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Abstract. This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification14

of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of15

ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable16

fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral17

bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands18

speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for19

selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.20

Keywords: Hyperspectral image cubes, animal feed quality monitoring, hyperspectral band selection, reflectance analysis, evo-21

lutionary search, divergence, recursive feature elimination22

1. Introduction23

Monitoring animal feed quality is particularly important because contaminants in feed can, in ad-24

dition to hindering the development and health of livestock animals, be transferred to milk and meat25

products and so present health risks to consumers. Specifically, ruminant-derived feed products may be26

carriers of the Bovine Spongiform Encephalopathy (BSE) prion [19,27]. Potential points of prohibited27

animal protein introduction include cross-contamination by transporters, protein blenders working with28
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multiple sources of animal protein, and feed mills that manufacture protein supplement for cattle and29

non-ruminant species, with the latter containing prohibited animal protein. The latest case of BSE in the30

US was confirmed in 2006 from a cow in Alabama [7]. In Europe, there is a ban on use of all rendered31

animal protein in feedstuffs for food production animals [1,3]. In the US, the Food and Drug Administra-32

tion (FDA) and state feed control officials evaluate ruminant feed samples for the presence of prohibited33

animal protein as part of a nationwide BSE detection program.34

The current procedure for monitoring of animal feed quality is as follows. Feed samples are col-35

lected during inspections of feedlots and feed mills using approved analytical sampling methods and36

subsequently inspected under laboratory conditions based on standardized microscopy procedures of37

FDA [2]. The physical preparation of feed samples for inspection takes about 2 hours per sample, and38

careful microscopy based inspection by specially training technicians takes additional 2 hours per feed39

sample. If bonemeal fragments or other potentially prohibited ruminant-derived contaminants are found40

during microscopy, the feed sample is subjected to further analyses using polymerase chain reaction41

(PCR) technology. The current monitoring system is time consuming and highly subjective to human42

error, so there is a great need for development of automated quality control procedures for inspection of43

feed materials.44

In a recent study of feed materials and ruminant derived bonemeal, a sequence of linear discriminant45

analyses (LDA) was deployed to gradually improve the classification accuracy of hyperspectral profiles.46

Based on independent testing, it was found that the minimum detection level for an automated machine47

vision based system was about 1% bonemeal contamination (by weight).48

In order to overcome the limitations of a manual quality control system, this paper proposes the auto-49

matic monitoring approach to animal feed quality based on reflectance data acquired with a hyperspec-50

tral imaging system. Using HSI technology has the following advantages over traditional microscopy:51

it is non-destructive, generally does not require much physical preparation of the target objects, and52

can provide real-time results. Hyperspectral imaging technology has been evaluated as part of machine53

vision based quality control of a wide range of food products, including meat [28,37,40,42], fruits and54

vegetables [8,11,20,21,30,31,35,38,48], grain and flour [6,13,14,16,39,47], and animal feed [5,17,34,55

36].56

Hyperspectral images contain reflectance information for a large number of narrow spectral bands57

for each pixel (hyperspectral profile), providing a unique reflectance signature of a given object. This58

allows for classifying material types based on spectral characteristics at specific wavelengths. However,59

the large number of spectral bands present in hyperspectral images makes the real-time processing for60

on-line monitoring of animal feed quality difficult, and there are great risks of over-fitting, so that clas-61

sification of independent test data becomes associated with low accuracy. Thus, it is crucial to develop62

an efficient procedure to select a few important spectral bands in which it is possible to detect unique63

contamination signals in order to reliably distinguish contaminants and feed materials.64

Spectral band selection is the process of identifying a spectral band subset that contains a significant65

amount of information to distinguish contaminants and feed materials. Many different methods have66

been used to assign importance scores to each spectral band, after which a set of spectral bands is chosen67

based on those scores. Methods in which spectral bands are considered in sets tend to perform better than68

those which rank them individually, as nearby spectral bands are frequently highly correlated [12,15,49].69

We considered two factors that limit many existing approaches. Deterministic recursive methods add70

one spectral band to the set at a time, and bands are not removed once added. Bands selected later in71

the process are thus influenced by bands selected earlier in the process, and so we wanted to develop72

a method where the bands selected for sets with n + 1 bands would be independent of those selected73
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Table 1
Sensor characteristics

Focal length 35 mm
F/# F 1.4
Bit depth 12 bit
FOV 7 degrees
Scanner Push boom
Spectral range Responsive from 400 to 90 nm ± 5 nm
Spectral resolution 2.1 nm
Spectral channels 240
Cross-track channels 640
Serial communication Firewire 800 (IEEE 1394b))
Vendor Pika II, resonon, Inc.

for sets with n bands. Additionally, wrapper methods for band selection (methods that use the classifier74

itself in the band selection process) are computationally expensive, so we focused on filter methods that75

do not involve the classifier.76

In this paper, we developed two methods: a divergence recursive feature elimination (DRFE) method77

