
Game-Tree Search Using Proof Numbers 131

GAME-TREE SEARCH USING PROOF NUMBERS:
THE FIRST TWENTY YEARS

Akihiro Kishimoto1 Mark H.M. Winands2 Martin Müller3 Jahn-Takeshi Saito4

ABSTRACT

Solving games is a challenging and attractive task in the domain of Artificial Intelligence.
Despite enormous progress, solving increasingly difficult games or game positions continues
to pose hard technical challenges. Over the last twenty years, algorithms based on the
concept of proof and disproof numbers have become dominating techniques for game solving.
Prominent examples include solving the game of checkers to be a draw, and developing
checkmate solvers for shogi, which can find mates that take over a thousand moves. This
article provides an overview of the research on Proof-Number Search and its many variants
and enhancements.

1. INTRODUCTION

Search plays a fundamental role for problem solving in Artificial Intelligence, with a wide range of
applications including database systems, web mining, theorem proving and game-playing. In particular,
much research has gone into inventing new search algorithms for game-playing programs, which are
capable of defeating the best human players. These efforts have resulted in computers successfully
outperforming the best humans in popular games such as Othello (Buro, 1997), checkers (Schaeffer,
1997), and chess (Campbell, Hoane Jr., and Hsu, 2002). These games are categorized as two-player
zero-sum games with perfect information or two-player games in short in this article.

The αβ algorithm (Knuth and Moore, 1975) has been the dominating search method in the domain
of two-player games, until the more recent advent of Monte Carlo Tree Search (MCTS) (Coulom,
2007; Browne et al., 2012) which has achieved remarkable success in games such as Go. αβ relies on
the minimax framework where the first player tries to maximize his or her advantage, while the second
player tries to minimize it. Basic αβ performs depth-first search with fixed depth, and calls an evaluation
function at each leaf node which returns a numeric score that approximates the advantage of the first
player. The algorithm backpropagates the best score to determine the next move to play in a given
position P , and prunes subtrees that are irrelevant for computing the score of P by updating a lower
bound α and an upper bound β on the score. In conjunction with good move ordering, αβ pruning
allows the algorithm to search much more deeply, resulting in significantly improved performance. Many
variants and enhancements of αβ have been developed over decades (see Marsland, 1986; Junghanns,
1998).

Developing super-human-strength programs has been of great interest to game researchers. Another
big research challenge is to create solvers that solve games - determine the final result of the game with
best play on both sides - or at least solve difficult positions within a game (van den Herik, Uiterwijk,
and van Rijswijck, 2002). This task is often more challenging than “just” playing well. Given a position
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P to solve, a solver must select a move that is provably best, while a tournament program only has to
select a move that is probably best.

In principle, given an unlimited amount of time, αβ can determine whether a position P of any fi-
nite game is a win or not, even on moderate hardware. For a given game position, assign a score of
∞ for a first player win, −∞ for a terminal position that is not a win, and possibly other, heuristic
values which approximate the winning probability of the first player in the undecided positions. Then
exploring a game tree rooted at P deeply enough with αβ will determine the score of P as either ∞
or −∞. In practice, due to its property of being essentially a fixed-depth search, αβ inherently suffers
from the search tree growing exponentially with the search depth. This exponential growth limits the
performance of αβ search, even with all the effective enhancements such as iterative deepening (Slate
and Atkin, 1977), move ordering (Akl and Newborn, 1977; Schaeffer, 1983), quiescence search (Beal,
1990), forward pruning (Donninger, 1993; Björnsson and Marsland, 2001), fractional-depth search based
on realization probability (Tsuruoka, Yokoyama, and Chikayama, 2002), and search extensions (Anan-
tharaman, Campbell, and Hsu, 1988; Campbell et al., 2002; Tsuruoka et al., 2002). Such techniques
can greatly improve the effective branching factor and the search depth reached, but do not change the
basic fact of exponential growth.

An implicit assumption in solvers based on αβ search is that proofs at shallow search depths are easier
to find. However, many popular games such as Go-Moku or checkmating puzzles are characterized by
solutions containing narrow but very deep lines of play. It is difficult to adjust αβ search to perform well
in these cases. Proof-Number Search (PNS) (Allis, van der Meulen, and van den Herik, 1994) performs
variable-depth search that has no explicit bounds on the search depth. The notion of proof and disproof
numbers in PNS originates from McAllester’s conspiracy numbers, which measure the reliability of
the score in the minimax framework (McAllester, 1985; McAllester, 1988). Like PNS, McAllester’s
conspiracy number search (CNS) performs variable-depth search by trying to expand an unreliable leaf
node, as estimated by conspiracy numbers, in order to make the score of that node more reliable. Unlike
CNS, PNS specializes conspiracy numbers to AND/OR tree search with binary (win/loss) outcomes.
This specialization leads to a significantly reduced memory requirement of PNS compared to CNS.
Additionally, in contrast to conspiracy numbers, proof and disproof numbers also estimate the difficulty
of solving a node. As a result, PNS implements a “simplest-first” search paradigm, which can find small
but potentially deep proofs efficiently.

While the original formulation of PNS was already quite powerful, it was still plagued by some severe
problems such as its hunger for memory, problems in applying the method to state spaces that are
not trees, and excessive depth-first behavior leading to overly long solutions (Allis, 1994). To address
these shortcomings, many variations of the algorithm have been developed (cf. van den Herik and
Winands, 2008), and these variants have been successfully applied to a large number of domains including
chess (Breuker, 1998), Othello (Nagai, 2002), shogi (Seo, Iida, and Uiterwijk, 2001; Nagai, 2002),
Lines of Action (LOA) (Winands, Uiterwijk, and van den Herik, 2004), Go (Kishimoto and Müller,
2005b), checkers (Schaeffer et al., 2007), Connect6 (Xu et al., 2009; Wu et al., 2011), the multi-player
game Rolit (Saito and Winands, 2010), and even chemical synthesis (Heifets and Jurisica, 2012). All
PNS variants share two features: (1) they are algorithms for solving binary goals, such as proving a win
or a loss in a game position, and (2) they rely on the concept of proof and disproof numbers. Extensions
which relax the binary goal assumption are reviewed in Section 9.

This article gives an overview of popular PNS variants and their enhancements developed over the last
twenty years. It also describes several successful applications of PNS variants. The material is organized
as follows: Section 2 introduces the terminology for AND/OR trees and their relation to solving games
or game positions. Next, Section 3 presents the basic PNS algorithm. Subsequently, Section 4 discusses
depth-first proof-number search, and Section 5 explains how PNS variants deal with limited memory.
Section 6 discusses extensions of PNS from trees to more general graphs. Section 7 describes several
techniques which further enhance the performance of PNS variants. Section 8 is dedicated to parallel
PNS methods. Section 9 briefly reviews PNS extensions for multi-valued outcomes, Section 10 gives
an overview of application domains for PNS variants, and the final Section 11 concludes and discusses
future research directions.
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2. AND/OR TREES, SOLVING GAME POSITIONS AND SOLVING GAMES

This section introduces the terminology for AND/OR trees and explains the relation to solving game
positions or whole games.

An AND/OR tree is a rooted, finite tree consisting of OR and AND nodes. OR nodes correspond to
positions with the first player to play, while in AND nodes, the second player is to play. All nodes
except the root node have a parent. A directed edge between a parent and a child is drawn for each
legal move. Each edge is labeled by a description of the move, for example by move coordinates. In this
article the root is always an OR node, but can be in practice an AND node as well.

From the viewpoint of the first player, each node in an AND/OR tree can have a value of win, loss, or
unknown. Nodes of value win and loss indicate positions that are known wins and losses for the first
player, respectively, while nodes with value unknown must be examined further by expanding a subtree,
in order to determine whether the node is a win or loss with best play. An AND/OR tree is called
solved when the value of the root node has been determined to be either a win or loss5. A terminal leaf
(or short terminal) node has no children. Its value is either a win or loss, as determined by the rules of
the game. A node with at least one child is an internal node. A non-terminal leaf (or short leaf) node
is a node which has not been expanded yet. It is unknown whether a leaf node is terminal or internal.
The phrase “a node is x” is short for “a node has value x”.

