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Abstract

Multilabel classification is a relatively recent subfield of machine lear-
ning. Unlike to the classical approach, where instances are labeled with
only one category, in multilabel classification, an arbitrary number of cat-
egories is chosen to label an instance. Due to the problem complexity
(the solution is one among an exponential number of alternatives), a very
common solution (the binary method) is frequently used, learning a bi-
nary classifier for every category, and combining them all afterwards. The
assumption taken in this solution is not realistic, and in this work we give
examples where the decisions for all the labels are not taken independently,
and thus, a supervised approach should learn those existing relationships
among categories to make a better classification. Therefore, we show here
a generic methodology that can improve the results obtained by a set of
independent probabilistic binary classifiers, by using a combination proce-
dure with a classifier trained on the co-occurrences of the labels. We show
an exhaustive experimentation in three different standard corpora of la-
beled documents (Reuters-21578, Ohsumed-23 and RCV1), which present
noticeable improvements in all of them, when using our methodology, in
three probabilistic base classifiers.
Keywords: multilabel classification, label dependency, probabilistic clas-
sifiers, text classification
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1 Introduction

In this work we present a novel solution for the multilabel categorization prob-
lem. In this kind of problems, a subset of categories (instead of just one) is
assigned to each instance. Multilabel classification problems arise, in a natural
way, in information processing, concretely on the subfield of automatic docu-
ment categorization [23]. Due to their nature, an important number of text
corpora are of a multilabel kind. For example, news articles can often belong
to more than one category (this is the case of the Reuters-21578 [12] and the
RCV1 [13] collections, which are composed of articles from the Reuters agency).
In other domains, multiple labels are assigned as metadata which give a better
description of the documents (this occurs, for example, in scientific papers and
legal documents, which have associated keywords from a controlled vocabulary,
like the Mathematics Subject Classification or the MeSH Thesaurus in one case,
and the Eurovoc thesaurus in the other case [4]). On the other hand, multil-
abel instances occur very commonly in the Internet: in many blog applications,
blog posts for example, can be categorized with an arbitrary number of labels.
Furthermore, in collaborative environments (like folksonomies, [31]) where users
can add tags, multilabel is an ordinary process. Due to this fact, sometimes the
word “tag” or “label” is used instead of “category”, they are all synonyms.

More recently, multilabel classification has been useful for different domains
like, for instance, analysis of musical emotions [26, 33], scene or image catego-
rization [7, 24], protein and gene function prediction [18, 30] or medical diagnosis
[25].

Although each instance has a given set of associated labels, and they are
assigned as a whole, the normal approach to solve this problem is just ignore
this fact and concentrate in obtaining good solutions to the individual binary
problems (i.e., deciding for each label if it should be assigned to the instance or
not). Here, we propose a solution which takes into account the inter-category
dependence, trying to find natural associations in order to improve the final
categorization results.

The content of this paper is organized as follows: first of all (in Section
1.1) we recall the well-known problem of multilabel supervised categorization,
reviewing some previous works in this area (Section 1.2) together with a brief
explanation (Section 1.3) of what is the semantic of adding multiple labels to
an instance instead of one. Based on probabilistic foundations, our approach
is presented in Section 2, which results in two different models. An extensive
experimentation with test collections coming from the text categorization field
will be carried out in Section 3 to prove the validity of our proposal. Finally,
in the light of the results previously obtained, several conclusions and future
works will be pointed out in Section 4.

1.1 Multilabel supervised categorization

The problem of supervised multilabel classification (see, for instance [27]) deals
with supervised learning, where the associated labels can be a set of unde-
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termined size. Formally, it can be stated as follows: given a set of cate-
gories C = {c1, . . . , cp}, an input instance space X , and a set of labeled data
composed of instances and the set of assigned labels, {xi, yi}i=1,...,n where
yi ⊂ 2C \ ∅, xi ∈ X , learning a multilabel classifier means inferring a func-
tion f : X −→ 2C \ ∅, in other words, a function able to assign non-empty
subsets of labels to any unlabeled instance.

In order to cope with this exponential output space, the classical approach
consists in dividing the problem into |C| binary independent problems, and
therefore learning |C| binary classifiers fi : X −→ {ci, ci} (which decide whether
the category is assigned or not to the instance). Although this is a naive solution,
it works reasonably well, and in multilabel classification literature this can be
used as a baseline. This approach is called the binary relevance method [9, 27,
36], and it is often criticized for ignoring the existing correlations among labels.

Given the fact that many of the multilabel problems come from multi-tagged
collections (i.e., collections of objects which are manually assigned a subset of
categories of the whole set), it is very likely that some of these tags are associated
not only because of the content, but also due to the presence/absence of another
tag. We explain examples of this phenomenon in section 1.3. Roughly speaking,
the main motivation of this paper is to look carefully at the results of the
individual binary classifiers and modify those results given a model previously
trained on the label assignment vectors, which explicitly captures relationships
among categories and therefore improves classification results. As it is shown,
our approach utilizes a simple but powerful independence assumption which
results in a model that is more complex than the binary relevance method, but
still is cheap enough.

1.2 Related work

There is more than one hundred references partially related with multilabel
categorization, most of them in the last years1. At first sight, the two possible
solutions to this problem basically consist of transforming it to a single-label
one, or adapting a learning procedure to work with these multiple labels at the
same time. This taxonomy is given in [27], naming the former solutions problem
transformation methods and algorithm adaptation the latter ones. Because our
contribution adapts a learning procedure to multilabel learning, we review here
only approaches of the second kind.