(essentially a filter method based on the recursive feature elimination method) and an evolutionary re-78

finement (ER) method. A hyperspectral image camera was used to acquire reflectance data in narrow79

spectral bands across the visible range from 29 feed material samples, including fish and chicken meal,80

as well as from commercial samples of bonemeal from ground cattle cadavers. Support Vector Machine81

(SVM) binary classification was used to distinguish between hyperspectral profiles from feed samples82

and bonemeal samples on the basis of the hyperspectral reflectance values. Classification accuracy was83

determined when analyses were based upon different feature selection methods. The organization of the84

paper is as follows. In Section 2, a hyperspectral imaging system for monitoring animal feed quality is85

described. Section 3 introduces our proposed spectral band selection methods. Experimental results are86

presented in Section 4, and the conclusion of the paper is presented in Section 5.87

2. A hyperspectral imaging system for monitoring animal feed quality88

Our hyperspectral imager utilizes a push-broom (line-scan) design, with dispersion provided by a89

diffraction grating. A frame grabber is not required as scanning is performed with a linear stage con-90

trolled by a stepper motor. The sensor is then mounted on an aluminum tower-structure at 35 cm above91

a 5-cm diameter Petri dish holding the feed materials to collect hyperspectral images at a magnification92

representing a spatial resolution of about 166 hyperspectral profiles (pixels) per mm2. Sensor specifics93

are presented in Table 1.94

All hyperspectral images were collected in a dark room, and artificial lighting consisted of 2 × 3 15 W95

and 12 V light bulbs mounted in two angled rows – one on either side of the lens. As power source for the96

lighting, we used a voltage stabilizer (Tripp-Lite, PR-7b, www.radioreference.com). A bright pink piece97

of paper was placed in the bottom of the Petri dish used to hold feed materials, so that hyperspectral98

profiles from background were easily separated from feed and bonemeal materials. A piece of white99

Teflon was used for white calibration and, for each spectral band, reflectance profiles were converted100

into proportion of the reflection from Teflon (denoted relative reflectance). All hyperspectral images101

were collected at ambient temperature conditions of 21–23◦C and 40–50% relative humidity. Prior to102

imaging, all feed materials were placed in a single layer. Figure 1 shows some of the challenges of the103

classification tasks in that bonemeal constitutes a heterogeneous mixture of particles and feed samples104

are very diverse in their composition.105
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Fig. 1. Reflectance plots on sample particles. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/
IDA-130626)

Our first step after capturing hyperspectral images was to filter out pink hyperspectral profiles that106

represented the background material on which the feed and bonemeal samples were placed. Next, we107

separated the data into training and testing sets. Regarding the training data, we selected spectral band108

sets using both the recursive divergence method and the ER method. The test data was used to evaluate109



Galley Proof 29/11/2013; 10:56 File: IDA626.tex; BOKCTP/xhs p. 5

P. Wilcox et al. / Evolutionary refinement approaches for band selection of hyperspectral images 5

Fig. 2. Example reflectance curves.

the performance of SVM classifiers using those spectral band sets.110

In order to automate the filtering of background hyperspectral profiles from our data, we examined the111

normalized reflectance curves of background hyperspectral profiles and non-background hyperspectral112

profiles. We identified a distinct curve centered in the visible-light portion of the spectrum (Fig. 2), and113

we based our filtering method on the values for spectral bands (using 0-based indexing) 19 (465 nm),114

44 (544 nm), and 88 (683 nm), which roughly correspond to blue, green, and red light, respectively.115

We calculated the means and standard deviations of the reflectance values for those three spectral bands116

in an all-background sample image, after first normalizing the reflectance values for each hyperspectral117

profile.118

To filter background hyperspectral profiles out of our testing and training data, we calculated for each119

hyperspectral profile the distance (in standard deviations) between the hyperspectral profile’s normal-120

ized reflectance values for those three spectral bands and the normalized reflectance values from the121

background sample image. If the sum of those distances was less than a threshold, we identified the122

hyperspectral profile as background and filtered it out of our training and testing data. We used 10 as the123

threshold after examining the effects of filtering various test images with various other values. If the sum124

of the three distances is greater than 10, this means that each band is about more than 3.3 (on average)125

standard deviations away from the background.126

3. Evolutionary refinement approaches for spectral band selection127

3.1. Related works128

Band selection is similar to the feature selection where we select a few important input variables129

