77	288,610,560	39.51	86.02	9.93
KBPKR	289,027,680	39.31	85.75	9.77	304,369,920	32.29	76.39	4.24
KNNKP	137,991,648	191.80	289.06	14.96	149,445,120	169.43	259.24	6.15
KNPKB	278,914,860	44.36	92.49	13.75	306,720,000	31.28	75.04	3.44
KNPKN	278,914,860	44.36	92.49	13.75	295,914,240	36.07	81.43	7.22
KNPKP	219,921,779	37.32	144.12	11.16	231,758,952	30.30	131.65	5.48
KNPKQ	278,914,860	44.36	92.49	13.75	288,610,560	39.51	86.02	9.93
KNPKR	278,914,860	44.36	92.49	13.75	304,369,920	32.29	76.39	4.24
KPPKB	108,400,260	178.59	395.27	15.16	120,132,000	151.38	346.90	3.91
KPPKN	108,400,260	178.59	395.27	15.16	115,899,744	160.56	363.22	7.71
KPPKP	84,219,361	168.93	537.47	11.27	89,391,280	153.37	500.59	4.83
KPPKQ	108,400,260	178.59	395.27	15.16	113,036,880	167.16	374.95	10.43
KPPKR	108,400,260	178.59	395.27	15.16	119,209,296	153.33	350.36	4,72
KQBKP	283,818,240	41.87	89.16	11.79	298,890,240	34.72	79.62	6.15
KQNKP	273,904,512	47.00	96.01	15.84	298,890,240	34.72	79.62	6.15
KQPKB	272,015,040	48.03	97.37	16.64	306,720,000	31.28	75.04	3.44
KQPKN	272,015,040	48.03	97.37	16.64	295,914,240	36.07	81.43	7.22
KQPKP	214,481,388	40.80	150.31	13.98	231,758,952	30.30	131.65	5.48
KQPKQ	272,015,040	48.03	97.37	16.64	288,610,560	39.51	86.02	9.93
KQPKR	272,015,040	48.03	97.37	16.64	304,369,920	32.29	76.39	4.24
KQQKP	131,170,128	206.97	309.29	20.94	149,445,120	169.43	259.24	6.15
KQRKP	281,568,240	43.00	90.67	12.68	298,890,240	34.72	79.62	6.15
KRBKP	299,203,200	34.58	79.43	6.04	298,890,240	34.72	79.62	6.15
KRNKP	288,692,928	39.47	85.97	9.90	298,890,240	34.72	79.62	6.15
KRPKB	286,777,440	40.41	87.21	10.64	306,720,000	31.28	75.04	3.44
KRPKN	286,777,440	40.41	87.21	10.64	295,914,240	36.07	81.43	7.22
KRPKP	226,121,876	33.55	137.43	8.11	231,758,952	30.30	131.65	5.48
KRPKQ	286,777,440	40.41	87.21	10.64	288,610,560	39.51	86.02	9.93
KRPKR	286,777,440	40.41	87.21	10.64	304,369,920	32.29	76.39	4.24
KRRKP	145,901,232	175.98	267.97	8.73	149,445,120	169.43	259.24	6.15
Aggregate	8,194,644,772	60.00	129.30	12.09	8,658,285,808	51.43	117.02	6.09

Table 12: Comparison of index sizes over 3-2 endgames with Pawns.

