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Abstract

Identifier names (e.g., packages, classes, methods, lemjare one of most
important software comprehension sources. Identifier saneed to be analyzed
in order to support collaborative software engineering @aneuse source codes. In-
deed, they convey domain concept of softwares. For instagetMinimumSupport”
would be associated with association rule concept in datangisoftwares, while
some are difficult to recognize such as the case of mixing mdrivords (e.g., “init-
FeatSet”). We thus propose methods for assisting automeafiware understanding
by classifying identifier names into domain concept catiegorAn innovative solu-
tion based on data mining algorithms is proposed. Our appraams to learn char-
acter patterns of identifier names. The main challengesliate @utomatically split
identifier names into relevant constituent subnames (2yiid b model associating
such a set of subnames to predefined domain concepts. Fputhisse, we propose
a novel manner for splitting such identifiers into their ditoent words and use N-
grams based text classification to predict the related doemicept. In this article,
we report the theoretical method and the algorithms we m®ptogether with the
experiments run on real software source codes that showtir@st of our approach.

Keywords: Automatic Software Understanding; Data Mining; Text cifisation;
Software Engineering.
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1 Introduction

Software development teams are often composed of grougeofaists, each given re-
sponsibilities depending on their role and skill set. In anftware development project
involving reuse of source codes, considerable time andteffast be invested to under-
stand the existing work: How the code is built? How it opesated what conceptual is
available on the software? In many cases, the code is notwedtated, software docu-
mentation is not available, not useful or outdated. Theeefibis often the responsibility
of programmers to work with the legacy source codes.

Generally, a software project contains many source fileghvimvolve a number of
identifier names. Indeed, identifier names are often contplegenixing parts of words,
abbreviations and acronyms (e.g., getARules, CLOPEGI|usit® OptimizeT). There-
fore, programmers can be easily confused when attemptiiogjdav the domain concepts
of identifiers. In this context, domain concepts refer toaapts of the working domain
which are provided in software documentation, such as daggam, package diagram
(e.g., in data mining software tools, the domain conceptsbeaorganized into folders
according to package names such as association rules asdiela (Fig. 1)). The most
straightforward approach to understanding the concept & identifier name is to split
names into constituent words (e.getProbability— get+ Probability). However, when
identifier names are formed of partial mixed words, the Spgttechnique is no longer
practical. For examplesIB_OptimizeTis split into“s” , “IB” , “Optimize”, and“T" ,
but to which domain concept the identifier is related remaialear, especially if such
splitting terms are not found in a dictionary.

In this work, we aim to assist automatic domain concept reitimy, by studying
methods to help programmers become rapidly familiar witlofansare, specifically the
domain concept design embedded in identifier names. Théeohealis not only to find
the basic word concepts obtained by splitting terms of ifiers, but also to automati-
cally extract the domain concept information conveyed agéidentifiers. For example,
given an identifier namgetARulesthe relevant concept @ssociation rules

We consider the high level software design which describesitajor components
of software systems and the relationships among those coemt& From a high level
design phase to the implementation task, the domain cosi¢keteafter concepts) are
often organized into packages which are represented asrfobd sub-folders. A package
folder contains many related source files (e.g., class filesesponding to the related
concepts in design phase. Therefore, we assume that woeadbogviations which are
found in source codes within the same concept (e.g., witlenseme package) can be



v (= weka
* [= associations
» (= attributeSelection
v [= classifiers
v [= bayes
» (= hbir
* [=net
[J] ACDE java
[J] AQDEsrjava
[J] BayesianLogisticRegression.java
[J] Bayeshet java
[J] ComplementNaiveBayes java
[J] DMNBtext java
[J] HNE java
[J] NaiveBayes java
[J] MaiveBayesMultinomial java

[] NaiveBayesMultinomialUpdateable java

Fig. 1 High level software concepts by package names

used to infer concept overview. For instance, if “rule” occfrequently within identifier
names of association rule concept (e.g., numRules, rand@sRulesltem), and is rarely
found in other concepts, then “rule” can be used to refer $sdaiation rules”. Therefore,
the approach is to use the existing identifier names withefieeld concepts (via the
names of their packages) to predict the concept of an ambgjidentifier. As proposed
in our previous works: [26], [25], text classification moslare useful to find the related
concepts of a new word where the new word is a combination istieg words with
predefined concepts .

In this work, we propose a novel approach to predict a relesancept of an am-
biguous identifier based on character patterns of existiegtifier names in predefined
concepts, illustrated in Fig. 2. N-gram based text claggifio is considered. An N-gram
is a sequence of consecutive terms (in our case, we use characters) of a tixenThe
N-gram representation has the advantage of being moretrabdsess sensitive to gram-
matical and typographical errors and requiring no lingaigteparations which makes it
more language independent. Given an identifier name, fikxrsscan learn the patterns



of existing identifier names in every predefined concept aediiese evidences to assign
the identifier name to the most relevant concept. Put difftyeword components of
existing identifier names can be used to validate softwaestifler names according to
high level domain concept design.