The values of internal nodes can be computed from the values of its children. If at least one child of an
internal OR node n is a win, then n is also a win since the first player can move to that child. If all
children of n are losses, then n is also a loss. Similarly, an internal AND node n is a loss if at least one
of its children is a loss, and a win if all its children are wins. A node that has been determined to be a
win is also called a proven node, while a node that is known to be a loss is called a disproven node. A
proof is a computed win, while a disproof is a computed loss.

A proof tree6 is a subtree of an AND/OR tree that contains a winning strategy for the first player and
therefore guarantees that a node is proven. A proof tree T with root node r has the following properties:

1. The root node r is in T .

2. For each internal OR node of T , at least one child is contained in T .

3. For each internal AND node of T , all children are contained in T .

4. All terminal nodes in T are wins.

A disproof tree, which contains a winning strategy for the second player, is defined in a dual way. All
its terminal nodes are losses, it contains one child of internal AND nodes, and all children of internal
OR nodes (including the root).

Figure 1 shows an example of an AND/OR tree. OR nodes are represented by square boxes and AND
nodes are represented by circles. Node A is the root node. D, F and I are terminal nodes and G, H and
J are leaf nodes that have value unknown. A, B, C and E are internal nodes. The values of the internal
nodes are calculated by propagating back the values of the leaf and terminal nodes. E is a win because
I is a win. C is a loss because F is a loss. Because D and E are wins, B is a win, which leads A to be a
win. A proof tree of A is shown with dashed lines.

3. PROOF-NUMBER SEARCH

Proof-Number Search (PNS) by Allis et al. (1994) is the original search algorithm using proof numbers.
All other variants of proof-number search are descendants of PNS. Its conceptually closest forerunner

5Although many games have draws, AND/OR tree search can return only the binary outcome. Therefore, for the sake
of simplicity, draws are considered to be losses for the first player, if the paper does not explicitly describe the value of
draws. The techniques for proving draws with AND/OR tree search will be described in Section 9.

6So-called solution trees are defined in a similar way (de Bruin, Pijls, and Plaat, 1994; Pijls and de Bruin, 1999).
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Figure 1: Example of an AND/OR tree. OR nodes shown as squares, AND nodes as circles.

is Conspiracy-Number Search (CNS) by McAllester (1985, 1988). CNS is a best-first search algorithm,
which determines the cardinality of the smallest set of leaf nodes which have to “conspire” to change
their values in order to change the minimax value of the root. One of the ideas underlying Conspiracy-
Number Search is that the distribution of the values over the leaf nodes of the tree, and the shape of
the tree, should influence the selection of the next node to be investigated. This last aspect has been
singled out in PNS (Allis, 1994).

This section describes PNS by explaining the basic idea in Subsection 3.1, introducing proof and disproof
numbers in Subsection 3.2, describing the PNS algorithm in Subsection 3.3, and finally giving the
associated pseudo-code in Subsection 3.4.

3.1 The Basic Idea of PNS

PNS is a best-first search algorithm. Its heuristic determines the most promising leaf by selecting a
most-proving node (MPN)7, which is a leaf that, if solved, can contribute to either a proof or a disproof of
the root. A MPN is found by exploiting two characteristics of the search tree: (1) its shape (determined
by the branching factor of every internal node), and (2) the values of the leaves. Basic, unenhanced
PNS is an uninformed search method that does not require any game-specific knowledge beyond its
rules.

3.2 Proof and Disproof Numbers

In order to find a MPN, PNS maintains two numbers for each node n. (1) The proof number pn(n)
is the smallest number of leaf nodes in the subtree starting with n that have to be proven in order to
prove that n is a win. (2) The disproof number dn(n) is the minimum number of leaf nodes that have
to be disproven in order to prove that n is a loss.

When the node n is clear from context, we sometimes just write pn short for pn(n) and dn for dn(n).
The values of pn and dn can be calculated for each node in a tree in a bottom-up manner. Proof and
disproof numbers for a node are set by initialization and can be modified later by backpropagation from
its children. In a terminal node t, the game-theoretic value is known. If t is a win, then pn(t) = 0 and
dn(t) =∞. If t is a loss, then pn(t) =∞ and dn(t) = 0.

A non-terminal leaf node n is initialized according to an initialization rule measuring the estimated
cost of (dis)proving n. The simplest and most optimistic initialization rule only counts the node itself:

7Also called a most-promising node by some authors.
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Figure 2: Example of a game tree. OR nodes shown as squares, AND nodes as circles. pn shown above
dn.

pn(n) = dn(n) = 1. Proof and disproof numbers for an internal node n are calculated from its children
succ(n) as follows: For OR nodes, pn(n) = mins∈succ(n) pn(s) and dn(n) =

∑
s∈succ(n) dn(s). For AND

nodes, pn(n) =
∑

s∈succ(n) pn(s) and dn(n) = mins∈succ(n) dn(s).

The rules for handling infinity in computations are: ∞ + x = ∞ and min(∞, x) = x for all x ≥ 0.
However, for bounds in the df-pn algorithm of Section 4, ∞− x <∞− y if 0 ≤ y < x for finite x, y. In
practice, a large finite value is used to represent ∞.

In the example of Figure 2, there are two terminal nodes, both wins with pn = 0 and dn = ∞. The
non-terminal leaves have been initialized with pn = dn = 1. The values of the leaves’ parents are
computed according to the backpropagation rule for AND nodes, while the root is an OR node.

The only MPN in this example is the leftmost leaf. It is found by descending in the tree from the root.
At each internal OR node n, a child with smallest proof number among n’s children is chosen, while
at each internal AND node, the method selects a child with smallest disproof number. When a leaf is
reached, it is chosen as the MPN.

Ties can be broken in an arbitrary way. This article simply assumes that the first encountered child
with smallest (dis)proof number (matching that of the parent) is chosen.

3.3 The PNS Algorithm

At the start of PNS, pn and dn of the root are initialized. The search iteratively expands an AND/OR
tree until the value of the root is decided - either pn or dn becomes 0, indicating a proof or disproof. In
practice, a search can also be aborted when time or memory are exhausted. At each iteration, pn and
dn are kept up to date and consistent for all nodes in the tree. Each iteration consists of four phases:

(1) Selection. A MPN is chosen as described above.

(2) Expansion. The MPN is expanded by adding a new child node for each legal successor position.

(3) Evaluation. The new leaves are evaluated and their pn and dn are initialized as described above.

(4) Backpropagation. The values of pn and dn of nodes along the path from the MPN back to the
root are recomputed.

We note that this four-phase process of PNS is the same as that of MCTS (cf. Chaslot et al., 2008b)
with different instances for the various procedures.

Allis (1994) observed that as soon as the proof and disproof number of some ancestor node a do not
change, the update is complete, and selection of the next MPN can be started by descending from a
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instead of the root. As an additional optimization, Nagai (1998) suggested to stop as soon as both proof
and disproof number of a node are not larger than the proof and disproof number of its parent. This
breaks consistency of the values with nodes higher up in the tree, but does not break MPN selection
since the node already had a minimum proof or disproof number amongst its siblings, and that number
only became smaller.

3.4 Pseudo-Code for PNS

Figure 3 gives pseudo-code for PNS. PNS is the main procedure of the algorithm (lines 1-12). The pro-
cedure Evaluate evaluates a position, and assigns one of the following three values to a node: disproven,
proven, or unknown. The proof and disproof numbers of a node are initialized by SetProofAndDis-
proofNumbers (lines 13-46). The function SelectMostProvingNode finds a MPN (lines 47-67). Expanding
the MPN is done by ExpandNode (lines 68-80). After the expansion of the MPN, the new information
is backed up by UpdateAncestors (lines 81-95).

