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Abstract. Semantic parsing methods are used for capturing and representing se-
mantic meaning of text. Meaning representation capturing all the concepts in the
text may not always be available or may not be sufficiently complete. Ontologies
provide a structured and reasoning-capable way to model the content of a collection
of texts. In this work, we present a novel approach to joint learning of ontology and
semantic parser from text. The method is based on semi-automatic induction of a
context-free grammar from semantically annotated text. The grammar parses the
text into semantic trees. Both, the grammar and the semantic trees are used to learn
the ontology on several levels — classes, instances, taxonomic and non-taxonomic
relations. The approach was evaluated on the first sentences of Wikipedia pages
describing people.

Keywords. ontology learning, semantic parsing, grammar induction, context-free
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1. Introduction

One of the ultimate goals of Natural Language Processing (NLP) is machine reading
[[L], the automatic, unsupervised understanding of text. One way of pursuing machine
reading is by semantic parsing, which transforms text into its meaning representation.
However, capturing the meaning is not the final goal, the meaning representation needs
to be predefined and structured in a way that supports reasoning. Ontologies provide a
common vocabulary for meaning representations and support reasoning, which is vital
for understanding the text. To enable flexibility when encountering new concepts and
relations in text, in machine reading we want to be able to learn and extend the ontology
while reading. Traditional methods for ontology learning [2)3]] are only concerned with
discovering the salient concepts from text. Thus, they work in a macro-reading fashion
[4], where the goal is to extract facts from a large collection of texts, but not necessarily
all of them, as opposed to a micro-reading fashion, where the goal is to extract every fact
from the input text. Semantic parsers operate in a micro-reading fashion. Consequently,
the ontologies with only the salient concepts are not enough for semantic parsing. Fur-
thermore, the traditional methods learn an ontology for a particular domain, where the
text is used just as a tool. On the other hand, ontologies are used just as tool to repre-
sent meaning in the semantic parsing setting. When developing a semantic parser it is

1Com:sponding Author: Janez Starc, JoZef Stefan International Postgraduate School, Jamova 39, 1000
Ljubljana, Slovenia; E-mail: janez.starc @ijs.si



November 2015

not trivial to get the best meaning representation for the observed text, especially if the
content is not known yet. Semantic parsing datasets have been created by either selecting
texts that can be expressed with a given meaning representation, like Free917 dataset [S]],
or by manually deriving the meaning representation given the text, like Atis dataset [6].
In both datasets, each unit of text has its corresponding meaning representation. While
Free917 uses Freebase [[7]], which is a very big multi-domain ontology, it is not possible
to represent an arbitrary sentence with Freebase or any other existing ontology.

In this paper, we propose a novel approach to joint learning of ontology and seman-
tic parsing, which is designed for homogeneous collections of text, where each fact is
usually stated only once, therefore we cannot rely on data redundancy. Our approach
is text-driven, semi-automatic and based on grammar induction. It is presented in Fig-
ure [T} The input is a seed ontology together with text annotated with concepts from the
seed ontology. The result of the process is an ontology with extended instances, classes,
taxonomic and non-taxonomic relations, and a semantic parser, which transform basic
units of text, i.e sentences, into semantic trees. Compared to trees that structure sentences
based on syntactic information, nodes of semantic trees contain semantic classes, like
location, profession, color, etc. Our approach does not rely on any syntactic analysis of
text, like part-of-speech tagging or dependency parsing. The grammar induction method
works on the premise of curriculum learning [8]], where the parser first learns to parse
simple sentences, then proceeds to learn more complex ones. The induction method is
iterative, semi-automatic and based on frequent patterns. A context-free grammar (CFG)
is induced from the text, which is represented by several layers of semantic annotations.
The motivation to use CFG is that it is very suitable for the proposed alternating usage
of top-down and bottom-up parsing, where new rules are induced from previously un-
parsable parts. Furthermore, it has been shown by [9] that CFGs are expressive enough
to model almost every language phenomena. The induction is based on a greedy iter-
ative procedure that involves minor human involvement, which is needed for seed rule
definition and rule categorization. Our experiments show that although the grammar is
ambiguous, it is scalable enough to parse a large dataset of sentences.

The grammar and semantic trees serve as an input for the new ontology. Classes,
instances and taxonomic relations are constructed from the grammar. We also propose a
method for discovering less frequent instances and their classes, and a supervised method
to learn relations between instances. Both methods work on semantic trees.

For experimentation, first sentences of Wikipedia pages describing people are taken
as a dataset. These sentences are already annotated with links to other pages, which
are also instances of DBpedia knowledge base [[10]. Using relations from DBpedia as a
training set, several models to predict relations have been trained and evaluated.

The rest of the paper is organized in the following way. The grammar induction ap-
proach is presented in Section 2] The ontology induction approach follows in Section 3]
In Section[d we present the conducted experiments with grammar induction, and instance
and relation extraction. We examine the related work in Section[5] and conclude with the
discussion in Section[6l



November 2015

Layered text

representation
Semantic

Induction - Parsing Semantic
i —
— trees

Instance and relation
extraction

Class, instance,
taxonomy extraction

Annotation

Induced
ontology

Extended

Seed ontology

Figure 1. The proposed approach to ontology and grammar induction gets a collection of text and
the seed ontology as input and outputs a new ontology. The collection of text is first annotated at
different levels including annotations with the concepts from existing ontology. The annotated text
is then used for grammar induction, where the text is represented as semantic trees. These are used
together with the grammar to induce a new ontology.