Domain concepts Association SP(‘:‘T:?tliroen
(Package folder names) Rules

- w L

:

The existi supp min attr feature
e existing ;
words/abbreviations/subparts conf abs set tri?ln
with predefined-concept support rules —— selection
initial
Classifier

N-gram based text classification
3-grams

‘ _ge/get/../rul/../es_ I ‘ _in/ini/.../fea/.../set/et_ ‘

[dentifier name spitting process get+A+Rules init+feat+set

Identifier names getARules

Fig. 2 The identifier name analyzing approach

w

The approach developed here consists of two main tasksh¢1gglitting identifier
algorithm Sword and (2) N-grams based text classification of identifier reme€he
contributions are presented as follows.

¢ \We state that the main characteristics of predefined dontainepts of softwares
can be learned by identifier names. To provide an approadineiping automatic
software understanding by analyzing identifier names, aléténg algorithms are
taken into account. We apply text classification models &aljut the relevant con-
cept of a new identifier name based on character N-grams sfirgxiidentifier
names taken from predefined domain concept source codes.

e We propose a novel algorithm for splitting identifier nameamedSword The
algorithm aims to improve the accuracy of identifier namétapd in the case of



partial word mixing forms (e.ggetabssuppnitFeatSe}. The existing techniques
of compound word splitting and text classification modelsdree inefficient when

they encounter with subpart word mixing identifieSwordnot only copes with

incomplete word combination, but also with compound woeddyreviations and
single case identifiers.

The paper is organized as follows. Section 2 presents deledek regarding identi-
fier name decomposing in software engineering tasks. $e8tiwe review the existing
splitting algorithms and propose a novel identifier spidtialgorithm. In Section 4, we
present how N-gram based text classification can be appfiedemtifier names, we de-
scribe how to represent identifier names in bag-of-word risoo@ased on N-grams. We
report the experimental results of splitting algorithmd #éime classification of identifier
names by using N-grams in Section 5. Finally, we concludepaadent future work in
Section 6.

2 Related work

Most software engineering tasks involve identifier nameodgmosition; identifier names
must be split into word components so that they can be andiyzeoftware engineering
tasks (e.g., clustering concepts, feature location). tBeélavork on decomposition of
identifier names have been proposed and are described below.

[1] proposed a method to decompose filenames into a list aotitoant elements
which are called “concepts”. The work consists of 2 stepsektracting candidate split-
ting terms from the existing source codes and (2) decompdaanames into splitting
terms. Many sources of words and abbreviations can be uggehterate a set of candi-
date splitting terms (e.g., file names, comments, identifi@nes). Next, source words (in
case of filenames) are split using the candidate splittimggeand N-grams. An English
dictionary is also taken into account in order to enhanceldft®mposing process. Their
results show that identifier names split by N-grams obtathecbest accuracy (88.4%),
followed by file names with N-grams. When using a dictiondng accuracies for all
sources are clearly improved. The work therefore descal@mple method for the de-
composition identifier names by splitting substrings comgd in identifier names (but is
unable to handle subpart words combinations).

[5] proposed an approach to restructure programming ifientiames with the aim
of improving the meaningfulness of identifier names. Therapph comprises 3 prin-
cipal tasks: (1) Building a standard lexical dictionary (@apping identifier names into



standard terms (lexical standardization) and (3) reaingnipe components of an iden-
tifier name according to the standard structure found froistiag codes and the expert
suggestion (syntactical standardization). Unfortuyatile task of identifier name de-
composition is not performed automatically in this casee $hstem instead provides a
tool for users to edit the segmentation of identifier named,re evaluation is provided.

[15] focuses on cases where there no word marker is founceimtifiter names and
describes two splitting techniques for such identifiers.r@egly algorithm and a neural
network are discussed. 4,000 identifier names were randeeicted from the 186
programs and the results show that the neural network isrfastd more adaptable to
the intuitive splitting.

[12] proposed an approach to split identifier names, naBedurai The Samurai
algorithm is able to automatically split identifier nametisequences of words by min-
ing word frequencies in source codes. With these word frecjes, the identifier splitter
uses a scoring technique to automatically select the m@sbppate partitioning for an
identifier. The results show that frequency-based tokeittingl misses same-case splits
identified by the greedy algorithm [15], but outperforms treedy overall by making
significantly fewer oversplits.

[4] looked at how to improve the tokenization of identifiemmas when they appear
in single case forms or contain digits. The work proposesswaracles to identify the
boundary of tokens; oracles can be lists of words from dietites, a list of abbreviations
and acronyms. and a list of acronyms containing digits. Teeypocess of string splitting
with digits is performed by the heuristic rules proposedhsyauthor.

The naming of meaningful identifiers has been widely studigjobserved identifier
names from Eclipse (Java code based) and established éxsoidation for the identifier
naming definition. A dictionary is used to help with considteaming rules and the
suitable names are generated in a context-specific manrtemplsplitting technique is
provided.

[18] exploited identifier names from 100 Java applicatiangxtract name-specific
implementation rules for the most common method names dirtedan identifier naming
bug. The work presents an approach for automatic suggesitimore suitable names in
the presence of mismatch between name and implementation.

