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Abstract

The number of legal chess diagrams without promotion is bounded from above by
2× 1040. This number is obtained by restricting both bishops and pawns position and
by a precise bound when no chessman has been captured. We improve this estimate
and show that the number of diagrams is less than 4×1037. To achieve this, we define
a graph on the set of diagrams and a notion of class of pawn structure, leading to a
method for bounding pawn positions with any number of men on the board.

1 Introduction

The state space of chess is the set of all possible configurations of a chess game. It
gives an estimate of the computational complexity of the game. Unfortunately, chess
configurations are less easy to define than chess games. Following the definitions given
by Francois Labelle [(F. Labelle)], we will call a diagram the contents of the 64 squares.
Taking also into account whose turn it is, castling rights, and any en passant square, we
define what we call a position.

In a famous paper [(C. Shannon, 1950)], Shannon estimated the number of possible
diagrams of the order of 64!/32!(8!)2(2!)6 ≈ 4.63 × 1042. This is, of course, a very rough
estimate: it does not consider that some legal diagrams have less than 32 men on the
board. Neither does it take into account the fact that some pawns could be promoted.
These two factors lead to an underestimation of the number of diagrams. On the other
hand, this estimate accounts for a lot of illegal diagrams, most importantly illegal pawn
structures.

Chinchalkar [(S. Chinchalkar, 1996)] proved an upper bound on the number of po-
sitions of approximately 1.78 × 1046. Tromp [(J. Tromp)] claims an upper bound of
7.73 × 1045, stating that “it requires much better documentation to be considered ver-
ifiable”. More recently, Tromp [(J. Tromp, 2021)] used 10 000 randomly generated po-
sitions and checked their legality, yielding an estimated number of legal positions of
(4.48 ± 0.37) × 1044 with 95% confidence level.

As for the diagrams, Steinerberger [(S. Steinerberger, 2015)] improved Shannon’s num-
ber, giving an upper bound of approximately 1.53×1040 for the number of chess diagrams
without promotion. For doing so, he used the fact that some men can not occupy any
square of the board: each bishop is either light-squared or dark-squared, and pawns can
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not be located on rank 1 or 8. Moreover, he treated separately the case with 32 men on
the board, reducing further the number of pawn positions in that case.

In the present work, we drastically reduce the combinatorial complexity of the setup
of pawns when 25 to 32 men are on the board. For the cases with less than 25 men on
the board, we propose a way to arrange bishops and kings before adding the pawns and
the remaining men. These efforts result in an upper bound of less than 4 × 1037 for the
number of diagrams without promotion.

The paper is structured as follows. In Section 2 is described a method to compute an
upper bound for the number of diagrams. The case with 25 men or more is handled from
subsections 2.1 to 2.5. Several tools are combined: we define a partition on the set of
diagrams, create a graph on this partition, and define a notion of class of pawn structure.
Then is described the possible consequences of any captures on pawn positions. Starting
from diagrams with 32 chessmen and decreasing progressively the number of chessmen on
the board, we calculate at each step an upper bound on the number of legal pawn and
piece positions. In subsection 2.6 is treated the case with 24 men or less. In section 3,
detailed results are shown and in section 4 possible improvements and generalizations are
proposed.

2 Methods

2.1 A graph on the set of diagrams

Each diagram is associated with a unique quadruplet P = (Pw, Pb, pw, pb) where Pw and
Pb are respectively the number of white and black pieces and pw and pb are the number of
white and black pawns. Note that the term pieces here is excluding pawns. We will use
the term men for the physical pieces of the set, including the pawns. As we are interested
in the case without promotion, the following inequalities hold: 1 ≤ Pw ≤ 8, 1 ≤ Pb ≤ 8,
0 ≤ pw ≤ 8 and 0 ≤ pb ≤ 8. A given quadruplet is a subset of the set of diagrams and the
family of all quadruplets is a partition of the sets of diagram.

The set of quadruplets can be represented as an oriented graph: each quadruplet is
a vertex of the graph and edges are the legal transitions during a game of chess from a
quadruplet to another (see Fig.1). These transitions are only due to captures, as we do
not take promotions into account. For each edge of the graph, the color and the nature
(piece or pawn) of the captured piece is known. Hence we also know the color of the
capturing man, but most of the time its nature is unknown, as it can be either a piece or
a pawn. On the graph, any quadruplet except the root has at least one and at most four
predecessors. For example (8, 8, 8, 6) has just one predecessor which is (8, 8, 8, 7), whereas
(7, 6, 7, 5) has four predecessors which are (8, 6, 7, 5), (7, 7, 7, 5), (7, 6, 8, 5) and (7, 6, 7, 6).
The edge between (8, 8, 8, 7) and (8, 8, 8, 6) represents the capture of a black pawn. We
define the root of the graph as the quadruplet P0 = (8, 8, 8, 8). The diagram of the starting
position, as well as all the diagrams with 32 men, is associated with this quadruplet.

