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We propose a new approach for semi-supervised learning using closed set lat-

tices, which have been recently used for frequent pattern mining within the

framework of the data analysis technique of Formal Concept Analysis (FCA).

We present a learning algorithm, called SELF (SEmi-supervised Learning via

FCA), which performs as a multiclass classifier and a label ranker for mixed-

type data containing both discrete and continuous variables, whereas only few

learning algorithms such as the decision tree-based classifier can directly han-

dle mixed-type data. From both labeled and unlabeled data, SELF constructs

a closed set lattice, which is a partially ordered set of data clusters with respect

to subset inclusion, via FCA together with discretizing continuous variables,

followed by learning classification rules through finding maximal clusters on

the lattice. Moreover, it can weight each classification rule using the lattice,

which gives a partial order of preference over class labels. We illustrate exper-

imentally the competitive performance of SELF in classification and ranking

compared to other learning algorithms using UCI datasets.
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1 Introduction

In various research domains from biology to economics, numerous mixed-type data including

both discrete (binary or nominal) and continuous (real-valued) variables are collected by re-

searchers. However, despite recent rapid development of many data analysis techniques in the

fields of machine learning, data mining, and knowledge discovery, only few algorithms such as

the decision tree-based classifier [29] can directly handle such mixed-type data. In particular,

to the best of our knowledge, no learning algorithm treats mixed-type data in a semi-supervised

manner.

Semi-supervised learning is a special form of classification [48, 50]; a learning algorithm

uses both labeled and unlabeled data to learn classification rules. In real tasks, it is often difficult

to obtain enough labeled data since the task of labeling has a high cost in terms of time and

money, whereas lots of unlabeled data can be collected easily. The goal of semi-supervised

learning is to construct a better classifier using such large amount of unlabeled data together

with labeled data in short supply.

To effectively use unlabeled mixed-type data for learning, we in this paper propose a novel

semi-supervised learning algorithm, called SELF (SEmi-supervised Learning via Formal Con-

cept Analysis), which can directly treat mixed-type data. SELF adopts a popular semi-supervised

learning strategy, called cluster-and-label [6, 9], where a clustering algorithm is first applied,

followed by labeling each cluster using labeled data. One of the remarkable features of SELF

is that it performs the clustering process using Formal Concept Analysis (FCA) [8, 14], which

is a mathematical theory for data analysis and knowledge representation introduced by Wille

[45]. Recently, Pasquier et al. [30] proposed to use closed patterns (itemsets) obtained by FCA
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as condensed “lossless” representations of patterns. This new approach has been the subject of

further research and extensions [1, 31, 36, 46]. In SELF, the labeling process is performed on a

closed set lattice, which is the result of FCA. Informally, this structure describes the maximally

general classification rules that explain the training data, thus preventing overfitting. Moreover,

each classification rule can be weighted using the closed set lattice by counting the number of

clusters classified by the rule, resulting in the preference of class labels as a partial order of

them for each unlabeled datum. Furthermore, FCA and closed set lattices enable us to naturally

treat incomplete data including missing values.

To summarize, this paper provides a contribution to both the fields of semi-supervised learn-

ing and FCA:

1. To semi-supervised learning: we present a novel approach based on an algebraic frame-

work without assuming any data distribution.

2. To FCA: we study a novel application, semi-supervised learning, using FCA and closed set

lattices.

The behavior of SELF is outlined as a flowchart in Figure 1, and this paper is organized

along it after discussing about related work in Section 2. The data preprocessing phase to con-

struct a context from a given dataset to apply FCA is explained in Section 3.1. Missing values

are handled in this phase. The learning phase is described in Section 3.2 and 3.3; Section 3.2

shows data clustering and making closed set lattices by FCA and Section 3.3 explains the train-

ing algorithm of SELF to learn classification rules. Classification by learned rules is considered

in Section 3.4. Section 4 gives empirical evaluation of SELF and, finally, key points and future

work are summarized in Section 5.
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2 Related Work

Many studies have used FCA for machine learning and knowledge discovery [26], such as

classification [12, 13], clustering [47], frequent pattern and association rule mining [20, 30,

41], and bioinformatics [2, 23, 25]. In particular, Ganter and Kuznetsov [13] investigated the

problem of binary classification of real-valued data and proposed algorithms based on the JSM-

method that produces hypotheses (classifiers) using positive and negative examples. Their idea

of using the lattice structure derived by FCA for classification is similar to our approach, but the

way of treating continuous variables is different. Their method discretizes continuous variables

by inequations, called conceptual scaling [14], that are given a priori, while SELF automatically

discretizes them along with the learning process and no background knowledge and assumption

about data are needed.

On the other hand, in machine learning context, decision tree-based algorithms such as C4.5

[32, 33] can treat mixed-type data by discretizing continuous variables, and there are several

discretization techniques [10, 27, 38] to treat continuous variables in a discrete manner. Our

approach is different from them since we integrate discretization process into learning process

and avoid overfitting using closed set lattices effectively. SELF uses cluster-and-label, or called

label propagation, which is a popular approach in semi-supervised learning as mentioned in

Introduction [4, 6, 9, 19, 44]. First SELF makes clusters without label information by FCA,

followed by giving preferences of class labels for each cluster. However, to date, most of

such approaches are designed for only continuous variables and, to the best of our knowledge,

no semi-supervised learning algorithm based on cluster-and-label can treat mixed-type data

including discrete variables appropriately. Since SELF uses FCA for clustering, it needs no

distance calculation and no data distribution, which is one of the remarkable features of SELF.