[13] proposed a wordNet-like approach to extract the stmecobf a software using
the relationships among identifier names. The approachdensdNatural Language Pro-
cessing techniques which consist of tokenization prosssghtforward decomposition
technique by word markers, e.g. case changes, underscoxepetrt of speech tagging,



and rearranges order of terms by the dominance order of teles based on part of
speech.

[2] exploited the mining part of speeches of identifier nanid®e tool provides part-
of-speech information, which improves the searching ofvearfe repositories. Although
the tagging can be used to support improved naming, no aégacbetween identifiers
and domain concepts is provided.

[3] investigated the lexical and syntactic composition@falclass identifier names.
This work identifies conventional patterns found in the uspast of speech. This work
also developed a tool to identify the structure of identifi@mes among super classes and
implemented interfaces. The authors demonstrates howrtbisledge can be applied in
case of unconventional identifier names by refactoring amiao a conventional form.

Despite the advances described above, these studies fadldress the problem of
splitting identifiers names where they are composed of stbpawords, abbreviations,
with no word maker presences (e.getabssupp or when no partial matching is pro-
vided. Furthermore, the issue of automatic domain conaegiérstanding by a software
using supervised learning has never been addressed. Wadedketage of text classifica-
tion and the lists of programming terms, as well as dictignmaords to enhance identifier
splitting process [1]. We also apply the greedy algorithrs] [And Samuraiapproach
[12] to generate a novel splitting technique capable of hagdhe problem of substring
mixing in identifier names.

3 Identifier Splitting Algorithms: Related Work and Orig-
inal Approach

Identifier names are used to define the entities in a software, (hames of packages,
classes, attributes, constants). Identifier names canmeased of a set of characters
according to the rules of programming languages. For exantipd initial character can
not normally be a digit or it usually forbidden to use most lo¢ tspecial characters.
Typically, programmers create identifiers by mixing selre@ds or abbreviations (e.g.,
isMatchingeEOL, JEditBuffer, editSyntaxStyle, raduis@)¢&fer to working domain con-
cepts. Therefore automatic splitting of multi-word idéietis needs to be addressed to
capture word concepts from the base words.

In this Section, we review the state of the art of identifiditspg techniques, namely
the CamelCase splitter, the greedy algorithm [15] and thauBai approach [12]. We
then propose a novel algorithm to split identifier namessHigorithm is based on both



the greedy algorithm and the Samurai approach, espeatallyaidling the case of word
subparts or abbreviations (e.g., badNumEXx, initPRfor@R\lgsSupp).

3.1 CamelCase splitting technique

CamelCase technique is a simple and widely used method dotifabr splitting algo-
rithms [9] and the rules of splitting are broadly based on €l@ase convention. For
instance getltemNamaés split into get, Item, Nameor setID is split intosetandID. If
two more upper case characters are followed by one or morerloase character the
identifier is split before the last upper case character:, @3grollPaneis split into J,
ScrollandPane If there are some underscores, they are replaced by spacactdrs:
e.g.,do_Clickis split into do and Click. However, the CamelCase splitting algorithm
cannot handle single case word composition such as DBNAME&yvalues.

3.2 The greedy algorithm

The greedy algorithm [15] aims to solve the problem of singse identifier splitting.
The algorithm consists of two searching approaches: (Ulptigest prefix search and (2)
the longest suffix search. In this case, prefixes and suffix@smords which occur in
identifier names (and not as defined in linguistics). The émtgrefix searching scans the
longest substring in an identifier name which matches wamds & dictionary, and keeps
the longest substring. The longest suffix searching peddira same searching but in
the opposite direction. The results of two searches are acedmnd the substring which
gives the highest ratio of term occurrences is retained énathialyzing software. The
algorithm recursively runs until no string remains in theridfier. If neither the prefix
nor the suffix searching generate a dictionary term, thege®¢s repeated by removing
the first character of the identifier name.

Searching approaches Searching results The longestisgbstr

The longest prefix search  {the, then,..., newest,...} néwes
The longest suffix search ~ {one, stone, ...} stone

Table 1 An example of the greedy algorithm (identifier thénewestorig

For example, if an identifier name thfenewestorigthe set of prefix searching can be
{the, then,..., newest,...}, and the longest prefix subgtitnewest While the set of suffix
searching can be {one, stone, ...} and the longest suffixtanlggs stone(Table 1). The



ratio score is used to decide which term will be split. Thisht@que can overcome the
single case problem of identifier names. Nevertheless eal#tions and word subparts
mixing remain a problem for this technique.

3.3 Samurai splitting approach

Samurais an automatic identifier splitting algorithm proposed bg][ The approach re-
lies on term frequencies in source codes and is based onghenption that identifiers are
often composed of terms used frequently in source codesuiBaaddresses the prob-
lem of CamelCase technique when identifiers contain cotiseaupper case characters
(more than two). For example, CamelCase spditéNclassifierinto KN andNclassifier
instead ofKNN, classifier Samurai overcomes this problem by using two tables of fre-
guencies: the first contains a programming term a list of afyaed source code, while
the second is list of terms from a large programming corpasnB8ai runs CamelCase
splitting and creates alternative splitting terms, befarking candidates using the Score
function from Equation 1.

globalFreq(s)
logio(AllStrsFred p))

Scords) = Freq(s, p) + (1)

wherep is a source code under analysiBreq(s, p) is the frequency of terns in
source cod@. globalFreq(s) is the frequency of termain a large programming corpus.
AllStrsFred p) is the total occurrence number of all terms found in the seoxdep.