[^5]| | wtm | KT | SE | EH | btm | KT | SE | EH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Endgame | \# Elements | $+\Delta \%$ | $+\Delta \%$ | $+\Delta \%$ | \# Elements | $+\Delta \%$ | $+\Delta \%$ | $+\Delta \%$ |
| KBBBK | 15,010,230 | 706.85 | 1017.72 | 16.41 | 17,472,840 | 593.14 | 860.19 | 0.00 |
| KBBNK | 44,983,618 | 169.23 | 272.96 | 16.53 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KBBPK | 139,715,040 | 188.20 | 284.26 | 13.54 | 153,741,960 | 161.90 | 249.20 | 3.19 |
| KBNNK | 43,406,294 | 179.02 | 286.52 | 20.76 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KBNPK | 274,352,939 | 46.76 | 95.69 | 15.65 | 307,483,920 | 30.95 | 74.60 | 3.19 |
| KBPPK | 106,602,156 | 183.29 | 403.62 | 17.10 | 114,742,320 | 163.19 | 367.89 | 8.79 |
| KNNNK | 13,486,227 | 798.03 | 1144.03 | 29.56 | 17,472,840 | 593.14 | 860.19 | 0.00 |
| KNNPK | 130,135,501 | 209.41 | 312.55 | 21.90 | 153,741,960 | 161.90 | 249.20 | 3.19 |
| KNPPK | 102,898,651 | 193.48 | 421.75 | 21.31 | 114,742,320 | 163.19 | 367.89 | 8.79 |
| KPPPK | 26,061,704 | 769.06 | 1960.00 | 20.36 | 28,388,716 | 697.83 | 1791.14 | 10.49 |
| KQBBK | 43,879,679 | 176.01 | 282.35 | 19.46 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KQBNK | 86,166,717 | 40.55 | 94.71 | 21.67 | 104,837,040 | 15.52 | 60.03 | 0.00 |
| KQBPK | 267,576,632 | 50.48 | 100.64 | 18.57 | 307,483,920 | 30.95 | 74.60 | 3.19 |
| KQNNK | 40,873,646 | 196.30 | 310.47 | 28.25 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KQNPK | 258,294,639 | 55.89 | 107.85 | 22.84 | 307,483,920 | 30.95 | 74.60 | 3.19 |
| KQPPK | 100,347,220 | 200.94 | 435.01 | 24.40 | 114,742,320 | 163.19 | 367.89 | 8.79 |
| KQQBK | 41,270,973 | 193.45 | 306.51 | 27.01 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KQQNK | 39,840,787 | 203.99 | 321.11 | 31.57 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KQQPK | 123,688,859 | 225.54 | 334.05 | 28.26 | 153,741,960 | 161.90 | 249.20 | 3.19 |
| KQQQK | 12,479,974 | 870.44 | 1244.33 | 40.01 | 17,472,840 | 593.14 | 860.19 | 0.00 |
| KQQRK | 40,916,820 | 195.99 | 310.03 | 28.11 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KQRBK | 88,557,959 | 36.76 | 89.45 | 18.38 | 104,837,040 | 15.52 | 60.03 | 0.00 |
| KQRNK | 85,470,603 | 41.70 | 96.29 | 22.66 | 104,837,040 | 15.52 | 60.03 | 0.00 |
| KQRPK | 265,421,907 | 51.70 | 102.27 | 19.54 | 307,483,920 | 30.95 | 74.60 | 3.19 |
| KQRRK | 43,157,690 | 180.62 | 288.74 | 21.46 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KRBBK | 46,242,089 | 161.91 | 262.81 | 13.36 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KRBNK | 90,787,358 | 33.40 | 84.80 | 15.48 | 104,837,040 | 15.52 | 60.03 | 0.00 |
| KRBPK | 281,991,360 | 42.79 | 90.39 | 12.51 | 307,483,920 | 30.95 | 74.60 | 3.19 |
| KRNNK | 43,056,198 | 181.28 | 289.66 | 21.74 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KRNPK | 272,153,675 | 47.95 | 97.27 | 16.58 | 307,483,920 | 30.95 | 74.60 | 3.19 |
| KRPPK | 105,758,666 | 185.55 | 407.64 | 18.03 | 114,742,320 | 163.19 | 367.89 | 8.79 |
| KRRBK | 45,873,720 | 164.01 | 265.73 | 14.27 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KRRNK | 44,265,261 | 173.60 | 279.02 | 18.42 | 52,418,520 | 131.05 | 220.06 | 0.00 |
| KRRPK | 137,491,197 | 192.86 | 290.48 | 15.38 | 153,741,960 | 161.90 | 249.20 | 3.19 |
| KRRRK | 14,644,690 | 726.99 | 1045.62 | 19.31 | 17,472,840 | 593.14 | 860.19 | 0.00 |
| Aggregate | 3,516,860,679 | 124.15 | 224.39 | 19.06 | 4,065,491,116 | 93.91 | 180.62 | 2.99 |

Table 13: Comparison of index ranges over 4-1 endgames.

	Broken Positions					Broken Positions			
	wtm		btm			wtm		btm	
Endgame	\#	\%	\#	\%	Endgame	\#	\%	\#	\%
KBBBK	3,795,425	25.29	0	0.00	KBNKN	9,252,139	9.94	0	0.00
KBBK	139,093	17.61	0	0.00	KBNKP	44,907,128	15.43	0	0.00
КВВКВ	8,055,627	17.00	4,272,301	8.57	KBNKQ	9,252,139	9.94	24,074,338	25.66
KBBKN	8,055,627	17.00	0	0.00	KBNKR	9,252,139	9.94	15,529,736	15.69
KBBKP	32,609,914	22.00	0	0.00	KBNNK	4,915,218	11.32	0	0.00
KBBKQ	8,055,627	17.00	12,037,169	25.66	KBNPK	35,301,529	12.87	0	0.00
KBBKR	8,055,627	17.00	7,764,868	15.69	KBPK	500,513	10.39	0	0.00
KBBNK	8,769,335	19.49	0	0.00	KBPKB	29,140,721	10.08	39,073,198	12.74
KBBPK	27,592,969	19.75	0	0.00	KBPKN	29,140,721	10.08	13,658,280	4.62
KBK	2,507	9.20	0	0.00	KBPKP	32,514,553	14.27	7,406,518	3.20
KBKB	147,587	8.88	147,587	8.88	KBPKQ	29,140,721	10.08	83,399,904	28.90
KBKN	147,587	8.88	0	0.00	KBPKR	29,140,721	10.08	59,322,146	19.49
KBKP	666,320	13.03	0	0.00	KBPPK	12,305,285	11.54	0	0.00
KBNK	158,939	10.25	0	0.00	KK	0	0.00	0	0.00
KBNKB	9,252,139	9.94	8,544,602	8.57	KNK	0	0.00	0	0.00