(features) that are most predictive of a given output. Feature selection can identify only a few relevant130

features and give a better generalization error [10,22,49,50]. Also, based on the success of SVM, several131

feature selection algorithms in the SVM domain have been proposed including Guyon’s SVM-RFE [22],132

the SVM gradient method [9,24], the M-fold SVM [18] and FGSVM-RFE [44].133
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Initially, we looked at three individual spectral band ranking methods: separation measure, envelope134

eccentricity, and signal-to-noise correlation [4]. Let x+ and x− be the average value of a feature x taken135

over the set of all positive (bonemeal) and negative (feed), respectively, data points. Let x∗ be the average136

of x+ and x−, and assume that x+ � x− (otherwise, treat it in a symmetric manner). Let the number of137

positive observations with x � x∗ be n+
x , and let the number of negative observations with x < x∗ be138

n−
x . The separation measure is σx = n+

x n
−
x , higher values indicate that the values of this feature x can be139

used to separate more positive/negative pairs of observations. For the envelope eccentricity, let l+x and u+x140

be the minimum and maximum of the values of feature x for the positive data points; likewise let l−x and141

u−x be the same for the negative data points. The overlap index is the ratio ωx = min(u−
x ,u+

x )−max(l−x ,l+x )

max(u−
x ,u+

x )−min(l−x ,l+x )
,142

and smaller absolute values for this ratio indicate more relevant features. Finally, the signal-to-noise143

correlation of a feature x with its class is τx = x+−x−

σ++σ− , where σ+ and σ− are the standard deviations of144

the values of x for the positive and negative samples, respectively.145

Recursive feature elimination takes a different approach. Unlike the above methods, features are not146

individually given a score and then selected based on the highest ranking scores, but are instead evaluated147

on how important they are when considered alongside the other features [22]. The result is a list of148

features ranked from most important to least important. We performed the recursive feature elimination149

(RFE) process using a linear kernel SVM. A brief explanation of SVM-RFE follows: A linear SVM is150

trained with all features and a weight is identified for each feature. The feature with the weight with151

the smallest magnitude is removed; this feature (k) is the least important. The linear SVM is retrained152

without the feature k. The feature with the weight with the smallest magnitude is eliminated and this153

feature is the next to the least important. Features are recursively eliminated and ranked until all features154

are exhausted. In this way, the last eliminated feature is the most important.155

Another measure that has been used to evaluate feature sets is the between-class divergence [45]. The156

divergence of a set of features is related to the correlation between those features and can be used to157

compare the discriminating power of sets of features. In the following, we briefly introduce the general158

formula for the between-class divergence and then introduce the divergence when data is normally dis-159

tributed. Let x be a set of features and pi (x) (pj (x)) be the probability density function of x in class160

i (j). We select class i if pi (x) > pj (x) . So the ratio pi(x)
pj(x)

or equivalently ln pi(x)
pj(x)

carries information161

for the discriminatory capabilities regarding x. The mean value over class i for different values of x is162

Dij =

∫ +∞

−∞
pi (x) ln

pi (x)

pj (x)
dx (1)

Similar arguments hold to define Dji for class j. The sum Jij = Dij +Dji is known as divergence [45].163

Each spectral band of the collected data was normally distributed, so the following equation, which164

treats the data sets as coming from two multivariate normal distributions, can be used (θi and Σi are the165

mean vector and covariance matrix, respectively, for class i) [45]:166

Jij(x) =
1

2
tr
[(∑−1

i
+
∑−1

j

)
(θi − θj)(θi − θj)

t
]
+

1

2
tr

[(∑
i
−
∑

j

)(∑−1

j
−
∑−1

i

)]

(2)

Except for when both the number of total spectral bands and desired spectral band set sizes are quite167

small, it is infeasible to calculate the divergence for every possible set of spectral bands since the total168

number of such subsets grows exponentially (2n with n being the number of features). The recursive169
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divergence (RD) feature selection method instead creates a spectral band set incrementally, so that at170

any step the number of sets to be evaluated is less than or equal to the total number of spectral bands.171

The first step in the recursive divergence method is to find the single spectral band with the highest172

divergence. That spectral band is the only element in the initial feature set. At each additional stage, a173

spectral band is added to the current feature set such that the divergence of the current feature set plus174

the new spectral band is maximized [15].175

3.2. Proposed methods176

We propose two new approaches in spectral band selection. One method is a greedy approach and177

it uses the divergence as an elimination criterion as explained in Section 3.2.1. The other approach is178

based on evolutionary search as explained in Section 3.2.2. Both approaches attempt to relieve the heavy179

burden of an exhaustive search in feature subset selection.180

3.2.1. Divergence recursive feature elimination spectral band selection181

We developed a divergence recursive feature elimination (DRFE) method using a similar principle as182

SVM-RFE. Unlike SVM-RFE, DRFE does not require a particular machine learning method to evaluate183

relevance of features. DRFE considers subsets of features during the evaluation process, which is an184

advantage over those approaches implicitly assuming feature independence. Below is the description185

of the algorithm in detail. Our data set contains 160 features to be considered and therefore there are186

2160 subsets to be searched. An exhaustive search is not practical. Divergence has been shown to be187

highly correlated with the success rate [15]. In our DRFE implementation we used a greedy approach188

(in backward) using divergence values as an elimination criteria. Our DRFE needs O(n2) divergence189

computation compared to O(2n) of the exhaustive search.190

Algorithm 1 A divergence recursive feature elimination method (DRFE)

Let S = {1, 2, . . . , n} where n is the total number of features and L be an empty list.
1. While |S| > 1:
2. Let m = |S|.
3. For each feature x ∈ S, compute dx, the between-class divergence for S − {x} .
4. Let i = argmaxj∈Sdj . That is, the subset of S without feature i has the maximum divergence

value of all subsets of m−1 features implies that feature i contributes the least discriminating
information of the features in S.