In the single case identifier name problem, the approachmof&a is to find the best
splitting position in an identifier name. To achieve this Igea identifier name will be
divided into the left and the right term. The best positiowisere the summation of the
left-right term score gives the highest value (Maximum (e¢left)+score(right))) among
all left and right candidate terms. A set of left and rightdigiate terms is obtained using
a sliding window technique, starting the split from the fetairacter and continuing one
character at a time (e.ggetname=- (g etnamg (ge tnamg) until finding the maximum
score for the left and the right terms. For example, the tevitish obtain the maximum
score of the left-right summation aget and name then split the left termde? and
recursively process the right term until no more string rieimén the token, (e.g., Table
2).

Samurai overcomes the limitation of CamelCase and alsoléartde single case
problem of identifier names. However, Samurai does not addhe word subparts mix-
ing identifier. Moreover, the algorithm run time is correldtwith the number of char-



Round Left/Right | Maximum (score(left)+score(right)() keep ‘

Round 1, getname/-
token="getname”| g/etname
ge/thame
get/name v get
getn/ame
getna/me
getnam/e
Round 2, name/- v name
token="name” na/me

Table 2 An example of Samurai algorithm ( identifier gétnamg

acters in an identifier. The follow Section, we propose amrilgm to overcome this
problem.

3.4 Our Original Approach: Sword

Our approach, name@®word”, aims to combine the greedy and Samurai algorithms in
order to tackle the identification of word subparts, ablatens and single case identi-
fiers. Firstly, a set of candidate splitting terms is created three lists of words used to
match with an identifier: the list of abbreviations foundle tanalyzed source code, the
list of words found in the existing source codes (the stash@angramming terms) and a
list of words from a dictionary. Exactly matched words frame fists are retained in the
candidate set together with substrings from the partiacthiags. Secondly, the candi-
date splitting terms are ranked using the score functiom f&amurai. Finally, the term
giving the highest score from Eq. 1 is split from the identifiehe algorithm recursively
performs the remaining terms until no string is left in thendfier.

The following steps show Sword (Algorithm 1) using with tidentifier = “getab-
ssupp”as an example:

1. An identifier name is split into tokens (we keep only theetokvhose length is
more than 2 characters, otherwise we look for it in the akbt®n list) using
word markers (underscore, CamelCase) if they exist. Eagretis no word marker
in “getabssupp’; thentoken= “getabssupp).

2. For every token,
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¢ If the token is found in the lists of words (the standard pamgming terms or
a dictionary), splitting stops.

¢ If no word from the lists matches the token, then perfgrantial matching
between the token and words from the list (use the standargr@mming
list first, then if no word is found then use a dictionary) (farr example,
matchList= {get, sup, supp}) (line 11).

e The set of candidate splitting terms is separated into tws. s&he first
set is the substring that is found in the earliest positionthef token €.g.
strMinPosition= {get} (line 12)). The second group is the longest substring
matched é.g. strMaxLengtk {supp} (line 13))

e The scores of substrings in the two sets are computed anditis¢rieg that
obtains the highest score is retained. If the scores of lmthg are equal,
then the longest substring is retainedgy, assume, the kept splitting term is
keep={get} line 14-21).

e The remaining strings in the token will be split into the lafid the right
term. The algorithm is recursively performed for both remirag terms until
no string remains in the toker.g., left="", right = {abssupp}, line 22-36).

o Finally, if the token is not found in any word from the listetlist of abbrevi-
ations is used. If the token does not match any abbrevidtiem the original
token remains as a splitting term (line 40-45).

The example of splittinggetabssupp”is shown in Table 3.

Words/ The earliest | The longest
Token . . ; Keep | Remark
Substring matched position term | substring

{get} from the standard

getabssupp| {get, sup, supp} get supp get programming terms
{sup, supp}
from the partial matching
The longest substring,
if the scores of

abssupp {sup, supp} sup supp supp
both terms
are equal or zero

abs {abs} ) i abs {abs} founq fr.om .
the abbreviation list

Table 3 An example of theSwordidentifier splitting algorithm

Sword provides an efficient method for splitting identifiemmes into relevant word
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subparts and the next Section describes how these subpare&xploited by text clas-
sification algorithms to achieve improve methods for autiicridentifier name classifi-
cation.