Almost all the typical classification algorithms have a multilabel version.
For example, an adaptation of the entropy formula of the C4.5 tree learning
algorithm has been proposed in [3] for multilabel classification. In the lazy
algorithms field, variations of the k-NN algorithm have been presented for this
kind of problems [14, 36]. Also, in [2] a k-NN is combined with a logistic
regression classifier (in a different way that we do) to cope with multiple labels.
Of course, variations on the SVM algorithm are shown in [9], where both intra-
class dependencies and an improvement of the definition of margin for multilabel

1See http://www.citeulike.org/group/7105/tag/multilabel, and references therein.
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classification are used to build a new model.
On the other hand, there are methods dealing with multilabel classification

within the probabilistic framework and therefore closer to our approach. In
[17], a generative model is trained using training data, and completed with
the EM algorithm, and computed the most probable vector of categories that
should be assigned to the document. A subset of Reuters-21578 is used for
experimentation, and noticeable improvements are shown.

A generative model is also presented in [29]. Here, the main assumption is
that words in documents belonging to several categories can be characterized
as a mixture of characteristic words related to each of the categories, being this
assumption confirmed with experimentation. Both first (PMM1) and second
(PMM2) order models are built, and learning algorithms (using a MAP esti-
mation) are proposed for both alternatives. Experiments are carried out with
webpages gathered from the yahoo.com server. Presented results are good, and
improve other methods as SVM, naive Bayes and k-NN.

More recently [5] proposed a novel method, called probabilistic classifier
chains (generalizing the classifier chains) which exploits label dependence, show-
ing that the method outperforms others in terms of loss functions. This is
claimed via an extensive experimentation with artificial and real datasets.

1.3 The semantic of assigning multiple labels

In this section we try to enumerate three clear examples showing possible reasons
for a manual indexer to assign multiple labels. Although we do not pretend to
be exhaustive, we think that the three presented examples are common and may
occur easily in multilabel problems:

1. Mixture of topics. An instance matches all the abstract description of
several categories. This is the case, for example of a medical paper which
deals with several topics represented as MeSH keywords.

2. Contextualization. Some tags are added in order to fix the context in
which other label is used. For example, in scene classification, a picture
of fishermen working in the coast of Motril tagged with “sea” and “peo-
ple” can be contextualized with “town” in order to distinguish it from
submarine photos.

3. Non overlapping labels. Some subsets of labels do not admit instances
belonging to all of them. For example, in music classification, it is incon-
ceivable to have songs tagged with both “baroque” and “reggae”, although
other combinations as “flamenco” and “jazz” are possible.

The only “pure” multilabel phenomenon is the first one. The second and the
third denote that the occurrence of labels is not only based on the content of the
instance, but also in the occurrence (or not) of other labels. For the second case,
a label is added to contextualize two previously given labels. That is to say, the
occurrence of a certain subset of labels increases the likelihood of other being
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added. On the other hand, in the third case, a song labeled with “baroque”
(at a certain degree) and “reggae” (in a lower degree) may be detected by a
classifier as an “anomaly”, and be labeled only with “baroque” (given that the
system has previously learned that the label “baroque” gives information about
the low likelihood of also using the label “reggae” given that “baroque” is being
used).

Although the first phenomenon can be initially captured by different binary
classifiers, the second and the third can be tackled by looking at the labels of
a training set2, and not only to the content of the instances. Therefore, our
contribution will be to state that the final labeling of an instance, in a certain
category, will be a combination of the result of the binary classifier with the
evidence given in the other categories by the other binary classifiers, taking into
account the existing relationships among categories captured in the training set.
In fact, this issue of label dependence has been recently shown to be crucial in
multilabel learning [6]. All of this will be modeled in a probabilistic framework,
which will give us a rich language to describe this procedure.

2 A probabilistic model for multilabel classifica-

tion

Let xi ∈ X be an instance. Suppose we have a set of p categories C =
{c1, . . . , cp}. For every category cj, we define a binary random variable Cj =
{cj, cj}. Let us assume that we have p probabilistic binary classifiers, based
only on the content of the instances (the features describing them). Thus, the
conditional probability pj(cj |xi) represents the probability that the instance xi

is labeled with cj (the subindex j indicates that this distribution is different
and independent for every category). Assuming we have a perfect knowledge of
the underlying probability distribution, these classifiers define p labeling rules
as follows (Bayes optimal classifier): “classify xi as cj if pj(cj |xi) > pj(cj |xi)”
or, alternatively “classify xi as cj if pj(cj |xi) > 0.5”.

For every category cj , we shall also define a random vector of binary variables
Lj = (lj1, . . . , ljp−1), which represents the labeling of an instance with the other
p− 1 classifiers. We shall note for lj a particular value of the vector Lj (that is
to say, a label for the instance in all the categories except the j-th one). Thus,
every component ljk of the vector lj is binary, and corresponds to the variable
Ck if k < j and to Ck+1 otherwise.

Our aim is to give a model which describes the probability of a class given
knowledge of both the content of the instance, xi, and the labeling of the other
categories (lj). In other words, an expression for the probability pj(cj |xi, lj).