2. Grammar induction

In this section, we propose a semi-automatic bootstrapping procedure for grammar in-
duction, which searches for the most frequent patterns and constructs new production
rules from them. One of the main challenges is to make the induction in a way that
minimizes human involvement and maximizes the quality of semantic trees.

The input to the process, which is illustrated in Figure 2] is a set of predefined seed
grammar rules (see Section and a sample of sentences in a layered representation
(see Section from the dataset. The output of the process is a larger set of rules
forming the induced grammar. One rule is added to the grammar on each iteration. At
the beginning of each iteration all the sentences are parsed with a top-down parser. The
output of parsing a single sentence is a semantic tree — a set of semantic nodes connected
into a tree. Here we distinguish two possible outcomes of the parsing: 1) the sentence was
completely parsed, which is the final goal and 2) there is at least one part of the sentence
that cannot be parsed. From the perspective of a parser the second scenario happens
when there is a node that cannot be parsed by any of the rules. We name these nodes
— null nodes — and they serve as the input for the next step, the rule induction. In this
step several rules are constructed by generalization of null nodes. The generalization (see
Section [2.4) is based on utilization of semantic annotations and bottom-up composition
of the existing rules. Out of the induced rules, a rule with the highest frequency (the one
that was generalized from the highest number of null nodes) is added to the grammar.
To improve quality of the grammar, the rules are marked by so called property, which
instructs the parser how to use the rule (eg., us it in parsing but not in induction). The
property vitally affects result of the parsing in the following iterations potentially causing
a huge semantic drift for the rest of process. Consequently, a human user needs to mark
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the property of each rule. The iterative process runs until a predefined stopping criteria
is met. The criteria is either connected to the quality of the grammar or time limitation.
For the sake of transparency of the experiments, the human is involved in the be-
ginning, when the seed rules are created and later when the rule properties are specified.
However, in another setting the user could also define new rules in the middle of the
bootstrapping procedure.
In the following sections, we describe each component of the process in more details.

Layered text
representation Seed rules

|

Semantic
trees

Best rule

Property
assignment

Incomplete
best rule

Rule Induction

Unparsable nodes

Figure 2. Grammar induction

2.1. Textual data representation

The input textual data needs to be properly structured in order to work best with the pro-
posed algorithms. Shallow NLP tools, like sentence splitting, word tokenization, named
entity recognition, might help obtaining this structure. The basic unit is a sentence, rep-
resented by several layers. An example is presented in Table [T} Each layer consists of
several tokens, which span over one or more words. The basic layer is the lexical layer,
where each token represents a single word. All other layers are created from the annota-
tions. Some annotations, like named-entities, may span over several words; some of the
words may not have an annotation, thus they are given a null token. It is crucial that all
algorithms are aware how to deal with a particular layer. For instance, the parser must
not break apart a multi-word annotation. Some layers may be derived from others using
the seed ontology. For example, instance layer contains annotations to instances of the
ontology and the derived class layer represents the classes of these annotations, which
are also from the ontology. Annotation layers are valuable if they provide good means
for generalization or connection with the ontology. A ferm is a subpart of the sentence,
defined by the starting and ending position in the sentence. It has different interpretation
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Layer Tokens
lexical Phil | Madeira | is | a musician from | Nashville
small-caps phil | madeira | is | a musician from nashville
named-entity Person - - - - Location
. . . Musical - Nashville_
instance Phil_Madeira . -

Artist Tennessee
class Person - - | Profession - Location

Table 1. Layered representation of a sentence. Null tokens are expressed as ”-”.

in each layer. If the interpretation breaks any of the tokens, it is not valid. For instance,
term representing Madeira is not valid in named-entity layer in Table [T|because it breaks
Person.

2.2. Grammar Definition

Our context-free grammar G is defined by the 5-tuple: G = (V, 0, P,S,R), where

* V is a set of non-terminals. Each non-terminal represents a semantic class, e.g.
(Person), (Color), (Organization). There is also a universal non-terminal (),
which can be replaced by any other non-terminal. The same non-terminal replaces
all occurrences in a rule. It is used to represent several rules, with a notation. The
grammar is still context-free. See seed rule examples in Section [2.5]

* 0 is a set of terminals. Terminal is any existing non-null token from any sentence
layer. We denote a terminal by value{layer}.

For instance, [location]{named-entity }, Phil_ Madeira{instance}. If the terminal is
from the lexical layer, the layer is skipped in the denotation.

* P is a set of production rules that represents a relation from V — (V UE)*. For
example,

<Relation> ::= <Person> is <Life Role>

* § is the starting non-terminal symbol. Since non-terminals represent semantic
classes, the starting symbol is chosen based on the semantic class of the input ex-
amples. If the input examples are sentences, then the appropriate category may be
(Relation). While if the input examples are noun phrases, the starting symbol may
be a more specific category, like (Job Title).

* R is a set of properties: positive, neutral, negative, non-inducible. The property
controls the usage of the rule in the parsing and in the rule induction phase. More
details are given in the following subsections.

2.3. Parser

For parsing, a recursive descent parser with backtracking was developed. This is a top-
down parser, which first looks at the higher level sentence structure and then proceeds
down the parse tree to identify low level details of the sentence. The advantage of top-
down parsing is the ability to partially parse sentences and to detect unparsable parts of
sentences.

