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Abstract

We present a novel approach for the construction of ensemble classi-
fiers based on dimensionality reduction. Dimensionality reduction meth-
ods represent datasets using a small number of attributes while preserving
the information conveyed by the original dataset. The ensemble members
are trained based on dimension-reduced versions of the training set. These
versions are obtained by applying dimensionality reduction to the original
training set using different values of the input parameters. This construc-
tion meets both the diversity and accuracy criteria which are required to
construct an ensemble classifier where the former criterion is obtained by
the various input parameter values and the latter is achieved due to the
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decorrelation and noise reduction properties of dimensionality reduction.
In order to classify a test sample, it is first embedded into the dimension
reduced space of each individual classifier by using an out-of-sample ex-
tension algorithm. Each classifier is then applied to the embedded sample
and the classification is obtained via a voting scheme. We present three
variations of the proposed approach based on the Random Projections,
the Diffusion Maps and the Random Subspaces dimensionality reduction
algorithms. We also present a multi-strategy ensemble which combines
AdaBoost and Diffusion Maps. A comparison is made with the Bagging,
AdaBoost, Rotation Forest ensemble classifiers and also with the base
classifier which does not incorporate dimensionality reduction. Our ex-
periments used seventeen benchmark datasets from the UCI repository.
The results obtained by the proposed algorithms were superior in many
cases to other algorithms.

Keywords – Ensembles of classifiers; Dimensionality reduction; Out-of-sample
extension; Random projections; Diffusion maps, Nyström extension

1 Introduction

Classifiers are predictive models which label data based on a training dataset
T whose labels are known a-priory. A classifier is constructed by applying an
induction algorithm, or inducer, to T - a process that is commonly known as
training. Classifiers differ by the induction algorithms and training sets that
are used for their construction. Common induction algorithms include nearest
neighbors (NN), decision trees (CART [9], C4.5 [44]), Support Vector Machines
(SVM) [61] and Artificial Neural Networks - to name a few. Since every inducer
has its advantages and weaknesses, methodologies have been developed to en-
hance their performance. Ensemble classifiers are one of the most common ways
to achieve that.

The need for dimensionality reduction techniques emerged in order to allevi-
ate the so called curse of dimensionality [28]. In many cases, a high-dimensional
dataset lies approximately on a low-dimensional manifold in the ambient space.
Dimensionality reduction methods embed datasets into a low-dimensional space
while preserving as much of the information conveyed by the dataset. The
low-dimensional representation is referred to as the embedding of the dataset.
Since the information is inherent in the geometrical structure of the dataset (e.g.
clusters), a good embedding distorts the structure as little as possible while rep-
resenting the dataset using a number of features that is substantially smaller
than the dimension of the original ambient space. Furthermore, an effective di-
mensionality reduction algorithm also removes noisy features and inter-feature

2



correlations. Due to its properties, dimensionality reduction is a common step in
many machine learning applications in fields such as signal processing [51, 2, 3]
and image processing [37].

1.1 Ensembles of Classifiers

Ensembles of classifiers [32] mimic the human nature to seek advice from sev-
eral people before making a decision where the underlying assumption is that
combining the opinions will produce a decision that is better than each individ-
ual opinion. Several classifiers (ensemble members) are constructed and their
outputs are combined - usually by voting or an averaged weighting scheme - to
yield the final classification [43, 41]. In order for this approach to be effective,
two criteria must be met: accuracy and diversity [32]. Accuracy requires each
individual classifier to be as accurate as possible i.e. individually minimize the
generalization error. Diversity requires to minimize the correlation among the
generalization errors of the classifiers. These criteria are contradictory since
optimal accuracy achieves a minimum and unique error which contradicts the
requirement of diversity. Complete diversity, on the other hand, corresponds to
random classification which usually achieves the worst accuracy. Consequently,
individual classifiers that produce results which are moderately better than ran-
dom classification are suitable as ensemble members. In [39], “kappa-error” di-
agrams are introduced to show the effect of diversity at the expense of reduced
individual accuracy.

In this paper we focus on ensemble classifiers that use a single induction
algorithm, for example the nearest neighbor inducer. This ensemble construc-
tion approach achieves its diversity by manipulating the training set. A well
known way to achieve diversity is by bootstrap aggregation (Bagging) [8]. Sev-
eral training sets are constructed by applying bootstrap sampling (each sample
may be drawn more than once) to the original training set. Each training set
is used to construct a different classifier where the repetitions fortify different
training instances. This method is simple yet effective and has been successfully
applied to a variety of problems such as spam detection [64], analysis of gene
expressions [60] and image retrieval [58].

The award winning Adaptive Boosting (AdaBoost) [20] algorithm and its
subsequent versions e.g. [18] and [56] provide a different approach for the con-
struction of ensemble classifiers based on a single induction algorithm. This
approach iteratively assigns weights to each training sample where the weights
of the samples that are misclassified are increased according to a global error
coefficient. The final classification combines the logarithm of the weights to
yield the ensemble’s classification.
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Rotation Forest [45] is one of the current state-of-the-art ensemble classi-
fiers. This method constructs different versions of the training set by employing
the following steps: First, the feature set is divided into disjoint sets on which
the original training set is projected. Next, a random sample of classes is elimi-
nated and a bootstrap sample is selected from every projection result. Principal
Component Analysis [27] (see Section 1.2) is then used to rotate each obtained
subsample. Finally, the principal components are rearranged to form the dataset
that is used to train a single ensemble member. The first two steps provide the
required diversity of the constructed ensemble.

Multi-strategy ensemble classifiers [47] aim at combining the advantages
of several ensemble algorithms while alleviating their disadvantages. This is
achieved by applying an ensemble algorithm to the results produced by another
ensemble algorithm. Examples of this approach include multi-training SVM
(MTSVM) [35], MultiBoosting [62] and its extension using stochastic attribute
selection [63].

Successful applications of the ensemble methodology can be found in many
fields, for example, recommender systems [53], finance [34], manufacturing [46]
and medicine [38].

1.2 Dimensionality reduction

The theoretical foundations for dimensionality reduction were established by
Johnson and Lindenstrauss [29] who proved its feasibility. Specifically, they
showed that N points in an N dimensional space can almost always be projected
onto a space of dimension C logN with control over the ratio of distances and the
error (distortion). Bourgain [7] showed that any metric space with N points can
be embedded by a bi-Lipschitz map into an Euclidean space of logN dimension
with a bi-Lipschitz constant of logN . Various randomized versions of these
theorems were successfully applied to protein mapping [36], reconstruction of
frequency sparse signals [10, 16], textual and visual information retrieval [6] and
clustering [19].

The dimensionality reduction problem can be formally described as follows.
Let

Γ = {xi}Ni=1 (1)

be the original high-dimensional dataset given as a set of column vectors where
xi ∈ Rn, n is the dimension of the ambient space and N is the size of the
dataset. All dimensionality reduction methods embed the vectors into a lower
dimensional space Rq where q � n. Their output is a set of column vectors in
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the lower dimensional space

Γ̃ = {x̃i}Ni=1 , x̃i ∈ Rq (2)

where q is chosen such that it approximates the intrinsic dimensionality of Γ

[25, 24]. We refer to the vectors in the set Γ̃ as the embedding vectors.
Dimensionality reduction techniques employ two approaches: feature selec-

tion and feature extraction. Feature selection methods reduce the dimensional-
ity by choosing q features from the feature vectors according to given criteria.
The same features are chosen from all vectors. Current state-of-the-art feature
selection methods include, for example, Manhattan non-negative matrix factor-
ization [21], manifold elastic net [67] and geometric mean for subspace selection
[57]. Feature extraction methods, on the other hand, derive features which are
functions of the original features.