Table 14a: Numbers and Percentages of Broken Positions in Nalimov's EGTs.

	Broken Positions					Broken Positions			
	wtm		btm			wtm		btm	
Endgame	\#	\%	\#	\%	Endgame	\#	\%	\#	\%
KNKN	0	0.00	0	0.00	KQQKB	19,489,387	46.46	4,272,301	8.57
KNKP	227,638	4.62	0	0.00	KQQKN	19,489,387	46.46	0	0.00
KNNK	0	0.00	0	0.00	KQQKP	64,878,086	49.46	0	0.00
KNNKB	0	0.00	616,152	1.24	KQQKQ	19,489,387	46.46	12,037,169	25.66
KNNKN	0	0.00	0	0.00	KQQKR	19,489,387	46.46	7,764,868	15.69
KNNKP	8,479,456	6.14	0	0.00	KQQNK	19,083,485	47.90	0	0.00
KNNKQ	0	0.00	12,037,169	25.66	KQQPK	59,373,739	48.00	0	0.00
KNNKR	0	0.00	7,764,868	15.69	KQQQK	7,854,527	62.94	0	0.00
KNNNK	0	0.00	0	0.00	KQQRK	23,835,461	58.25	0	0.00
KNNPK	4,136,099	3.18	0	0.00	KQRBK	41,394,865	46.74	0	0.00
KNPK	73,856	1.59	0	0.00	KQRK	616,152	41.07	0	0.00
KNPKB	4,431,360	1.59	39,073,198	12.74	KQRKB	35,638,322	39.58	8,544,602	8.57
KNPKN	4,431,360	1.59	13,658,280	4.62	KQRKN	35,638,322	39.58	0	0.00
KNPKP	13,811,226	6.28	7,406,518	3.20	KQRKP	121,235,002	43.06	0	0.00
KNPKQ	4,431,360	1.59	83,399,904	28.90	KQRKQ	35,638,322	39.58	24,074,338	25.66
KNPKR	4,431,360	1.59	59,322,146	19.49	KQRKR	35,638,322	39.58	15,529,736	15.69
KNPPK	3,270,048	3.18	0	0.00	KQRNK	35,307,376	41.31	0	0.00
KPK	0	0.00	0	0.00	KQRPK	109,627,138	41.30	0	0.00
KРKP	123,555	3.20	123,555	3.20	KQRRK	22,457,809	52.04	0	0.00
KPPK	0	0.00	0	0.00	KRBBK	14,750,918	31.90	0	0.00
KPPKB	0	0.00	20,104,876	16.74	KRBK	396,136	24.84	0	0.00
KPPKN	0	0.00	10,532,252	9.09	KRBKB	22,924,278	23.96	8,544,602	8.57
KPPKP	2,854,365	3.39	5,664,886	6.34	KRBKN	22,924,278	23.96	0	0.00
KPPKQ	0	0.00	36,200,376	32.03	KRBKP	85,322,108	28.52	0	0.00
KPPKR	0	0.00	27,657,596	23.20	KRBKQ	22,924,278	23.96	24,074,338	25.66
KPPPK	0	0.00	0	0.00	KRBKR	22,924,278	23.96	15,529,736	15.69
KQBBK	18,081,566	41.21	0	0.00	KRBNK	23,847,355	26.27	0	0.00
KQBK	526,735	34.83	0	0.00	KRBPK	74,211,659	26.32	0	0.00
KQBKB	30,490,930	33.60	8,544,602	8.57	KRK	4,630	17.13	0	0.00
KQBKN	30,490,930	33.60	0	0.00	KRKB	270,560	16.41	147,587	8.88
KQBKP	106,356,738	37.47	0	0.00	KRKN	270,560	16.41	0	0.00
KQBKQ	30,490,930	33.60	24,074,338	25.66	KRKP	1,022,716	20.16	0	0.00
KQBKR	30,490,930	33.60	15,529,736	15.69	KRKR	270,560	16.41	270,560	16.41
KQBNK	30,583,209	35.49	0	0.00	KRNK	271,935	17.68	0	0.00
KQBPK	95,439,748	35.67	0	0.00	KRNKB	15,669,550	16.98	8,544,602	8.57
KQK	7,137	27.85	0	0.00	KRNKN	15,669,550	16.98	0	0.00
KQKB	418,147	26.74	147,587	8.88	KRNKP	63,487,156	21.99	0	0.00
KQKN	418,147	26.74	0	0.00	KRNKQ	15,669,550	16.98	24,074,338	25.66
KQKP	1,439,112	29.92	0	0.00	KRNKR	15,669,550	16.98	15,529,736	15.69
KQKQ	418,147	26.74	418,147	26.74	KRNNK	7,861,335	18.26	0	0.00
KQKR	418,147	26.74	270,560	16.41	KRNPK	53,055,381	19.49	0	0.00
KQNK	404,593	27.72	0	0.00	KRPK	840,944	17.59	0	0.00
KQNKB	23,344,829	26.66	8,544,602	8.57	KRPKB	48,472,746	16.90	39,073,198	12.74
KQNKN	23,344,829	26.66	0	0.00	KRPKN	48,472,746	16.90	13,658,280	4.62
KQNKP	84,872,244	30.99	0	0.00	KRPKP	47,046,257	20.81	7,406,518	3.20
KQNKQ	23,344,829	26.66	24,074,338	25.66	KRPKQ	48,472,746	16.90	83,399,904	28.90
KQNKR	23,344,829	26.66	15,529,736	15.69	KRPKR	48,472,746	16.90	59,322,146	19.49
KQNNK	11,305,947	27.66	0	0.00	KRPPK	19,194,662	18.15	0	0.00
KQNPK	74,628,435	28.89	0	0.00	KRRBK	17,408,683	37.95	0	0.00
KQPK	1,259,793	27.79	0	0.00	KRRK	245,132	31.54	0	0.00
KQPKB	72,713,627	26.73	39,073,198	12.74	KRRKB	14,121,920	30.27	4,272,301	8.57
KQPKN	72,713,627	26.73	13,658,280	4.62	KRRKN	14,121,920	30.27	0	0.00
KQPKP	64,376,740	30.02	7,406,518	3.20	KRRKP	50,151,272	34.37	0	0.00
KQPKQ	72,713,627	26.73	83,399,904	28.90	KRRKQ	14,121,920	30.27	12,037,169	25.66
KQPKR	72,713,627	26.73	59,322,146	19.49	KRRKR	14,121,920	30.27	7,764,868	15.69
KQPPK	27,886,605	27.79	0	0.00	KRRNK	14,334,054	32.38	0	0.00
KQQBK	22,021,058	53.36	0	0.00	KRRPK	44,331,316	32.24	0	0.00
KQQK	336,585	48.17	0	0.00	KRRRK	6,387,602	43.62	0	0.00