The parser takes a layered sentence as an input and returns a semantic tree as an
output (see Figure[3). The recursive structure of the program closely follows the structure
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of the parse tree. The recursive function Parse (see Algorithm [I) takes a term and a
non-terminal as input and returns a parse node as an output. The parse node contains
the class of node (non-terminal), the rule that parsed the node, the term, and the list of
children nodes. In order for the rule to parse the node, the left-hand side must match the
input non-terminal and the right-hand side must match the layered input. In the pattern
matching function Match (line [6)), the right hand side of a rule is treated like a regular
expression; non-terminals present the (+) wildcard characters, which match at least one
word. The terminals are treated as literal characters, which are matched against the layer
that defines them. The result of successfully matched pattern is a list of terms, where
each term represents a non-terminal of the pattern. Due to ambiguity of pattern matching
there might be several matches. For each of the term — non-terminal pair in every list the
parse function is recursively called (line[I0).

1 Parse (Phrase p, Non-terminal n) output: parse node

2 nodes + {};

3 foreach rule r of grammar do

4 if n = left side of r then

5 pattern <— right hand side of r;

6 ambiguous lists <— Match(pattern, p) ;
7 foreach term list of ambiguous lists do
8 child nodes « {};

9 for i < O to size of term list do

10 child node + Parse(term list;, pattern.non terminals;) ;
11 add child node to child nodes;
12 add Node (type, p, r, child nodes) to nodes;

13 if nodes is empty then

14 ‘ final node < Node (type, p, nuil, {});
15 else

16 | final node <— argmax, o5 (1) 5

17 if final node is not fully parsed then

18 | add final node to induction nodes ;

19 return final node

Algorithm 1: Pseudocode of the main function parse of the top-down parser.

Since the grammar is ambiguous, a term can be parsed in multiple ways. There are
two types of ambiguity. Two or more rules can expand the same term and one rule can
expand the term in more than one way. For each ambiguity one node is created, and
the best node according to reliability measure is selected to be the result (line [I6). The
reliability measure r(n) is

1, if node is fully parsed
Y lefr(e)
rin)=< B-(1—tp(n)+(1— ﬁ)%, if node is partially parsed (1)
ceC(n)

0, if node is null
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<Relation>
<Relation> ::= <Person> is <LifeRole>
Phil Madeira is a musician from Nashville

PN

<Person> <LifeRole>
<Person> ::= Person{named-entity } <F> n=a <>
Phil Madeira a musician from Nashville
<LifeRole>

<LifeRole> ::= <LifeRole> from <Location>
musician from Nashville

e N

<LifeRole> <Location>
<LifeRole> ::= [Profession]{class} <Location> ::= [Location]{class }
musician Nashville

Figure 3. An example of a semantic tree, which is the result of parsing the input from Table[I} The
tree is fully parsed. Each node has three rows: the class, the rule and the term interpreted in the
lexical layer.

where ¢p(n) is the trigger probability of the rule that parsed the node n, 8 is a predefined
weight, C(n) is the set of children of n, and |c| is the length of the term of node ¢. The
trigger probability of the rule is the probability that a the right-hand side of the rule
pattern matches a random term in the dataset and it is estimated after the rule is induced.
The range of the measure is between 0 and 1. The measure was defined in such a way
that the more text the node parses, the higher is the reliability (the second summand in
the middle row of Eq.[I). On the other hand, nodes with rules that are more frequently
matched have lower reliability; this penalizes rules that are very loosely defined (the
first summand in the middle row of Eq. . The B parameter was set to 0.05, using grid
search, with average F1 score from relation extraction experiment from Section [4.4]as a
performance measure.

If none of the rules match the term, a null node is created and added to the list of
nodes, which will be later used for grammar induction (line . Note that even if a null
node is discarded, because it is not the most reliable, it will still be used in the grammar
induction step. A node is fully parsed if the node itself and all of its descendants are
parsed. If a node is parsed and if at least one of its descendants is not parsed, then the
node is partially parsed. All nodes that are not fully parsed are added to the list for
induction.

Since the ambiguity of the grammar may make parsing computationally infeasible,
several optimization techniques are used. Memoization [11]] is used to reduce the com-
plexity from exponential time to ¢ () [12], where n is the length of the sentence. The
parser does not support € productions mainly because the grammar induction will not
produce them. The patterns that do not contain terminals are the most ambiguous. At
most two non-terminals are allowed, and the maximal length of the term that corresponds
to the first non-terminal is three tokens. We argue that this is not a huge limitation, since
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the way human languages are structured, usually two longer terms are connected with
a word, like comma or a verb. Furthermore, the way how our induction works, these
connectors do not get generalized and become a terminal in the rule. There was an at-
tempt to introduce rules with negative property. Whenever such rule fully parses a node,
that indicates that the current parsing path is incorrect. This allows the parser to back-
track sooner and also prevents adding null sister nodes (null sister nodes are in this case
usually wrong) to the rule induction. However, it turned out that negative rules actually
slow down the parsing, since the grammar gets bigger. It is better to mark these rules as
neutral, therefore they are not added to the grammar.

2.4. Rule induction

The goal of the rule induction step is to convert the null nodes from the parsing step into
rules. Out of these rules, the most frequent one is promoted. The term from the null node
is generalized to form the right side of the rule. The class non-terminal of the null node
will present the left side of the rule. Recently induced rule will parse all the nodes, from
which it was induced, in the following iterations. Additionally, some rules may parse the
children of those nodes.

Generalization

Generalization is done in two steps. First, terms are generalized on the layer level. The
output of this process is a sequence of tokens, which might be from different layers. For
each position in the term a single layer is selected, according to predefined layer order.
In the beginning, term is generalized with the first layer. All the non-null tokens from
this layer are taken to be part of the generalized term. All the positions of the term that
have not been generalized are attempted to be generalized with the next layer, etc. The
last layer is without null-tokens, therefore each position of the term is assigned a layer.
Usually, this is the lexical layer. For example, top part of Table [2]shows generalization of
term from Table[T} The layer list is constructed manually. Good layers for generalization
are typically those that express semantic classes of individual terms. Preferably, these
types are not too general (loss of information) and not too specific (larger grammar).