Dimensionality techniques can also be divided into global and local methods.
The former derive embeddings in which all points satisfy a given criterion.
Examples for global methods include:

• Principal Component Analysis (PCA) [27] which finds a low-dimensional
embedding of the data points that best preserves their variance as mea-
sured in the ambient (high-dimensional) space;

• Kernel PCA (KPCA) [54] which is a generalization of PCA that is able
to preserve non-linear structures. This ability relies on the kernel trick
i.e. any algorithm whose description involves only dot products and does
not require explicit usage of the variables can be extended to a non-linear
version by using Mercer kernels [55]. When this principle is applied to
dimensionality reduction it means that non-linear structures correspond
to linear structures in some high-dimensional space. These structures can
be detected by linear methods using kernels.

• Multidimensional scaling (MDS) [30, 14] algorithms which find an em-
bedding that best preserves the inter-point distances among the vectors
according to a given metric. This is achieved by minimizing a loss/cost
stress function that measures the error between the pairwise distances of
the embedding and their corresponding distances in the original dataset.

• ISOMAP [59] which applies MDS using the geodesic distance metric. The
geodesic distance between a pair of points is defined as the length of the
shortest path connecting these points that passes only through points in
the dataset.
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• Random projections [10, 16] in which every high-dimensional vector is
projected onto a random matrix in order to obtain the embedding vector.
This method is described in details in Section 4.

Contrary to global methods, local methods construct embeddings in which only
local neighborhoods are required to meet a given criterion. The global descrip-
tion of the dataset is derived by the aggregation of the local neighborhoods.
Common local methods include Local Linear Embedding (LLE) [49], Laplacian
Eigenmaps [4], Hessian Eigenmaps [17] and Diffusion Maps [12, 50] which is used
in this paper and is described in Section 3. The patch alignment framework [65]
provides a unified framework to local dimensionality reduction techniques that
employ two steps: (a) an optimization step where the local criterion is applied;
and an alignment step in which the embedding is found. Examples that fit this
framework include Local Linear Embedding (LLE) [49], Laplacian Eigenmaps
[4], Hessian Eigenmaps [17], Local tangent space alignment [66] and Discrimi-
native Locality Alignment (DLA) [65].

A key aspect of dimensionality reduction is how to efficiently embed a new
point into a given dimension-reduced space. This is commonly referred to as
out-of-sample extension where the sample stands for the original dataset whose
dimensionality was reduced and does not include the new point. An accurate
embedding of a new point requires the recalculation of the entire embedding.
This is impractical in many cases, for example, when the time and space com-
plexity that are required for the dimensionality reduction is quadratic (or higher)
in the size of the dataset. An efficient out-of-sample extension algorithm em-
beds the new point without recalculating the entire embedding - usually at the
expense of the embedding accuracy.

The Nyström extension [40] algorithm, which is used in this paper, embeds
a new point in linear time using the quadrature rule when the dimensionality
reduction involves eigen-decomposition of a kernel matrix. Algorithms such as
Laplacian Eigenmaps, ISOMAP, LLE, and Diffusion Maps are examples that
fall into this category and, thus, the embeddings that they produce can be
extended using the Nyström extension [23, 5]. A formal description of the
Nyström extension is given in the Sec. 3.2.

The main contribution of this paper is a novel framework for the construc-
tion of ensemble classifiers based on dimensionality reduction and out-of-sample
extension. This approach achieves both the diversity and accuracy which are
required for the construction of an effective ensemble classifier and it is general
in the sense that it can be used with any inducer and any dimensionality re-
duction algorithm as long as it can be coupled with an out-of-sample extension
method that suits it.
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The rest of this paper is organized as follows. In Section 2 we describe the
proposed approach. In Sections 3, 4 and 5 we introduce ensemble classifiers that
are based on the Diffusion Maps, random projections and random subspaces di-
mensionality reduction algorithms, respectively. Experimental results are given
in Section 6. We conclude and describe future work in Section 7.

2 Dimensionality reduction ensemble classifiers

The proposed approach achieves the diversity requirement of ensemble classi-
fiers by applying a given dimensionality reduction algorithm to a given training
set using different values for its input parameters. An input parameter that
is common to all dimensionality reduction techniques is the dimension of the
embedding space. In order to obtain sufficient diversity, the dimensionality re-
duction algorithm that is used should incorporate additional input parameters
or, alternatively, incorporate a randomization step. For example, the Diffusion
Maps [12] dimensionality algorithm uses an input parameter that defines the
size of the local neighborhood of a point. Variations of this notion appear in
other local dimensionality reduction methods such as LLE [49] and Laplacian
Eigenmaps [4]. The Random Projections [16] (Section 4) and Random Sub-
spaces [26, 48] (Section 5) methods, on the other hand, do not include input
parameters other than the dimensionality of the embedding space. However,
they incorporate a randomization step which diversifies the data (this approach
already demonstrated good results using Random Projections in [52] and we
extend them in this paper). In this sense, PCA is not suitable for the proposed
framework since it does not include a randomization step and the only input
parameter it has is the dimension of the embedding space (this parameter can
also be set according to the total amount of variance of the original dataset that
the embedding is required to maintain). Thus, PCA offers no way to diver-
sify the data. On the other hand, dimensionality reduction algorithms that are
suitable for the proposed method include ISOMAP [59], LLE [49], Hessian LLE
[17], Local tangent space alignment [66] and Discriminative Locality Alignment
(DLA) [65]. These methods are suitable since they require as input the number
of nearest neighbors to determine the size of the local neighborhood of each
data point. Laplacian Eigenmaps [4] and KPCA [54] are also suitable for the
proposed framework as they include a continuous input variable to determine
the radius of the local neighborhood of each point.

After the training sets are produced by the dimensionality reduction algo-
rithms, each set is used to train a classifier to produce one of the ensemble
members. The training process is illustrated in Fig. 1.

Employing dimensionality reduction to a training set has the following ad-
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vantages:

• It reduces noise and decorrelates the data.

• It reduces the computational complexity of the classifier construction and
consequently the complexity of the classification.

• It can alleviate over-fitting by constructing combinations of the variables
[42].

These points meet the accuracy and diversity criteria which are required to
construct an effective ensemble classifier and thus render dimensionality reduc-
tion a technique which is tailored for the construction of ensemble classifiers.
Specifically, removing noise from the data contributes to the accuracy of the
classifier while diversity is obtained by the various dimension-reduced versions
of the data.

In order to classify test samples, they are first embedded into the low-
dimensional space of each of the training sets using out-of-sample extension.
Next, each ensemble member is applied to its corresponding embedded test
sample and the produced results are processed by a voting scheme to derive
the result of the ensemble classifier. Specifically, each classification is given as
a vector containing the probabilities of each possible label. These vectors are
aggregated and the ensemble classification is chosen as the label with the largest
probability. Figure 2 depicts the classification process of a test sample.