Table 14b: Numbers and Percentages of Broken Positions in Nalimov's EGTs.

[^0]: 1 This is an edited version of the presentation by Ernst Heinz, delivered on June 18, 1999 at the Advances in Computer Games 9 Conference in Paderborn, Germany, q.v. the Proceedings of the ACG 9 Conference.
 2 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA: eugenen@microsoft.com.
 3 ICL, Sutton's Park Avenue, Reading, RG6 1AZ, UK: guy.haworth@icl.com.
 4 M.I.T. Laboratory for Computer Science (NE 43-228). 545 Technology Square, Cambridge, MA 02139, USA: heinz@mit.edu.

[^1]: 5 Thompson (KT), Edwards (SE), Heinz (EH), Wirth (CW) and Nalimov (EN).

[^2]: 6 A piece is a man which is not a Pawn.

[^3]: 7 A broken index entry denotes an illegal, unwanted or no position.
 8 An unblockable check cannot be blocked by placing a man on the board.

[^4]: 9 The 3－5 man exceptions are KBKN，KBKP，KRKN，KRKP，KBBKQ，KRBKQ，KBPKQ and KRBKP．

[^5]: 10 20. ... Qg3 21. Ne7+ Kb8 22. Ncd7+ Ka8 23. Nec5 Qf4 24. Kc7 Qb4 25. Nb6+ Q×b6+ 26. K $\times \mathrm{b} 6 \mathrm{~Kb} 8$ 27. Na6+ Ka8 etc.
 11 15. ... Q×c4 16. N×c4 Kb7 17. Nc5+ Ka7 18. Kc7 Ka8 19. Ncb6+ Ka7 20. Nc8+ Ka8 21. Ndb6\#.