2.2 Classes of pawn structures

The most important improvement of our method is to compute a better upper bound for
the number of legal pawn positions. For that purpose, we define a class of pawn structures
as follows: a class is an array of 8 columns. Each column represents a file of the chessboard
(first column is the a file,...and last column is the h file) and contains between 0 and 6
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(8,8,8,8)

(8,8,8,7) (8,8,7,8) (8,7,8,8) (7,8,8,8)

(8,8,8,6) (8,8,7,7) (8,7,8,7) (7,8,8,7) (8,8,6,8) (8,7,7,8) (7,8,7,8) (8,6,8,8) (7,7,8,8) (6,8,8,8)

Figure 1: Subgraph for 32, 31 and 30 chessmen.

elements. The length of a column is the number of pawns on the file and the elements of
this column are either +1 for white pawns or -1 for black pawns. The order of elements
in a column is important: they are written according to their distance to the 7th rank of
the chessboard. Thus the element of the first row of a given column is the closest pawn to
the 7th rank and the element of the last row is the closest pawn to the second rank. Note
that because no pawn can occupy the first and last rank of the board, a column can not
contain more than 6 elements.

For each class of pawn structure, it is easy to determine an upper bound for the number
of possible positions of black and white pawns. Let us denote by ki, i = 1, . . . , 8 the number
of elements of column i. These ki pawns can be placed on 6 squares. Since we know the
relative position of white and black pawns on each file, the number of different positions
of white and black pawns for a given class is equal to

∏

8

i=1

(

6

ki

)

. A class of pawn structure
does not indicate the square occupied by pawns, but only their position relatively to pawns
of the same file. Hence, a great number of different pawn positions are encoded in the
same class. This makes possible the computation and storage of all the legal classes of a
given quadruplet.

The class of pawn structure is modified during a game of chess only in case of a capture
or a promotion. Other pawn moves do not change it. For this reason, the class of pawn
structure of any legal diagram associated with P0 = (8, 8, 8, 8) is the same as the class of
the starting position, given in Table 1. Hence, an upper bound for the number of different
positions for white and black pawns for this class is

∏

8

i=1

(

6

2

)

= 158 ≈ 2.56e + 9.

Table 1: The unique class of pawn structure for 32 men diagrams

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8

-1 -1 -1 -1 -1 -1 -1 -1
+1 +1 +1 +1 +1 +1 +1 +1
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2.3 Effect of a capture on a class of pawn structure

In order to compute the classes of pawn structures of a given quadruplet, we describe the
effect of a capture on a class. Without loss of generality, suppose that the captured man
is white. There are four kinds of capture. Here are the consequences of each one:

• when a black piece takes a white piece, the class of pawn structure is unchanged.

• when a black pawn takes a white piece: remove −1 in the array and insert a −1 in
an adjacent column (provided this column does not contain 6 elements).

• when a black piece takes a white pawn: remove +1 in the array.

• when a black pawn takes a white pawn: for a couple (−1,+1) in adjacent colums,
remove −1 from its column and replace +1 with −1.

For instance, take a diagram with 32 men. Its class of pawn structure is given in Table
1. Observe the possible classes resulting from the capture of a white pawn. We obtain 8
classes if the pawn is captured by a black piece (one for each possibility of removing +1
in the array) and 14 classes if the pawn is captured by a black pawn (one for each couple
(−1,+1) in adjacent columns of the array). Now observe what happens with the same
initial diagram when a white piece is captured. One class is generated when the capture
is made by a black piece. If a black pawn captures a white piece, there are 14 possibilities
for choosing adjacent columns and for each one, 3 different places where inserting −1,
generating 14× 2 different classes after removing duplicates.

2.4 An upper bound for the number of legal pawn positions of a quadru-

plet

Without promotion, only captures can change the class of pawn structure during a game.
Consequently, the list of classes of a given quadruplet P is inherited from the list of classes
of its predecessors in the graph. Moreover, the list of class of the root P0 = (8, 8, 8, 8) is
known. Note that it contains a unique class. Hence the list of classes of any quadruplet
may be computed in a recursive way, starting from the root.