There exists only one study by Kok and Domingos [24] which is related to the idea of
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putting original data on lattices. They proposed a learning algorithm via hypergraph lifting,

which constructs clusters by hypergraphs and learns on them. Their idea is thus similar to ours

since we also “lift” raw data to the space of a closed set lattice via FCA. However, it is difficult

to treat continuous variables in their approach, thereby our approach can be more useful for

machine learning and knowledge discovery from mixed-type data.

SELF achieves not only semi-supervised learning but also label ranking using the preference

for each class label. Recently, the concept of preference has attracted more and more attention

in artificial intelligence including machine learning, resulting in formalization of the research

topic of “preference learning” [49]. In particular, label ranking [5, 18, 43] has been treated in

preference learning as an extension of traditional supervised classification, where the objective

is to obtain a ranker which gives a (partial) order of labels for each datum. SELF is the first

algorithm that treats label ranking of mixed-type data by weighting each classification rule

through closed set lattices.

3 SELF Algorithm

We present the SELF algorithm in this section, which is the main part of this paper. The behavior

of SELF is illustrated in Figure 1; first it performs data preprocessing to make a context from

a given dataset, second it constructs concept lattices by FCA, and third it learns the preference

for each class label. Notations used in this paper are summarized in Table 1.

3.1 Data Preprocessing

The aim of data preprocessing is to construct a (formal) context, a binary matrix specifying a

set of objects and their attributes, to apply FCA to training data.

A dataset τ is given in the form of a table, or a relation [7, 15, 37]. Each table is a pair

τ = (H,X) of a header H and a body X . We always denote the header size and the body size
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by d and n, respectively. An element of the header h ∈ H is called a feature1 and the domain

of h is denoted by Dom(h). The body X is a sequence of tuples x1,x2, . . . ,xn, where each tuple

xi is a total function from H to Dom(H) = {Dom(h) | h ∈ H} such that xi(h) ∈ Dom(h) for all

h ∈ H. Informally, each tuple corresponds to a data point. Missing values in X are allowed and

denoted by the special symbol ⊥, that is, if the value xi(h) is missing, xi(h) = ⊥. In addition,

we denote the body X by set(X) when we treat it as a set, that is, set(X) = {x1,x2, . . . ,xn}. Thus

we do not take the order and multiplicity into account in set(X). For each tuple x and a subset

J of the header H, the projection of x on J, denoted by x|J , is exactly the same as the restriction

of x to J, i.e., the function from J to Dom(H) such that x|J(h) = x(h) for all h ∈ J.

We consider two types of variables, discrete and continuous, in this paper. If a feature h∈H

is discrete, Dom(h) = S∪{⊥} for some countable set S. For instance, S = {T,F} if the feature

h is binary and S is a (finite) set of symbols if j is nominal (categorical). If h is continuous,

Dom(h) = R∪{⊥}, where R is the set of real numbers.

In FCA, we call a triplet (G,M, I) context. Here G and M are sets and I ⊆ G×M is a

binary relation between G and M. The elements in G are called objects, and those in M are

called attributes. For a given table τ = (H,X), we identify the set of objects G with set(X) =

{x1,x2, . . . ,xn}.

In the data preprocessing, for each feature h ∈ H of a table τ , we independently construct

a context (G,Mh, Ih) and combine them into a context (G,M, I). For this process, we always

qualify attributes to be disjoint by denoting each element m of the attribute Mh by h.m following

the notations used in the database systems literature [15].

First, we focus on preprocessing for discrete variables. Since a context is also a discrete

representation of a dataset, this process is directly achieved as follows: For each feature h, the

set of attributes Mh = {h.m | m ∈ Dom(h)\{⊥}} and, for each value xi(h), (xi,h.m) ∈ Ih if and

1It is usually called an attribute, but to avoid confusion with an attribute in a context, we use the word “feature”.
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Algorithm 1: Data preprocessing for discrete variables

Input: Table τ = (H,X) whose variables are discrete

Output: Context (G,MD, ID)

function CONTEXTD(τ)

1: G← set(X)

2: for each h ∈ H

3: Mh←{h.m | m ∈ Dom(h)\{⊥}}

4: Ih←{(x,h.x(h)) | x ∈ G and x(h) ̸=⊥}

5: end for

6: combine all (G,Mh, Ih) with h ∈ H into (G,MD, ID)

7: return (G,MD, ID)

only if xi(h) = m. In this way, discrete values are translated into a context and missing values

are naturally treated. Algorithm 1 performs this translation.

Example 1 Given a table τ = (H,X) with H = {1,2,3} and X = x1,x2 such that

(x1(1),x1(2),x1(3)) = (T,⊥,C),

(x2(1),x2(2),x2(3)) = (F,F,⊥).

This table can be represented in the following manner.

H 1 2 3

X
x1 T ⊥ C
x2 F F ⊥
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The domains are given as Dom(1) = Dom(2) = {T,F} and Dom(3) = {A,B,C}. Here we have

G = {x1,x2},

(M1, I1) = ({1.T,1.F},{(x1,1.T),(x2,1.F)}),

(M2, I2) = ({2.T,2.F},{(x2,2.F)}),

(M3, I3) = ({3.A,3.B,3.C},{(x1,3.C)}).