4. DEPTH-FIRST PROOF-NUMBER SEARCH

One inefficiency of PNS, even with the optimizations from the previous section, is that proof and disproof
numbers are recomputed even if the decision about which child is the one with minimal (dis)proof number
does not change. For example, if the proof numbers of the children of an OR node are {15, 6, 5,2, 8}, then
the fourth child remains a MPN until its proof number exceeds 5, the proof number of the second-smallest
child. Expressing the search termination condition for subtrees in terms of bounds on the (dis)proof
numbers leads to Nagai’s Depth-first Proof-number Search (df-pn) algorithm (Nagai, 1999a; Nagai,
2002). It has been proven that the algorithm always selects a MPN (cf. Nagai, 2002).

Df-pn uses two thresholds to limit the current iteration below a node n: pt(n) for the proof number and
dt(n) for the disproof number. As with (dis)proof numbers, we sometimes omit the node when it is clear
from the context and simply write pt and dt. The thresholds of n are used to check whether a MPN
exists in n’s subtree. The search in the subtree of a node n continues until the termination condition
is reached: pn(n) ≥ pt(n) or dn(n) ≥ dt(n). When df-pn examines a node n, it recalculates pn(n) and
dn(n) from n’s children. If the termination condition holds at n after this recalculation, then df-pn
backtracks to n’s parent. In this case, n’s subtree no longer contains a MPN. Otherwise, the algorithm
selects the MPN as usual in the subtree of n.

Thresholds are updated when the best child is selected. Assume that df-pn examines OR node p, and
child c1 has a smallest proof number among p’s children. Let pn2 be the second smallest proof number
among the list of proof numbers of all children. Then, df-pn examines c1 with the following thresholds:

pt(c1) = min(pt(p), pn2 + 1), dt(c1) = dt(p)− dn(p) + dn(c1).

The condition of pt(c1) indicates that df-pn must backtrack to p in one of two cases: (1) when the MPN
switches to the child with the proof number of pn2 and (2) when p’s subtree no longer contains a MPN.
dt(c1) is set so that df-pn can examine c1’s subtree as long as the total disproof number of p’s children
does not exceed dt(p). This guarantees the existence of a MPN in c1’s subtree.

Analogously, for an AND node p let dn2 be the second smallest disproof number among the list of
disproof numbers of p’s children. Then pt and dt are assigned as follows:

pt(c1) = pt(p)− pn(p) + pn(c1), dt(c1) = min(dt(p), dn2 + 1).

Figure 4 shows an example of how df-pn works. Like PNS, df-pn selects the MPN D via path A →
B → D. Df-pn initially sets pt(A) = dt(A) = ∞ to indicate that A is either proven or disproven if
the updated proof or disproof number of A is at least as large as pt(A) or dt(A). Df-pn selects B
because pn(B) < pn(C). When B is not on the path to a MPN, pn(B) > pn(C) holds. Df-pn therefore
sets pt(B) = pn(C) + 1 = 4 to indicate that C must be examined if pn(B) ≥ 4 > pn(C). In terms
of the disproof number, df-pn examines B as long as dn(B) + dn(C) < dt(A). It therefore assigns
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1: // Set up for the root node
2: void PNS(node Root) {
3: Evaluate(Root);
4: SetProofAndDisproofNumbers(Root);
5: node current = Root;
6: node mostProving;
7: while (Root.proof 6= 0 && Root.disproof 6= 0) {
8: mostProving = SelectMostProvingNode(current);
9: ExpandNode(mostProving);

10: current = UpdateAncestors(mostProving, Root);
11: }
12: }

13: // Calculating proof and disproof numbers
14: void SetProofAndDisproofNumbers(node N) {
15: if (N.expanded) // Internal node;
16: if (N.type == AND) {
17: N.proof = 0;
18: N.disproof = ∞;
19: for (each child C of N) {
20: N.proof = N.proof + C.proof;
21: if (C.disproof < N.disproof)
22: N.disproof = C.disproof;
23: }
24: }
25: else { // OR node
26: N.proof = ∞;
27: N.disproof = 0;
28: for (each child C of N) {
29: N.disproof = N.disproof + C.disproof;
30: if (C.proof < N.proof)
31: N.proof = C.proof;
32: }
33: }
34: else // Terminal or non-terminal leaf
35: switch (N.value) {
36: case disproven:
37: N.proof = ∞;
38: N.disproof = 0;
39: case proven:
40: N.proof = 0;
41: N.disproof = ∞;
42: case unknown:
43: N.proof = 1;
44: N.disproof = 1;
45: }
46: }

47: // Select a MPN
48: node SelectMostProvingNode(node N) {
49: int value = ∞;
50: node best;
51: while (N.expanded) {
52: if (N.type == OR) // OR Node
53: for (each child C of N)
54: if (value > C.proof) {
55: best = C;
56: value = C.proof;
57: }
58: else // AND Node
59: for (each child C of N)
60: if (value > C.disproof) {
61: best = C;
62: value = C.disproof;
63: }
64: N = best;
65: }
66: return N;
67: }

68: // Expand node
69: void ExpandNode(node N) {
70: GenerateChildren(N);
71: for (each child C of N) {
72: Evaluate(C);
73: SetProofAndDisproofNumbers(C);
74: // Addition to original code
75: if ((N.type == OR && C.proof == 0) ||
76: (N.type == AND && C.disproof == 0))
77: break;
78: }
79: N.expanded = true;
80: }

81: // Update ancestors
82: void UpdateAncestors(node N, node Root) {
83: loop {
84: int oldProof = N.proof;
85: int oldDisProof = N.disproof;
86: SetProofAndDisproofNumbers(N);
87: // No change on the path
88: if (N.proof == oldProof &&
89: N.disproof == oldDisProof)
90: return N;
91: if(N == Root)
92: return N;
93: N = N.parent;
94: }
95: }

Figure 3: Pseudo-code of the PNS algorithm with Allis’ enhanced backpropagation scheme
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Figure 4: Example of the behavior of df-pn. Squares are OR nodes and circles are AND nodes. Each
node’s pn is given by the upper number, its dn by the lower number.

dt(B) = dt(A) − dn(C) = ∞− 1. At B, since dn(D) < dn(E), df-pn selects D and examines D as long
as both B and D are on the path to a MPN. This termination condition holds if dn(D) is at least as
large as dt(B) or dn(E) + 1. Df-pn therefore sets dt(D) = min(dt(B),dn(E) + 1) = 3. Analogously, if
pn(D) + pn(E) ≥ pt(B), B is not on the path to a MPN. Hence, pt(D) = pt(B) − pn(E) = 4 − 1 = 3.
As long as pn(D) < 3 and dn(D) < 3, df-pn examines the subtree rooted at D without backpropagating
proof and disproof numbers to A and B because D’s subtree is guaranteed to contain a MPN.

Figure 5, adapted and modified from Kishimoto and Müller (2008), shows pseudo-code of df-pn8. The
code is written in negamax fashion to avoid two dual cases. For node n, n.φ and n.δ are defined as
follows:

n.φ =

{
pn(n) (n is an OR node)
dn(n) (n is an AND node),

n.δ =

{
dn(n) (n is an OR node)
pn(n) (n is an AND node).

With this notation, n.φ and n.δ for an internal node n simply become:

n.φ = min
i=1,2,··· ,k

ci.δ, n.δ =
k∑

i=1

ci.φ,

where ci are the children of n.

In the pseudo-code, df-pn returns the value of the root. The fields n.φ and n.δ are used for two purposes:
initially they hold the thresholds for φ and δ. After n is examined, they hold the proof and disproof
numbers of n. The main function Df-pn (lines 1-10) initializes both thresholds to infinity, and then calls
the recursive function MID that performs multiple iterative deepening at a node. When returning from
MID, the root node is either proven or disproven (see lines 6-9). MID (lines 11-34) traverses the subtree
below node n in a depth-first manner. It performs no backtracks while proof or disproof numbers do
not exceed the threshold and while it does not encounter a terminal leaf (see lines 21-30). IsTerminal
checks whether n is a terminal leaf, while Evaluate stores proof and disproof numbers for an (either
proven or disproven) terminal leaf in n.φ and n.δ, respectively.