2Or adding expert knowledge with explicit relations among the labels, like a hierarchy.
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2.1 The proposed model

Our model will start making a reasonable simplifying assumption (general naive
Bayes assumption3): given the true value of a category j, the events of finding
a certain instance xi and a certain labeling on the other categories for this
instance, lj, are independent, that is

pj(xi, lj|cj) = pj(xi|cj) pj(lj|cj), ∀j ∈ {1, . . . , p} . (1)

¿From the point of view of a certain category cj , if its value is known, this
equation assumes that the values of the other associated categories are proba-
bilistically independent of the “content” of the instance xi. While this assump-
tion might seem a bit unrealistic, it is basically the same which is performed in
the naive Bayes classifier (this is why is called general naive Bayes). We shall
show later that, as in the case of the naive Bayes classifier, the assumption is
neither intuitive nor much realistic but can result in very good classification
performance. Nevertheless, it should be stressed that our assumption does not
mean independence between labels at all, but independence between labels and
content given other label. As clearly expressed by the term pj(lj|cj) in eq. (1),
our aim is to explicitly model a clear dependence between each label cj and the
other labels represented in lj.

Then, using Bayes’ theorem with this assumption, we compute the desired
probability:

pj(cj |xi, lj) =
pj(xi, lj|cj) pj(cj)

pj(xi, lj)

=
pj(xi|cj) pj(lj|cj) pj(cj)

pj(xi, lj)

=

(
pj(xi) pj(lj)

pj(xi, lj)

)(
pj(cj |xi) pj(cj |lj)

pj(cj)

)
.

The first term is a proportionality factor which does not depend on the
category. Therefore we get the expression,

pj(cj |xi, lj) ∝
pj(cj |xi) pj(cj |lj)

pj(cj)
,

which leads us to the final formula:

pj(cj |xi, lj) =
pj(cj |xi) pj(cj |lj)/pj(cj)

pj(cj |xi) pj(cj |lj)/pj(cj) + pj(cj |xi) pj(cj |lj)/pj(cj)
(2)

3The term general is used here in a sense of analogy with the “classic” naive Bayes assump-
tion (given the true category of an instance, the joint probability of its features factorizes as
a product of independent probability distributions). The previous labelings of the document
along with its content can be considered as two “general” features, and this assumption means
that we apply it to that set of two features.
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Taking into account that we are in binary classification, it holds that pj(cj) =
1 − pj(cj), pj(cj |xi) = 1 − pj(cj |xi) and pj(cj |lj) = 1 − pj(cj |lj). The val-
ues pj(cj |xi) can be simply obtained with any probabilistic binary classifier for
the category cj . Prior probabilities pj(cj) are estimated as the number of in-
stances which belong to class cj over the total number of instances. Probabilities
pj(cj |lj) can be estimated, through a learning process, from the labels of the
training data, where every instance has as features some binary values telling if
the instance belongs or not to any of the p− 1 categories (all categories except
j). So, in our model, we need to train p binary classifiers from the content of the
instances, and p binary classifiers from the labels assigned to these instances.

A last point should be clarified in the model. Given an instance xi to clas-
sify, we easily compute, for a category cj both the values pj(cj) and pj(cj |xi).
However, to obtain the probability pj(cj |lj) we would need to know the true as-
signments of the labels which are not cj . In our model, we shall make a second

assumption, approximating lj for l̂j, which is computed as follows:

l̂j =
(
τk ( pk(ck|xi) )

)
k∈{1,...,p}\j

. (3)

Where τk is a threshold function (τk(z) = ck if z < 0.5, τk(z) = ck otherwise).
In other words,

l̂jk = arg max
{ck,ck}

pk(c|xi).

Therefore pj(cj |lj) will be approximated by pj(cj |l̂j).

2.2 An improved version of the model

It should be noticed that the model summed up in eq. (2) does not really need
the assumption that the random vectors Lj are made of binary variables. In fact,
the only required binary variables are the Cj ones. Thus, the same equation
can be applied equally if the variables in Lj are continuous.

Therefore, we can rewrite an approximation of lj different than the one given
in eq. (3) by removing the threshold function:

l̂j =
(
pk(ck|xi)

)
k∈{1,...,p}\j

. (4)

This means that the components of the vector l̂j are values in [0, 1] which
represent our degree of belief in these labels being assigned to the instance. Note
that, in order to use this extended version of the model, we need a classifier to
compute pj(cj |lj) which is capable of dealing with continuous inputs (in the
previous version we could assume the inputs were binary, and so the classifier).

2.3 The algorithm

We present finally the proposed algorithm for multilabel classification. We need,
as input data, the prior probabilities of each category (pj(cj)), p content-only
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binary classifiers (capable of providing an output pj(cj |xi)), and p classifiers
which predict each category cj based on the values of the labels different from
cj : pj(cj |lj).

1. Given an instance xi, we obtain the values pj(cj |xi) from p binary prob-
abilistic classifiers (j = 1, . . . , p).

2. For every category cj , j ∈ {1, . . . , p},

(a) Using pk(ck|xi), we compute l̂j either by eq. (3) or eq. (4). This will
be used as an approximation of lj.

(b) We compute the likelihood of the category given the probabilities of
the other categories as pj(cj |lj).

(c) We compute the probability value pj(cj |xi, lj), following eq. (2).

3. The scores of the instance xi in the set of categories C are the values
pj(cj |xi, lj). They can be thresholded, optionally, if we are doing hard
categorization.