Thus we have the context (G,M, I) such that

M = M1∪M2∪M3 = {1.T,1.F,2.T,2.F,3.A,3.B,3.C},

I = I1∪ I2∪ I3 = {(x1,1.T),(x1,3.C),(x2,1.F),(x2,2.F)}.

It is visualized as a cross-table as follows:

1.T 1.F 2.T 2.F 3.A 3.B 3.C

x1 × ×
x2 × ×

Second, we make a context from continuous variables using discretization. This process

is embedded in the learning process (see Figure 1) and discretizing resolution increases along

with the process. The degree of resolution is denoted by a natural number k, called discretization

level and, in the following, we explain how to discretize continuous variables at fixed level k.

First we use min-max normalization [17] so that every datum is in the closed interval [0,1]. For

every feature h, each value x(h) is mapped to a value y(h) such that

y(h) =
x(h)−minx∈set(X) x(h)

maxx∈set(X) x(h)−minx∈set(X) x(h)
.

Next, we discretize values in [0,1] and make a context using the binary encoding of real num-

bers, following the approach we have used [39]. At discretization level k, Mh for a feature
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h ∈H is always the set {h.1,h.2, . . . ,h.2k}. For each value xi(h), if xi(h) = 0, then (xi,h.1) ∈ Ih.

Otherwise if xi(h) ̸= 0, then (xi,h.a) ∈ Ih if and only if

a−1
2k < xi(h)⩽

a
2k .

If xi(h) =⊥, then (xi,m) ̸∈ Ih for all m ∈Mh. This means that if we encode the value xi(h) as an

infinite sequence p = p0 p1 p2 . . . , a context at level k is decided by the first k bits p0 p1 . . . pk−1.

Each value is converted to exactly one relation of a context if it is not missing. Algorithm 2

shows the above process for making a context from continuous variables.

Example 2 Given a table τ = (H,X) with H = {1,2,3,4} and X = x1,x2 such that

(x1(1),x1(2),x1(3)) = (T,C,0.35,0.78),

(x2(1),x2(2),x2(3)) = (⊥,⊥,0.813,⊥).

It can be represented as follows:

H 1 2 3 4

X
x1 T C 0.35 0.78
x2 ⊥ ⊥ 0.813 ⊥

where the first and second features are discrete with Dom(1)= {T,F} and Dom(2)= {A,B,C},

and the third and forth are continuous. Assume that discretization level k = 1. We have

G = {x1,x2},

(M1, I1) = ({1.T,1.F},{(x1,1.T)}),

(M2, I2) = ({2.A,2.B,2.C},{(x1,2.C)}),

(M3, I3) = ({3.1,3.2},{(x1,3.1),(x2,3.2)}),

(M4, I4) = ({4.1,4.2},{(x1,4.2)}).

Thus we have the context (G,M, I) such that M = M1∪M2∪M3∪M4 and I = I1∪ I2∪ I3∪ I4,

which is visualized as a cross-table as follows:
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Algorithm 2: Data preprocessing for continuous variables

Input: Table τ = (H,X) whose variables are continuous, and discretization level k

Output: Context (G,MC, IC)

function CONTEXTC(τ , k)

1: G← set(X)

2: for each h ∈ H

3: Mh←{h.1,h.2, . . . ,h.2k}

4: Normalize values in the feature h by min-max normalization

5: Ih← /0

6: for each x ∈ G

7: if x(h) = 0 then Ih← Ih∪{(x,1)}

8: else if x(h) ̸= 0 and x(h) ̸=⊥ then

9: Ih← Ih∪{(x,h.a)}, where (a−1)/2k < x(h)⩽ a/2k

10: end if

11: end for

12: end for

13: combine all (G,Mh, Ih) with h ∈ H into (G,MC, IC)

14: return (G,MC, IC)

1.T 1.F 2.A 2.B 2.C 3.1 3.2 4.1 4.2

x1 × × × ×
x2 ×

3.2 Clustering and Making Lattices by FCA

From a context obtained by the data preprocessing, we generate closed sets as clusters of data

points and construct closed set lattices by FCA. First we summarize FCA (see literatures [8, 14]
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for detail). We always assume that a given table τ is converted into a context (G,M, I) by

Algorithms 1 and 2.

For subsets A⊆ G and B⊆M, we define

A′ := {m ∈M | (g,m) ∈ I for all g ∈ A},

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.

Using these mappings, we define a concept as follows: a pair (A,B) with A ⊆ G and B ⊆ M

is called a concept of a context (G,M, I) if A′ = B and A = B′. The set A is called an extent

and B an intent. Each operator ′ is a Galois connection between the power set lattices on G

and M, respectively, hence the mapping ′′ becomes a closure operator on the context (G,M, I).

This means that, for each concept (A,B), A and B are (algebraic) closed sets. Note that a subset

A ⊆ G (resp. B ⊆M) is the extent (resp. intent) of some concept if and only if A′′ = A (resp.

B′′ = B). Thus a set of objects A⊆ G forms a cluster if and only if A′′ = A. Each object usually

belongs to more than one cluster, hence this method is not “crisp” clustering.

The set of concepts over (G,M, I) is written by B(G,M, I) and called the concept lattice.