8The presented code is slightly different from the original df-pn pseudo-code of Nagai (2002) in order to fix an essential
performance problem.
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1: // Set up for the root node
2: // Note that the root is an OR node
3: int Df-pn(node R) {
4: R.φ = ∞; R.δ = ∞;
5: MID(R);
6: if (R.δ = ∞)
7: return proven;
8: else
9: return disproven;

10: }
11: // Perform search with thresholds
12: void MID(node N) {
13: // Terminal leaf
14: if (IsTerminal(N)) {
15: Evaluate(N);
16: // Store (dis)proven node
17: SaveProofandDisproofNumbers(N,N.φ,N.δ);
18: return;
19: }
20: GenerateMoves(N);
21: // Continue search until satisfying
22: // the termination condition
23: while (N.φ > ∆Min(N) &&
24: N.δ > ΦSum(N)) {
25: Cbest = SelectChild(N,φc,δ2);
26: // Update thresholds
27: Cbest.φ = N.δ + φc - ΦSum(N);
28: Cbest.δ = min(N.φ,δ2 + 1);
29: MID(Cbest);
30: }
31: // Store search results
32: N.φ = ∆Min(N); N.δ = ΦSum(N);
33: SaveProofandDisproofNumbers(N,N.φ,N.δ);
34: }

35: // Select the best child
36: node SelectChild(node N, int &φc, int &δ2) {
37: node Cbest;
38: δc = φc = ∞;
39: for (each child C of N) {
40: RetrieveProofandDisproofNumbers(C,φ,δ);
41: // Store the smallest and second
42: // smallest δ in δc and δ2
43: if (δ < δc) {
44: Cbest = C;
45: δ2 = δc; φc = φ; δc = δ;
46: }
47: else if (δ < δ2)
48: δ2 = δ;
49: if (φ = ∞)
50: return Cbest;
51: }
52: return Cbest;
53: }
54: // Compute the smallest δ of N’s children
55: int ∆Min(node N) {
56: int min = ∞;
57: for (each child C of N) {
58: RetrieveProofandDisproofNumbers(C,φ,δ);
59: min = min(min,δ);
60: }
61: return min;
62: }
63: // Compute sum of φ of N’s children
64: int ΦSum(node N) {
65: int sum = 0;
66: for (each child C of N) {
67: RetrieveProofandDisproofNumbers(C,φ,δ);
68: sum = sum + φ;
69: }
70: return sum;
71: }

Figure 5: Pseudo-code of the df-pn algorithm
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When a node n is expanded, a best child cbest in terms of proof and disproof numbers is selected by
SelectChild (lines 35-53) for a recursive call to MID with the aforementioned new thresholds (see lines
25-29). n.φ corresponds to cbest.δ in the negamax formulation.

PNS variants including df-pn require a data structure such as a transposition table (see Subsection 5.1
for more details) that preserves the proof and disproof numbers previously computed at internal nodes.
In the code, RetrieveProofandDisproofNumbers and SaveProofandDisproofNumbers are used to read and
write table entries.

5. PNS VARIANTS WITH LIMITED MEMORY

The memory requirements of PNS are huge since the whole search tree is stored in memory. This section
describes the two main approaches for dealing with limited memory for PNS. First, transposition tables
and their associated replacement strategies are explained in Subsection 5.1. Next, PN2 variants are
explained in Subsection 5.2.

5.1 Transposition Table and Replacement Strategies

Because all PNS variants repeatedly traverse paths from the root to a MPN, they must preserve proof
and disproof numbers at internal nodes in some data structure. A transposition table (TT) (Greenblatt,
Eastlake, and Croker, 1967) is a hash table which can be used to store previously computed proof and
disproof numbers by mapping a game position to its corresponding transposition table entry. TTs are
used in many PNS implementations, such as (Breuker, 1998; Seo et al., 2001; Nagai, 2002). A TT can
quickly retrieve proof and disproof numbers for each revisited node and reuse them for positions that
can be reached via multiple paths. Techniques for ensuring correctness of the search when using a TT
are described in Subsection 6.2.

No matter which data structure is used to store proof and disproof numbers, it is indispensable to
control the memory use during search, in case the explored search space does not fit completely into
the available memory. One way to reduce the memory footprint is to use the PN2 algorithm, which will
be described in the next subsection. Another way is to use a TT with replacement strategies. While
strategies based on two-level TT are commonly used in αβ search (Breuker, Uiterwijk, and van den
Herik, 1996), the consensus in the computer shogi community working on tsume-shogi solvers is that
they are ineffective for PNS variants in that domain.

The df-pn Hex solver of Pawlewicz (2012) uses the multiple-probe scheme of Beal and Smith (1996),
which is popular with αβ chess programs such as Fruit and Stockfish. The technique probes four
consecutive entries in a single hash table, and overwrites a TT entry with smallest subtree size among
the four. Similarly, Seo’s tsume-shogi solver examines about 100 TT entries to find a candidate to
replace (Seo, 1998). His solver uses the PNS variant PN* (Seo, 1995; Seo et al., 2001).

Allis et al. (1994) introduce two pruning techniques that remove useless nodes from the search tree. (1)
DeleteSolvedSubtree deletes all subtrees with proof or disproof number equal to 0 when an ancestor is
proven or disproven by backpropagation. (2) DeleteLeastProving removes the child of an OR node with
the maximum proof number and the child of an AND node with the maximum disproof number. Gnodde
(1993) describes a detailed implementation of DeleteLeastProving, and suggests to use the highest ratio
of proof and disproof numbers for selecting a least promising node.

Nagai (1999b) presents several replacement and garbage collection strategies. The SmallTreeGC algo-
rithm is used in high-performance tsume-shogi solvers and in the world’s best life-and-death solver in
Go (Nagai, 2002; Okabe, 2005; Kishimoto and Müller, 2005b; Kishimoto, 2010; Kaneko, 2010). When
the TT becomes full, SmallTreeGC discards a fixed fraction R of the TT entries, starting with those
of smallest subtree size. The value of R is determined empirically. A hybrid approach using both a
replacement strategy and SmallTreeGC has been proposed by Nagai (2002).
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5.2 PN2 and PDS–PN

PN2 is proposed by Allis (1994) as an algorithm to reduce the memory requirements of PNS. It has been
elaborated upon in Breuker (1998). Its implementation and testing for chess positions is extensively
described in Breuker, Uiterwijk, and van den Herik (2001). PN2 consists of two levels of PNS. The first
level consists of a PNS called PN1, which calls a PNS at the second level (PN2) for an evaluation of the
MPN of the PN1 search tree. This PN2 search is limited by a given maximum number of nodes that
can be stored in memory. Setting this maximum carefully is crucial because it determines the trade-off
between the memory consumption and the speed of PN2.

There are two main approaches for setting this limit for PN2 search. (1) Allis (1994) suggests using
the size (i.e., number of nodes) of the PN1 search tree. The disadvantage of this approach is that small
problems take much longer to be solved than with standard PNS. To counter this disadvantage, (2)
Breuker (1998) suggests a limit that is a fraction of the size of the PN1 search tree. This fraction should
start small, and grow larger as the size of the first-level search tree grows. Breuker denotes this fraction
as f(x), where x is the size of the PN1 search tree. In his experiments on chess positions, Breuker
(1998) proposes a logistic growth function f(x) = 1

1+e
a−x

b

. The parameters a and b are strictly positive

and require tuning for optimal performance (Breuker, 1998). The size of PN2 is further limited by the
amount of physical memory. If N is the physical limit of nodes that can be stored, the maximum size
of PN2 is y = min(x × f(x), N − x). The PN2 search is stopped when the number of nodes stored in
memory exceeds y or the subtree is (dis)proven. After completing a PN2 search, the children of the root
of the PN2 search tree are preserved, but their subtrees are removed from memory. The children of the
MPN (the root of the PN2 search tree) are not immediately evaluated by a second-level search; such
child nodes are evaluated only after they become the MPN. This is called delayed evaluation. We remark
that for PN2-search trees, immediate evaluation, where each generated node is immediately evaluated,
is used (Allis, 1994). This two-level search is schematically sketched in Figure 6.