4 N-gram Based Text Classification of Identifier Names

Pre-processing Phase Analyzing Phase
An identifier name
Source (2a)
Files
Extracting Y
Identifier names —
(1a) Tokenization
(Sword)
(2b)
* Creating standard programming terms
- A list of standard terms l
Cleaning Process - A list of abbreviations
(1b) (1d)
N-gram
Generator
] (2¢)
Tokenization l
(CamelCase)
(1¢)
Classifier
1 (2d)
N-gram
Generator
(1e)
Bag;\?f:jwlords Feature Selection '
C; e (1g) The result: the relevant concept of
(n the identifier

Fig. 3N-gram based text classification of identifier names

Classification is a data mining technique that assigns itetogpredefined categories
or classes. In our context, items are equivalent to text hadechnique is called the text
classification model. An example of it use would be to autécadly label an incoming
news story into a topic such as “sports”, “politics” or “adtc. Typically, whatever the
classifiers are employed, text classification tasks staéintaviraining set of documents that
have been labeled with class(es). Generally, text claasdit models require a suitable
representation of text, as plain text cannot be processedtlyi in a text classification

12



model. N-grams is a language independent text represemtaihnique that transforms
text into high dimensional feature vectors where each featorresponds to a contiguous
substring. N-grams consist afadjacent characters (substring) of a given text [6]. We
use character N-grams to represent terms (identifier nanwads) in source codes and
extracting character N-grams from a term by movingnataracter wide-window across
the term character-by-character. We insert “_" into thenteto manage space for the

first, last and internal positions (e.g., “numRules
_rurul ule les es_"). The methodology of N-grams based testsdication of identifier
names is shown in Fig. 3 and the methodology can be summaxizfadiows:

num Rules”— " _nunumum_m_r

1. The first step prepares the training dataset by the datprpoessing:

(a) Extracting identifier names from source codes: this atays to extracting
identifier names, and also file names and comments that caarisidered
informative [1]. Moreover, the packages hames must be dtasedomain
concept names for each source file.

(b) Cleaning Process: this step to removes non informagiraeg such as special
characters, reserved words and stopwords.

(c) Tokenization: At this stage, identifier names are splio iprimitive words

by CamelCase. We put “_”
“setMinSupp”=- “get_min_supp”.

" to separate between word composeantsas

(d) Creating standard term list and an abbreviation listszds matching dictio-
nary entries will be added to a standard programming lisgtise they are
placed in the abbreviated list (awaiting refinement by etg)er

(e) N-gram Generation: to separate terms from the resulbkarization into
sequences af characters. For instance, 3-grams of “ set_min_supp” will b

_sesetet ,t m_miminin_n_s_Susupupppp_

(f) Bag-of-word models: this step aims to create a vector ehad identifier
names based on N-grams (see Section 4.1 for details).

(g) Feature selection techniques: Chi-square featuretsateis used to reduce
the number of features and select discriminative featurethe text classifi-
cation model.

2. The analysis of phase deals by assigning domain conceptsting identifier
names. For example, an identifier nam&getabssupp”

13



(a) Input an identifier name.

(b) Tokenize the identifier bgwordalgorithm (e.g., splitting getabssupp by Sword
produces get abs supp).

(c) Generate N-grams of the identifier name according to &ngr from pre-
processing phase (e.g., 3-grams: _ge get eta tab abs bsgpagopspp_).

(d) Classify the identifier name into a domain concept.

(e) The result shows the relevant concepts with respecetoéssification scores
obtained from the classifier. For example, Naive Bayes fiasglassifies
“getabssupp”into “Association Rules” with respect to the highest condi-
tional probability of the concept (“Association Rules”jyen by the identifier
(“getabssupp) (P(cj|wi)).

4.1 Bag-of-word Models

In this work, identifier names or words found in source codeg@presented by a vector
of N-gram terms (e.g., Table 4).

Identifier 3-grams Domain concept
numRules "_nunumum_m_r _rurul ule les es_" associationRules
randomRule " _raran and ndo dom om_m_r _rurul ule le_" associationRules
numClasses "_nunumum_m_c _clclalas ass sse ses es_" classification
classifiers " clclalas ass ssi sif ifi fie ier ers rs_" classification
bestClusters " bebesestst t c_clclulusuststeterersrs_" clustering
tmpClusters " tmtmp mp_p_c_clclulus uststeterersrs_" clustering
noAttributes "_nono_o_a _atatt ttr tri rib ibu but ute tes es_" featureSelection
selectedAttributes| "_se sel ele lec ect cte ted ed_ d_a _at att ttr tri rib ibu beites es_"| featureSelection

Table 4 The examples of identifier name representations on 3-grams

Identifier names (or words) are represented by a vector ofadeatures. Let an
identifier namew; be a vector space that consists of featutgswherej € [1..|S]], and
|| is the number of the features:

W =<tig,ti2, ti3, ... tjjg, Ok >

wheret;j is frequency featurg in w;, ¢k is a domain concept, and flre [1..m], mis the
number of domain concepts in the training set.
Table 5 shows the construction of the bag-of-word reprediemt (3-grams).