If we focus on either one of the set of objects or attributes, this lattice is called the closed set

lattice. In particular, in the context of frequent pattern mining, a set of attributes corresponds to

an itemset and the lattice is called the closed itemset lattice. For a pair of concepts (A1,B1) ∈

B(G,M, I) and (A2,B2)∈B(G,M, I), we write (A1,B1)⩽ (A2,B2) if A1⊆ A2. Then (A1,B1)⩽

(A2,B2) holds if and only if A1 ⊆ A2 (and if and only if B1 ⊇ B2). This relation ⩽ becomes an

order on B(G,M, I) in the mathematical sense and ⟨B(G,M, I),⩽⟩ becomes a complete lattice.

Let C ⊆B(G,M, I). A concept (A,B) ∈ C is a maximal element of C if (A,B) ⩽ (X ,Y ) and

(X ,Y ) ∈ C imply (A,B) = (X ,Y ) for all (X ,Y ) ∈ C . We write the set of maximal elements of

C by MaxC .

Many algorithms are available for constructing closed set lattices, or concept lattices, and
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the algorithm proposed by Makino and Uno [28] is known to be one of the fastest algorithms.

Their algorithm enumerates all maximal bipartite cliques in a bipartite graph with O(∆3) delay,

where ∆ is the maximum degree of the given bipartite graph, that is,

∆ = max
{

#J
∣∣∣∣ J ⊆ I, where

g = h for all (g,m),(h, l) ∈ J, or
m = l for all (g,m),(h, l) ∈ J

}
(#J is the number of elements in J) in the FCA context. A concept coincides with a bipartite

graph, hence we can use their algorithm directly. For empirical experiments, we use the program

LCM [40] provided by the authors to enumerate all concepts and construct the closed set lattice.

Example 3 Given the following context:

1 2 3 4 5

x1 × × ×
x2 × × ×
x3 ×
x4 × ×

There exist eight concepts in total; ( /0, {1,2,3,4,5}), ({x1}, {1,2,4}), ({x2}, {2,4,5}), ({x3},

{3}), ({x1,x2}, {2,4}), ({x2,x4}, {2,5}), ({x1,x2,x4}, {2}), and ({x1,x2,x3,x4}, /0), and ∆= 3.

We show the closed set lattice in Figure 2. Let C = {( /0, {1,2,3,4,5}), ({x1}, {1,2,4}), ({x2},

{2,4,5}), ({x1,x2}, {2,4}), ({x2,x4}, {2,5})}. Then maxC = {({x1}, {1,2,4}), ({x1,x2},

{2,4}), ({x2,x4}, {2,5})}.

3.3 Learning Classification Rules

Here we present the main learning algorithm of SELF in Algorithm 3, which obtains a set of

classification rules from a table τ for training. In this paper, a classification rule is a pair of

a set of attributes and a label. Intuitively, every unlabeled tuple (datum) is classified to the

associated label if it has the same attributes. SELF generates a set of classification rules at each

discretization level. We give the precise algorithm of classification in the next subsection.
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Algorithm 3: Main learning algorithm of SELF; learning classification rules

Input: Table τ = (H,X)

Output: Classification rules R1,R2, . . . ,RK

function MAIN(τ)

1: Divide τ vertically into two tables τD and τC, where τD contains all discrete

variables in τ and τC contains all continuous variables in τ

2: (G,MD, ID)← CONTEXTD(τD)

// make a context from discrete variables of τ (see Section 3.1)

3: k← 1 // k is discretization level

4: LEARNING(τC,G,MD, ID,k) // use this function recursively

function LEARNING(τC,G,MD, ID,k)

1: (G,MC, IC)← CONTEXTC(τC,k)

// make a context from continuous variables of τ at level k (see Section 3.1)

2: make (G,M, I) from (G,MD, ID) and (G,MC, IC)

3: construct the concept lattice B(G,M, I) from (G,M, I) (see Section 3.2)

4: C ←{(A,B) ∈B(G,M, I) | (A,B) is consistent}

5: Rk←{(B,Λ(g)) | (A,B) ∈MaxC and g ∈ Γ(A)}

6: output Rk

7: G← G\{g | g ∈ A for some (A,B) ∈ C }

8: remove corresponding attributes and relations from MD and ID, respectively

9: remove corresponding tuples from τC

10: if Γ(G) = /0 then halt

11: else LEARNING(τC,G,MD, ID,k+1)

12: end if
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We introduce some notations. For each object g ∈ G, we denote a label, an identifier of

a class, of g by Λ(g), and if g is unlabeled; i.e., the label information is missing, we write

Λ(g) =⊥. Moreover, we define Γ(G) := {g∈G |Λ(g) ̸=⊥}, hence objects in Γ(G) are labeled

objects, and those in G\Γ(G) are unlabeled objects. For a concept (A,B) ∈B(G,M, I), we say

that it is consistent if Γ(A) ̸= /0 and Λ(g) = Λ(h) for all g,h ∈ Γ(A). Note that a concept with

Γ(A) = /0 (all labels are missing) is not consistent.