The whole process is summed up in Figure 1. Note that the computational
load with respect to the binary relevance method is very low. Initially, apart
from the binary classifiers based on content (which work on an input space
containing, say, m features), one label classifier needs to be trained for each
class. However, the label classifiers usually will be very cheap to train, as they
work on an input space possessing p − 1 features (and usually p ≪ m). For
the classification part, the binary relevance method needs the example to be
classified on each of the p binary classifiers. Once the scores of all the classifiers
have been obtained, p extra classifications are needed in the label classifiers
(which should be much faster as the number of features is low), and some
additional computations needs to be performed, summarized in eq. (2). As it
can be seen, neither much additional memory space, nor computational power
is needed to perform this approach. Therefore, its scalability should not be an
issue.

We have shown a new method to deal with relationships among labels, us-
ing probabilistic classifiers. This is why it is presented as a “methodology”.
For a concrete problem, two decisions should be made about which underlying
models should be used: first for the content classifiers, and second for the label
classifiers. This choice relies heavily on the kind of problem selected, and is
suitable of previous experimentation to find a working set of methods. Also one
may note that both choices are independent (so, with a set of nc probabilistic
content classifiers and nl label classifiers, ncnl combinations are possible, each
one with two possibilities for computing the vectors lj).

3 Experimentation

We shall expose in this section an experimentation to test the validity of our
approach, where some combinations of classifiers will be selected following a
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x

classifier pj(cj |x)
classifier pk(ck|x),
k ∈ {1, . . . , p} \ j

eq.
(2)

argmaxcj

pj(cj |x, l̂)

Use either eq.
(3) or eq. (4)

l̂

classifier pj(cj |̂l)

Figure 1: The general algorithm.

certain criterion. Of course, we do not aim being exhaustive and giving a long list
of experiments. We are aware that many different collections and combinations
of classifiers could be selected, so we tried to make a good experimentation by
selecting a restricted but representative set of classifiers.

3.1 Corpora

Three different document categorization corpora have been used for experimen-
tation. We describe them now, together with the preprocessing procedure used
to obtain the term vectors.

First, Reuters-21578 (see [12], for instance) is a collection of 21578 news
articles. We have used the most famous split (the one named ModApte), which
divides the set of documents into a training and a test set, and categories only
assigned to documents in the test set are removed (then resulting only 90 of
them).

The Ohsumed collection [10] is a set of 348566 references from MEDLINE,
an online medical information database. For every record the assigned MeSH

9



terms (categories) are given. Because the number of categories of the MeSH
thesaurus is huge, it is often chosen a subset of 23 categories (heart diseases),
which are the root of some categories in a hierarchy. Documents which do not
belong to that subtree of categories, are discarded, and the resulting corpus is
called Ohsumed-23. This is the methodology followed in [11].

Finally, the RCV1 corpus is a relatively more recent corpus (see [13]), also
based on Reuters news stories. It contains many documents (806791 for the
final version, RCV1-v2), where the documents are preprocessed, with stop-
words removed, and terms already stemmed. The number of categories named
“topic codes”4 is 103 (after the split). An standard split is also provided, called
LYRL2004, which gives a training set with over 23000 documents, and a test set
with 781000. We have removed two categories which appear only in the training
set (reducing the number to 101).

In the first two cases, the stopwords list used consists of 571 stopwords of
the SMART retrieval system [22]. Also, the English stemming algorithm of the
Snowball package [20] was applied to resulting words. In the Reuters-21578 also
XML marks were removed.

In order to reduce the size of the lexicon, terms occurring in less than
three documents were removed in Reuters-21578 and Ohsumed-23 (following
the guidelines of [11]), and in less than five documents in RCV1, as done in [13].
All document preprocessing stage was made with DauroLab [21].

3.2 Evaluation measures

In this subsection we discuss the different evaluation measures we have used
for our experimentation. Following the taxonomy considered in [15, 28], we
have selected label-based measures, example-based and ranking measures. We
shall present the chosen measures along with a brief explanation of them, and
a discussion of which performance aspects are considered for each one.

3.2.1 Example-based measures

They are measures specifically designed for multilabel problems. That is, they
try to account for the performance of the multilabel task itself (the assignment
or not of a certain set of labels to one example). Of those available, we have
selected two: Hamming loss and subset 0/1 loss. Note that, as both measures
are losses, the lower the value they have, the better the classification is.

Hamming loss computes the normalized Hamming distance between the set
of assigned labels and the set of predicted ones. That is, for a certain instance
xi, being f(xi) the set of predicted labels, and yi the set of true labels, the
Hamming loss will be equal to:

HammingLoss =
yi ∆ f(xi)

p
,

4Other two disjoint set of categories, “industry codes” and “region codes” are given for
this corpus, but they are not normally used for categorization.
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where ∆ stands for the symmetric difference of two sets and p is the number of
labels. The measure ranges between 0 and 1 and will be averaged through all
the elements of the test set to obtain its final value.

Subset 0/1 loss, in contrast, is a generalization of the 0/1 loss for multilabel
problems where the set of labels is considered as a whole. For the previous case,
the loss function is equal to:

SubsetLoss = I (yi 6= f(xi)) .

In the previous equation, I (yi 6= f(xi)) = 0 if and only if yi = f(xi), and 1
otherwise. That is, there is no loss if the set of predicted labels equals the set
of true labels. Again, this measure will be averaged through all the test set.