In the next step of generalization, tokens are further generalized using a greedy
bottom-up parser using the rules from the grammar. The right sides of all the rules are
matched against the input token term. If there is a match, the matched sub-term is re-
placed with the left side of the rule. Actually, in each iteration all the disjunct matches
are replaced. To get only the disjunct matches, overlapping matches are discarded greed-
ily, where longer matches have the priority. This process is repeated until no more rules
match the term. An example is presented in the lower part of Table

The bottom-up parsing algorithm needs to be fast because the number of unexpanded
nodes can be very high due to ambiguities in the top-down parsing. Consequently, the al-
gorithm is greedy, instead of exhaustive, and yields only one result. Aho-Corasick string
matching algorithm [13] is selected for matching for its ability to match all the rules si-
multaneously. Like the top-down parser, this parser generates partial parses because the
bottom-up parser will never fully parse — the output is the same as the non-terminal type
in the unexpanded node. This would generate a cyclical rule, i.e. <Class> :== <Class>.
However, this never happens because the top-down parser would already expand the null
node.
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Layered generalization

Person is a Profession from Location

class small-caps | small-caps class small-caps class

Bottom-up parsing

Person is a <Life Role>

class small-caps | small-caps non-terminal
Table 2. Two step generalization of term from Table[T[(Phil Madiera is a musician from Nashville).
The layer list was constructed in a reverse order from Table [I] In this example, the rule <Life
Role> ::= Profession from Location is the only rule that was used in the bottom-up parsing.

Property assignment

The last step of the iteration is assigning the property to the newly induced rule. Property
controls the role of the rule in the parsing and induction. The default property is positive,
which defines the default behavior of the rule in all procedures. Rules with neutral prop-
erty are not used in any procedure. They also cannot be re-induced. Some rules are good
for parsing, but may introduce errors in the induction. These rules should be given non-
inducible property. For instance, rule <Date> :== <Number> is a candidate for the
non-inducible property, since years are represented by a single number. On the contrary,
not every number is a date.

In our experiments, the assignment was done manually. The human user sees the
induced rule and few examples of the null nodes, from which it was induced. This should
provide enough information for the user to decide in a few seconds, which property to
assign. After the stopping criteria is met, the iterative procedure can continue automati-
cally by assigning positive property to each rule. Initial experimenting showed that just a
single mistake in the assignment can cause a huge drift, making all further rules wrong.

2.5. Seed rules

Before the start, a list of seed rules may be needed in order for grammar induction to
be successful. Since this step is done manually, it is reasonable to have a list of seed
rules short and efficient. Seed rules can be divided in three groups: domain independent
linguistic rules, class rules, top-level domain rules. Domain independent linguistic rules,
such as

< >u=a< > <Relation > ::= <Relation> .
< >ut=an< > < > =< >and < >
<> u=the <> <> =< >,<_>and <_>,

parse the top and mid-level nodes. They can be applied on many different datasets. Class
rules connect class tokens, like named-entity tokens with non-terminals. For example,

<Location> ::= [location]{named-entity} ~ <Date> ::= [date]{named-entity}
<Location> ::= [Location]{class} <Film> ::= [Film]{class}

They parse the leaf nodes of the trees. On the other hand, fop-level domain rules, define
the basic structure of the sentence. For example,

<Relation> ::= <Person> is <Life Role>



November 2015

As the name suggests, they parse nodes close to the root. Altogether, these rule groups
parse on all levels of the tree, and may already be enough to parse the most basic sen-
tences, but more importantly, they provide the basis for learning to parse more complex
sentences.

The decision on which and how many seed rules should be defined relies on human
judgment whether the current set of seed rules is powerful enough to ignite the bootstrap-
ping procedure. This judgment may be supported by running one iteration and inspecting
the top induced rules.

3. Ontology induction

This section describes how to utilize the grammar and manipulate semantic trees to dis-
cover ontology components in the textual data.

3.1. Ontology induction from grammar

We propose a procedure for mapping grammar components to ontology components. In
particular, classes, instances and taxonomic relations are extracted.

First, we distinguish between instances and classes in the grammar. Classes are
represented by all non-terminals and terminals that come from a layer populated with
classes, for example, named-entity layer and class layer from Table [T] Instances might
already exist in the instance layer, or they are created from rules, whose right hand side
contains only tokens from the lexical layer. These tokens represent the label of the new
instance. For instance rule <Profession> ::= software engineer is a candidate for in-
stance extraction.

Furthermore, we distinguish between class and instance rules. Class rules have a
single symbol representing a class on the right-hand side. Class rules map to subClassOf
relations in the ontology. If the rule is positive, then the class on the right side is the sub-
class of the class on the left side. For instance, rule <Organization> ::= <Company>
yields relation (subClassOf Company Organization).

On the other hand, instance rules have one or more symbols representing an instance
on the right side, and define the isa relation. If the rule is positive, then the instance on
the right side is a member of a class on the left side. For instance, rule <Profession> ::=
software engineer yields relation (isa SoftwareEngineer Profession). If class or instance
rule is neutral then the relation can be treated as false. Note that many other relations may
be inferred by combing newly induced relations and relations from the seed ontology.
For instance, induced relation (subClassOf new-class seed-class) and seed relation (isa
seed-class seed-instance) are used to infer a new relation (isa new-class seed-instance).

In this section, we described how to discover relations on the taxonomic level. In the
next section, we describe how to discover relations between instances.