5. S = S − {i} .
6. Append feature i to the end of L.
7. After the loop terminates, S contains only one feature. Append that feature to the end of L. L now

contains all n features, in order from least important to most important.

191

3.2.2. Evolutionary spectral band selelection method192

We also developed a nondeterministic evolutionary search algorithm for spectral band selection, us-193

ing between-class divergence as a fitness function. We begin with randomly selected sets of spectral194

bands and, through a number of successive generations, mutate and recombine the sets with the highest195

divergence values at a given generation in order to find a set with a very high divergence. The proce-196

dure followed for a given generation is explained in Algorithms 2–6. Algorithms 2 and 3 are helper197

algorithms used in Algorithms 4–6. Algorithm 4 describes elites set selection. Descriptions for roulette198

wheel selection and tournament selection are given in Algorithms 5 and 6, respectively.199
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Algorithm 2 The BREED helper method – a roulette-wheel method for selecting k unique features
from a list of features L where |L| > k

Let the set S contain the distinct features from L.
Let F be a frequency list with each entry Fi being the count of the feature Si in L divided by |L|.
Let N be an empty list.
1. While |N | < k
2. Choose a feature f from S using the frequencies in F as selection probabilities.
3. If f /∈ N , append f to N
4. Return N .

200

Algorithm 3 The MUTATE_FEATURES helper method – randomly modify the features in a feature
set S

Let i be the number of available spectral bands
Let N be an empty set
1. For each feature x ∈ S
2. Do
3. Let y = x+ r where r ∼ N (0, 1). Then y is rounded to the nearest integer and rolling the

result over so that it is in the range of 0 to i− 1, inclusive
4. While y ∈ N
5. Append y to N

201

Algorithm 4 An evolutionary spectral band selection method (ER) using elites set selection, given a
cutoff threshold c and n initial feature sets of size k.

1. Compute the between-class divergence for each of the n sets using the training data.
2. Let m be n ∗ c, the number of elite sets to carry into the next generation.
3. Let Sselected be the m sets with the highest divergence scores, and let Snext, the number of sets to

consider in the next generation, initially be Sselected.
4. Let L be an array containing the pooled distinct spectral band numbers from the sets in Sselected.
5. While

(|L|
k

)
< n

6. Randomly append a feature number not currently in L to L
7. Let nmutate the number of feature sets to create by mutation, be n−m

2 . Let nrecombine, the number of
feature sets to create by recombining the pooled features of the m selected sets, be n−m−nmutate.

8. Create nmutate new sets by applying MUTATE_FEATURES to randomly selected sets from Sselected
and append these sets to Snext.

9. Create nrecombine new sets using roulette-wheel selection by using the BREED method to select sets
of k features from L and append these sets to Snext.

202

The while loop in Algorithm 4 is included for cases with small set sizes and large numbers of sets,203

where otherwise as the feature sets converge the algorithm may end up with too few distinct features to204

produce enough distinct feature sets for the next generation.205

Because this algorithm is nondeterministic, we performed multiple trials of the evolutionary spectral206

band set search and looked at the mean and standard deviations of the between-class divergence and the207

balanced success rate from the SVM classifier of the sets selected for each spectral band set size n.208
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With a crossover operation for two parents, a point in the string is chosen as the crossover point, and209

all the elements before that point from one parent are concatenated with the elements after that point210

from the other parent. We are looking for sets of distinct features, so even when keeping them in sorted211

order, there is a chance that feature k could be found in both parents. For example, feature k could be212

found both before the crossover point in the left parent and after the crossover point in the right parent.213

Roulette-wheel and tournament methods for set selection were tested as well as the elite selection. We214

tested these methods both with the same recombination and mutation steps from Algorithm 4, where the215

only difference was that the m sets Sselected were selected in a randomized manner using one of the two216

following methods, instead of with elites selection.217

Algorithm 5 A roulette-wheel feature set selection method to select m sets from a set S of n sets

Let F be a frequency array where each entry Fi is the divergence score of set Si divided by the sum
of all the sets’ divergence scores.
Let S′ be an empty list.
1. While |S| < m
2. Let S1 be a feature set selected from S using F as the selection probabilities for the sets in S.
3. With probability p_direct, let S0 be S1, otherwise:
4. Select a feature set S2 from S using F .
5. Let S0 be the result of BREED (S1 ∪ S2).
6. With probability p_mutate, apply MUTATE_FEATURES to S0.
7. Append S0 to S′
8. Return S′