3.2.2 Label-based measures

These are classical measures for binary classification problems. We have made
in all cases hard categorization (assigning or not every label) and then, we have
used suitable measures for this task. Being defined for every category cj , the
precision and recall (πj and ρj , respectively) are:

πj =
TPj

TPj + FPj

, ρj =
TPj

TPj + FNj

,

where TPj, FPj and FNj stand for “true positives”, “false positives” and “false
negatives” of the j-th category. We have then selected the F1-measure adapted
for categorization (the harmonic mean between precision and recall), in its macro
and micro averaged versions (denoted by MF1 and µF1, respectively). See
[15, 23] for more details.

All the probabilistic classifiers have a natural threshold in 0.5. We have not
made any threshold tuning because it was not the aim of this paper. Anyway,
it could be made independently, likely improving the results (see the discussion
in Section 4).

3.2.3 Ranking measures

We have implemented one ranking measure, the one error, which evaluates how
many times the label ranked at the top is not in the set of relevant labels of the
instance. This measure is important for us, at it takes partially into account
the ranking to perform the evaluation. For real-world use cases, in multilabel
classification, where predicted labels are suggested to a human indexer using a
ranking procedure, it would be very important that the labels at the top of the
list were relevant.

3.3 Basic probabilistic classifiers

In order to have, first a baseline, and secondly a basic content classifier to be
used afterwards for our model, we have considered three different classifiers,
widely used in the literature. One which usually obtains discrete results, and

11



two with better results, all of them of a different nature. For the first case,
we selected the multinomial naive Bayes, in its binary version [16]. For the
second case, a k-NN classifier has been used, normalizing the output in order
to obtain a value in [0, 1] which can be interpreted as a probability. Finally, a
linear SVM, with probabilistic output5, as performed by Platt’s algorithm [19]
was chosen. We recall that the flexibility of this procedure is very high because
any probabilistic classifier could be used instead of these three.

For the k-NN classifier, the best performing value of k was selected, based
on previous experimentation existing in other works. Thus, we chose k = 30
for Reuters and k = 45 for Ohsumed-23 (as set in [11]). For RCV1, a value
of k = 100 was used [13]. Also, following those references, we have performed
feature selection in Reuters (1000 features selected by information gain, using
the “sum” combination [23]), and in RCV1 (8000 features selected by χ2, using
the “max” combination). No feature selection was performed in Ohsumed-23 as
noted in [11].

The implementation used for the algorithms was that contained in the Dau-
roLab [21] package, except for the SVM where libsvm [1] was chosen.

3.4 Label classifiers

Here we show the two alternatives that we have selected as label classifiers.

3.4.1 Logistic regression

On the first hand, and based on previous experimentations (not shown here), we
have chosen a logistic regression-based classifier to model the posterior probabil-
ity distribution of the category given the correct labels of all the other categories,
namely:

pj(cj |lj) =
1

1 + e−(w0+w·lj)
,

where w0 is a real scalar and w a p− 1 dimensional real vector, and “·” is the
usual dot product. The parameters of this model are learned to maximize a
certain criterion (generally a maximum likelihood approach).

We have selected this classifier instead of other proposals for three reasons:
first of all, it can deal with real inputs. Second, it is a discriminative method,
which does not try to find the joint distribution of Cj and Lj (in which we are
not interested). Finally, it is very simple, fast to learn, and works reasonably
well in almost all the environments.

In order to have accurate estimates, and because the dimensionality of the
problem p is high, the method selected to learn the weights is a Bayesian lo-
gistic regression, concretely the one proposed in [8], with Gaussian priors. The
implementation used here is the one included with the Weka package, with the
default parameters (see [32] for details).

5The one implemented in LibSVM.
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One of the flexibilities of any logistic regression classifier is that it can model
distributions with real inputs. As we have two approximations for the input
vector in this classifier, we can propose different models, which will be called
M1 (corresponding to eq. (3)) and M2 (for eq. (4)). It seems reasonable that,
if the content classifiers perform well, the model M2 will be more accurate than
the model M1. We shall discuss this point afterwards.

3.4.2 Linear Support Vector Machine

As a complement to the previous one, we have added the results obtained by
using a linear support vector machine with probabilistic outputs (fitted using
Platt’s algorithm [19]). Thus, the input to the SVM will be the vector with
the output values of the p − 1 binary classifiers pk(ck|x), k ∈ {1, . . . , p} \ j,
and the real-valued outputs of the linear classifier will be therefore transformed
to probabilities with the model learned in the training data by the mentioned
algorithm.

In order to show the validity of our approach we have used a linear kernel
(i.e., the simplest SVM) without any further modification to the default pa-
rameters to those included in the canonical implementation of the Weka [32]
SMO (Sequential Minimal Optimization) class. It is well known that linear
SVMs tend to perform reasonably well in classification tasks, although they are
generally outperformed by their kernelized counterparts. We have selected the
simplest model to illustrate that we can improve in some measures the baseline
of the binary classifiers without too much effort.

3.5 Results

3.5.1 Experiments with label-based measures

We present the results for Reuters-21578 (in Table 1), Ohsumed-23 (in Table
2) and RCV1 (in Table 3). NB denotes the multinomial naive Bayes, k-NN the
k nearest neighbors classifier, and SVM the linear support vector machine with
probabilistic outputs. The terms ‘BLR’ or ‘SMO’ refers to the label classifiers
used, if any (Bayesian Logistic Regression, and linear Support Vector Machine,
respectively). We have used the term SMO to distinguish this label classifier
from the SVM in the content classifier.

A classifier + M1 or M2 denotes our proposal with the binary or real inputs
presented to the corresponding label classifier, as explained before. Also, the
results of the base classifier have been shown for comparison purposes.