3 Diffusion Maps

The Diffusion Maps (DM) [12] algorithm embeds data into a low-dimensional
space where the geometry of the dataset is defined in terms of the connectiv-
ity between every pair of points in the ambient space. Namely, the similarity
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between two points x and y is determined according to the number of paths
connecting x and y via points in the dataset. This measure is robust to noise
since it takes into account all the paths connecting x and y. The Euclidean
distance between x and y in the dimension-reduced space approximates their
connectivity in the ambient space.

Formally, let Γ be a set of points in Rn as defined in Eq. 1. A weighted
undirected graph G (V,E) , |V | = N, |E| � N2 is constructed, where each
vertex v ∈ V corresponds to a point in Γ. The weights of the edges are chosen
according to a weight function wε (x, y) which measures the similarities between
every pair of points where the parameter ε defines a local neighborhood for each
point. The weight function is defined by a kernel function obeying the following
properties:

symmetry: ∀xi, xj ∈ Γ, wε (xi, xj) = wε (xj , xi)

non-negativity: ∀xi, xj ∈ Γ, wε (xi, xj) ≥ 0

positive semi-definite: for every real-valued bounded function f defined on
Γ,
∑
xi,xj∈Γ wε (xi, xj) f (xi) f (xj) ≥ 0.

fast decay: wε (xi, xj) → 0 when ‖xi − xj‖ � ε and wε (xi, xj) → 1 when
‖xi − xj‖ � ε. This property facilitates the representation of wε by a
sparse matrix.

A common choice that meets these criteria is the Gaussian kernel:

wε (xi, xj) = e−
‖xi−xj‖2

2ε .

A weight matrix wε is used to represent the weights of the edges. Given a
graph G, the Graph Laplacian normalization [11] is applied to the weight matrix
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wε and the result is given by M :

Mi,j , m (x, y) =
wε (x, y)

d (x)

where d(x) =
∑
y∈Γ wε (x, y) is the degree of x. This transforms wε into a

Markov transition matrix corresponding to a random walk through the points
in Γ. The probability to move from x to y in one time step is denoted by
m (x, y). These probabilities measure the connectivity of the points within the
graph.

The transition matrix M is conjugate to a symmetric matrix A whose el-
ements are given by Ai,j , a (x, y) =

√
d (x)m (x, y) 1√

d(y)
. Using matrix no-

tation, A is given by A = D
1
2MD−

1
2 , where D is a diagonal matrix whose

values are given by d (x). The matrix A has n real eigenvalues {λl}n−1
l=0 where

0 ≤ λl ≤ 1, and a set of orthonormal eigenvectors {vl}N−1
l=1 in Rn. Thus, A has

the following spectral decomposition:

a (x, y) =
∑
k≥0

λkvl (x) vl (y) . (3)

Since M is conjugate to A, the eigenvalues of both matrices are identical. In
addition, if {φl} and {ψl} are the left and right eigenvectors of M , respectively,
then the following equalities hold:

φl = D
1
2 vl, ψl = D−

1
2 vl. (4)

From the orthonormality of {vi} and Eq. 4 it follows that {φl} and {ψl}
are bi-orthonormal i.e. 〈φm, ψl〉 = δml where δml = 1 when m = l and δml = 0,
otherwise. Combing Eqs. 3 and 4 together with the bi-orthogonality of {φl}
and {ψl} leads to the following eigen-decomposition of the transition matrix M

m (x, y) =
∑
l≥0

λlψl (x)φl (y) . (5)

When the spectrum decays rapidly (provided ε is appropriately chosen - see
Sec. 3.1), only a few terms are required to achieve a given accuracy in the sum.
Namely,

m (x, y) w
n(p)∑
l=0

λlψl (x)φl (y)

where n (p) is the number of terms which are required to achieve a given precision
p.

We recall the diffusion distance between two data points x and y as it was
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defined in [12]:

D2 (x, y) =
∑
z∈Γ

(m (x, z)−m (z, y))
2

φ0 (z)
. (6)

This distance reflects the geometry of the dataset and it depends on the number
of paths connecting x and y. Substituting Eq. 5 in Eq. 6 together with the
bi-orthogonality property allows to express the diffusion distance using the right
eigenvectors of the transition matrix M :

D2 (x, y) =
∑
l≥1

λ2
l (ψl (x)− ψl (y))

2
. (7)

Thus, the family of Diffusion Maps {Ψ(x)} which is defined by

Ψ (x) = (λ1ψ1 (x) , λ2ψ2 (x) , λ3ψ3 (x) , · · ·) (8)

embeds the dataset into a Euclidean space. In the new coordinates of Eq. 8,
the Euclidean distance between two points in the embedding space is equal to
the diffusion distance between their corresponding two high dimensional points
as defined by the random walk. Moreover, this facilitates the embedding of the
original points into a low-dimensional Euclidean space Rq by:

Ξt : xi →
(
λt2ψ2 (xi) , λ

t
3ψ3 (xi) , . . . , λ

t
q+1ψq+1 (xi)

)
. (9)

which also endows coordinates on the set Γ. Since λ1 = 1 and ψ1 (x) is constant,
the embedding uses λ2, . . . , λq+1. Essentially, q � n due to the fast decay of
the eigenvalues ofM . Furthermore, q depends only on the dimensionality of the
data as captured by the random walk and not on the original dimensionality of
the data. Diffusion maps have been successfully applied for acoustic detection
of moving vehicles [51] and fusion of data and multicue data matching [33].

3.1 Choosing ε

The choice of ε is critical to achieve the optimal performance by the DM al-
gorithm since it defines the size of the local neighborhood of each point. On
one hand, a large ε produces a coarse analysis of the data as the neighborhood
of each point will contain a large number of points. In this case, the diffusion
distance will be close to 1 for most pairs of points. On the other hand, a small
ε might produce many neighborhoods that contain only a single point. In this
case, the diffusion distance is zero for most pairs of points. The best choice
lies between these two extremes. Accordingly, the ensemble classifier which is
based on the the Diffusion Maps algorithm will construct different versions of
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the training set using different values of ε which will be chosen between the
shortest and longest pairwise distances.

3.2 The Nyström out-of-sample extension

The Nyström extension [40] is an extrapolation method that facilitates the ex-
tension of any function f : Γ→ R to a set of new points which are added to Γ.
Such extensions are required in on-line processes in which new samples arrive
and a function f that is defined on Γ needs to be extrapolated to include the
new points. These settings exactly fit the settings of the proposed approach
since the test samples are given after the dimensionality of the training set
was reduced. Specifically, the Nyström extension is used to embed a new point
into the reduced-dimension space where every coordinate of the low-dimensional
embedding constitutes a function that needs to be extended.