First SELF performs data preprocessing and makes the context (G,M, I) from a given table

at each discretization level k using the algorithms given in Section 3.1. Second it constructs the

concept lattice B(G,M, I) using both labeled and unlabeled tuples and finds consistent concepts

using labeled tuples (objects). Third it outputs the sets of classification rules such that

Rk = {(B,λ ) | (A,B) ∈MaxCk and λ = Λ(g) with g ∈ Γ(A)}, where

Ck = {(A,B) ∈B(G,M, I) | (A,B) is consistent}

at discretization level k. The lattice enables us to avoid overfitting since, informally, attributes

of maximal concepts correspond to the most general classification rules. If some objects that are

not contained in consistent concepts remains, it refines discretization; i.e., increases discretiza-

tion level, and repeats the above procedure for the remaining objects.

Moreover, SELF weights each classification rule. For a classification rule R = (B,λ ), the

weight ω(R) is defined as follows:

ω(R) := #{(C,D) ∈B(G,M, I) | D⊇ B}.

Intuitively, the weight of a rule R means its importance since it is the number of clusters classi-

fied by the rule. Using the weight of rules, label ranking is realized (see the next subsection).

Example 4 Given a dataset τ = (H,X) and its labels as follows:
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H 1 2 3

X

x1 T C 0.28
x2 F A 0.54
x3 T B ⊥
x4 F A 0.79
x5 T C 0.81

Label

1
1
⊥
2
⊥

where Dom(1) = {T,F}∪{⊥}, Dom(2) = {A,B,C}∪{⊥}, and Dom(3) = R∪{⊥}. At dis-

cretization level 1, we have the following context:

1.T 1.F 2.A 2.B 2.C 3.1 3.2

x1 × × ×
x2 × × ×
x3 × ×
x4 × × ×
x5 × × ×

We show the closed set lattice in the left-hand side in Figure 3. By SELF, we obtain R1 =

{({1.T},1)} since the concept ({x1,x3,x5},{1.T}) is the maximal consistent concept, and there

is no consistent concept that contains x2 or x4. This classification rule means “For a tuple x, if

x(1) = T, then x is classified to the class 1”. The weight is calculated as ω({1.T},1) = 6. SELF

removes objects x1, x3, and x5 contained in the consistent concepts and proceeds to the next

level. At discretization level 2, we have the following context:

1.T 1.F 2.A 2.B 2.C 3.1 3.2 3.3 3.4

x2 × × ×
x4 × × ×

The right-hand side in Figure 3 shows the closed set lattice of the above context, and we obtain

R2 = {({1.F,2.A,3.3},1),({1.F,2.A,3.4},2)}. For instance, the first rule means “For a tuple

x, if x(1) = F, x(2) = A, and 0.5 < x(3)⩽ 0.75, its class label is 1”. The weight are 2 for both

rules.
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We show that SELF always stops in finite time if there are no conflicting objects. Namely,

for a table τ = (H,X), if there is no pair x,y ∈ set(X) such that Λ(x) ̸= Λ(y) and x(h) = y(h)

for all h ∈H, Algorithm 3 stops in finite time. This statement is proved in the following way: if

discretization level k is large enough, we have the concept lattice B(G,M, I), where for every

object x ∈ G, there exists a concept (A,B) such that A = {x} since there is no pair x,y ∈ G

satisfying x(h) = y(h) for all h ∈ H. Thus each object x with Λ(x) ̸= ⊥ must be contained

in some consistent concept, and the algorithm stops. Note that the algorithm works even if

Γ(G) = G; i.e., all objects have labels, hence it also can be viewed as a supervised classification

method.

The time complexity of learning by SELF is O(nd)+O(∆3N) such that

N = max
k∈{1,2,...,K}

#B(Gk,Mk, Ik),

where (Gk,Mk, Ik) is the context at discretization level k and K is the level where SELF stops

since data preprocessing takes O(nd), making a concept lattice takes less than O(∆3N), and

obtaining classification rules takes less than O(N).

3.4 Classification

Now we have sets of classification rules R1, R2, . . . , RK for each discretization level from

training mixed-type data including labeled and unlabeled data using Algorithms 1, 2, and 3. In

this section, we show how to classify a new unlabeled datum using the rules. We assume that

such a new datum is given as a table υ = (H,y), where the body y consists of only one tuple.

Algorithm 4 performs classification using the obtained rules R1, R2, . . . , RK . The algorithm

is levelwise; i.e., at each level k, it makes a context (G,M, I) from the table υ = (H,y) and apply

the set of rules Rk to it. Let L be the domain of class labels. It checks all rules in Rk and, for
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Algorithm 4: Classification

Input: Classification rules R1,R2, . . . ,RK , table υ = (H,y), and the set of labels L

Output: Preference of each label

function CLASSIFY(R1,R2, . . . ,RK , υ)

1: Divide υ vertically into two tables υD and υC, where υD contains all discrete

variables in υ and υC contains all continuous variables in υ

2: (G,MD, ID)← CONTEXTD(υD)

// make a context from discrete values of υ

3: for each λ ∈L

4: ψ(λ )← 0

5: for each k ∈ {1,2, . . . ,K}

6: (G,MC, IC)← CONTEXTC(υC,k)

// make a context from continuous values of υ at level k

7: make a context (G,M, I) from (G,MD, ID) and (G,MC, IC)

8: ψ(λ )← ψ(λ )+∑R∈Q ω(R), where Q = {(B,λ ) ∈Rk | (y,b) ∈ I for all b ∈ B}

9: end for

10: output ψ(λ )

11: end for

each label λ ∈L , it outputs the preference of the label λ , which is defined as

ψ(λ ) :=
K

∑
k=1

∑
R∈Q

ω(R), where Q = {(B,λ ) ∈Rk | (y,b) ∈ I for all b ∈ B},

by summing up weights of rules. Note that the set G is always a singleton {y} in the classifica-

tion phase. The result means that if ψ(λ )> ψ(λ ′) for labels λ and λ ′, λ is preferable than λ ′,

and vice versa, and if ψ(λ ) =ψ(λ ), the preference of λ and λ ′ are same, resulting in the partial

order over the set of labels L . Thus the task of label ranking is achieved by the preference ψ .
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Moreover, if we pick up the label

λ ∈ argmaxλ∈L ψ(λ ), (1)

multiclass classification is also performed directly.