For any quadruplet with 31 to 25 chessmen the following program is executed:

• Compute the predecessors of P.

• For each class of pawn structure of each predecessor P ′.

– Compute and store all the possible classes of pawn structures generated by the
captures from P ′ to P.

• Remove duplicates from the list of classes.

• Compute the number of pawn positions of each class of P.

• Compute the number of pawn positions nP of P.

For example (see subsection 2.3), this algorithm generates 22 classes for P = (8, 8, 7, 8),
resulting in an upper bound of

nP = 8×

(

6

1

)

×

(

6

2

)7

+ 14×

(

6

1

)

×

(

6

2

)7

≈ 2.26× 1010,

4



and 29 classes for P = (7, 8, 8, 8) with an upper bound of

nP =

(

6

2

)8

+ 28×

(

6

1

)

×

(

6

3

)

×

(

6

2

)6

≈ 4.08 × 1010.

Note that the method takes all possible cases of capture into account for upper bounding
the number of pawn positions, but that some of these positions may be illegal, see Section
4 for details.

Symmetry was used in order to reduce the number of computations. For exam-
ple, the number of pawn positions of (Pw, Pw, pw, pb) and (Pw, Pw, pb, pw) are equal, the
same for (Pw, Pb, pw, pb) and (Pb, Pw, pb, pw) and for (Pw, Pb, pw, pw) and (Pb, Pw, pw, pw).
The computation time and the number of classes of a quadruplet are quickly increasing
from 31 to 25 chessmen. For example (8, 8, 8, 7) has 22 classes, whereas (6, 5, 7, 7) has
12730710. Computing the classes of the former takes less than a second and the latter
more than four hours. Four quadruplets represents all the diagrams with 31 men, whereas
60 quadruplets were needed to compute the whole 25 men case. Moreover, the improve-
ment generated by this method of counting pawn positions over the combinatorial method
in [(S. Steinerberger, 2015)] is decreasing in the same time: for 32 chessmen, the upper
bound on the number of diagrams is divided by 107, whereas this ratio is approximately
3 for 25 men. For these reasons this way of counting pawn positions was not used for
diagrams with less than 25 chessmen.

2.5 Counting pieces positions

Once the upper bound on the number of pawn positions nP for a given quadruplet P =
(Pw, Pb, pw, pb) is known, pieces are placed on the board. Let n = 64 − pw − pb be the
number of unoccupied squares. When placing bishops, we take advantage of the fact that
two bishops of the same side are placed on squares of different color. Hence the number of
positions for these two bishops is bounded by n2/4 when n is even and (n2−1)/4 when n is
odd. Let bw and bb be respectively the number of white and black bishops. The following
algorithm is applied:

• Find all combinations containing Pw white pieces and Pb black pieces

• For each combination

– Compute the number of possible positions of bishop pair(s), if any, on the
64− pw − pb squares.

– Compute the number of possible positions of remaining bishops, if any.

– Compute the number of possible positions of remaining pieces on the 64−pw−

pb − bw − bb squares.

– Multiply these numbers to compute the number of piece positions of the com-
bination.

• Add these numbers to compute the number of piece positions mP of P

The upper bound on the number of diagrams of P is equal to nP ×mP .
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2.6 Diagrams with less than 25 elements

For diagrams with 2 to 24 chessmen the same method as in [(S. Steinerberger, 2015)] is
used, with a slight refinement consisting in not letting kings occupy adjacent squares.
First the kings and the bishops are placed on the board, considering how many of the 16
squares of the first and last rank (denote A the set of these squares) they occupy and using
the fact that kings may not be adjacent to each other. For any 0 ≤ i ≤ 6, let fi(bw, bb)
denote the number of ways to place the kings, bw white bishops and bb black bishops on
the board such that i of these pieces are contained in A. The results are stored in Table 2.
Every case has been calculated by combinatorial arguments and checked with computer
enumeration of all possibilities.

Some examples of such calculation are given. We begin with only kings on the board.
If the white king is in a corner, the black king can occupy 14 squares in A. If the white
king is in A but not in a corner, the king can occupy 13 squares in A. For this reason
f2(0, 0) = 4× 14 + 12× 13 = 212. We obtain in the same way f0(0, 0) and f1(0, 0) giving
the number of legal diagrams with only kings of the board with respectively 0 king and 1
king in A.