We give the micro and macro F1 values (µF1 and MF1, respectively), and
the percentage of improvement (positive or negative) over the baseline, denoted
by ∆.

In all the cases our proposal with the M2 version of the algorithm improved
at least one of both measures of the baseline (i.e. ∆ > 0), of which, most
of them had the two measures improved. The results were noticeable, even
reaching a gain of 72% in the case of the macro F1 measure with respect to
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Model µF1 ∆ s-test MF1 ∆ S-test
NB 0.61766 – – 0.25145 – –

NB + BLR + M1 0.65697 +6.36% ≪ 0.29183 +16.06% ≪

NB + BLR + M2 0.65830 +6.58% ≪ 0.29293 +16.49% ≪

NB + SMO + M1 0.65644 +6.28% ≪ 0.29357 +16.75% ≪

NB + SMO + M2 0.66032 +6.91% ≪ 0.29650 +17.92% ≪

k-NN 0.78875 – – 0.27886 – –
k-NN + BLR + M1 0.65255 -17.27% ≫ 0.34035 +22.05% ∼

k-NN + BLR + M2 0.78022 -1.08% ≫ 0.40246 +44.32% ≪

k-NN + SMO + M1 0.62175 -21.17% ≫ 0.26160 -6.19% ∼

k-NN + SMO + M2 0.79230 +0.45% ∼ 0.34944 +25.31% ≪

SVM 0.87102 – – 0.48529 – –
SVM + BLR + M1 0.85032 -2.38% ≫ 0.54401 +12.10% <

SVM + BLR + M2 0.87970 +1.00% ∼ 0.55982 +15.36% ≪

SVM + SMO + M1 0.71923 -17.43% ≫ 0.42208 -13.02% ≫

SVM + SMO + M2 0.86832 -0.31% ≫ 0.49683 +2.38% ∼

Table 1: Label-based measures for Reuters-21578 corpus

the baseline (which is a remarkable achievement). On the other hand, the M1
version presented not so systematic improvements.

Moreover, we have run statistical significance tests for every couple of classi-
fiers (a basic probabilistic classifier, and our proposal, either with the M1 or the
M2 configuration). For the micro measure, a micro sign s-test was performed,
and for the macro measure, we chose the macro S-test. Both are presented
in [35] and constitute the nowadays standard for comparing this kind of ex-
periments. Nevertheless it should be noticed that the s-test is not specifically
designed for the F1 measure, taking into account both true positives and true
negatives (as shown in Section 3.2, F1 only considers true positives). Also, note
that the macro S-test does not take into account the amount of improvement,
but the number of categories where the measure is improved, leading sometimes
to counter-intuitive results (with a non-significant high improvement in macro
due to the improvement in only very few categories).

In the test the first system, A, will be the best performing one, in terms of
micro or macro F1 measure, being B the second. The null hypothesis is that A
is similar to B. On the other hand, the alternative hypothesis says that A is
better than B.

If the p-value is less than 0.01, we show in the tables the sign ≪ (resp. ≫) to
denote that our baseline plus M1 or M2 is significantly better (resp. worse) than
the baseline alone. The signs < and > are used to indicate the same fact if the
p-value is between 0.01 and 0.05. With the sign ∼ we point out no significant
difference between the two systems. Table 4 displays a summary of the results,
showing the number of times that each one of our models is better, significantly
better, worse and significantly worse than the baseline.

Once shown the results, we may state that the methodology presented is use-
ful for improving classification results in a multilabel environment. Concretely,
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Model µF1 ∆ s-test MF1 ∆ S-test
NB 0.56166 – – 0.49985 – –