Example 5 Let us consider the case discussed in Example 4. A tuple y such that

(y(1),y(2),y(3)) = (T,B,0.45)

satisfies only the rule ({1.T},1) ∈R1. Thus we have ψ(1) = 6 and ψ(2) = 0 for labels 1 and

2, respectively. A tuple z with

(z(1),z(2),z(3)) = (F,A,0.64)

satisfies only the rule ({1.F,2.A,3.3}), hence ψ(1) = 0 and ψ(2) = 2.

4 Experiments

Here we empirically evaluate SELF. Our experiments consist of two parts: one is about multi-

class classification, and the other is about label ranking.

4.1 Methods
4.1.1 Environment

SELF was implemented in R version 2.12.1 [34] and all experiments were performed in the R

environment. For enumeration of all concepts and construction of a closed set lattice from a

context, we used LCM1 distributed by Uno [40], which was implemented in C.

1http://research.nii.ac.jp/~uno/codes.htm
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4.1.2 Datasets

We collected ten mixed-type datasets from UCI Machine Learning Repository [11]: abalone,

allbp, anneal, arrhythmia, australian, crx, echocardiogram, heart, hepatitis, and horse colic.

Their basic statistics are summarized in Table 2. Datasets allbp, anneal, arrhythmia, australian,

crx, echocardiogram, hepatitis, and horse colic included missing values, which were directly

treated in SELF. In other learning algorithms, we ignored all tuples which have missing values

since they cannot treat such datasets appropriately.

In label ranking, we used four datasets: abalone, allbp, anneal, and arrhythmia, which have

more than three classes. The other datasets had only two classes and could not be used for label

ranking evaluation.

4.1.3 Control Learning Algorithms

In multiclass classification, three learning algorithms were adopted: the decision tree-based

classifier implemented in R supplied in the tree package [35], SVM with the RBF kernel (C = 5

and γ = 0.05) in the kernlab package [21], and the k nearest neighbor algorithm (k = 1 and 5)

in the class package. Notice that only the decision tree-based algorithm can treat mixed-type

data directly, which is one of typical such learning algorithms. All discrete values were treated

as continuous in SVM and kNN.

4.1.4 Evaluation

In classification, for each dataset, the following procedure was repeated 20 times and the mean

and s.e.m. (standard error of the mean) of accuracy was obtained: 1) the number of labeled

data or features was fixed, where the range was from 10 to 100 and 2 to 10, respectively, 2)

labeled training data were sampled randomly, 3) labels of the remaining data were predicted by

respective learning algorithms, and 4) the accuracy was obtained.
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The equation (1) was used to determine the most preferable label for each unlabeled datum.

If there exists more than two such labels, we chose the smallest one.

We adopted two criteria: correctness and completeness, used in the literature [5] to evaluate

partial orders of labels in label ranking. Correctness coincides with the gamma rank correlation

[16], which is the normalized difference between the number of correctly ranked pairs and that

of incorrectly ranked pairs. Let L be the set of class labels and we denote by ≺∗ the ground

truth of the partial order over the set of labels L . Assume that ≺ is a predicated partial order.

Here we define

C := #{(λ ,λ ′) ∈L ×L | λ ≺ λ ′ and λ ≺∗ λ ′},

D := #{(λ ,λ ′) ∈L ×L | λ ≺ λ ′ and λ ′ ≺∗ λ}.

Then, the correctness is defined by

CR(≺,≺∗) :=
C−D
C+D

.

Trivially, the correctness takes a value in [−1,1], and CR(≺,≺∗) = 1 if ≺=≺∗ and CR(≺,≺∗

) = −1 if ≺ is the inversion of≺∗. Thus the correctness should be maximized. Moreover,

to evaluate the degree of completeness of a predicted partial order, we use the completeness

defined as follows:

CP(≺) :=
C+D

#{(λ ,λ ′) ∈L ×L | λ ≺∗ λ ′ or λ ′ ≺∗ λ}
.

The completeness takes a value in [0,1] and should be maximized.

4.2 Results
4.2.1 Multiclass Classification

We evaluated SELF in multiclass classification. Specifically, we examined SELF’s behavior

with respect to the number of labeled data and the number of features; the number of labeled
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data was varied from 10 to 100, and the number of features from 2 to 10. When we fixed the

number of labeled data, we used all features for abalone, anneal, australian, crx, echocardio-

gram, heart, and hepatitis, and only used features 1, 2, 3, 18, 20 in allbp, 1, 2, . . . , 6, 22, 22,

. . . , 25 in arrhythmia, and 1, 2, 4, 5, . . . 11 in horse colic, since we could not finish experiments

in reasonable time for such dense datasets. The above features seem to be representative for

each dataset. Otherwise if we fixed the number of features, we examined two cases in which

the number of labeled data for training were 10 or 100. Such small amount of labeled data

is typical in semi-supervised learning; for example, the numbers 10 and 100 were adopted in

benchmarks in the literature 1 [50, §21].