We describe the Nyström extension scheme for the Gaussian kernel that is
used by the Diffusion Maps algorithm. Let Γ be a set of points in Rn and Ψ be
its embedding (Eq. 8). Let Γ̄ be a set in Rn such that Γ ⊂ Γ̄. The Nyström
extension scheme extends Ψ onto the dataset Γ̄. Recall that the eigenvectors
and eigenvalues form the dimension-reduced coordinates of Γ (Eq. 9). The
eigenvectors and eigenvalues of a Gaussian kernel with width ε which is used to
measure the pairwise similarities in the training set Γ are computed according
to

λlϕl (x) =
∑
y∈Γ

e−
‖x−y‖2

2ε ϕl (y) , x ∈ Γ. (10)

If λl 6= 0 for every l, the eigenvectors in Eq. 10 can be extended to any x ∈ Rn

by

ϕ̄l (x) =
1

λl

∑
y∈Γ

e−
‖x−y‖2

2ε ϕl (y) , x ∈ Rn. (11)

Let f be a function on the training set Γ and let x /∈ Γ be a new point. In
the Diffusion Maps setting, we are interested in approximating

Ψ (x) = (λ2ψ2 (x) , λ3ψ3 (x) , · · · , λq+1ψq+1 (x)) .

The eigenfunctions {ϕl} are the outcome of the spectral decomposition of a
symmetric positive matrix. Thus, they form an orthonormal basis in RN where
N is the number of points in Γ. Consequently, any function f can be written
as a linear combination of this basis:

f (x) =
∑
l

〈ϕl, f〉ϕl (x) , x ∈ Γ.
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Using the Nyström extension, as given in Eq. 11, f can be defined for any point
in Rn by

f̄ (x) =
∑
l

〈ϕl, f〉ϕ̄l (x) , x ∈ Rn. (12)

The above extension facilitates the decomposition of every diffusion coordi-
nate ψi as ψi(x) =

∑
l〈ϕl, ψi〉ϕl (x) , x ∈ Γ. In addition, the embedding of a

new point x̄ ∈ Γ̄\Γ can be evaluated in the embedding coordinate system by
ψ̄i (x̄) =

∑
l〈ϕl, ψi〉ϕ̄l (x̄).

Note that the scheme is ill conditioned since λl −→ 0 as l −→ ∞. This can
be solved by cutting-off the sum in Eq. 12 and keeping only the eigenvalues
(and their corresponding eigenfunctions) that satisfy λl ≥ δλ0 (where 0 < δ ≤ 1

and the eigenvalues are given in descending order of magnitude):

f̄ (x) =
∑

λl≥δλ0

〈ϕl, f〉ϕ̄l (x) , x ∈ Rn. (13)

The result is an extension scheme with a condition number δ. In this new
scheme, f and f̄ do not coincide on Γ but they are relatively close. The value
of ε controls this error. Thus, choosing ε carefully may improve the accuracy of
the extension.

3.3 Ensemble via Diffusion maps

Let Γ be a training set as described in Eq. 1. Every dimension-reduced version
of Γ is constructed by applying the Diffusion Maps algorithm to Γ where the
parameter ε is randomly chosen from the set of all pairwise Euclidean distances
between the points in Γ i.e. from {‖ x− y ‖}x,y∈Γ. The dimension of the re-
duced space is fixed for all the ensemble members at a given percentage of the
ambient space dimension. We denote by Γ̃ (εi) ⊆ Rq the training set that is
obtained from the application of the diffusion maps algorithm to Γ using the
randomly chosen value εi where i = 1, . . . ,K and K is the number of ensemble
members. The ensemble members are constructed by applying a given induction
algorithm to each training set Γ̃ (εi). In order to classify a new sample, it is first
embedded into the dimension-reduced space Rq of each classifier using the Nys-
tröm extension (Section 3.2). Then, every ensemble member classifies the new
sample and the voting scheme which is described in Section 2 is used to produce
the ensemble classification. Note that in order for the Nyström extension to
work, each ensemble member must store the eigenvectors and eigenvalues which
were produced by the Diffusion Maps algorithm.
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4 Random Projections

The Random projections algorithm implements the Johnson and Lindenstrauss
lemma [29] (see Section 1.2). In order to reduce the dimensionality of a given
training set Γ, a set of random vectors Υ = {ρi}ni=1 is generated where ρi ∈ Rq

are column vectors and ‖ρi‖l2 = 1. Two common ways to choose the entries of
the vectors {ρi}ni=1 are:

1. From a uniform (or normal) distribution over the q dimensional unit
sphere.

2. From a Bernoulli +1/-1 distribution. In this case, the vectors are normal-
ized so that ‖ρi‖l2 = 1 for i = 1, . . . , n.

Next, the vectors in Υ are used to form the columns of a q × n matrix

R = (ρ1|ρ2| . . . |ρn) . (14)

The embedding x̃i of xi is obtained by

x̃i = R · xi

Random projections are well suited for the construction of ensembles of
classifiers since the randomization meets the diversity criterion (Section 1.1)
while the bounded distortion rate provides the accuracy.

Random projections have been successfully employed for dimensionality re-
duction in [19] as part of an ensemble algorithm for clustering. An Expectation
Maximization (of Gaussian mixtures) clustering algorithm was applied to the
dimension-reduced data. The ensemble algorithm achieved results that were
superior to those obtained by: (a) a single run of random projection/clustering;
and (b) a similar scheme which used PCA to reduce the dimensionality of the
data.

4.1 Out-of-sample extension

In order to embed a new sample y into the dimension-reduced space Rq of the
i -th ensemble member, the sample is simply projected onto the random matrix
R that was used to reduce the dimensionality of the member’s training set. The
embedding of y is given by ỹ = R · y. Accordingly, each random matrix needs
to be stored as part of its corresponding ensemble member in order to allow
out-of-sample extension.
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4.2 Ensemble via Random Projections

In order to construct the dimension-reduced versions of the training set, K ran-
dom matrices {Ri}Ki=1 are constructed (recall that K is the number of ensemble
members). The training set is projected onto each random matrix Ri and the
dataset which is produced by each projection is denoted by Γ (Ri). The en-
semble members are constructed by applying a given inducer to each of the
dimension-reduced datasets in {Γ (Ri)}Ki=1.

A new sample is classified by first embedding it into the dimension-reduced
space Rq of every classifier using the scheme in Section 4.1. Then, each ensemble
member classifies the new sample and the voting scheme from Section 2 is used
to determine the classification by the ensemble.

5 Random Subspaces

The Random subspaces algorithm reduces the dimensionality of a given training
set Γ by projecting the vectors onto a random subset of attributes. Formally,
let {ik}qk=1 be a randomly chosen subset of attributes. The embedding x̃ of
x = (x1, . . . , xn) is obtained by x̃ =

(
xi1 , . . . , xiq

)
. Accordingly, each random set

of attributes needs to be stored as part of its corresponding ensemble member.
This method is a special case of the random projections dimensionality re-

duction algorithm described in Sec. 4 where the rows (and column) of the matrix
R in eq. 14 are unique indicator vectors.

Random subspaces have been used to construct decision forests [26] - an
ensemble of tree classifiers - and also to construct ensemble regressors [48].
Ensemble regressors employ a multivariate function instead of a voting scheme
to combine the individual results of the ensemble members. The training sets
that are constructed by the Random subspaces method are dimension-reduced
versions of the original dataset and therefore this method is investigated in our
experiments. This method combined with support vector machines has been
successfully applied to relevance feedback in image retrieval [58].