218

Algorithm 6 A tournament feature set selection method to select m sets from a set S of n sets

Let S′ be an empty list.
1. While |S′′| < m
2. Let S1 be a feature set selected from S by selecting a random subset of sets from S and choosing

the set in that subset with the highest divergence score.
3. With probability p_direct, let S0 be S1, otherwise:
4. Select a feature set S2 from S using the same tournament selection as for S1.
5. Let S0 be the result of BREED (S1 ∪ S2).
6. With probability p_mutate, apply MUTATE_FEATURES to S0.
7. Append S0 to S′
8. Return S′

219

3.2.3. Parameter selection220

Both evolutionary search and SVM training requires careful selection of parameters. Parameter se-221

lection for evolutionary search is described in Section 3.3.1 and that for SVM training is described in222

Section 3.3.2.223

3.2.4. Evolutionary search algorithm parameter selection224

The parameters to the evolutionary search algorithm are the number of sets to consider at each gener-225

ation, which is determined by the number of start sets given; the number of generations for which to run;226

the sigma value to use when mutating candidate sets; and the cutoff value, which controls what fraction227

of the sets to carry forward at each generation. We tested these for various values in order to determine228
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Table 2
Divergence values of sets found using different candidate set cutoff thresholds (# sets = 40, # generations = 40, # trials = 10)

Cutoff = 0.125 Cutoff = 0.250 Cutoff = 0.500
Set size Mean div Std dev div Mean div Std dev div Mean div Std dev div

2 4.832 0 4.719 0.359 4.489 0.553
4 8.194 0.578 8.216 0.571 8.149 0.343
8 15.504 0.329 15.472 0.219 14.547 0.330

12 19.531 0.407 19.435 0.304 18.358 0.409
16 23.531 0.154 23.028 0.402 21.912 0.460
24 30.160 0.565 29.687 0.493 28.371 0.408
32 35.854 0.362 35.39 0.763 33.775 0.650
40 41.143 0.554 40.162 0.601 38.552 0.636

Table 3
Divergence values of sets found using different numbers of generations (# sets = 40, cutoff = 0.25, # trials = 10)

20 generations 40 generations 80 generations 160 generations
Set size Mean div Std dev div Mean div Std dev div Mean div Std dev div Mean div Std dev div

2 4.643 0.442 4.719 0.359 4.605 0.479 4.832 0
4 7.758 0.417 8.216 0.571 8.127 0.554 8.168 0.674
8 14.864 0.337 15.472 0.219 15.628 0.242 15.579 0.168

12 18.878 0.339 19.435 0.304 19.734 0.329 19.981 0.250
16 22.232 0.410 23.028 0.402 23.691 0.262 23.665 0.221
24 28.485 0.466 29.687 0.493 30.445 0.430 30.986 0.198
32 33.901 0.647 35.390 0.763 36.540 0.335 37.062 0.212
40 38.900 0.570 40.162 0.601 41.544 0.443 41.964 0.294

Table 4
Divergence values of sets found using different numbers of sets per generation (# generations = 40, cutoff = 0.25, # trials =
10)

20 sets 40 sets 80 sets 160 sets
Set size Mean div Std dev div Mean div Std dev div Mean div Std dev div Mean div Std dev div

2 4.579 0.534 4.719 0.359 4.719 0.359 4.832 0
4 7.553 0.729 8.216 0.571 8.540 0.402 8.737 0
8 15.111 0.291 15.472 0.219 15.510 0.153 15.658 0.181

12 19.119 0.435 19.435 0.304 19.517 0.274 19.595 0.219
16 22.863 0.370 23.028 0.402 23.300 0.259 23.238 0.176
24 29.559 0.517 29.687 0.493 29.768 0.383 29.839 0.229
32 35.181 0.513 35.390 0.763 35.320 0.313 35.385 0.278
40 39.705 1.118 40.162 0.601 40.104 0.347 40.303 0.262

what effects the various parameters had on the search performance and to select the parameters we would229

use when comparing this method to other methods (results in Tables 2–4 and 6).230

The number of generations most directly affected the magnitude of the divergence values of the larger231

sets found by the search. The utility of the additional generations appears to be related to the size of232

the search space (for example, for sets with 32 spectral bands the number of possible sets is (16032 ) =233

4.646 × 1033, while for sets with six spectral bands it is (1606 ) = 2.119 × 1010).234

Conversely, the number of sets considered was a primary factor in the consistency of the divergence235

values of the sets found by the search. This was most true for small sets; the effect was less pronounced236

for larger sets, again presumably because of how rapidly the search space grows as the set size increases.237