PN2 Search

The subtrees of the children 
are deleted when the 
second-level search stops.

Second level stops when a 
certain limit of nodes in 
memory is reached or its root 
is (dis) proved.

Leaf node in the first level. 
Root node in the second level.

Figure 6: Schematic sketch of PN2.

PDS–PN by Winands et al. (2004) combines PN2 with a predecessor algorithm of df-pn called PDS (Na-
gai, 1998; Nagai, 1999b). PDS–PN is a PN2 variant that uses PDS for its PN1 search and normal PNS for
its PN2 search. Since the first level search uses the TT, PDS–PN is not restricted by memory in prac-
tice. At the second level, it profits from the speed given by the immediate evaluation of PNS9. While it
has not yet been seen in practice, a DFPN-PN algorithm should probably replace PDS-PN in domains
where PDS-PN is preferable to df-pn and PN2.

9Nagai’s Othello implementation (Nagai, 1999b) improves the node expansion rate of PDS with the TT by preserving
in each TT entry the pointers to the TT entries of generated children. With the help of this data structure, proof and
disproof numbers are computed efficiently by only traversing these pointers. This technique improves speed at the price
of using extra memory.
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6. PNS TECHNIQUES FOR DIRECTED ACYCLIC AND CYCLIC GRAPHS

For most popular games, representing the search space as a tree is quite inefficient, since equivalent
positions can be reached via different move sequences. In the tree model, all these positions have to
be solved independently, while in a directed acyclic graph (DAG) model, a single node reached through
different paths can represent all these equivalent positions. A big complication is caused by repetition
rules: the value of a game state may depend not only on the position on the board, but also on the
history. For example, a position in chess may be a sure win for one player, but if that player carelessly
allows the same position to repeat three times, then the opponent can claim a draw by repetition. A
game with repetitions can be modeled by a directed cyclic graph (DCG). Care must be taken to prevent
infinite loops in algorithms on such graphs. Also, the outcome of a game no longer depends only on
the position reached, but also on the move history, the specific sequence of moves taken to reach the
position. Ignoring history can lead to the graph history interaction (GHI) problem (Campbell, 1985).

Trying to run a tree-based PNS algorithm on a DAG or DCG runs into several problems: (1) overes-
timation of proof/disproof numbers, (2) the Graph-History Interaction problem, and (3) infinite loops.
These problems together with their published solutions are discussed in detail below.

6.1 The Overestimation Problem of Proof and Disproof Numbers

Figure 7: Example of overestimating pn(A)

If the search space is a directed acyclic graph (DAG), then PNS variants applying the standard back-
propagation rule from trees can count the same node more than once when computing proof and disproof
numbers. We call this the overestimation problem. In Figure 7, pn(A) is overestimated by counting
pn(D) twice:

pn(A) = pn(B) + pn(C) = pn(D) + pn(D) = 2 pn(D).

However, the correct result would be pn(A) = pn(D) since proving D proves B, C and A.

Simply ignoring the overestimation problem can be a practical choice in some applications (Allis et al.,
1994; Schadd et al., 2008). However, in difficult domains such as tsume-shogi the overestimation problem
can cause severe performance degradation (Seo, 1995; Seo et al., 2001; Kishimoto, 2010). Nodes that
would be easy to prove but have many transpositions in their sub-graph can be assigned huge proof
numbers and therefore will not be expanded for a long time.

Schijf (1993) proposes an algorithm that always accurately computes proof and disproof numbers for a
DAG. However, this algorithm was impractical even for solving 3× 3 Tic-Tac-Toe due to both immense
computational overhead and a huge memory requirement. Considerable work has gone into approxi-
mation algorithms, which may sometimes over- or underestimate proof and disproof numbers. Schijf et
al. (1993, 1994) present a PNS-specific algorithm that is successfully used to solve Connect-Four and
Qubic (Uiterwijk, van den Herik, and Allis, 1990; Allis and Schoo, 1992; Allis, 1994). When generating
a new node, the algorithm checks whether that node is a transposition. If so, then it is merged with
the existing identical node. Additionally, in the update procedure of PNS, the algorithm recursively
updates all parents instead of just one.
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Proof-set search (Müller, 2003) backs up proof sets containing sets of leaf nodes, which are sufficient
to prove or disprove positions, instead of proof numbers which count the size of such sets. While the
algorithm is of theoretical interest and allows to trade off between memory requirement and solution
quality, it has not been a success in practice.

Weak proof-number search (WPNS) (Ueda et al., 2008), a small modification of work by Okabe (2005),
sets pn(n) = max

1≤i≤k
pn(ci) + k − 1, where c1, · · · , ck are the children of AND node n. The disproof

numbers of OR nodes are handled analogously, while proof numbers at OR nodes and disproof numbers
at AND nodes are computed in the regular way. WPNS avoids overestimation when computing pn(n)
by lowering the contribution of all children except the one with largest proof number to 1. Therefore
a WPNS-style proof number consists a term for the “heaviest” child plus the count of the number of
other children.

Nagai (2002) presents a method to detect an AND node n that suffers from overestimation of the
proof number and takes the maximum of proof numbers of n’s children instead of summing them up.
This approach is incorporated into df-pn. The disproof number at an OR node is handled analogously.
Nagai’s algorithm stores a pointer to one parent p in each TT entry. When n is reached via p, p is saved
in n’s TT entry. Then, if n is reached via another parent q, there may exist a node m that counts pn(n)
or dn(n) more than once. Such m is detected by checking if one of n’s ancestors obtained by keeping
traversing pointers in the TT is merged into m on the path of the current df-pn search. For example,
assume that df-pn first reaches D via path A → B → D in Figure 7. The TT entry for D keeps the
pointer to B to indicate that D has one parent B. Analogously, the TT entry for B contains a pointer to
A. Next, if df-pn reaches D via A→ C→ D, it recognizes that D has more than one parent, indicating a
possible overestimation. By comparing the path of the current df-pn search with the path obtained from
traversing parent pointers in the TT, df-pn detects the possible overestimation at the shared ancestor
node A. In this case, Nagai’s approach calculates pn(A) = max(pn(B),pn(C)) = pn(D).

Figure 8: Example in which SNDA accurately calculates pn(A)

The Source Node Detection Algorithm (SNDA) generalizes Nagai’s idea in order to compute proof and
disproof numbers more accurately (Kishimoto, 2010). As in Nagai’s approach, SNDA preserves the
pointer to one parent in each TT entry. Additionally, SNDA saves the moves in the TT entry if by
using Nagai’s pointer-based approach it detects that via children generated by these moves df-pn can
reach the same descendant causing overestimation. SNDA then computes the sum of the maximum of
(dis)proof numbers of such children and the (dis)proof numbers of the other children that are irrelevant
to overestimating (dis)proof numbers. For example, in Figure 8, Nagai’s approach calculates pn(A) =
max(pn(B),pn(C),pn(E)) = max(pn(D),pn(E)), because it detects that pn(A) may be overestimated
and then takes the maximum of the proof numbers of all of A’s children. In contrast, SNDA not
only detects that overestimation may occur at A but also saves branches A → B and A → C in the
TT to indicate that these branches may be a cause of overestimation. As a result, SNDA computes
pn(A) = max(pn(B),pn(C))+pn(E) = pn(D)+pn(E), which is an accurate proof number in this example.