5.1 Out-of-sample extension

In order to embed a new sample y into the dimension-reduced space Rq of
the i -th ensemble member, the sample is simply projected onto {ik}qk=1 - the
member’s subset of attributes. The embedding of y = (y, . . . , yn) is given by
ỹ =

(
yi1 , . . . , yiq

)
.
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Table 1: Properties of the benchmark datasets used for the evaluation.
Dataset Name Instances Features Labels

Musk1 476 166 2
Musk2 6598 166 2

Pima-diabetes 768 8 2
Ecoli 335 7 8
Glass 214 9 7

Hill Valley with noise 1212 100 2
Hill Valley without noise 1212 100 2

Ionosphere 351 34 2
Iris 150 4 3
Isolet 7797 617 26
Letter 20000 16 26

Madelon 2000 500 2
Multiple features 2000 649 10

Sat 6435 36 7
Waveform with noise 5000 40 3

Waveform without noise 5000 21 3
Yeast 1484 8 10

5.2 Ensemble via Random Subspaces

In order to construct the dimension-reduced versions of the training set, K
subsets of features are randomly chosen. The training set is projected onto each
attribute subset and the ensemble members are constructed by applying a given
inducer to each of the dimension-reduced datasets.

A new sample is classified by first embedding it into the dimension-reduced
space Rq of every classifier using the scheme in Section 5.1. Then, each ensemble
member classifies the new sample and the voting scheme from Section 2 is used
to determine the ensemble’s classification.

6 Experimental results

In order to evaluate the proposed approach, we used the WEKA framework [22].
We tested our approach on 17 datasets from the UCI repository [1] which con-
tains benchmark datasets that are commonly used to evaluate machine learning
algorithms. The list of datasets and their properties are summarized in Table
1.

6.1 Experiment configuration

In order to reduce the dimensionality of a given training set, one of two schemes
was employed depending on the dimensionality reduction algorithm at hand.
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Algorithm 1 Steps for constructing the training set of a single ensemble mem-
ber using the Diffusion Maps algorithm.
Input: Dataset Γ, target dimension q
Output: A dimension reduced training set ˜̃Γ.

1. Select a random value ε ∈ {‖ x− y ‖}x,y∈Γ

2. Select a random sample Γ̄ of 600 unique elements from Γ.

3. Apply the Diffusion Maps algorithm to Γ̄ resulting in Γ̃

4. Extend Γ̃ to include the points in Γ\Γ̄ using the Nyström extension -

resulting in ˜̃Γ.
The first scheme was used for the Random Projection and the Random Sub-
spaces algorithms and it applied the dimensionality reduction algorithm to the
dataset without any pre-processing of the dataset. However, due to the space
and time complexity of the Diffusion Maps algorithm, which is quadratic in
the size of the dataset, a different scheme was used. First, a random value
ε ∈ {‖ x− y ‖}x,y∈Γ was selected. Next, a random sample of 600 unique data
items was drawn (this size was set according to time and memory limitations).
The Diffusion Maps algorithm was then applied to the sample which produced a
dimension-reduced training set. This set was then extended using the Nyström
extension to include the training samples which were not part of the sample.
These steps are summarized in Algorithm 1.

All ensemble algorithms were tested using the following inducers: (a) nearest-
neighbors (WEKA’s B1 inducer); (b) decision tree (WEKA’s J48 inducer); and
(c) Naïve Bayes. The ensembles were composed of ten classifiers (the infor-
mation theoretic problem of choosing the optimal size of an ensemble is out of
the scope of this paper. This problem is discussed, for example, in [31]). The
dimension-reduced space was set to half of the original dimension of the data.
Ten-fold cross validation was used to evaluate each ensemble’s performance on
each of the datasets.

The constructed ensemble classifiers were compared with: a non-ensemble
classifier which applied the induction algorithm to the dataset without dimen-
sionality reduction (we refer to this classifier as the plain classifier). The con-
structed ensemble classifiers were also compared with the Bagging [8], AdaBoost
[20] and Rotation Forest [45] ensemble algorithms. In order to see whether the
Diffusion Maps ensemble classifier can be further improved as part of a multi-
strategy ensemble (Section 1.1), we constructed an ensemble classifier whose
members applied the AdaBoost algorithm to their Diffusion Maps dimension-
reduced training sets.
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We used the default values of the parameters of the WEKA built-in ensemble
classifiers in all the experiments. For the sake of simplicity, in the following we
refer to the ensemble classifiers which use the Diffusion Maps and Random Pro-
jections dimensionality algorithms as the DME and RPE classifiers, respectively.
The ensemble classifier which is based on the random subspaces dimensionality
reduction algorithm is referred to as the RSE classifier.

6.2 Results

Tables 2, 3, and 4 describe the results obtained by the decision tree, nearest-
neighbor and Naïve Bayes inducers, respectively. In each of the tables, the first
column specifies the name of the tested dataset and the second column contains
the results of the plain classifier. The second to last row contains the average
improvement percentage of each algorithm compared to the plain classifier. We
calculate the average rank of each inducer across all datasets in the following
manner: for each of the datasets, the algorithms are ranked according to the
accuracy that they achieved. The average rank of a given inducer is obtained
by averaging its obtained ranks over all the datasets. The average rank is given
in the last row of each table.

The results of the experimental study indicate that dimensionality reduction
is a promising approach for the construction of ensembles of classifiers. In
113 out of 204 cases the dimensionality reduction ensembles outperformed the
plain algorithm with the following distribution: RPE (33 cases out of 113),
DM+AdaBoost (30 cases), RSE (27 cases) and DM (23 cases).

Ranking all the algorithms according to the average accuracy improvement
percentage produces the following order: Rotation Forest (6.4%), Random pro-
jection (4%), DM+AdaBoost (2.1%), Bagging (1.5%), AdaBoost (1%), DM
(0.7%) and Random subspaces (-6.7%). Note that the RSE algorithm achieved
an average decrease of 6.7% in accuracy. A closer look reveals that this was
caused by a particularly bad performance when the Naïve Bayes inducer was
used (26% average decrease in accuracy). In contrast, improvement averages
of 1.7% and 4.4% were achieved when the RSE algorithm used the nearest-
neighbors and J48 inducers, respectively. This may be due to datasets whose
features are not independent - a situation which does not conform with the ba-
sic assumption of the Naïve Bayes inducer. For example, the Isolet dataset is
composed of acoustic recordings that are decomposed to overlapping segments
where features of each segment constitute an instance in the dataset. In these
settings, the features are not independent. Since the other algorithms, including
the plain one, achieve much better results when applied to this dataset, we can
assume that because the RSE algorithm chooses a random subset of features,

18



Figure 3: Accuracy of the RSE algorithm using the Naïve Bayes inducer.
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Figure 4: Accuracy of the DM ensemble using the Naïve Bayes inducer.

the chance of obtaining independent features is lower compared to when all fea-
tures are selected. Moreover, given the voting scheme in Section 2, ensemble
members which produce wrong classifications with high probabilities damage
accurate classifications obtained by other ensemble members. Figure 3 demon-
strates how the accuracy decreases as the number of members increases when
RSE is paired with the Naïve Bayes inducer. This phenomenon is contrasted
in Fig. 4 where the behavior that is expected from the ensemble is observed.
Namely, an increase in accuracy when the number of ensemble members is in-
creased when an ensemble different from the RSE is used (e.g. the DME).