Increasing the number of sets improves the odds that any particular feature will be considered in at least238

one of the randomly-selected start sets. When independently drawing, without replacement, c sets of239
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size s from n total features, the probability of any given feature occurring in at least 1 set is:240

1−
(
n− s

n

)c

(3)

For instance, when drawing 20 sets of size 10 from 160 total features, the probability of any given241

feature appearing at least once in those sets is 0.725 (so we would expect roughly 116 distinct features242

to appear in the 20 sets). When we increase the number of sets to 40, the probability rises to 0.924 (and243

roughly 148 expected distinct features in the 40 sets).244

Changing the cutoff parameter produced results similar to changing the number of generations.245

Smaller cutoff values produced sets with, on average, higher between-class divergence values. Table 2246

shows that cutoff value = 0.125 yielded about 6% higher between-class divergence values than that by247

cutoff value = 0.5. The effect of this parameter is closely related to the effects of both of the above248

parameters: a smaller cutoff means fewer sets are carried forward from the previous generation, mean-249

ing more new sets are generated in each generation, similar to the additional sets that are generated and250

considered when the number of generations is increased; on the other hand, the new sets are generated251

based on a smaller number of sets, so the search of the scope narrows more quickly, possibly discarding252

sets that did not perform quite as well but are “close” to sets with higher divergence values than the sets253

found by focusing on the smaller range of selected sets.254

After comparing the results of several different combinations of parameters, we chose the following255

parameters: generations = 160, number of sets = 80, cutoff = 0.125. These parameters were selected to256

provide high yet consistent divergence values even for larger spectral band sets. With these parameters,257

the number of divergence calculations that are performed to find a spectral band set of a given size is258

80 + (160 − 1)(80 ∗ (1 − 0.125)) = 11,210. By comparison, the number of divergence calculations259

required to create the feature ranking of all 160 features using the divergence-based elimination method260

is
∑160

i=2 i = 12,879. For small sets, the 11,210 divergence calculations performed on a small number261

of spectral bands can be computed much more quickly than the calculations involved in analyzing 160262

sets of size 159,159 sets of size 158, . . . , 2 sets of size 1, but as the set size increases the advantage263

decreases, so these search parameters can also be used to establish an upper limit on the set size for264

which it is advantageous to use this method. For smaller sets, the number of sets and generations could265

probably be comfortably decreased to 40 sets and 80 generations to speed things up without having266

much effect on the performance of the search; the results for different parameters shown in Tables 2 and267

3 suggests that this would have little effect for small sets other than a slight decrease in consistency of268

the divergence values of the resulting sets.269

3.2.5. SVM parameter selection270

SVM [32,41,43,46,52] has been extensively used on various data domains including hyperspectral271

data [15,20,51], due to its high generalization performance in various application domains. We have to272

optimize two parameters of the Gaussian kernel SVM: C and sigma (σ). One of popular approaches273

is to separate the data set into two parts: training data and testing data and then apply k-fold cross-274

validation for the training data to select the parameters of SVM. That is, we first divide the training275

set into k subsets of equal size and each subset is tested sequentially using the classifier trained on the276

remaining k−1 subsets to prevent the overfitting problem [23,25,26,29,33]. Thus, each instance of the277

whole training set is predicted once so the cross-validation accuracy is the percentage of data which are278

correctly classified. In this paper, we used 5-fold cross-validation for the parameter selection.279
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Table 5
Test dataset break down
Original profiles Background Net profiles

Feed (training data) 5,760 59 5,701
Bonemeal (training data) 5,681 160 5,521
Feed (test data) 499,200 24,887 474,313
Bonemeal (test data) 500,000 5,017 494,983

Table 6
Divergence values and balanced success rates (BSR) for sets found with evolutionary
divergence-based search (# sets = 80, # generations = 160, cutoff = 0.125, # trials = 27)

Set size Mean bsr Sd bsr Mean div Sd div
2 0.741 0 4.832 0
3 0.785 0.033 5.862 0.171
4 0.819 0.028 8.334 0.480
5 0.874 0.006 11.977 0.654
6 0.876 0.011 13.313 0.319
7 0.886 0.002 14.499 0.108
8 0.887 0.008 15.730 0.232
9 0.893 0.004 16.945 0.259

10 0.895 0.006 18.049 0.224
11 0.899 0.006 19.033 0.217
12 0.900 0.005 20.092 0.165
14 0.906 0.004 21.994 0.094
16 0.910 0.005 23.880 0.182
18 0.912 0.003 25.829 0.174
20 0.917 0.002 27.556 0.212
24 0.924 0.003 31.041 0.131
32 0.930 0.002 37.081 0.208
40 0.933 0.001 42.247 0.235
48 0.935 0.001 47.163 0.216
64 0.936 0.001 55.946 0.247