14



Identifier ‘ ‘ _ru‘ rul ‘ Ie_‘ ‘ _at‘ att‘ Domain concept

numRules .. 1 1 1|... 0 0 | associationRules
randomRule . 1 1 1 ]...| 0 | O | associationRules
noAttributes .. 0 0 o ... 1 1 | featureSelection
selectedAttributes ... | O 0 0 1 1 | featureSelection

Table 5 The bag-of-word of identifier names based on 3-grams

4.2 Feature Selection Techniques

The main problem of text classification is the high dimenaliy of textual data. Feature
selection methods have been proposed to select the mosamekdtributes [28]. It has
been shown that feature selection improves classificaffeste&yeness and computation
efficiency.
Mutual information (MI) is an established measure for many successful featire s
lection techniques in text classification. Ml measures havelminformation of a feature
t is related to a concept regarding its presence or absen@mancept compared to
other concepts. Mutual information can be defined as [22] :
IUiC) = oy L+ Whiog, 0
Nio NNio  Noo NNoo

| Moo,
TN %N TN P NN

whereNyg is the number of words that contain featdrand not in concept. For
exampleN; = Njg+ Ni1 is the number of words that contain feattirdl = Nog+ No1 +
N1o-+ N11 is the total number of words in the domain.

Chi-square (x?) is one of the most efficient methods for optimizing clasatiion
results [11, 20].

X2 is a test of independence between two variables. In texsiicegion, let us define
t as a term in text and as a class. In our work, refers to features such as N-grams
andc refers to concepts from a thesaurus. The main idea of thisigae is to select
discriminative features by measuring the dependence leeatfeatures and concepts. As
aresult ofy? test, a featuret] is selected only if it associated with a concep?.statistic
is defined as following [22]:

]D)t C NQQ: EQec
ae%)l}aze%l} Eae:
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Wheng indicates the appearance of tetrand e. indicates the appearance of the
conceptc. For exampleN;q is the number of words that contain tetrfg = 1) but not
in concept (e; = 0). Eqe, IS the expected frequendy; 1 means the expected frequency
of termt in concept as follows:

. N11+Nio Niz+Nog

By = Nw =0 s =

4.3 Classification Models
4.3.1 Naive Bayes

The Naive Bayes classifier is a simple classifier model basgaababilistic theory. The
Bayesian theorem includes an independence assumptied biive Bayes assumption
The assumption assumes that all attributes of the exampmaadependent. In fact this
assumptionis not correct in real-world text classificatlomwever, Naive Bayes performs
very well in classification tasks as reported in [10]. Thehadaility model for the clas-
sifier is a conditional moddP(cj|d;) whenc;j is a member in the set of concefiisn
classification domain and is a testing document. The conditional probability of con-
ceptc; given by documend; can be defined as :

o )= PP

In our task, the classification model follows Naive Bayesifola as:
P(cj)P(wi[c))

P(w)
where wordw; is represented by a feature vector as defined in section 4.1.

The most relevant concept is selected by maximum a postpravability Cmap):

P(cjlw) =

Cmap argmae(c;j|wi)

cjeC

= argmaP(c;j)P(wi[cj)
cjeC
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4.3.2 kNN

k-Nearest Neighbor (kNN) is a similarity-based learnirgpaithm which is very effective
for various domains in text classification [16, 27, 21]. Fgineen unlabeled example, the
algorithm finds the closestlabeled examples in the training set and assigns the class by
majority voting among those examples in the sét okighbors.

Several measures can be considered in order to computertit@ gy between words
in training set and a testing identifier name. In our case, wresider the Euclidean
distance. The Euclidean distance between wakdsdw; with wj =<ti1,ti2, ti3, ..., tin >
andwj =< tj1,tjo,t;3,...,tjn >, wheren is the number of features in the vector space is

defined as:
n

A(wi,wj) = Z (tim — tjm)? (2

m=1

The algorithm used to compute the k-nearest neighbors igrsbelow:
Input : an identifier name, Output:nearest neighbor identifiers of an input identifier.

1. Determine the number &fnearest neighbors beforehand.

2. Sort the distances for all the training samples and déterthe nearest neighbor
based on the K-th minimum distance.

3. Group the examples in the setlofiearest neighbors regarding to their concepts.

4. Assign the concept by majority voting among the set néighbors.

4.4 Evaluation Metrics

The performance of text classification model can be measonedny ways. The com-
monly used measures akecuracy PrecisionandRecall[24]. In this work, the accuracy
measures the correctness of assigning a domain concepidergtifier. Precision is the
fraction of retrieved identifiers that are relevant in a don@ncept. Recall is the frac-
tion of relevant identifiers that are retrieved. The evatrametrics for a domain concept
cj are defined as follows:
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#eorrectly classified identifiers ofjc

Precision = _ — =
#identifiers that are classified injc

#correctly classified identifiers ofjc
#identifiersin g

Recalltprate) =

2« precisionk recall

F —Measure = —
precision+ recall
#eorrectly classified identifiers ofjc
Accuracy = - —
total number of identifiers
#incorrectly classified identifiers ofjc
fprate =

#identifiers not in ¢

Although the measures above have been used as standartk slagsification ac-
curacy is often a poor metric for measuring performance.[BBmost real-world cases,
the distribution of classes is skewed and the cost of ernooffi@ type of classification
is much more expensive than another. In addition, most otldesifiers (Naive Bayes,
kNN, etc.) can produce the probability or “confidence” ofsdgrediction. Unfortu-
nately, this information is ignored in the classical metidescribed above [19]. Receiver
Operator Characteristic (ROC) analysis is used to solveracyg measure problem. ROC
curves are not insensitive to changes in class distributfdhe proportion of positive to
negative changes in a test set, the ROC curves will not cha®igee ROC based dp
rate (recall) andfp rate not depend on class distribution [14].