3.2. Relation extraction from semantic trees

We propose a method for learning relations from semantic trees, which tries to solve the
same problem as the classical relation extraction methods. Given a dataset of positive
relation examples that represent one relation type, e.g. birthPlace, the goal is to discover
new unseen relations.
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(b) Semantic tree for train- (c) Variable sub-tree, ?1 and
(a) Semantic tree for training, ing, with b1 and b2 as en- ?2 present the positions in the
with al and a2 as entity nodes. tity nodes. relation.

Figure 4. Given the relation (r al a2) and semantic tree on[da] and relation (r b1 52) and semantic tree on[4b]
the same variable sub-tree is extracted (4c).

The method is based on the assumption that a relation between entities is expressed
in the shortest path between them in the semantic tree [[14]. The input for training are
sentences in layered representation, corresponding parse trees, and relation examples.
Given a relation from the training set, we first try to identify the sentence containing each
entity of the relation. The relation can have one, two, or even more entities. Each entity is
matched to the layer that corresponds to the entity type. For example, strings are matched
to the lexical layer; ontology entities are matched to the layer containing such entities.
The result of a successfully matched entity is a sub-term of the sentence. In the next step,
the corresponding semantic tree is searched for a node that contains the sub-term.

At this point, each entity has a corresponding entity node. Otherwise, the relation is
discarded from the learning process. Given the entity nodes, a minimum spanning tree
containing all off them is extracted. If there is only one entity node, then the resulting
subtree is the path between this node and the root node. The extracted sub-tree is con-
verted to a variable tree, so that different semantic trees can have the same variable sub-
trees, for example see Figure [d The semantic nodes of the sub-tree are converted into
variable nodes, by retaining the class and the rule of the node, as well as the places of the
children in the original tree. For entity nodes also the position in the relation is memo-
rized. Variable tree extracted from a relation is a positive example in the training process.
For negative examples all other sub-trees that do not present any relations are converted
to variable trees. Each variable node represents one feature. Therefore, a classification
algorithm, such as logistic regression can be used for training.

When predicting, all possible sub-trees of the semantic tree are predictecﬂ If a sub-
tree is predicted as positive, then the terms in the leaf nodes represent the arguments of
the relation.

2The number of leaf nodes of these sub-trees must match the number of arguments of the relation. Also,
if the relation has two or mode arguments, it is predicted several times, each time with the different position
numbers in the entity nodes.
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4. Experiments

In this section, we present experiments evaluating the proposed approach. We have con-
ducted experimentation on Wikipedia—-DBpedia dataset (Section [4.T)). First, we have in-
duced a grammar on the Wikipedia dataset (Section[4.2)) to present its characteristics, and
the scalability of the approach. In the next experiment, we present a method for discover-
ing less prominent instances (Section4.3). The last experiment demonstrates one appli-
cation of semantic parsing — the supervised learning of DBpedia relations(Section [4.4).

4.1. Datasets

The datasets for experiments were constructed from English Wikipedia and knowledge
bases DBpedia [10] and Freebase [7]. DBpedia provides structured information about
Wikipedia articles that was scraped out of their infoboxes. First sentences of Wikipedia
pages describing people were taken as the textual dataset, while DBpedia relations ex-
pressing facts about the same people were taken as the dataset for supervised relation
learning. Note that each DBpedia instance has a Wikipedia page. A set of person in-
stances was identified by querying DBpedia for instances that have a person class. For
the textual dataset, Wikipedia pages representing these entities were parsed by the in-
house Wikipedia markup parseﬂ to convert the markup into plain text. Furthermore, the
links to other Wikipedia pages were retained. Here is an example of a sentence in plain
text:

“Victor Francis Hess (24 June 1883 — 17 December 1964) was an Austrian-American
physicist, and Nobel laureate in physics, who discovered cosmic rays.”

Using the Standford OpenNLP [[15] on plain texts we obtained sentence and token
splits, and named-entity annotation. Notice, that only the first sentence of each page
was retained and converted to the proposed layered representation (see Section [2.1)).
The layered representation contains five layers: lexical (plain text), named-entity (named
entity recognizer), wiki-link (Wikipedia page in link — DBpedia instanceE]), dbpedia-class
(class of Wikipedia page in Dbpedia) and freebase-class (class of Wikipedia page in
Freebase). Freebase also contains its own classes of Wikipedia pages. For the last two
layers, there might be several classes per Wikipedia page. Only one was selected using
a short priority list of classes. If none of the categories is on the list, then the category
is chosen at random. After comparing the dbpedia-class and freebase-class layers, only
freebase-class was utilized in the experiments because more wiki-link tokens has a class
in freebase-class layer than in dbpedia-class layer.

There are almost 1.1 million sentences in the collection. The average length of a
sentence is 18.3 words, while the median length is 13.8 words. There are 2.3 links per
sentence.

The dataset for supervised relation learning contains all relations where a person
instance appears as a subject in DBpedia relation. For example,

dbpedia: Victor_Francis_Hess  dbpedia-owl:birthDate  1883-06-24

3The markup parsing of Wikipedia markup is non-trivial. To extract only the plain text many elements, like
images and tables, have been discarded, as well as some elements that appear in the middle of sentence, like
pronunciation and citation

4Each Wikipedia page has a corresponding Dbpedia instance.
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There are 119 different relation types (unique predicates), having from just a few rela-
tions to a few million relations. Since DBpedia and Freebase are available in RDF format,
we used the RDF store for querying and for storage of existing and new relations.