6.2 The Graph-History Interaction Problem

Despite the existence of an exact algorithm (Schijf, 1993), computing true proof and disproof numbers in
directed cyclic graphs (DCG) becomes even more difficult than in DAG. Often, practical game programs
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Figure 9: The GHI problem

represent history information incompletely, or not at all, leading to DCG structures even if the game
itself is loop-free. Many implementations of PNS variants ignore the history of the position in a DCG
when retrieving previously calculated proof and disproof numbers from data structures such as the TT.
Such programs may mistakenly regard proven positions as disproven and vice versa. This is the so-called
Graph-History Interaction (GHI) problem (Palay, 1983; Campbell, 1985).

Figure 9, adapted from Kishimoto and Müller (2004), shows an example of the GHI problem. Assume
that a move leading to a repeated position is a loss for the first player and a PNS variant uses the
TT to store search results. In this example, node A is a winning position for the first player, because
A→ C→ F→ H→ E→ G leads to a win. However, if the algorithm searches nodes in the order below
it leads to the wrong outcome:

1. Search A → B → E → H → E. A loss is stored in the TT entry for H, because the position
repetition cannot be avoided.

2. Search A→ B→ D. A loss is stored for AND node B.

3. Search A→ C→ F→ H. A loss is retrieved from the TT for H and is backpropagated to F and C.

4. Although A is a win, it is now incorrectly labeled as a loss because losses are stored for both
children B and C.

In their work on the GHI problem in PNS variants, Schijf et al. (1993, 1994) note that it is unnecessary
to compute correct proof and disproof numbers for unproven nodes and propose three algorithms. The
tree method uses no transpositions and has the disadvantage of not reusing results. The DAG method
defines two classes of moves: conversion moves that are irreversible and non-conversion moves that
may be reversible. The DAG method maps identical positions to a single node for conversion moves,
while identical positions reached by at least one non-conversion move are treated as different nodes.
Despite its effectiveness in practice, their DCG method sometimes results in incorrect disproofs, because
the internal nodes of the DCG method might contain repetition-dependent outcomes as if they were
repetition-independent outcomes. (Schijf, 1993).

Moldenhauer (2009) addresses GHI in the Cops and Robber domain and provides a specific solution to
this scenario. In this approach, df-pn stores the minimum cost from the root to n (called the g-value)
in the TT entry for n.

Breuker et al. present the Base-Twin Algorithm (BTA), a PNS-specific solution to GHI (Breuker,
1998; Breuker et al., 2001). A df-pn-specific approach is presented by Nagai (2002). These approaches
deal with a special case of GHI, where a move leading to a repetition leads to a single fixed outcome
such as draw.

Kishimoto and Müller (2004) propose the first general and practical GHI solution that can correctly
and efficiently handle complicated GHI scenarios. As in (Breuker et al., 2001), a TT entry is split into
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a base entry and additional twin entries. When a result that involves repetitions is saved in the TT at a
node via path p, it is saved in a twin entry by indicating that the result is valid via path p. If the result
is either repetition-free or unproven, it is saved in the base entry. In the case when proven or disproven
nodes are replaced in the TT, Kishimoto and Müller’s (2004) GHI solution still guarantees returning
the correct binary value, but may construct an incorrect proof tree or disproof tree. Kishimoto (2005)
bypasses this issue by efficiently reconstructing the (dis)proof tree starting from the root after df-pn
solves the game. The algorithm of Kishimoto (2005) works correctly even when arbitrary TT entries
are replaced.

6.3 The Infinite Loop Problem

Given unlimited memory, df-pn is proven to be a complete algorithm on finite DAG (Kishimoto and
Müller, 2008). However, it is incomplete on finite DCG even when incorporating a correct GHI solution,
due to the infinite loop problem (Kishimoto and Müller, 2008). When node n is part of a cycle in the
graph, and pn(n) or dn(n) is computed, the standard computation of proof and disproof numbers may
define pn(n) or dn(n) in terms of itself, resulting in an overestimated proof or disproof number. As a
result, it is possible that pn(n) ≥ pt(n) or dn(n) ≥ dt(n) always holds at n, and this node is never
expanded.

So far, two methods are published that seem to avoid the infinite loop problem in practice. The
theoretical completeness of df-pn with these solutions on finite DCG remains an open question. The
df-pn(r) algorithm (Kishimoto and Müller, 2003; Kishimoto, 2005) computes the minimum distance
from the root to each node in the TT. When calculating pn(n) at an AND node or dn(n) at an OR
node, df-pn(r) ignores n’s old children, for which the minimum distance is not larger than that of n,
until the remaining “normal” children are solved. This approach is based on the observation that the
children with shorter distance than n may cause the overestimation.

The threshold controlling algorithm (TCA) (Kishimoto, 2010) uses the standard way of computing
proof and disproof numbers. It increases pt or dt when possible infinite loops are detected by using the
minimum distance information. A simple practical approach used in Nagai’s tsume-shogi solver is to
increase the thresholds of proof and disproof numbers when no new leaf nodes have been expanded for
a while (Nagai, 2010).

7. SEARCH ENHANCEMENTS FOR PNS VARIANTS

This section presents several techniques for enhancing the performance of PNS variants, including heuris-
tic initialization, modified update rules for (dis)proof numbers, threshold control and more.

7.1 Initialization of Proof and Disproof Numbers

The default initialization in Subsection 3.2 sets pn = dn = 1 for non-terminal leaf nodes. If a heuristic
measure of the effort to (dis)prove such a node is available, it can be used instead (Allis et al., 1994).

Let bf(n) be the branching factor at leaf node n. A popular initialization rule (Allis, 1988; Allis et al.,
1994; Breuker, Allis, and van den Herik, 1994; Winands, 2004) sets dn(n) = bf(n),pn(n) = 1 for
OR nodes and pn(n) = bf(n),dn(n) = 1 for AND nodes. Effectively, this initialization rule adds an
additional ply of search tree information without changing the characteristics of PNS variants, and it
results in improved performance.

Another simple domain-independent way of initializing nodes is to run a bounded search. An example
is PN2where a second-level PNS is performed to initialize a leaf node.

Sound “admissible” effort measures can be constructed from single-player relaxations of the game, such
as counting the number of moves to complete n-in-a-row in games such as Go-Moku, or until two eyes
are formed in Go (Kishimoto and Müller, 2005b).
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Initialization can use domain-dependent heuristic functions, which estimate the number of further expan-
sions required to prove or disprove the goal. While this approach might result in substantially different
search behavior than without heuristic initialization, it usually can be tuned to achieve significant im-
provements. Domain-dependent knowledge can be coded by hand (Allis, 1994; Nagai, 2002; Kishimoto
and Müller, 2005b; Schaeffer et al., 2005; Winands and Schadd, 2011; Kishimoto, 2010; Wu et al., 2011),
computed using machine learning techniques (Nagai, 1999a; Kaneko et al., 2004; Miwa, Yokoyama, and
Chikayama, 2004), or created by Monte Carlo sampling (Saito et al., 2007).

7.2 Modifying the Calculation of Proof and Disproof Numbers

A number of techniques modify PNS by considering only a subset of the children of a node. Threat-
space search (Allis, 1994; Allis, Huntjes, and van den Herik, 1996) uses the notion of threats, a set of
candidate moves a player is forced to choose from in order to win, or avoid an immediate loss. Instead
of considering all legal moves, threat-space search considers only threats when calculating proof and
disproof numbers.

Dual lambda search (Soeda, Kaneko, and Tanaka, 2006) and Lambda depth-first proof-number search
(Yoshizoe, Kishimoto, and Müller, 2007; Yoshizoe, 2009) combine df-pn with λ-search (Thomsen, 2000),
a more general threat-based search technique. By using pass moves, these algorithms find different levels
of threat sequences that use df-pn with limited moves, and can find proofs more quickly. Nagai (2002)
uses an idea similar to λ-search with pass moves for solving the brinkmate problem in shogi.