To analyze effectivity of unlabeled data in the semi-supervised manner, we trained SELF in

two ways; one is using both labeled and the remaining all unlabeled data for training, and the

other is using only labeled data for training without any unlabeled data. In the following, we

denote “SELF” in the former case and “SELF (w/o)” in the latter case. All experiments were

carried out in the transductive setting [42], that is, test data coincide with the unlabeled training

data. This setting is common in empirical evaluation of semi-supervised learning methods [50,

§21].

For control, three learning algorithms were adopted: the decision tree-based classifier, SVM

with the RBF kernel, and the k nearest neighbor algorithm (k = 1 and 5). All the above algo-

rithms are typical for supervised learning and hence did not use unlabeled data in training.

Figure 4 and Figures 5, 6 show the accuracy with respect to changes in the number of labeled

data and the number of features, respectively. In every case, the accuracy of SELF was much

better than that of SELF (w/o), and the accuracy was getting better according as the number

of labeled data increases. Moreover, SELF’s performance is getting better with increase in the

number of features. SELF therefore can effectively use unlabeled data and features for learning.

1This content is available at http://olivier.chapelle.cc/ssl-book/benchmarks.pdf.
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In comparison with the tree algorithm which can treat mixed-type data directly, SELF

showed better performance in all datasets in Figure 4. Moreover, compared to other learn-

ing algorithms of SVM and kNN, SELF also achieved the best performance in abalone, anneal,

and horse colic. When the number of labeled data is small (about 10 – 40), SELF outperformed

other learning algorithms in all datasets except allbp, as shown in Figures 4 and 5.

4.2.2 Label Ranking

We examined effectivity of SELF for label ranking. In consideration of the lack of benchmark

data for label ranking, we adopted the following procedure for label ranking: we trained SELF

using all labeled data on the respective dataset and obtained the ranking for each datum, and

used them as the ground truth. Literatures [5, 18] which studied label ranking used the naı̈ve

Bayes classifier to make the ground truth of rankings from datasets. However, the mathematical

theory is totally different from those of SELF, hence their approach is not appropriate to our

case.

Figures 7 and 8 show the results of label ranking by SELF with varying the number of

labeled data, and Figures 9 – 12 show those with respect to the number of features, where

the number of labeled data is 10 for Figures 9 and 10, and 100 for Figures 11 and 12. The

correctness of SELF is better than SELF (w/o) in abalone, and is similar between them in the

other datasets for all conditions. In contrast, the completeness of SELF is much higher than that

of SELF (w/o) in most cases. The main reason might be that lots of data are not classified to

any class in SELF (w/o).

4.3 Discussion

Our experiments about classification (Figures 4, 5, 6) show that SELF has competitive per-

formance compared to other machine learning algorithms, where unlabeled data can be used
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effectively in training. This result means that data clustering using the closed set lattices works

well for semi-supervised learning of mixed-type data. Moreover, SELF can explicitly produce

classification rules like the decision tree-based algorithm, hence SELF’s results can be easily

interpreted. Furthermore, in label ranking (Figures 7 – 12), SELF outperformed SELF (w/o)

in most cases in terms of completeness, and the performance got higher with increase of the

number of labeled data. Our results therefore show that unlabeled data are also effectively used

in SELF in the task of label ranking.

5 Conclusion

We have proposed a novel semi-supervised learning method, called SELF, for mixed-type data

including both discrete and continuous variables, and experimentally showed its competitive

performance. The key strategy is data clustering with closed set lattices using FCA, and the

present study shows the effectivity of the lattices in semi-supervised learning. To our best

knowledge, this approach is the first direct semi-supervised method for mixed-type data, and

also the first one to exploit closed set lattices in semi-supervised learning. Moreover, we can

directly treat missing values on SELF, meaning that SELF can be used for various practical

datasets. To date, many semi-supervised learning methods use data distribution and probabil-

ities, whereas SELF uses only the algebraic structure of data without any background knowl-

edge. Our results with lattice-based data analysis provide new insight to machine learning and

knowledge discovery.

There are two future works; one is analysis of SELF from FCA point of view. Refinement of

discretization of continuous variables must have some connection with reduction of a context

[14] since if we extend a context by refining real-valued variables, the original attributes are

removed by reduction. Thereby analysis of mathematical connection between them is a future

work. The other is theoretical analysis in the computational learning theory context. de Brecht
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and Yamamoto [3] have proposed Alexandrov concept space for learning from positive data.

Our proposed method might be an instance of the study, since the concept lattice is similar to

the Alexandrov space. Thus theoretical analysis of our framework is also a future work.
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[43] S. Vembu, T. Gärtner: Label ranking algorithms: A survey. in: Preference Learning.