4.2. Grammar Induction Experiments

The grammar was induced on 10.000 random sentences taken from the dataset described
in Section First, a list of 45 seed nodes was constructed. There were 22 domain in-
dependent linguistic rules, 17 category rules and 6 top-level rules. The property assign-
ment was done by the authors. In every iteration, the best rule is shown together with the
number of nodes it was induced from, and ten of those nodes together with the sentences
they appear in. The goal was set to stop the iterative process after two hours. We believe
this is the right amount of time to still expect quality feedback from a human user.

There were 689 new rules created. A sample of them is presented in Table [3 Ta-
ble d] presents the distributions of properties. Around 36% of rules were used for parsing
(non neutral rules). Together with the seed rules there are 297 rules used for parsing.
Different properties are very evenly dispersed across the iterations. Using the procedure
for conversion of grammar rules into taxonomy presented in Section [3] 33 classes and
subClassOf relations, and 95 instances and isa relations were generated.

The grammar was also tested by parsing a sample of 100.000 test sentences. A few
statistic are presented in Table [d] More than a quarter of sentences were fully parsed,
meaning that they do not have any null leaf nodes. Coverage represents the fraction of
words in a sentence that were parsed (words that are not in null-nodes). The number of
operations shows how many times was the Parse function called during the parsing of
a sentences. It is highly correlated with the time spend for parsing a sentence, which is
on average 0.16ms. This measurement was done on a single CPU core. Consequently,
it is feasible to parse a collection of a million sentences, like our dataset. The same
statistics were also calculated on the training set, the numbers are very similar to the
test set. The fully parsed % and coverage are even slightly lower than on the test set.
Some of the statistics were calculated after each iteration, but only when a non neutral
rule was created. The graphs in Figure [5] show how have the statistics changed over
the course of the grammar induction. Graph [5a] shows that coverage and the fraction of
fully parsed sentences are correlated and they grow very rapidly at the beginning, then
the growth starts to slow down, which indicates that there is a long tail of unparsed
nodes/sentences. In the following section, we present a concept learning method, which
deals with the long tail. Furthermore, the number of operations per sentence also slows
down (see Graph with the number of rules, which gives a positive sign of retaining
computational feasibility with the growth of the grammar. Graph[5b|somewhat elaborates
the dynamics of the grammar induction. In the earlier phase of induction many rules that
define the upper structure of the tree are induced. These rules can rapidly increase the
depth and number of null nodes, like rule 1 and rule 2 El They also explain the spikes
on Graph [5d] Their addition to the grammar causes some rules to emerge on the top of
the list with a significantly higher frequency. After these rules are induced the frequency
gets back to the previous values and slowly decreases over the long run.

Srulel — <LifeRole> ::= <LifeRole> in <Location>,
rule2 — <LifeRole> ::= <LifeRole> of <Organization>



November 2015

number rule property
1 <PersonAttr> ::= born <Date> none

101 <LifeRole> ::= born in <Location> none

201 <Location> ::= <Location> from <Date> neutral
301 <Person> ::= <Location> from <Date> neutral
401 <OrderOfChivalry> ::= ( <PersonAttr> ) neutral
501 <LifeRole> ::= who <Action> in <Event>  none

601 <Date> ::= the university neutral

Table 3. A sample of induced rules.

Grammar

positive rules 231
non-inducible rules 21
neutral rules 437
Parsing

fully parsed sentences 25.63%
avg. coverage 78.52%
avg. tree depth 6.96
avg. number of leaf nodes 6.69

avg. number of null leaf nodes  1.98

avg. number of operations 320.3

avg parsing time 0.16 ms
Table 4. Statistics of test set.

4.3. Instance extraction

In this section, we present an experiment with a method for discovering new instances,
which appear in the long tail of null nodes. Note that the majority of the instances were
already placed in the ontology by the method in Section Here, less prominent in-
stances are extracted to increase the coverage of semantic parsing. The term and the class
of the null node will form an isa relation. The class of the node represents the class of
the relation. The terms are converted to instances. They are first generalized on the layer
level (see Section [2.T). The goal is to exclude non-atomic terms, which do not repre-
sent instances. Therefore, only terms consisting of one wiki-link token or exclusively of
lexical tokens are retained. The relations were sorted according to their frequency. We
observe that accuracy of the relations drops with the frequency. Therefore, relations that
occurred less than three times were excluded. The number and accuracy for six classes
is reported in Table[5] Other classes were less accurate. For each class, the accuracy was
manually evaluated on a random sample of 100 instance relations. Taking into account
the estimated accuracy, there were more than 13.000 correct isa relations.

4.4. Relation extraction
In this section, we present an experiment of the relation extraction methods presented

in Section The input for the supervision is the DBpedia relation dataset from Sec-
tion The subject (first argument) of every relation is a person DBpedia instance —
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Figure 5. Statistics of the iterative process

Class Relations  Accuracy
Life role 15356 60
Person 5427 49
Order of chivalry 1319 32
Date 1310 46
Action 967 78
Field of study 25 80

Table 5. Instance relations per category.

person Wikipedia page. In the beginning, the first sentence of that Wikipedia page has
been identified in the textual dataset. If the object (last argument) of this relation matches
a sub-term of this sentence, then the relation is eligible for experiments. We distinguish
three types of values in objects. DBpedia resources are matched with wiki-link layer.
Dates get converted to the format that is used in English Wikipedia. They are matched
against the lexical layer, and so are the string objects.