In order to compare the 8 algorithms across all inducers and datasets we
applied the procedure presented in [15]. The null hypothesis that all meth-
ods have the same accuracy could not be rejected by the adjusted Friedman
test with a confidence level of 90% (specifically F(7,350)=0.79 < 1.73 with p-
value>0.1). Furthermore, the results show there is a dependence between the
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inducer, dataset and chosen dimensionality reduction algorithm. In the fol-
lowing we investigate the dependence between the latter two for each of the
inducers.

6.2.1 Results for the nearest neighbor inducer (IB1)

In terms of the average improvement, the RPE algorithm is ranked first with an
average improvement percentage of 5.8%. We compared the various algorithms
according to their average rank following the steps described in [15]. The RSE
and RPE achieved the first and second average rank, respectively. They were
followed by Bagging (3rd) and Rotation Forest (4th).

Using the adjusted Friedman test we rejected the null hypothesis that all
methods achieve the same classification accuracy with a confidence level of 95%
and (7, 112) degrees of freedom (specifically F(7, 112)=2.47 > 2.09 and p-
value<0.022). Following the rejection of the null hypothesis, we employed the
Nemenyi post-hoc test where in the experiment settings two classifiers are sig-
nificantly different with a confidence level of 95% if their average ranks differ by
at least CD = 2.55. The null hypothesis that any of the non-plain algorithms
has the same accuracy as the plain algorithm could not be rejected at confidence
level 95%.

6.2.2 Results for the decision tree inducer (J48)

Inspecting the average improvement, the RPE and RSE algorithms are ranked
second and third, respectively, after the Rotation Forest algorithm. Following
the procedure presented by Demsar [15], we compared the various algorithms
according to their average rank. The RSE and DM+AdaBoost achieved the
second and third best average rank, respectively, after the Rotation Forest al-
gorithm.

The null hypothesis that all methods obtain the same classification accuracy
was rejected by the adjusted Friedman test with a confidence level of 95% and (7,
112) degrees of freedom (specifically F(7, 112)=5.17 > 2.09 and p-value<0.0001).
As the null hypothesis was rejected, we employed the Nemenyi post-hoc test
(CD = 2.55). Only the Rotation Forest algorithm significantly outperformed
the plain and the DM algorithms. The null hypothesis that the RPE, RSE, DM
and DM+AdaBoost algorithms have the same accuracy as the plain algorithm
could not be rejected at confidence level 90%.

6.2.3 Results for the Naïve Bayes inducer

The DM+AdaBoost algorithm achieved the best average improvement and it is
followed by the Rotation Forest algorithm. The DM, RPE and RSE are ranked

20



T
ab

le
2:

R
es
ul
ts

of
th
e
en
se
m
bl
e
cl
as
si
fie
rs

ba
se
d
on

th
e
ne
ar
es
t-
ne

ig
hb

or
in
du

ce
r
(W

E
K
A
’s

IB
1)
.

R
P
E

is
th
e
R
an

do
m

P
ro
je
ct
io
n
en
se
m
bl
e
al
go
ri
th
m
;
R
S
E

is
th
e
R
an

do
m

Su
bs
pa

ce
s
en
se
m
bl
e
al
go
ri
th
m
;
D
M
E

is
th
e
D
iff
us
io
n
M
ap

s
en
se
m
bl
e
cl
as
si
fie
r;
D
M
E
+
A
d
aB

oo
st

is
th
e
m
ul
ti
-s
tr
at
eg
y
en
se
m
bl
e
cl
as
si
fie
r
w
hi
ch

ap
pl
ie
d
A
da

B
oo

st
to

th
e
D
iff
us
io
n
M
ap

s
di
m
en
si
on

-
re
du

ce
d
da

ta
se
ts
.