4. Experimental results280

We evaluated the performance of our proposed methods in two ways: by comparing the divergences281

of the sets it found to the divergences of the sets selected by the recursive divergence methods, and by282

comparing the balanced success rate for the SVM classifier when using those sets with the rates from the283

sets produced by other methods. Because of the nondeterministic nature of the evolutionary divergence284

search, we ran it multiple times to minimize the effects of variance on the results, with the values in the285

graphs being the mean values for 20 trials (see Tables 2–4).286

Our training data contained 5760 feed hyperspectral profiles and 5681 bonemeal hyperspectral pro-287

files. 59 of the feed hyperspectral profiles were identified as background, as were 160 of the bonemeal288

hyperspectral profiles, leaving 5701 feed training hyperspectral profiles and 5521 bonemeal training289

hyperspectral profiles. Our testing data contained 499,200 feed hyperspectral profiles and 500,000 bone-290

meal hyperspectral profiles. 24,887 and 5,017 feed and bonemeal hyperspectral profiles, respectively,291

were identified as background, leaving 474,313 feed training hyperspectral profiles and 494,983 bone-292

meal training hyperspectral profiles. Table 5 summarizes this breakdown of the data.293

Figure 3 shows a rough RGB conversion of a sample hyperspectral image and a bitmap mask where the294

white hyperspectral profiles are the hyperspectral profiles identified as background. The RGB conversion295

was done by simply selecting the spectral bands corresponding to red, green, and blue light, as discussed296

in Section 2, and scaling the reflectance values to the 8-bit 0–255 range.297
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Table 7
Divergence values and balanced success rates (BSR) for sets found with other search methods

RD DRFE RFE
Set size BSR Divergence BSR Divergence BSR Divergence

2 0.741 4.832 0.717 4.819 0.722 2.234
3 0.759 5.612 0.737 5.492 0.843 4.568
4 0.776 6.390 0.780 8.234 0.845 5.908
5 0.803 7.181 0.874 11.387 0.836 8.321
6 0.865 8.948 0.876 12.295 0.881 11.693
7 0.875 10.901 0.881 13.960 0.886 12.920
8 0.899 13.984 0.883 15.138 0.888 13.234
9 0.900 15.136 0.888 16.567 0.891 13.965

10 0.905 16.288 0.887 17.599 0.891 14.351
11 0.909 17.429 0.890 18.875 0.901 15.286
12 0.907 18.551 0.894 19.994 0.901 16.288
14 0.916 21.189 0.900 22.084 0.905 18.041
16 0.918 23.195 0.905 24.045 0.906 18.666
18 0.921 25.026 0.912 26.036 0.907 20.155
20 0.921 26.912 0.917 27.829 0.909 21.460
24 0.925 30.567 0.923 31.393 0.914 23.443
32 0.930 36.988 0.928 37.429 0.919 26.950
40 0.930 42.650 0.932 42.482 0.923 30.693
48 0.935 47.405 0.935 47.406 0.924 34.087
64 0.935 56.329 0.936 56.448 0.927 41.765

Our tests confirmed that between-class divergence was a fairly good indicator of SVM classifier per-298

formance for our data. From Table 7, an average correlation coefficient between SVM success rates299

and divergence is 0.75 when the set size is greater than 12. The recursive divergence selection method300

produced sets that performed much better than those created from the individual feature rankings; sets301

with 8 or more features found using this method even had higher success rates than those found with302

SVM-RFE. This makes divergence well suited for use as the fitness function for our feature set search.303

4.1. Comparison of the divergences304

Figure 4 focuses only on sets with 12 or fewer spectral bands, as that is where both ER and DRFE305

methods had the biggest advantage. For small sets, both of those methods found sets with significantly306

higher between-class divergence values than the normal recursive divergence method excepting sets of307

size 2, in which case the RD method found the same set as the evolutionary search method – for the308

given search parameters, the ER method found the same set in all 20 trials – and the DRFE method309

found a set with slightly lower divergence. Also of note is that the divergence values of the sets found by310

ER tended to have extremely similar divergence values as those found by DRFE. Tables 6 and 7 contain311

the results of the four tested methods for a range of set sizes between 2 and 64.312

The RD method did not start finding sets with higher divergence values than the average set found by313

the ER method until set size became 40 features. The DRFE method had a slight advantage over both314

methods starting with sets with 14 features and up, though at set size 40 the RD method slightly outdid315

it.316

The advantage in divergence values for ER compared to the RD method was consistent across the 20317

trials. For sets with 4 to 24 spectral bands, the difference between the mean divergence value for the318

sets found by ER and the divergence value of the set found by the RD method was at least 3 times the319

standard deviation of the divergence value for the sets found by ER – for sets with 6 and 7 spectral bands320
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Fig. 3. Sample hyperspectral image (L) and background mask
(R).

Fig. 4. Divergence vs. spectral band set size for small band
sets.