NB + BLR + M1 0.57789 +2.89% ≪ 0.52204 +4.44% ≪

NB + BLR + M2 0.57832 +2.97% ≪ 0.52208 +4.45% ≪

NB + SMO + M1 0.57635 +2.62% ≪ 0.52099 +4.23% ≪

NB + SMO + M2 0.57693 +2.72% ≪ 0.52136 +4.32% ≪

k-NN 0.43487 – – 0.29451 – –
k-NN + BLR + M1 0.54352 +24.98% ∼ 0.50804 +72.50% ≪

k-NN + BLR + M2 0.47816 +9.95% ≪ 0.35945 +22.05% ≪

k-NN + SMO + M1 0.49761 +14.43% ∼ 0.41588 +41.20% ≪

k-NN + SMO + M2 0.44502 +2.33% ∼ 0.31433 +6.73% ≪

SVM 0.64802 – – 0.59596 – –
SVM + BLR + M1 0.66669 +2.88% ∼ 0.62482 +4.84% ≪

SVM + BLR + M2 0.65871 +1.65% ∼ 0.61175 +2.65% ≪

SVM + SMO + M1 0.65716 +1.41% ∼ 0.61258 +2.79% ≪

SVM + SMO + M2 0.65198 +0.61% < 0.60393 +1.34% <

Table 2: Label-based measures for Ohsumed-23 corpus

Model µF1 ∆ s-test MF1 ∆ S-test
NB 0.61823 – – 0.36539 – –

NB + BLR + M1 0.64282 +3.98% ≪ 0.39174 +7.21% ≪

NB + BLR + M2 0.64374 +4.13% ≪ 0.39245 +7.41% ≪

NB + SMO + M1 0.61358 -0.75% ≫ 0.37401 +2.36% ∼

NB + SMO + M2 0.60962 -1.39% ≫ 0.37287 +2.05% <

k-NN 0.68698 – – 0.27494 – –
k-NN + BLR + M1 0.60402 -12.08% ≫ 0.40528 +47.40% ≪

k-NN + BLR + M2 0.72488 +5.52% ∼ 0.40404 +46.96% ≪

k-NN+ SMO + M1 0.51514 -25.01% ≫ 0.33489 +21.80% ≪

k-NN+ SMO + M2 0.57233 -16.69% ≫ 0.32626 +18.67 ≪

SVM 0.80570 – – 0.55609 – –
SVM + BLR + M1 0.78305 -2.81% ≫ 0.57704 +3.77% ∼

SVM + BLR + M2 0.80767 +0.25% ∼ 0.59334 +6.70% ≪

SVM + SMO + M1 0.68165 -15.40% ≫ 0.54189 -2.55% ≫

SVM + SMO + M2 0.67950 -15.55% ≫ 0.56275 +1.20% ∼

Table 3: Label-based measures for RCV1 corpus

µF1 MF1

BLR + M1 5/3/4/4 9/7/0/0
BLR + M2 8/4/1/1 9/9/0/0
SMO + M1 4/2/5/5 6/5/3/2
SMO + M2 5/3/4/4 9/7/0/0

Table 4: Number of times that the baseline classifier plus a label classifier with
either M1 or M2 is better/significantly better/worse/significantly worse than
the corresponding baseline classifier alone, with respect to micro and macro F1

15



in the presented tables, the following facts can be found:

• The use of this technique clearly improves the classification results of the
baseline. For the macro experiments, all the measures are improved from
the baselines. In the micro ones, also good improvements are found, es-
pecially for the M2 version of the classifier and BLR, which improves the
baseline in all but one cases (Reuters with k-NN, where the loss is around
1%). The SMO classifier went a bit worse than the BLR, presenting in
general smaller deltas, and worsening all the micro results in RCV1.

• Comparing both approaches, the model M1 (binarized) performs, in gen-
eral, worse than the continuous (M2) version, regardless of the label clas-
sifier used. This is due to the binarization procedure, which removes some
information represented in the granularity of the assignment that is well
captured by the classifier (if for a class cj, the base classifier assigns to
two instances the probabilities 0.99 and 0.55, the binarized version will
treat these two cases in the same way, assuming that both examples are
of class cj ; however the continuous version will clearly distinguish them).

• In general, we can say that this methodology seems to benefit classification
of less populated categories (those with a very low prior) a lot, without
harming more frequent categories. This produces the fact that, in general,
the macro measures (where all categories weight the same) are heavily
lifted up, whereas micro measures are improved at a lesser degree.

• The improvement for the micro measure in the RCV1 corpus were quite
small, but it should be noted that the baseline value (0.80570) was very
close to the best result obtained by Lewis [13] with SVM (0.816) and a
sophisticated threshold tuning algorithm (ScutFBR.1). Perhaps results
better than this high value are very difficult to get.

3.5.2 Experiments with example-based and ranking measures

We present the results for Reuters-21578 (in Table 5), Ohsumed-23 (in Table 6)
and RCV1 (in Table 7). The rest of the notation is similar to the one used in
the previous tables. We have added the symbol • to the values which are better
or equal than the corresponding baseline, and ◦ to those which are worse.

The results show different patterns for each one of the measures. One error
behaves really good, showing a very good performance in all three collections,
improving the baseline both in the M1 and M2 versions for almost all the cases.
For the rest of measures, they tend to work well with naive Bayes (perhaps
the weakest of the three classifiers). Subset 0/1 loss is improved in all cases in
Ohsumed-23 but only in 5 and in 3 cases in Reuters and RCV1, respectively. It
seems that, for most of the cases, M2 is better than M1 for this measure, and
BLR better than SMO.

Hamming loss shows a good performance for Ohsumed-23, where all the M2
versions of our classifier outperform the baselines. In Reuters, however, only 5
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Model Hamming loss Subset 0/1 loss One error
NB 0.01530 0.39020 0.85624

NB + BLR + M1 0.01291 • 0.37960 • 0.84929 •
NB + BLR + M2 0.01281 • 0.37827 • 0.84763 •
NB + SMO + M1 0.01330 • 0.37198 • 0.83107 •
NB + SMO + M2 0.01293 • 0.36734 • 0.83107 •

KNN 0.00512 0.26532 0.86651
KNN + BLR + M1 0.01250 ◦ 0.34316 ◦ 0.82544 •
KNN + BLR + M2 0.00600 ◦ 0.30176 ◦ 0.86585 •
KNN + SMO + M1 0.01401 ◦ 0.29911 ◦ 0.82113 •
KNN + SMO + M2 0.00567 ◦ 0.27791 ◦ 0.86154 •

SVM 0.00334 0.18980 0.94270
SVM + BLR + M1 0.00427 ◦ 0.20338 ◦ 0.92978 •
SVM + BLR + M2 0.00331 • 0.17390 • 0.93839 •
SVM + SMO + M1 0.01162 ◦ 0.19212 ◦ 0.89864 •
SVM + SMO + M2 0.00709 ◦ 0.20669 ◦ 0.88937 •

Table 5: Example-based and ranking measures for Reuters

Model Hamming loss Subset 0/1 loss One error
NB 0.08318 0.83933 0.71595

NB + BLR + M1 0.07687 • 0.83593 • 0.71477 •
NB + BLR + M2 0.07664 • 0.83462 • 0.71516 •
NB + SMO + M1 0.07668 • 0.83698 • 0.71556 •
NB + SMO + M2 0.07651 • 0.83567 • 0.71595 •