Now we describe a more complicated scenario. The proof of the other cases is left to
the reader. f1(2, 2) requires 4 bishops on the board and 1 piece in A. Hence there are
two cases. In the first case, one king is in A, the other one and the 4 bishops are not
in A. As seen above, we first place both kings. There are f1(0, 0) = 1448 ways to place
them. Consider the color of the square occupied by the king outside A. Two bishops are
on squares of this color, yielding 23 × 22 ways to arrange them, and two bishops are on
different color, producing 24× 23 cases. Hence, this first case yields 1448× 24× 232 × 22
possibilities. In the second case, no king is in A. We infer that we have a bishop in A and
other pieces outside A. First we place the kings, there are f0(0, 0) = 1952 ways to place
them outside A. We consider two subcases. In the first one, the kings are on opposite
colors, that is 988 cases, in the second one the kings are on the same color, that is 964
cases. When the kings are on opposite colors, first is chosen which bishop is inside A
and on which square it is, yielding 4 × 8 cases. Next we arrange the bishops outside A,
obtaining 232 × 22 ways of placing them. When the kings are on the same color, we have
to distinguish whether the bishop in A is on the same color as the kings or not. If it is,
with the same method we obtain 2× 8× 24× 23× 22 ways of placing the four bishops. If
the bishop inside A is not on the same color as the kings, we obtain 2× 8× 24× 22× 21
ways of placing the four bishops. Therefore

f1(2, 2) = 1448 × 24× 232 × 22 + 988 × 4× 8× 232 × 22

+ 964(2 × 8× 24× 23× 22 +×2× 8× 24× 22× 21) = 1130721152.

Once Table 2 is computed, we proceed by a rather large case distinction. Every case has
a simple combinatorial structure. For the sake of completeness, we sum up the algorithm
proposed in [(S. Steinerberger, 2015)], slightly modified as described:

• For all possible values of k kings and bishops contained in A, 0 ≤ k ≤ 6,

– For all possibles values of (bw, bb), there is fk(bw, bb) ways of placing two kings,
bw and bb bishops on the board with precisely k of them in A.

∗ There is 48 − (2 + bw + bk − k) squares on which the pw white pawns are
placed and 48− (2+ bw + bb−k)−pw on which the black pawns are placed.

6



· There are 62−bw−bk−pw−pk squares on which to place the remaining
men.

The upper bound for each case is simply a product of fk(bw, bb) and binomial coefficients.
Then all these numbers are summed over all cases containing the same number of chessmen
to generate an upper bound for diagrams with 2 to 24 men on the board. This method
yields also a bound when there are 25 men or more on the board but it is far less accurate
than the one found by the method based on pawn structures and quadruplets.

3 Results

An upper bound has been obtained for the number of diagrams of every quadruplets
containing 25 to 32 chessmen (subsection 2.5) and for diagrams with 2 to 24 chessmen
(subsection 2.6). Summing over all possibilities yields that the upper bound for the total
number of legal chess diagrams without promotion is equal to

3.8521 . . . × 1037.

Some details can be found in Table 3 for diagrams with 23 men or more. We observe that
the upper bound for the number of diagrams reaches a maximum when there are 26 or
27 men on the board. The improvement factor, defined as the ratio between the upper
bounds of the method described in [(S. Steinerberger, 2015)] and our method is increasing
with the number of chessmen.

Computation time is less than 1 second for each quadruplet containing 30 men or
more. For 28 men, it is less 1 second for (8, 8, 8, 4), which has 2682 classes of pawn
structures (nP ≈ 1.28 × 1011) and 38 seconds for (7, 7, 7, 7), which has 122524 classes
(nP ≈ 1.41 × 1013). For 25 men, it is 3 seconds for (8, 8, 8, 1), which has 2512 classes of

Table 2: Counting kings and bishops in first and last rank
f0(., .) 0 1 2

0 1952 89792 1031644
1 89792 4040640 45392336
2 1031644 45392336 498806704

f1(., .) 0 1 2

0 1448 99288 1517632
1 99288 6003920 84799744
2 1517632 84799744 1130721152

f2(., .) 0 1 2

0 212 31896 757472
1 31896 2988432 57608192
2 757472 57608192 978967872

f3(., .) 0 1 2

0 0 2968 152320
1 2968 589008 17763648
2 152320 17763648 413211008

f4(., .) 0 1 2

0 0 0 10276
1 0 38584 2473408
2 10276 2473408 89297152

f5(., .) 0 1 2

0 0 0 0
1 0 0 123312
2 0 123312 9324672

f6(., .) 0 1 2

0 0 0 0
1 0 0 0
2 0 0 364560
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Table 3: Upper bound on the number of diagrams for 25 to 32 men