Fig. 5. SVM success rate vs. spectral band set size (small
sets).

the difference was over 10 times the standard deviation. For sets with three spectral bands, the difference321

was 1.5 times the standard deviation.322

Also, Table 8 contains results from using roulette-wheel and tournament methods for set selection.323

Neither of them outperformed the elites selection method.324

4.2. Comparison of the balanced success rate325

Figure 5 shows that for small sets, the divergence advantages of the ER and DRFE methods also326

translated into an SVM success rate advantage, although the success rates of the sets found by those327

two methods were not nearly as similar as the divergence values for sets with just 2 and 3 features. For328

sets with more than 2 features and fewer than 8 features, the sets selected by the SVM-RFE method329

also had noticeably higher SVM balanced success rates than those selected by the RD method. For 8–12330

features, the sets selected by the RD method outperformed those selected by our methods; however, as331

the divergence values for those sets were still lower than those for the sets selected by our methods, we332
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Table 8
Contrast the recombine vs. traditional implementation

Roulette wheel Tournament
n Mean div SD div n Mean div SD div
3 5.839 0.318 3 5.962 0.201
4 8.074 0.769 4 8.245 0.553
5 11.71 0.908 5 11.811 0.823
8 15.264 0.204 8 15.751 0.246

12 19.153 0.323 12 20.039 0.179
20 25.529 0.456 20 27.636 0.158
32 33.985 0.501 32 37.009 0.386
48 42.024 0.543 48 46.757 0.395

Fig. 6. SVM success rate vs. spectral band set size (all sets). Fig. 7. SVM success rate vs. spectral band set size.

believe this to be mainly the result of chance and not representative of an inherent advantage of the RD333

method.334

As set size increased, the success rates converged – particularly for the divergence-based methods, as335

shown in Fig. 6. The sets from the recursive divergence (RD), divergence-based elimination (DRFE),336

and evolutionary divergence (ER) search methods resulting in very close success rates for sets with 20337

or more features, with declining gains from adding more features. For instance, for the evolutionary338

search method going from 2 to 5 features caused a 0.133 increase in balanced success rate, while going339

from 5 to 64 features only caused a 0.062 increase, and from 12 to 64 only caused a 0.036 increase.340

The sets found by the RD and DRFE methods followed almost the same curve; the sets found by the341

SVM-RFE method also followed a similar curve, but with success rates that were consistently about342

0.01 lower for sets with 20 or more spectral bands. Additionally, the standard deviation of the balanced343

success rates for the sets found by the ER method declined consistently as larger spectral band sets344

were considered, while the standard deviation of the divergence values for those sets did not – there is a345

correlation between divergence and SVM success rate, and set size itself appears to have more influence346

on the consistency of the success rates than the consistency of the divergence values of the sets, as seen347

in Table 7.348

Also note that for 48 features, the subsets selected by the RD and DRFE methods outperformed the set349

of all features, and for 64 features, the subsets selected by those two methods as well as the one selected350

by the ER method did so as well.351
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Figure 7 shows the success rates of the ER and DRFE methods compared to the separation measure,352

envelope eccentricity, and signal-to-noise correlation rankings. As mentioned before, nearby spectral353

are often highly correlated, so methods that look at combinations of spectral bands instead of individual354

spectral bands have a significant advantage; this is reflected in the success rates of the sets found by the355

individual spectral band feature rankings.356

5. Conclusion357

There is an increasing demand for reliable and sensitive machine vision systems to be used in quality358

control of feed and food products due to growing public concerns about food safety. Because feed mate-359

rials are highly diverse in composition, they can be considered a challenging model system for detection360

of contaminants. This paper presents methods for spectral band selection in hyperspectral image (HSI)361

cubes, containing spectral reflectance in both spatial dimensions and spectral bands. A hyperspectral362

image camera was used to acquire reflectance data in narrow spectral bands across the visible range363

from 29 feed material samples. Support Vector Machine binary classification was used to distinguish364

between hyperspectral profiles from feed samples and bonemeal samples on the basis of the hyperspec-365

tral reflectance values. Classification accuracy was determined when analyses were based upon different366

feature selection methods. Two new methods were developed utilizing divergence values for selecting367

spectral band sets, 1) divergence-based recursive feature elimination (DRFE) approach, and 2) evolu-368

tionary search (ER) method. The ER algorithm and DRFE methods provide a significant advantage for369

selecting small spectral band sets over the recursive divergence (RD) method other than for two spec-370

tral bands, in which case ER never found a set with higher divergence than the one selected by the RD371

method, and the DRFE method found one with slightly lower divergence. The advantage of the evolu-372

tionary spectral band set search decreases as the set size increases, with the recursive divergence method373

reclaiming the advantage for most cases when 40 spectral bands are considered, likely due to the in-374

creasing size of the search space. Future work will explore ways to determine how many features would375

be best based on various feature rankings.376
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