KNN 0.05494 0.77823 0.71687
KNN + BLR + M1 0.07335 ◦ 0.77692 • 0.66479 •
KNN + BLR + M2 0.05384 • 0.75455 • 0.71255 •
KNN + SMO + M1 0.07308 ◦ 0.75795 • 0.63849 •
KNN + SMO + M2 0.05437 • 0.75834 • 0.71386 •

SVM 0.04352 0.63836 0.78359
SVM + BLR + M1 0.04583 ◦ 0.62763 • 0.77509 •
SVM + BLR + M2 0.04327 • 0.62227 • 0.78255 •
SVM + SMO + M1 0.04522 ◦ 0.61821 • 0.76828 •
SVM + SMO + M2 0.04313 • 0.62135 • 0.78150 •

Table 6: Example-based and ranking measures for Ohsumed-23
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Model Hamming loss Subset 0/1 loss One error
NB 0.04423 0.92348 0.68809

NB + BLR + M1 0.04090 • 0.91627 • 0.69332 ◦
NB + BLR + M2 0.04079 • 0.91494 • 0.69433 ◦
NB + SMO + M1 0.04486 ◦ 0.93294 ◦ 0.53343 •
NB + SMO + M2 0.04559 ◦ 0.93699 ◦ 0.51662 •

KNN 0.02263 0.70625 0.76917
KNN + BLR + M1 0.03624 ◦ 0.75544 ◦ 0.61414 •
KNN + BLR + M2 0.02413 ◦ 0.73446 ◦ 0.76842 •
KNN + SMO + M1 0.04320 ◦ 0.88471 ◦ 0.48724 •
KNN + SMO + M2 0.04176 ◦ 0.93213 ◦ 0.36426 •

SVM 0.01187 0.51391 0.95040
SVM + BLR + M1 0.01461 ◦ 0.53488 ◦ 0.93696 •
SVM + BLR + M2 0.01254 ◦ 0.50866 • 0.95597 ◦
SVM + SMO + M1 0.02414 ◦ 0.89497 ◦ 0.80030 •
SVM + SMO + M2 0.02618 ◦ 0.91824 ◦ 0.60191 •

Table 7: Example-based and ranking measures for RCV1

Hamming loss Subset 0/1 loss One error
BLR + M1 3/6 5/4 8/1
BLR + M2 5/4 7/2 7/2
SMO + M1 2/7 4/5 9/0
SMO + M2 3/6 4/5 8/0

Table 8: Number of times that the baseline classifier plus either M1 or M2
(using either BLR or SMO as label classifiers) is better/worse than the corre-
sponding baseline classifier alone, with respect to different example-based and
rank measures
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out of 12 cases a performance improvement was shown. This fact is also present
in RCV1, where only for naive Bayes and BLR an improvement is obtained.
Again, M2 presents a better performance than M1 in general. The fact that
the two example-based measures do not show great improvements (and even
decrease their performance) can be explained with the fact that our method
tends to be designed to produce great increments in macro- measures (i.e. per
category) and these measures are averaged for each instance (that is, they are
close to the micro- ones), except of the fact that Hamming loss accounts for the
number of false positives and negatives, regardless of how many other labels have
been predicted well. A summary of these results is shown in Figure 8, where
the number of times that each one of our models is better for each measure than
the corresponding baseline is shown.

4 Conclusions and future works

In this paper we have proposed a quite general methodology to better manage
multilabel classification problems. It is based on explicitly taking into account
the dependences among labels. The proposed method can use as the starting
point any set of binary classifiers (one for each label, which are trained from
the content of the instances in the training set) able to produce a probabilistic
output. This information is merged in a principled way with the information
generated by another set of binary classifiers, which in this case are trained using
only the information about the labels assigned to the instances in the training
set (capturing the dependences among labels). These label-based classifiers,
like the content-based ones, can be built using a variety of learning methods,
provided that their output can be interpreted probabilistically.

We have carried out experiments with three well-known multilabel document
collections, using three very different content-based baseline classifiers (naive
Bayes, k-NN and SVM) and two label-based classifiers (logistic regression and
SVM). The experiments confirm that our methodology often tends to improve
the results obtained by the baseline classifiers.

The combination of our methods (which so far use a natural threshold of 0.5)
with any of the well-known thresholding techniques [34] is an open question. The
first and obvious question is: what happens if a thresholding algorithm is ap-
plied after our method (instead of just binarizing the final probability output)?
At a first glance it should improve the results, but how? Is this combination
worthwhile? Also, a more sophisticated variant of the M1 method, with a better
thresholding function τ (using learned values for the thresholds, not just 0.5)
can be studied. Or even, a combination of both proposals. As future work we
would like to study the synergies between our proposal for improving multilabel
classification and some thresholding techniques.

Another open question is the following: using the same approach, a different
independence assumption than the one given in eq. (1) could be given, leading
to other models. In particular, we would like to explore methods where the inde-
pendence assumption is relaxed, because we think that a complete independence

19



may be unrealistic in some categories.
Finally, we would like to use this methodology in a different environment.

We have selected document categorization for validating this model because it
is a natural form of multilabeled instances. In the future, we would like to work
with different datasets as, for example, musical patterns, protein data or social
network data, which we think are also suitable for this method.
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