5 Experimental Results

5.1 Dataset

To select training sets, domain knowledge is required. Doragperts play important
role to select relevant source files; identifier names comairds or strings referring to
domain concept information (e.g., identifier names in assion rule concept (from data
mining software tools) contain subnames: “rules”, “itethsésupport”, “confidence”),
To our knowledge, we setup the preliminary experiment bypgisiata mining software
packages as training sets. We have selected 4 packagesl(calhcept” in our work)
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taken from two data mining software tools: ARuleGlind Java Machine Learning Li-
brary (Java-ML. The identifier names are collected from file names, identif@nes
(classes, methods, attributes) and comments. Data poegsing performed by remov-
ing reserved words of Java and stopwords for comments. Takrtomber of identifier
names for each domain concept is shown in Table 6. The nunflvesrds in the stan-
dard programming term list and the number of abbreviatisashown in Table 7. En-
glish words are obtained from the standard file on Unix or Uiki& operating systems
(ispell). In our case, we use Ubuntu 12.04.1 whigbrdsfile contains 99,171 words
from /usr/share/dict/words

Concept #Occurrences #Distinct | #Source files
of identifier names identifier names

Association Ruleg 4,394 657 8

Classification 4,578 819 22

Clustering 7,715 1,415 20

Feature Selection 1,692 406 14

Total 18,379 3,297 (2,672 unique names) 64

Table 6 Concepts and the number of identifier names

The list ‘ #words ‘
Standard programming terms 1,226
Abbreviations 55
English words 99,171

Table 7 The number of words in various sources

Each word from the domain concepts is separated into 3 andmisyand they are
converted into a bag-of-word model. The overall numbergafidres are 2,029 and 2,718
for 3 and 4-grams respectively. Chi-square feature seledctiused to select discrimina-

tive features. Naive Bayes and kNN from the WEKA packagdsit& used to classify
an identifier name.

Lhttp://www.borgelt.net/argui.html
2http://java-ml.sourceforge.net/
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5.2 Identifier Splitting Evaluation

The testing set contains 571 identifier names that have leelomly selected from train-
ing dataset. Our algorithm obtains 92.8% accuracy, whitleiter than the greedy algo-
rithm and Samurai approach (86.0% and 83.8% respectivEhg highest accuracy was
achieved when using identifiers composed of abbreviation®od subparts, in particular
when they are not in the word lists.

5.3 Results of Naive Bayes Classifier

The results of Naive Bayes classifier on 10-fold cross véititd show that 4-grams ap-
proach obtains the highest level of accuracy (73.7%) witl 2 features. The 4-grams
approach also outperforms the 3-grams approach in reeaéasure and ROC. When
the number of features increases, evaluation measuref/nmrsease, (Table 8 and Fig.
4).

| N-gram| #Feature| Accuracy(%)| Precision(%)| Recall(%)| F-measure(%)| ROC(%)|

3 1,000 69.7 69.7 69.7 69.5 87.3
3 2,000 71.2 71.4 71.2 71.2 88.6
3 2,029 (all) 71.2 71.4 71.2 71.2 88.6
4 1,000 70.1 70.3 70.0 69.5 85.8
4 2,000 72.9 72.9 72.9 72.7 89.0
4 2,718 (all) 73.7 73.6 73.5 73.5 89.5

Table 8 The result of Naive Bayes classification on 10-fold crosgiagion

5.4 Results of kNN Classifier

The results of KNN classifier on 10-fold cross validationwhbat the highest accuracy
(74.6%) is obtained by 1,000 features usinggtams withk = 5, (Table 9). Wherk
increases, the accuracy slowly drops (Fig. 5). It should bhksnoted that 4-grams out-
performs 3-grams on the average of accuracies. Howeveliffeeethce between the the
accuracies of 3 and 4-grams is marginal (Fig. 6). We alsoddbat kNN outperforms
Naive Bayes (Fig. 7).

SCross validation is a technique to ensure that every exarmo the dataset has the equal
chance of appearing in the training and testing set-fold cross-validation: divide the dataset up
into n groups andn train times, treating a different group as the holdout setheame, more detail:
http://www.cs.cmu.edu/ schneide/tut5/node42.html
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Fig. 4 The accuracy of Naive Bayes

N-gram| k | #Feature| Accuracy(%)| Precision(%)| Recall(%)| F-measure(%)| ROC(%)|