D
at

as
et

P
la

in
N

N
R

P
E

R
S
E

B
ag

gi
n
g

D
M

E
D

M
E
+

A
d
aB

o
os

t
A

d
aB

o
os

t
R

ot
at

io
n

F
or

es
t

M
u
sk

1
84

.8
9
±

4.
56

86
.1

5
±

2.
94

86
.9

8
±

4.
18

86
.7

7
±

4.
32

84
.4

6
±

4.
31

84
.8

7
±

4.
52

87
.4

2
±

4.
24

84
.8

8
±

3.
92

M
u
sk

2
95

.8
0
±

0.
34

95
.6

2
±

0.
38

96
.0

4
±

0.
33

95
.8

9
±

0.
31

95
.3

9
±

0.
39

95
.9

4
±

0.
49

96
.0

3
±

0.
35

95
.6

0
±

0.
62

p
im

a-
d
ia

b
et

es
70

.1
7
±

4.
69

72
.1

4
±

4.
03

70
.8

3
±

3.
58

70
.4

4
±

3.
89

66
.7

9
±

4.
58

66
.4

0
±

4.
82

67
.3

0
±

5.
61

70
.0

4
±

4.
17

E
co

li
80

.3
7
±

6.
38

83
.0

2
±

3.
52

83
.0

5
±

6.
94

80
.9

6
±

5.
43

77
.3

7
±

6.
63

76
.4

8
±

8.
23

78
.8

7
±

7.
19

81
.5

6
±

4.
97

G
la

ss
70

.5
2
±

8.
94

76
.6

7
±

7.
22

77
.5

8
±

6.
55

70
.5

2
±

8.
94

72
.8

8
±

8.
51

71
.9

7
±

7.
25

70
.9

5
±

8.
12

70
.0

4
±

8.
24

H
il
l
V
al

le
y

w
it

h
n
oi

se
59

.8
3
±

5.
48

68
.7

4
±

3.
58

59
.7

5
±

4.
29

59
.7

4
±

4.
77

50
.4

9
±

4.
75

50
.4

1
±

4.
49

58
.4

2
±

3.
80

79
.3

0
±

3.
60

H
il
l
V
al

le
y

w
/o

n
oi

se
65

.8
4
±

4.
31

79
.2

1
±

3.
19

66
.6

6
±

4.
48

65
.6

7
±

4.
26

55
.3

6
±

5.
60

54
.4

5
±

5.
18

63
.2

0
±

4.
28

92
.7

4
±

2.
10

Io
n
os

p
h
er

e
86

.3
3
±

4.
59

90
.0

2
±

5.
60

90
.3

0
±

4.
32

86
.9

0
±

4.
85

92
.8

8
±

4.
09

93
.4

4
±

4.
68

87
.4

8
±

3.
55

86
.6

1
±

4.
26

Ir
is

95
.3

3
±

5.
49

93
.3

3
±

8.
31

92
.0

0
±

10
.8

0
96

.0
0
±

4.
66

94
.0

0
±

5.
84

94
.0

0
±

5.
84

95
.3

3
±

5.
49

94
.0

0
±

5.
84

Is
ol

et
89

.9
4
±

0.
71

90
.6

1
±

0.
86

90
.5

7
±

0.
70

89
.5

9
±

0.
65

91
.3

2
±

0.
72

91
.5

4
±

0.
87

89
.0

0
±

0.
86

89
.7

8
±

0.
78

L
et

te
r

96
.0

0
±

0.
60

93
.6

4
±

0.
32

94
.0

8
±

0.
76

96
.0

0
±

0.
57

90
.5

8
±

0.
70

90
.5

0
±

0.
76

95
.1

0
±

0.
43

96
.2

5
±

0.
55

M
ad

el
on

54
.1

5
±

4.
28

68
.9

5
±

3.
59

55
.6

5
±

2.
63

54
.8

0
±

3.
29

65
.6

0
±

1.
94

65
.1

0
±

2.
38

54
.3

5
±

4.
76

55
.2

0
±

3.
54

M
u
lt

ip
le

fe
at

u
re

s
97

.8
0
±

0.
63

95
.6

5
±

1.
20

97
.9

0
±

0.
66

97
.8

5
±

0.
75

95
.4

5
±

1.
42

95
.5

5
±

1.
12

97
.4

5
±

0.
64

97
.7

0
±

0.
59

S
at

90
.2

1
±

1.
16

91
.3

4
±

0.
75

91
.4

7
±

0.
71

90
.3

7
±

1.
13

89
.7

4
±

0.
57

89
.4

0
±

0.
53

89
.0

1
±

1.
32

90
.8

2
±

1.
07

W
av

ef
or

m
w

it
h

n
oi

se
73

.6
2
±

1.
27

80
.1

4
±

1.
65

78
.1

4
±

2.
35

73
.7

4
±

1.
69

81
.7

8
±

0.
93

80
.7

2
±

0.
98

70
.8

0
±

2.
03

73
.9

4
±

1.
69

W
av

ef
or

m
w

/o
n
oi

se
76

.9
0
±

2.
01

81
.2

2
±

0.
90

81
.2

2
±

1.
47

77
.1

4
±

1.
55

83
.9

2
±

1.
38

83
.1

2
±

1.
16

75
.0

8
±

1.
70

77
.7

2
±

1.
39

Y
ea

st
52

.2
9
±

2.
39

55
.5

3
±

4.
39

49
.3

2
±

4.
44

52
.4

9
±

2.
16

48
.9

9
±

3.
15

48
.5

9
±

4.
31

51
.3

5
±

1.
84

53
.3

0
±

2.
44

A
ve

ra
ge

im
p
ro

ve
m

en
t

-
5.

8%
1.

7%
0.

4%
-0

.2
%

-0
.6

%
-1

%
4.

6%
A
ve

ra
ge

ra
n
k

4.
97

3.
26

3.
15

4.
35

5.
18

5.
29

5.
44

4.
35

21



T
ab

le
3:

R
es
ul
ts

of
th
e
R
an

do
m

P
ro
je
ct
io
n
en
se
m
bl
e
cl
as
si
fie
r
ba

se
d
on

th
e
de
ci
si
on

-t
re
e
in
du

ce
r
(W

E
K
A
’s

J4
8)
.

R
P
E

is
th
e
R
an

do
m

P
ro
je
ct
io
n
en
se
m
bl
e
al
go
ri
th
m
;
R
S
E

is
th
e
R
an

do
m

Su
bs
pa

ce
s
en
se
m
bl
e
al
go
ri
th
m
;
D
M
E

is
th
e
D
iff
us
io
n
M
ap

s
en
se
m
bl
e
cl
as
si
fie

r;
D
M
E
+
A
d
aB

oo
st

is
th
e
m
ul
ti
-s
tr
at
eg
y
en
se
m
bl
e
cl
as
si
er

w
hi
ch

ap
pl
ie
d
A
da

B
oo

st
to

th
e
D
iff
us
io
n
M
ap

s
di
m
en
si
on

-
re
du

ce
d
da

ta
se
ts
.