Only relation types that have 200 or more eligible relations have been retained. This
is 74 out of 119 relations. The macro average number of eligible relations per relation
type is 17.7%. While the micro average is 23.8%, meaning that roughly a quarter of all
DBpedia person relations are expressed in the first sentence of their Wikipedia page. For
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Model Precision Converted Recall Recall Converted F1 F1

Basic 722 48.3 28.2 52.1 36.4
Net 61.6 71.6 42.5 63.3 46.9
LR 71.9 84.2 50.2 71.0 555
LRC 72.4 84.4 50.3 713 55.7
LRCL 762 85.5 50.7 80.0 57.1

Table 6. Performance of various relation extraction models.

the rest of this section, all stated averages are micro-averages.

The prediction problem is designed in the following way. Given the predicate (re-
lation type) and the first argument of the relation (person), the model predicts the sec-
ond argument of the relation (object). Because not all relations are functional, like for
instance child relation, there can be several values per predicate—person pair; on average
there are 1.1. Since only one argument of the relation is predicted, the variable trees pre-
sented in Section will be paths from the root to a single node. Analysis of variable
tree extraction shows that on average 60.8% of eligible relations were successfully con-
verted to variable trees (the object term exactly matches the term in the node). Others
were not converted because 8.2% of the terms were split between nodes and 30.9% terms
are sub-terms in nodes instead of complete terms. Measuring the diversity of variable
trees shows that a distinct variable tree appeared 2.7 times on average.

Several models based on variable trees were trained for solving this classification
problem:

* Basic (Basic model) — The model contains positive trained variable trees. In the
prediction, if the test variable tree matches one of the trees in the model, then the
example is predicted positive.

* Net (Automaton model) — All positive variable trees are paths with start and end
points. In this model they are merged into a net, which acts as a deterministic
automaton. If the automaton accepts the test variable tree, than it is predicted
positive. An example of automaton model is presented in Figure[6]

* LR (Logistic regression) — A logistic regression model is trained with positive and
negative examples, where nodes in variable trees represents features.

* LRC (Logistic regression + Context nodes) — All leaf nodes that are siblings of
any of the nodes in the variable tree are added to the LR model.

* LRCL (Logistic regression + Context nodes + Lexical Tokens) — Tokens from the
lexical layer of the entity nodes are added to the LRC as features.

For training all or a maximum of 10.000 eligible relations was taken for each of
74 relation types. A 10-fold cross validation was performed for evaluation. The re-
sults are presented in Table[6] The converted recall and converted F1 score presents re-
call and F1 on converted examples, which are the one, where relations were success-
fully converted into variable trees. The performance increases with each model, however
the interpretability decreases. We also compared our method to the conditional random
fields(CRF). In the CRF method, tokens from all layers with window size 7 were taken
as features for sequence prediction. On the converted examples CRF achieved F1 score
of 80.8, which is comparable to our best model’s (LRCL) F1 score of 80.0.
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<Relation>
<Relation> .
1.000000
<Relation> <Relation>
<Person> is <LifeRole> <Person> was <LifeRole>
0.813953 0.116279
<> <Relation> <Person>
< >and < > <Person> was <LifeRole> <Person> ( <PersonAttr> )
0.232558 0.069767 0.116279
<LifeRole> <LifeRole> <Person>
<LifeRole> of <Organization> <LifeRole> at <Organization> <Person> , <Order_of_Chivalry>
0.069767 0.813953 0.116279
<> <Order_of Chivalry>
the < > <Organization>
0.488372 0.116279
<Organization> <Organization>
[Organization]{class } [organization]{named-entity }
0.186047 0.697674

http://dbpedia.org/ontology/institution

Figure 6. The automaton model for institution relation. On the bottom of each node, the fraction of
training variable trees that contain this node, is displayed.

5. Related Work

There are many known approaches to ontology learning and semantic parsing, however,
to the best of our knowledge, this is the first work to jointly learn an ontology and seman-
tic parser. In the following sections, we make comparisons to other work on semantic
parsing, ontology learning, grammar induction and others.

5.1. Semantic parsing

The goal of semantic parsing is to map text to meaning representations. Several ap-
proaches have used Combinatory categorial grammar (CCG) and lambda calculus as a
meaning representation [[16/17]. CCG grammar closely connects syntax and semantics
with a lexicon, where each entry consist of a term, a syntactical category and a lambda
statement. Similarly, our context-free grammar contains production rules. Some of these
rules do not contain lexical tokens (the grammar is not lexicalized), which gives ability
to express some relations with a single rule. For instance, to parse jazz drummer, rule
<Musician_Type> ::=<Musical_Genre> <Musician_Type> is used to directly express
the relation, which determines the genre of the musician. Lambda calculus may provide a
more formal meaning representation than semantic trees, but the lexicon of CCG requires
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mappings to lambda statements. Other approaches use dependency-based compositional
semantics [18]], ungrounded graphs [19], etc. as meaning representations.

Early semantic parsers were trained on datasets, such as Geoquery [20] and Atis
[6], that map sentences to domain-specific databases. Later on datasets for question an-
swering based on Freebase were created — Free917 [3]] and WebQuestions [21] These
datasets contain short questions from multiple domains, and since the meaning repre-
sentations are formed of Freebase concepts, they allow reasoning over Freebase’s on-
tology, which is much richer than databases in GeoQuery and Atis. All those datasets
were constructed by either forming sentences given the meaning representation or vice-
versa. Consequently, systems that were trained and evaluated on these datasets, might not
work on sentences that cannot be represented by the underlying ontology. To overcome
this limitation [[17] developed a open vocabulary semantic parser. Their approach uses a
CCQG parser on questions to from labmda statements, which besides Freebase vocabulary
contain underspecified predicates. These lambda statements are together with answers —
Freebase entities — used to learn a low-dimensional probabilistic database, which is then
used to answer fill-in-the-blank natural language questions. In a very similar fashion,
[22] defines underspecified entities, types and relations, when the corresponding concept
does not exist in Freebase. In contrast, the purpose of our method is to identify new
concepts and ground them in the ontology.