Yoshizoe (2008) observes that proof and disproof numbers often do not reflect the actual difficulty
of solving a position in cases where the number of legal moves is large and does not dramatically
change between the current and child nodes. In such cases, PNS degenerates to breadth-first search.
His Dynamic Widening algorithm computes proof and disproof numbers from a small number of best
children only and still guarantees the correctness of solutions. A similar approach is used in the Hex
solver briefly described by Arneson, Hayward, and Henderson (2011).

In practice, the values of siblings in a game tree are often highly correlated. Once a child c1 is proven,
other children c2, · · · , ck representing similar positions are likely to be proven as well. An example of
highly correlated moves are useless interposing piece drops in tsume-shogi. Whether moves are highly
correlated or not is typically determined by domain-dependent heuristics. Let c1, · · · , ck be such highly
correlated children. Many df-pn-based tsume-shogi solvers such as (Seo, 1995) take only one of the
unproven cj (1 ≤ j ≤ k) and the remaining unrelated children ck+1, · · · into account when calculating
proof numbers at AND nodes and disproof numbers at OR nodes.

In the one-eye problem in Go, Kishimoto and Müller (2005a) combine df-pn with a divide-and-conquer
approach that splits a position into subproblems to be solved independently. Moves are limited to one
subproblem, which reduces proof and disproof numbers. The method combines the results of these
subproblems for solving the original position.

7.3 Threshold Control of Df-pn

Heuristic initialization of proof and disproof numbers10 increases the overhead of re-expanding internal
nodes in df-pn (Kishimoto and Müller, 2005b). This problem occurs when heuristic proof and disproof
numbers are typically larger than 1, since thresholds are incremented by the minimum possible amount,
which tends to be smaller than the average heuristic initialization value.

One way to reduce re-expansions is to increase the threshold increments over those of original df-pn.
Assume that an OR node n with threshold pt(n) is searched and that df-pn selects n’s child c. Let
pn2 be the second smallest proof number among the list of proof numbers of n’s children. Df-pn
sets pt(c) = min(pt(n),pn2 +δ) with δ = 1. Nagai (1999a, 2002) uses a constant value of δ > 1.
In (Kishimoto, 2005; Kishimoto and Müller, 2005b), δ is set dynamically, to the average value of

10Nagai calls a closely related algorithm considering edge costs df-pn+. We still call it df-pn when the heuristic
initialization is done in nodes.
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heuristically initialized proof numbers of n’s children. Disproof thresholds are handled in an analogous
way.

Pawlewicz and Lew (2007) observe that normal df-pn suffers from thrashing the TT in their target
domains if more than one promising sibling exists and if the search space does not fit into the TT. Their
1 + ε trick performs threshold increments in a more radical way even without heuristic initialization to
avoid the thrashing issue. It sets pt(c) = min(pt(n), dpn2×(1 + ε)e) where ε is a small constant. Thus,
df-pn or PDS can stick to searching the subtree rooted at a selected child for a longer time.

7.4 Other Enhancements

In this section four additional enhancements are discussed: (1) refining heuristic proofs, (2) tree simu-
lation, (3) adding shallow searches to leaf nodes, and (4) detecting terminal positions early.

7.4.1 Refining Heuristic Proofs

If the game-theoretic value of node n can be estimated with high confidence by a heuristic function, then
calculating full proofs or disproofs can profitably be postponed until it later. The iterative algorithm
of Schaeffer et al. (2005) introduces a heuristic threshold th to define likely wins and losses. Let h be a
heuristic score. If h ≥ th at node n, then the algorithm considers n to be a “likely win” and does not
expand it. Similarly, if h ≤ −th, then n is treated as a “likely loss”. PNS with the heuristic threshold is
run until it generates a heuristic proof, a proof tree for which the heuristic evaluation of each leaf node is
above the threshold. The algorithm starts with a small value (th = 125 in Schaeffer et al., 2005), which
is gradually increased after each heuristic proof. This method is used to provide additional guidance
for growing the tree. When the root is solved with th =∞, the proof is complete since all leaf nodes in
the proof tree are true wins.

7.4.2 Kawano’s Simulation

Tree simulation (Kawano, 1996) is originally developed to effectively deal with interposing piece drops
in tsume-shogi. The technique is later combined with df-pn in applications to Go (Kishimoto, 2005;
Yoshizoe et al., 2007). Assume that n is a proven node and m is a “similar” unproven node. Simulation
borrows moves from n’s proof tree at each OR node to try to find a quick proof of m. If simulation
returns a proof for m, m is proven as well. Otherwise, m’s value remains unknown and normal df-pn
search is performed. A successful simulation requires much less effort than discovering a proof “from
scratch” by search. A related technique originally presented in (Tanase, 2000) and later applied to LOA
in (Sakuta et al., 2003) is the so-called Killer-Tree Heuristic. Applying this enhancement in the game
of LOA, the number of nodes investigated and the solving time are reduced by 20% for PDS.

7.4.3 Adding Shallow Searches To Leaf Nodes

PNS variants often delay finding an easier proof or disproof if the proof and disproof number do not
accurately reflect the difficulty of (dis)proving a position. Kaneko et al. (2005) perform either one-
ply or three-ply depth-first search at each non-terminal OR leaf to try to find a shallow proof quickly.
Hashimoto’s brinkmate solver (Hashimoto, 2002) calls PDS with a time limit at each leaf of a depth-first
iterative deepening search.

7.4.4 Early Win/Loss Detection

Many generic game-playing techniques, which are originally developed for other algorithms such as αβ,
also work with PNS variants. Examples include earlier detection of terminal positions and reuse of proofs
and disproofs for different positions. For example, the standard technique of retrograde analysis can be
combined with PNS variants for detecting terminal positions earlier (Schaeffer et al., 2007; Schadd et al.,
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2008). Kishimoto and Müller (2003, 2005b) propose a number of game-specific techniques to statically
detect winning and losing shapes in the one-eye and life and death problems in Go. Saffidine, Jouandeau,
and Cazenave (2012) present domain-specific static patterns that detect wins several moves ahead in
the game of Breakthrough. Seo (1999) develops a technique for detecting a dominance relationship of
shogi positions, which can reuse proofs mainly related to positions involving interposing piece drops in
tsume-shogi.

8. PARALLEL PROOF NUMBER ALGORITHMS

Due to the wide availability of multi-core CPUs in commodity PCs as well as commodity PC clusters,
parallelization has become the de facto standard approach to improve both the running time and solv-
ing abilities of PNS variants. However, achieving reasonable parallel performance is notoriously difficult
because of the different inter-dependent types of overhead in parallel search: search overhead is extra
work performed by parallel search but not by sequential search, synchronization overhead is idle time
wasted at the synchronization points of parallel computation, and communication overhead is caused
by the need to exchange messages over a network. Additionally, parallel PNS variants must share data
structures such as a TT that preserve proof and disproof numbers of previously expanded nodes. Effec-
tive data sharing is especially difficult in distributed memory environments because of communication
delays.

In shared memory environments, current approaches share the search tree (or graph) among threads
by using mutual exclusion locks. This causes synchronization overhead11 but avoids search overhead
(Saito et al., 2010; Kaneko, 2010).

RP–PNS by Saito et al. (2010) uses a randomized work distribution strategy proposed by Shoham
and Toledo (2002) to initiate parallelism. There are two kinds of threads in RP–PNS: (1) principal-
variation (PV), and (2) alternative threads. RP–PNS maintains one PV thread. All other threads
operating on the search tree are alternative threads. In the PV thread, the most-proving node is always
selected (similar to PNS). In the alternative threads, either the MPN or one of its siblings is selected
probabilistically.

Kaneko (2010) presents a parallel version of df-pn based on asynchronous cooperation of df-pn threads
on a shared TT. To initiate parallelism, he uses a virtual proof number at each OR node: the sum of
the proof number and the number of threads entering that node. A virtual disproof number is defined
analogously for AND nodes. Each thread computes a MPN based on the virtual proof and disproof
numbers, resulting in distributing work to different parts of the search space.