3 5 1,000 74.2 74.7 74.2 73.4 91.1
3 10 1,000 72.0 72.7 72.0 70.9 89.7
3 15 1,000 69.9 711 69.9 68.6 88.5
3 5 2,000 743 74.7 74.3 735 91.2
3 10 2,000 713 72.2 713 70.2 89.6
3 15 2,000 68.6 70.0 68.6 67.3 88.4
3 5 | 2,029 (all) 743 74.7 74.3 735 91.2
3 10 | 2,029 (all) 713 721 713 70.2 89.6
3 15 | 2,029 (all) 68.5 69.9 68.5 67.1 88.4
4 5 1,000 74.6 75.4 74.6 73.8 91.1
4 10 1,000 711 72.7 711 69.8 88.8
4 15 1,000 68.3 70.8 68.3 66.6 87.0
4 5 2,000 723 74.2 72.3 713 88.6
4 10 2,000 69.9 721 69.9 68.4 87.2
4 15 2,000 67.8 705 67.8 66.0 85.9
4 5 | 2,718 (all) 74.0 75.4 74.0 73.0 90.6
4 10 | 2,718 (all) 70.6 72.7 70.6 69.0 88.7
4 15 | 2,718 (all) 68.1 70.9 68.1 66.1 87.0

Table 9 The results of KNN on 10-fold cross validation

5.5 Interpreting the Identifier Classification

Given an identifier name, the classifier finds the most relex@mcept based on character
patterns in the existing identifiers. If the testing idestifs composed of substrings often
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Fig. 5 The accuracy of kNN on 1,000 features

arising in a specific concept, the classifier will assign thentifier to that concept. For
examplegetabssupfs classified into association rule concept (Fig. 8). Thesalts can
be explained using the set of discriminative featusdssandsuppare members in a set
of discriminative features in association rule concept.

6 Conclusion and Future work

In this article, we propose an approach based on text cleasifin to assist automatic
software understanding. Identifier names are used by progeas to better understand
the role of code parts (packages, functions, etc.). Fopthipose, identifier names must
first be split into their root subcomponents. Thus, we preppsiovel identifier split-
ting algorithm capable aims to handle software identifiern from multiple subparts.
We demonstrate that our identifier splitting algorithm aeles better accuracy than the
existing techniques. An N-gram based text classificaticalgs run in order to classify
identifier names into predefined concepts and experimesgalts show the applicability
of our approach to real world problems.

For legacy software, one main problem is to understand tftera. The analysis
of identifiers is a clue in this understanding. Then, beinig &b analyze identifiers and
extract their meaning favors several refactoring openattbat are based on terms. In the
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Fig. 6 The accuracy of KNN when k=5

case of forward engineering, our technique can help chgdkia right identifiers, that
will help further understanding and use.

In future work, we consider the study of how such a techniguele integrated dur-
ing software development to prevent programmers creadi@gtifiers evoking irrelevant
concept. In software development technology, we would tikewvestigate how our ap-
proach (which may help with checking or construction of lifgjic cohesion in a set of
identifiers) could be associated with judging or finding mleduor with mining separate
concerns (cross-cutting) in Aspect-oriented softwarestigment [7]. The challenge is
how to integrate the identifier analysis into software depeient cycle, the data prepa-
ration of legacy software involving domain knowledge mustdiscussed.
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Fig. 7 The accuracy of Naive Bayes and kNN, k=5

‘ Result Identifier Analyzing

‘ Identifier Name: ‘ ‘ getabssupp

‘ Constituent words : ‘ ‘ get abs supp

total number of abbrevations: 55

total number of words in Standard List: 1226

total number of words in Dictionary: 99171

total number of words in Word Frequency List: 239208
Feature type: 3grams

Total features: 1000

Classification Results: Total train set: 17470

The result of classification (concept, probability)
concept : clustering = 0.0

concept : featureSelection = 0.0

concept : associationRules = 1.0

concept : classification = 0.0

The maximum a posterior probability: associationRules

‘ Predicted concept : ‘ ‘ associationRules

‘ Time execution : HPagc was generated by PHP 5.3.10-1ubuntu3.4 : in 00:00:17

Fig. 8 An example of identifier name classification
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Algorithm 1: Sword

1
2
3
4

a1

~N o

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Input: tokenis a token to be split,

dictionaryis a set of words in a dictionary,
standardListis a set of standard programming terms,
abbreviationListis a set of abbreviations found in the analyzed programs

Output: matchListis a set of the words or substrings which partially matches

token
strMinPositionis the exactly word which exactly matchiesken
strMaxLengths the longest substring which matchie&en
newTokers a new token

n < lengthfoken
if n> 2then

matchList« findStrMatchindtokendictionary, standardLis}
strMinPosition+ findMinPositionStfmatchListtoken
strMaxLength— findMaxLengthStimatchListtoken
strMinPositionScore— ScoreTokefstrMinPosition
strMaxLengthScore- ScoreTokefstrMaxLength

if strMinPositionScore- strMaxLengthScorthen

| keep« strMinPosition

end

else

| keep« strMaxLength

end

if length(keep) = @Ghen

| keep« findMatchAbbrListtokenabbreviationLisy

end
left <
right «
if length(keep)> 2 then

i «+ findFirstPositior(keeptoken

if i > Othen

| left <« tokerf0:i—1]
end

next< length(e ft) + lengthkeep

if next !=nthen

| right < tokerinext: n|
end
end

newTokern— Sword(eft) +“” + keep+ “” + Sword(right)

“wn

“wn

end
else

if token found in abbreviationLishen

| newToken— abbreviationLisftokerj
end

else

| newToken— token 25
end

end
returnnewToken
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