32 men 31 men 30 men 29 men 28 men

This method 1.89 × 1033 1.71 × 1034 1.64 × 1035 1.53 × 1036 5.46 × 1036

Steinerberger paper 1.89 × 1033 6.97 × 1039 4.73 × 1039 2.29 × 1039 8.75 × 1038

Improvement factor 1 408000 28800 1490 160

27 men 26 men 25 men 24 men 23 men

This method 1.05 × 1037 1.08 × 1037 6.14 × 1036 3.19 × 1036 5.66 × 1035

Steinerberger paper 2.78 × 1038 7.50 × 1037 1.75 × 1037 3.54 × 1036 6.29 × 1035

Improvement factor 26.4 6.92 2.85 1.11 1.11

pawn structures (nP ≈ 2.72× 109) and 4 hours for (6, 5, 7, 7), which has 12730710 classes
(nP ≈ 3.87 × 1014).

The upper bound for diagrams with 2 to 24 men is increasing with the number of men,
up to 3.19×1036 for 24 men. Summing over all these cases, the upper bound is 3.85×1036.
This is approximately 10% better than respectively 3.54 × 1036 and 4.28 × 1036 obtained
with the method described in [(S. Steinerberger, 2015)]. Preventing the kings to occupy
adjacent squares explains this difference: as an argument, consider that 64× 63 = 4032 is
the total number of ways of placing kings on an empty board, but among them there is
only 3612 legal diagrams, which is approximately 10% lower.

4 Conclusion

4.1 Further improvements

The argument given in this paper is not far from optimal. It seems difficult to obtain a
significant improvement on the number of legal pawn positions: some of the computed
classes may be illegal, but they seem to be very few, as none was detected from an
examination of 100 randomly chosen classes of 25 men quadruplets. It could also be that
inside a given class, some pawn positions are illegal. For example, consider the class of
(8, 6, 7, 8) in Table 4. Only a white pawn and two black pieces have been captured. A
simple retrograd analysis reveals that the white pawn originally on the c file has taken
two pieces and is now in the e file, whereas the black e pawn has taken the white d pawn.
For this reason, it is impossible to have a pawn on e2 and a pawn on e3. Consequently,
the number of positions of this class could be bounded by 156 × 14× 6 instead of 157 × 6
given by our method. We believe that this kind of possible improvement has very little
effect because few classes are involved and even in those classes the correction is probably
low. The most significant gain would probably be achieved by computing list of classes of
pawn structures for 24 men and less, if possible.

Regarding piece positions, our method takes into account light squared and dark
squared bishops for any number of men and forbids kings to occupy adjacent squares
for 24 or less men on the board. We estimate that we would gain approximately 10% by
extending this last rule to 25 men or more, but designing a method achieving that task
may prove difficult. As for the bishops, the method we use in subsection 2.3 is not optimal,
but the loss is only 13% in the worst case. Of course we also account for a lot of illegal
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Table 4: A class of (8, 6, 7, 8)

Col1 Col2 Col3 Col4 Col51 Col6 Col7 Col8

-1 -1 -1 -1 1 -1 -1 -1
1 1 -1 1 1 1 1

diagrams but we guess it is a small minority of the total. For these reasons, we conjecture
that the number of legal diagrams in the game of chess without promotions is between
1037 and 3.5× 1037, probably close to 3× 1037.

4.2 Possible extensions

One possible continuation of this work would be to take promotions into account. For that
purpose, supplementary vertices and edges have to be introduced in the graph described
in subsection 2.1. Consider for example vertex (8, 7, 8, 8). Only a black piece is missing
on the board. Depending whether a piece or a pawn has taken it, 0, 1 or 2 promotions are
possible. This means that this quadruplet has to be partitioned in several vertices, some
of them having a possible transition to (8, 8, 8, 7) and to (9, 7, 7, 8) (respectively black and
white promotion). It is not obvious to decide whether such a treatment could easily be
automated and implemented, in particular regarding storage capacities and computation
time. Another idea would be to try to adapt this work to study the number of positions,
taking into account castling rights and en passant squares.

4.3 Verifiability

Programs and data have been generated using MatLab on a standard desktop computer
and are available upon request.
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