D
at

as
et

P
la

in
J4

8
R

P
E

R
S
E

B
ag

gi
n
g

D
M

E
D

M
E
+

A
d
aB

o
os

t
A

d
aB

o
os

t
R

ot
at

io
n

F
or

es
t

M
u
sk

1
84

.9
0
±

6.
61

85
.3

1
±

6.
25

88
.4

5
±

8.
20

86
.5

6
±

6.
93

78
.6

0
±

7.
78

84
.8

9
±

5.
44

88
.4

6
±

6.
38

91
.6

0
±

3.
10

M
u
sk

2
96

.8
8
±

0.
63

96
.3

0
±

0.
78

98
.2

6
±

0.
39

97
.6

5
±

0.
50

96
.7

6
±

0.
72

97
.2

3
±

0.
67

98
.7

7
±

0.
35

98
.1

8
±

0.
67

p
im

a-
d
ia

b
et

es
73

.8
3
±

5.
66

73
.8

3
±

4.
86

73
.7

1
±

6.
04

75
.2

6
±

2.
96

72
.2

7
±

3.
11

72
.4

0
±

3.
68

72
.4

0
±

4.
86

76
.8

3
±

4.
80

E
co

li
84

.2
3
±

7.
51

86
.0

0
±

6.
20

84
.4

9
±

7.
28

84
.7

9
±

6.
11

83
.0

2
±

4.
10

81
.2

7
±

5.
74

83
.0

4
±

7.
37

86
.6

0
±

4.
30

G
la

ss
65

.8
7
±

8.
91

72
.9

4
±

8.
19

76
.6

2
±

7.
38

75
.1

9
±

6.
40

65
.3

9
±

10
.5

4
68

.1
2
±

11
.0

7
79

.3
7
±

6.
13

74
.2

2
±

9.
72

H
il
l
V
al

le
y

w
it

h
n
oi

se
49

.6
7
±

0.
17

71
.2

8
±

4.
69

49
.6

7
±

0.
17

54
.6

2
±

3.
84

52
.3

9
±

3.
56

52
.3

9
±

5.
03

49
.6

7
±

0.
17

74
.5

1
±

2.
59

H
il
l
V
al

le
y

w
/o

n
oi

se
50

.4
9
±

0.
17

86
.3

8
±

3.
77

50
.4

9
±

0.
17

50
.9

9
±

1.
28

51
.2

3
±

4.
40

52
.3

9
±

3.
34

50
.4

9
±

0.
17

83
.8

3
±

3.
94

Io
n
os

p
h
er

e
91

.4
6
±

3.
27

94
.3

2
±

3.
51

93
.7

5
±

4.
39

91
.7

5
±

3.
89

88
.0

4
±

4.
80

94
.8

7
±

2.
62

93
.1

7
±

3.
57

94
.8

9
±

3.
45

Ir
is

96
.0

0
±

5.
62

95
.3

3
±

6.
32

94
.6

7
±

4.
22

94
.6

7
±

6.
13

92
.0

0
±

8.
20

90
.6

7
±

9.
53

93
.3

3
±

7.
03

96
.0

0
±

4.
66

Is
ol

et
83

.9
7
±

1.
65

87
.3

7
±

1.
46

92
.4

5
±

1.
14

90
.4

6
±

1.
29

90
.1

0
±

0.
62

93
.8

6
±

0.
43

93
.3

9
±

0.
67

93
.7

5
±

0.
76

L
et

te
r

87
.9

8
±

0.
51

88
.1

0
±

0.
52

93
.5

0
±

0.
92

92
.7

3
±

0.
69

89
.1

8
±

0.
79

91
.4

6
±

0.
78

95
.5

4
±

0.
36

95
.4

1
±

0.
46

M
ad

el
on

70
.3

5
±

3.
78

59
.2

0
±

2.
57

76
.9

5
±

2.
69

65
.1

0
±

3.
73

76
.1

5
±

3.
43

72
.9

0
±

2.
27

66
.5

5
±

4.
09

68
.3

0
±

2.
98

M
u
lt

ip
le

fe
at

u
re

s
94

.7
5
±

1.
92

95
.3

5
±

1.
31

97
.3

5
±

0.
88

96
.9

5
±

1.
07

93
.2

5
±

1.
64

94
.9

0
±

1.
73

97
.6

0
±

1.
13

97
.9

5
±

1.
04

S
at

85
.8

3
±

1.
04

90
.1

5
±

0.
93

91
.1

0
±

0.
91

90
.0

9
±

0.
78

91
.3

4
±

0.
48

91
.6

7
±

0.
37

90
.5

8
±

1.
12

90
.7

4
±

0.
69

W
av

ef
or

m
w

it
h

n
oi

se
75

.0
8
±

1.
33

81
.8

4
±

1.
43

82
.0

2
±

1.
50

81
.7

2
±

1.
43

86
.5

2
±

1.
78

86
.6

2
±

1.
76

80
.4

8
±

1.
91

83
.7

6
±

2.
07

W
av

ef
or

m
w

/o
n
oi

se
75

.9
4
±

1.
36

82
.5

6
±

1.
56

82
.5

2
±

1.
67

81
.4

8
±

1.
27

86
.9

6
±

1.
49

86
.3

6
±

0.
94

81
.4

6
±

1.
83

84
.9

4
±

1.
47

Y
ea

st
55

.9
9
±

4.
77

57
.8

2
±

3.
28

55
.3

2
±

4.
06

59
.2

3
±

3.
25

54
.8

5
±

3.
94

55
.3

9
±

2.
94

56
.3

9
±

5.
08

60
.7

1
±

3.
82

A
ve

ra
ge

im
p
ro

ve
m

en
t

-
8.

5%
4.

4%
3.

8%
2.

2%
3.

5%
3.

6%
12

.2
%

A
ve

ra
ge

ra
n
k

6.
26

4.
56

4.
03

4.
44

5.
68

4.
41

4.
5

2.
15

22



5th, 7th and 8th in terms of the average improvement (possible reasons for the
RSE algorithm’s low ranking were described in the beginning of this section).

Employing the procedure presented in [15], we compared the algorithms ac-
cording to their average ranks. The DM+AdaBoost and DM ensembles achieved
the second and fourth best average ranks, respectively while the Rotation Forest
and Bagging algorithms achieved the first and third places, respectively. The
null hypothesis that all methods have the same classification accuracy was re-
jected by the adjusted Friedman test with a confidence level of 95% and (7,
112) degrees of freedom (specifically F(7, 112)=7.37 > 2.09 and p-value<1e-
6). Since the null hypothesis was rejected, we employed the Nemenyi post-hoc
test. As expected, the RSE was significantly inferior to all other algorithms.
Furthermore, the Rotation Forest algorithm was significantly better than the
RPE algorithms. However, we could not reject at confidence level 95% the null
hypothesis that the RPE, DM, DM+AdaBoost and the plain algorithm have
the same accuracy.

When we compare the average accuracy improvement across all the inducers,
the RPE and DM+AdaBoost were ranked second and third - improving the
plain algorithm by 4% and 2.1%, respectively. The Rotation Forest algorithm is
ranked first with 6.4% improvement. Comparing only the proposed ensembles
according to their average rank as described in [15] yielded the following ranking:
DM+AdaBoost, RPE, RSE, DM. The null hypothesis that the RPE, RSE, DM
and DM+AdaBoost algorithms have the same accuracy as the plain algorithm
could not be rejected at confidence level 90%. Thus, according to the average
accuracy improvement across all the inducers, RPE performs best. However,
according to the average rank, DM+AdaBoost performs best.

6.3 Discussion

The results indicate that when a dimensionality reduction algorithm is coupled
with an appropriate inducer, an effective ensemble can be constructed. For
example, the RPE algorithm achieves the best average improvements when it
is paired with the nearest-neighbor and the decision tree inducers. However,
when it is used with the Naïve Bayes inducer, it fails to improve the plain
algorithm. On the other hand, the DM+AdaBoost ensemble obtains the best
average improvement when it is used with the Naïve Bayes inducer (better than
the current state-of-the-art Rotation Forest ensemble algorithm) and it is less
accurate when coupled with the decision tree and nearest-neighbor inducers.

Furthermore, using dimensionality reduction as part of a multi-strategy en-
semble classifier improved in most cases the results of the ensemble classifiers
which employed only one of the strategies. Specifically, the DM+AdaBoost al-
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gorithm achieved higher average ranks compared to the DM and AdaBoost al-
gorithms when the J48 and Naïve Bayes inducers were used. When the nearest-
neighbor inducer was used, the DM+AdaBoost algorithm was ranked after the
DM algorithm and before the AdaBoost ensemble which was last.

7 Conclusion and future work

In this paper we presented dimensionality reduction as a general framework
for the construction of ensemble classifiers which use a single induction algo-
rithm. The dimensionality reduction algorithm was applied to the training set
where each combination of parameter values produced a different version of the
training set. The ensemble members were constructed based on the produced
training sets. In order to classify a new sample, it was first embedded into the
dimension-reduced space of each training set using out-of-sample extension such
as the Nyström extension. Then, each classifier was applied to the embedded
sample and a voting scheme was used to derive the classification of the en-
semble. This approach was demonstrated using three dimensionality reduction
algorithms - Random Projections, Diffusion Maps and Random subspaces. A
fourth ensemble algorithm employed a multi-strategy approach combining the
Diffusion Maps dimensionality reduction algorithm with the AdaBoost ensemble
algorithm. The performance of the obtained ensembles was compared with the
Bagging, AdaBoost and Rotation Forest ensemble algorithms.

The results in this paper show that the proposed approach is effective in
many cases. Each dimensionality reduction algorithm achieved results that were
superior in many of the datasets compared to the plain algorithm and in many
cases outperformed the reference algorithms. However, when the Naïve Bayes
inducer was combined with the Random Subspaces dimensionality reduction
algorithm, the obtained ensemble did not perform well in some of the datasets.
Consequently, a question that needs further investigation is how to couple a
given dimensionality reduction algorithm with an appropriate inducer to obtain
the best performance. Ideally, rigorous criteria should be formulated. However,
until such criteria are found, pairing dimensionality reduction algorithms with
inducers in order to find the best performing pair can be done empirically using
benchmark datasets. Furthermore, other dimensionality reduction techniques
should be explored. For this purpose, the Nyström out-of-sample extension may
be used with any dimensionality reduction method that can be formulated as a
kernel method [23]. Additionally, other out-of-sample extension schemes should
also be explored e.g. the Geometric Harmonics [13]. Lastly, a heterogeneous
model which combines several dimensionality reduction techniques is currently
being investigated by the authors.
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