To solve the problem of sharing the TT in distributed-memory environments, current approaches control
search by using one master process and a series of slave processes (Kishimoto and Kotani, 1999; Scha-
effer et al., 2007; Wu et al., 2011; Saffidine et al., 2012). The master process manages a subtree of the
root node, which contains the most important search results, and it coordinates the work of the slave
processes. Each slave independently examines its assigned work until a condition determined by the
master is satisfied. The search result of the slave is sent back to the master, which then updates its
search tree.

In ParaPDS, the master manages a search tree up to a fixed depth d (Kishimoto and Kotani, 1999).
The master and slaves run PDS, a predecessor of df-pn. The master traverses the tree in a depth-first
manner to depth d and the leaf nodes of the master are passed to the slaves that perform independent
search. Finding a set of such leaf nodes is controlled by the thresholds that might be larger than those
of the original PDS algorithm.

Unlike ParaPDS, the master process in the following approaches performs variable-depth search. Scha-
effer et al. (2007) semi-automatically select a set of nodes (at most about 200 nodes) assigned to the
slaves (Burch, 2012). It is first determined whether to try to prove or disprove the root by choosing the
smaller of proof and disproof numbers of the root node. Assume that the solver tries to prove the root.

11The amount of synchronization overhead depends on the choice of sequential and parallel algorithms. While Kaneko
(2010) describes that synchronization overhead caused by locks is only about 1% to the total computation, Saito, Winands,
and van den Herik (2010) suffer from relatively high synchronization overhead.
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Then, the master called the proof tree manager assigns the leaf nodes in the master’s subtree to the
slaves. Starting from the root, it keeps selecting all the children with smallest proof number at each OR
node and all the children at each AND node. An analogous selection scheme is used when the master
tries to disprove the root.

In Job-Level Proof-Number Search (JLPNS) (Wu et al., 2011; Wu et al., 2012), the master using PNS
distributes heavy-weight work to the slaves. Each job takes about one minute. The master spawns a
number of tasks by using virtual losses12, as originally suggested for Monte Carlo Tree Search by Coulom
according to Chaslot, Winands, and van den Herik (2008a). The slaves perform heuristic search with
domain-specific knowledge.

Parallel PN2 is an extension of JLPNS and parallelizes PN2 (Saffidine et al., 2012). The master performs
the first level of PNS while the slaves run the second level of PNS. Instead of using the virtual-loss
mechanism, PN2 uses flags to indicate which leaves are already assigned to a slave. Slaves regularly
send the pn and dn of their root position, which helps to better guide the first-level search.

9. PROOF-NUMBER SEARCH FOR MULTI-VALUED OUTCOME

Since PNS returns only a binary value, it must perform a series of searches to compute a multi-valued
outcome. For example, if the game-theoretic value of the root is a draw, PNS must prove that the root
is neither a win nor a loss. To prove that the root is a draw, PNS can assume that a draw is a loss
in the first search, and if that search ends with a disproof then redefine draws as wins for the second
search. Examples for this technique include solving the games of checkers (Schaeffer et al., 2007) and
Fanorona (Schadd et al., 2008).

In general, PNS can determine either a lower bound or an upper bound on the game-theoretic value
of a game in a single boolean-valued search. Allis et al. (1994) describe two techniques to determine
the exact value: examining the root values linearly and using binary search. Kloetzer, Iida, and Bouzy
(2008) use the former to solve Amazons endgames.

To determine a three-valued outcome, Kishimoto and Müller’s two-phase df-pn search reuses the contents
of the transposition table from the first phase, which reduces the amount of re-search in the second phase
(Kishimoto and Müller, 2003). The same technique is used to prove seki in Go (Niu, Kishimoto, and
Müller, 2006).

Iterative Proof-Number Search determines the exact outcome among more than three values efficiently
by caching and updating the lower and upper bounds of each node in the TT to prune the search
(Moldenhauer, 2009). For search spaces that are trees, Multiple-Outcome Proof Number Search can
determine the multi-valued outcome without performing multiple calls of PNS (Saffidine and Cazenave,
2012).

10. APPLICATIONS OF PNS

To the best of our knowledge, Allis was the first to use the notion of proof and disproof numbers in his
analysis of 7× 6 Connect Four, although proof and disproof numbers are called conspiracy numbers in
this early work (Allis, 1988). Elkan (1989) applied proof numbers, which were also still called conspiracy
numbers, to theorem proving.

Solving positions in two-player games with perfect information has been the major application of PNS
variants. Games solved by using PNS variants for the first time include Go-Moku (Allis et al., 1996),
many small board Hex openings (Arneson et al., 2011), Fanorona (Schadd et al., 2008) and check-
ers (Schaeffer et al., 2007). Examples of two-player games used to investigate new ideas in PNS re-
search, and for which state-of-the-art performance has been achieved, include Awari (Allis et al., 1994),
chess (Breuker, 1998), checkers (Schaeffer et al., 2007), Hex (Arneson et al., 2011), Lines of Action
(Winands et al., 2004; Pawlewicz and Lew, 2007), Connect6 (Wu et al., 2011), life and death in Go

12Wu et al. (2011) also use virtual wins, as well as a greedy policy that decides whether to use virtual wins or losses.
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(Kishimoto and Müller, 2005b) and tsume-shogi (Seo et al., 2001; Nagai, 2002; Kishimoto, 2010).

PNS variants are also applied to games in other categories such as multi-player games (Saito and
Winands, 2010), two-player games with imperfect information (Sakuta, 2001) and moving target search
(Moldenhauer, 2009).

A fascinating recent paper by Heifets and Jurisica (2012) formulates the problem of chemical synthesis
from given simpler molecules as an AND/OR graph search problem, which is solved by PNS. Finally,
ideas from PNS and df-pn+ are incoporated in Minimal Proof Search (MPS), an algorithm for solving
model checking problems (Saffidine, 2012).

11. CONCLUSION AND OUTLOOK

In this article we gave a detailed account of PNS variants. Proof-Number Search was designed as an
algorithm for solving games, and that remains its main application. Over the past twenty years, a
family of PNS variants and a large number of technical improvements have evolved. Based on the large
number of successes surveyed in this article, we may conclude that currently PNS variants constitute
the state of the art for solving a wide range of games. The choice of a particular PNS variant depends
on the problem or game to be solved. If sufficient memory is available, PNS or PN2 may already be
quite efficient in performing the job. For larger problems df-pn may be the best choice.

Based on our experience with PNS variants, we propose the following future research topics:

(1) Perform a detailed empirical study of different PNS variants and enhancements on a representative
set of test domains. While many isolated data points exist (cf. van den Herik and Winands, 2008),
such a comprehensive study is sorely missing. A more ambitious study would also compare PNS with
other solvers based on αβ (van der Werf, van den Herik, and Uiterwijk, 2003) and MCTS (Winands,
Björnsson, and Saito, 2008; Cazenave and Saffidine, 2011; Ewalds, 2012).

(2) Compare existing approaches to parallel PNS, and work on scaling to massively parallel PNS. In
Section 8 we surveyed the existing approaches for parallelizing PNS variants. We remark that a direct
comparison of ParaPDS, RP–PNS, and parallel df-pn is not possible, as each of them is a parallel version
of a different proof-number algorithm. Moreover, ParaPDS was designed for distributed memory systems
whereas RP–PNS and Parallel df-pn were designed for shared memory systems. A look at the published
raw scaling factors leads us to speculate that none of the three algorithms will scale well to systems
with many more processors.

(3) Increase the number and variety of application domains. Until now, most research for PNS variants
has been conducted on games. Just like MCTS has been successfully applied to non-game optimization
problems, we believe that PNS variants can advance the state of the art in other domains with AND/OR
graph structure, such as the chemistry work mentioned above (Heifets and Jurisica, 2012). At this
moment this research direction is in its infancy, and it has to be investigated to which extent PNS
variants and their enhancements can be transferred to such domains.

(4) Better understand the foundations of search using PNS variants on DCG (cf. Hashimoto, 2011).
Either show that current algorithms are complete, or develop new ones that have this property.
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