5.2. Ontology Learning

Many ontology learning approaches address the same ontology components as our ap-
proach. However, their goal is to learn only the salient concepts for a particular domain,
while our goal is to learn all the concepts (including instances, like particular organiza-
tions), so that they can be used in the meaning representation. As survey by [23] sum-
marizes, the learning mechanisms are based either on statistics, linguistics, or logic. Our
approach is unique because part of our ontology is constructed from the grammar. Many
approaches use lexico-syntactic patterns for ontology learning. These are often based on
dependency parses, like in [3l24]]. Our approach does not rely on linguistic preprocessing,
which makes it suitable for non-standard texts and poorly resourced languages. Our ap-
proach also build patterns, however in form of grammar rules. Instead of lexico-syntactic
patterns, which contain linguistic classes, our approach models semantic patterns, which
contain semantic classes, like Person and Color. These patterns are constructed in ad-
vance, which is sometimes difficult because the constructor is not always aware of all
the phenomena that is expressed in the input text. Our approach allows to create a small
number of seed patterns in advance, then explore other patterns through process of gram-
mar learning. A similar bootstrapping semi-automatic approach to ontology learning was
developed in [25]], where the user validates lexicalizations of a particular relation to learn
new instances, and in [26], where the user validates newly identified terms, while in our
approach the user validates grammar rules to learn the composition of whole sentences.
A similar approach with combining DBpedia with Wikipedia for superised learning has
been taken in [27]], however their focus is more on lexicalization of relations and classes.

5.3. Grammar induction

Our goal was to develop a semi-automatic method that induces a grammar suitable for
our scenario, in which an ontology is extracted, and text is parsed into semantic trees.
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A survey by [28] compares several papers on grammar induction. According to their
classification, our method falls into unsupervised, text-based (no negative examples of
sentences) methods. Many such methods induce context-free grammars. However, their
focus is more on learning syntactic structures rather than semantic. This is evident in
evaluation strategies, where their parse trees are compared against golden parse trees in
treebanks, like Penn treebank [29], which are annotated according to syntactic policies.
Furthermore, our grammar should not limited to a specific form, like for instance Chom-
sky normal form or Greibach normal form, instead it may contain arbitrary context-free
rules. Several algorithms, like ours, employ the greedy strategy of grammar induction,
where the grammar is updated with the best decision at each step. Whereas our method
adds a rule after all sentences are parsed, The Incremental Parsing algorithm [30] up-
dates the grammar after each sentence. This is also done in ADIOS method [31]], where
it has been shown that order of sentences affects the grammar. Our method employs
frequency analysis and human supervision to control the grammar construction, while
others use Minimum Description Length principle [32], clustering of sequences [33]], or
significance of word co-occurrences [34].

5.4. Other Approaches

Related work linking short terms to ontology concepts [35] is designed similarly as our
approach in terms of bootstrapping procedure to induce patterns. But instead of induc-
ing context-free grammar production rules, suggestions for rewrite rules that transform
text directly to ontology language are provided. Another bootstrapping semi-automatic
approach was developed for knowledge base population [36]]. The task of knowledge
base population is concerned only with extracting instances and relations given the on-
tology. In our work we also extract the backbone of the ontology — classes and taxo-
nomic relations. Also, many other approaches focus only on one aspect of knowledge
extraction, like taxonomy extraction [37U38]] or relation extraction [14439]. Combining
these approaches can lead to cumbersome concept matching problems. This problem was
also observed by [40]. Their system OntoUSP tries to overcome this by unsupervised
inducing and populating a probabilistic grammar to solve question answering problem.
However, the result are logical-form clusters connected in an isa hierarchy, not grounded
concepts, which are connected with an existing ontology.

6. Discussion

We have presented an approach for joint ontology learning and semantic parsing. The
approach was evaluated by building an ontology representing biographies of people. The
first sentences of person Wikipedia pages and the combination of DBpedia and Freebase
were used as a dataset. This dataset was suitable for our approach, because the text is
equipped with human tagged annotations, which are already linked to the ontology. In
other cases a named entity disambiguation would be needed to obtain the annotations.
The next trait of the dataset, that is suitable for our approach, is the homogeneous style
of writing. Otherwise, if the style was more heterogeneous, the users would have to
participate in more iterations to achieve the same level of coverage. The participation
of the users may be seen a cost, but on the other hand it allows them to learn about the
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dataset without reading it all. The users does not learn so much about specific facts as
they learn about the second order information, like what types of relations are expressed
and their distribution.

Semantic trees offer a compact tree-structured meaning representation, which could
be exploited for scenarios not covered by this paper, like relation type discovery and
question answering. Furthermore, they can be used for more interpretable representation
of meaning, like the automaton representation in Figure[6] compared to some other meth-
ods, like the one based on neural networks [41]. Our approach may not be superior on
one specific part of the ontology learning, but it rather provides an integrated approach
for learning on several levels of the ontology. Also, our approach does not use syntac-
tic analysis, like part of speech tags or dependency parsing, which makes our approach
more language independent and useful for non-standard texts, where such analysis is not
available. On the other hand, we are looking into integrating syntactic analysis for future
work. One scenario is to automatically detect the property of the rule. Another idea for
future work is to integrate some ideas from other grammar induction methods to detect
meaningful patterns without relying on the annotation of text.
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