Springer-Verlag (2010) pp. 45–64

[44] F. Wang, C. Zhang: Label propagation through linear neighborhoods. in: Proceedings of

the 23rd international conference on Machine learning, ACM (2006) pp. 985–992

[45] R. Wille: Restructuring lattice theory: An approach based on hierarchies of concepts.

in: Ordered Sets. D. Reidel Publishing Company (1982) pp. 445–470 This article is in-

cluded in Formal Concept Analysis, Volume 5548 of Lecture Notes in Computer Science.,

Springer (2009) pp. 314–339

[46] M. J. Zaki: Generating non-redundant association rules. in: Proceedings of the 6th ACM

SIGKDD international conference on Knowledge discovery and data mining. (2000) pp.

34–43

[47] Y. Zhang, B. Feng, Y. Xue: A new search results clustering algorithm based on formal

concept analysis. in: Proceedings of 5th International Conference on Fuzzy Systems and

Knowledge Discovery, IEEE (2008) pp. 356–360

[48] X. Zhu, A. B. Goldberg: Introduction to semi-supervised learning. Morgan and Claypool

Publishers (2009)
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Tables

Table 1. Notation used in this paper.

R The set of real numbers
τ = (H,X) Table, pair of header H and body X
set(X) The set of tuples of body X
h Feature (element in H)
x,y Tuple
⊥ Missing value
n Number of data (objects)
d Number of features
Dom(h) Domain of the feature h
G The set of objects
M The set of attributes
I Binary relation between G and M
(G,M, I) Context
g Object, identified with tuple
m Attribute
h.m Qualified attribute generated from feature h
′′ Closure operator
B(G,M, I) Concept lattice
λ Label
Λ(g) Label of object g
Γ(G) Set of labeled objects in G
R Classification rule (pair of set of attributes and label)
ω(R) Weight of classification rule R
ψ(λ ) Preference of label λ
≺∗ True partial order
≺ Predicted partial order
CR(≺,≺∗) Correctness of ≺
CP(≺) Completeness of ≺
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Table 2. Statistics for UCI datasets used for experiments.

Name # Data # Classes # Features
Discrete Continuous

abalone 4177 28 1 7
allbp 2800 3 2 3
anneal 798 5 28 10
arrhythmia 452 13 5 5
australian 690 2 7 4
crx 690 2 9 6
echocardiogram 131 2 1 7
heart 270 2 7 6
hepatitis 155 2 13 6
horse colic 368 2 8 2
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Figure Captions

Figure 1

A flowchart of the proposed SELF algorithm. It learns classification rules from training data

and applies them to classify test data. Here we say that a concept is consistent if all labels

contained in the concept are same.

Figure 2

The closed set lattice (concept lattice) constructed from the context given in Example 3. In this

diagram, each dot denotes a concept, which are treated as a cluster in SELF.

Figure 3

The closed set lattices (concept lattices) at discretization levels 1 and 2 constructed during the

learning phase in Example 4. In these diagrams, each black dot denotes the maximal consistent

concept in the set of concepts covered by the dotted line.

Figure 4

Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying

the number of labeled data. We performed SELF using both labeled and unlabeled data (SELF)

and using only labeled data (SELF (w/o)), and compared them to the decision tree-based clas-

sifier (Tree), SVM with the RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN,

5-NN). Data show mean ± s.e.m.

Figure 5

Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying

the number of features. The number of labeled data was fixed at 10 in each experiment. We
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performed SELF using both labeled and unlabeled data (SELF) and using only labeled data

(SELF (w/o)), and compared them to the decision tree-based classifier (Tree), SVM with the

RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN, 5-NN). Data show mean ±

s.e.m.

Figure 6

Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying

the number of features. The number of labeled data was fixed at 100 in each experiment. We

performed SELF using both labeled and unlabeled data (SELF) and using only labeled data

(SELF (w/o)), and compared them to the decision tree-based classifier (Tree), SVM with the

RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN, 5-NN). Data show mean ±

s.e.m.

Figure 7

Experimental results of correctness (should be maximized) for four mixed-type datasets from

UCI repository with varying the number of labeled data. We performed SELF using both labeled

and unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data show mean± s.e.m.

Figure 8

Experimental results of completeness (should be maximized) for four mixed-type datasets from

UCI repository with varying the number of labeled data. We performed SELF using both labeled

and unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data show mean± s.e.m.

Figure 9

Experimental results of correctness (should be maximized) for mixed-type datasets from UCI

repository with varying the number of features. The number of labeled data was fixed at 10 in
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each experiment. We performed SELF using both labeled and unlabeled data (SELF) and using

only labeled data (SELF (w/o)), Data show mean ± s.e.m.

Figure 10

Experimental results of completeness (should be maximized) for mixed-type datasets from UCI

repository with varying the number of features. The number of labeled data was fixed at 10 in

each experiment. We performed SELF using both labeled and unlabeled data (SELF) and using

only labeled data (SELF (w/o)), Data show mean ± s.e.m.

Figure 11

Experimental results of correctness (should be maximized) for mixed-type datasets from UCI

repository with varying the number of features. The number of labeled data was fixed at 100 in

each experiment. We performed SELF using both labeled and unlabeled data (SELF) and using

only labeled data (SELF (w/o)), Data show mean ± s.e.m.

Figure 12

Experimental results of completeness (should be maximized) for mixed-type datasets from UCI

repository with varying the number of features. The number of labeled data was fixed at 100 in

each experiment. We performed SELF using both labeled and unlabeled data (SELF) and using

only labeled data (SELF (w/o)), Data show mean ± s.e.m.
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