
HAL Id: lirmm-00834051
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00834051

Submitted on 14 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software understanding: Automatic classification of
software identifiers

Pattaraporn Warintarawej, Anne Laurent, Marianne Huchard, Mathieu
Lafourcade, Pierre Pompidor

To cite this version:
Pattaraporn Warintarawej, Anne Laurent, Marianne Huchard, Mathieu Lafourcade, Pierre Pompidor.
Software understanding: Automatic classification of software identifiers. Intelligent Data Analysis,
2015, 19 (4), pp.761-778. �10.3233/IDA-150744�. �lirmm-00834051�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00834051
https://hal.archives-ouvertes.fr

Software Understanding: Automatic Classification

of Software Identifiers

P. Warintarawej , M. Huchard, M. Lafourcade, A. Laurent∗, P. Pompidor

LIRMM, UMR 5506 CNRS-Université Montpellier 2

161, rue Ada, 34095 MONTPELLIER CEDEX 05, France

Tel.: +33(0)467418585 - Fax: +33(0)467418500

{warintaraw, huchard, lafourcade, laurent, pompidor}@lirmm.fr

Abstract

Identifier names (e.g., packages, classes, methods, variables) are one of most

important software comprehension sources. Identifier names need to be analyzed

in order to support collaborative software engineering andto reuse source codes. In-

deed, they convey domain concept of softwares. For instance, “getMinimumSupport”

would be associated with association rule concept in data mining softwares, while

some are difficult to recognize such as the case of mixing parts of words (e.g., “init-

FeatSet”). We thus propose methods for assisting automaticsoftware understanding

by classifying identifier names into domain concept categories. An innovative solu-

tion based on data mining algorithms is proposed. Our approach aims to learn char-

acter patterns of identifier names. The main challenges are (1) to automatically split

identifier names into relevant constituent subnames (2) to build a model associating

such a set of subnames to predefined domain concepts. For thispurpose, we propose

a novel manner for splitting such identifiers into their constituent words and use N-

grams based text classification to predict the related domain concept. In this article,

we report the theoretical method and the algorithms we propose, together with the

experiments run on real software source codes that show the interest of our approach.

Keywords: Automatic Software Understanding; Data Mining; Text classification;

Software Engineering.

∗Corresponding author, e-mail: laurent@lirmm.fr

1

1 Introduction

Software development teams are often composed of groups of specialists, each given re-

sponsibilities depending on their role and skill set. In anysoftware development project

involving reuse of source codes, considerable time and effort must be invested to under-

stand the existing work: How the code is built? How it operates and what conceptual is

available on the software? In many cases, the code is not wellannotated, software docu-

mentation is not available, not useful or outdated. Therefore, it is often the responsibility

of programmers to work with the legacy source codes.

Generally, a software project contains many source files which involve a number of

identifier names. Indeed, identifier names are often composed by mixing parts of words,

abbreviations and acronyms (e.g., getARules, CLOPECluster, sIB_OptimizeT). There-

fore, programmers can be easily confused when attempting tofollow the domain concepts

of identifiers. In this context, domain concepts refer to concepts of the working domain

which are provided in software documentation, such as classdiagram, package diagram

(e.g., in data mining software tools, the domain concepts can be organized into folders

according to package names such as association rules and classifiers (Fig. 1)). The most

straightforward approach to understanding the concept from an identifier name is to split

names into constituent words (e.g.,getProbability→ get+ Probability). However, when

identifier names are formed of partial mixed words, the splitting technique is no longer

practical. For example,sIB_OptimizeTis split into “s” , “IB” , “Optimize” , and “T” ,

but to which domain concept the identifier is related remain unclear, especially if such

splitting terms are not found in a dictionary.

In this work, we aim to assist automatic domain concept recognition, by studying

methods to help programmers become rapidly familiar with a software, specifically the

domain concept design embedded in identifier names. The challenge is not only to find

the basic word concepts obtained by splitting terms of identifiers, but also to automati-

cally extract the domain concept information conveyed by these identifiers. For example,

given an identifier namegetARules, the relevant concept isassociation rules.

We consider the high level software design which describes the major components

of software systems and the relationships among those components. From a high level

design phase to the implementation task, the domain concepts (hereafter concepts) are

often organized into packages which are represented as folders or sub-folders. A package

folder contains many related source files (e.g., class files)corresponding to the related

concepts in design phase. Therefore, we assume that words orabbreviations which are

found in source codes within the same concept (e.g., within the same package) can be

2

Fig. 1 High level software concepts by package names

used to infer concept overview. For instance, if “rule” occurs frequently within identifier

names of association rule concept (e.g., numRules, randomRules, rulesItem), and is rarely

found in other concepts, then “rule” can be used to refer to “association rules”. Therefore,

the approach is to use the existing identifier names with predefined concepts (via the

names of their packages) to predict the concept of an ambiguous identifier. As proposed

in our previous works: [26], [25], text classification models are useful to find the related

concepts of a new word where the new word is a combination of existing words with

predefined concepts .

In this work, we propose a novel approach to predict a relevant concept of an am-

biguous identifier based on character patterns of existing identifier names in predefined

concepts, illustrated in Fig. 2. N-gram based text classification is considered. An N-gram

is a sequence ofn consecutive terms (in our case, we use characters) of a giventext. The

N-gram representation has the advantage of being more robust and less sensitive to gram-

matical and typographical errors and requiring no linguistic preparations which makes it

more language independent. Given an identifier name, classifiers can learn the patterns

3

of existing identifier names in every predefined concept and use these evidences to assign

the identifier name to the most relevant concept. Put differently, word components of

existing identifier names can be used to validate software identifier names according to

high level domain concept design.

Fig. 2 The identifier name analyzing approach

The approach developed here consists of two main tasks: (1) the splitting identifier

algorithm (Sword) and (2) N-grams based text classification of identifier names. The

contributions are presented as follows.

• We state that the main characteristics of predefined domain concepts of softwares

can be learned by identifier names. To provide an approach forhelping automatic

software understanding by analyzing identifier names, datamining algorithms are

taken into account. We apply text classification models to predict the relevant con-

cept of a new identifier name based on character N-grams of existing identifier

names taken from predefined domain concept source codes.

• We propose a novel algorithm for splitting identifier names,namedSword. The

algorithm aims to improve the accuracy of identifier name splitting in the case of

4

partial word mixing forms (e.g.,getabssupp, initFeatSet). The existing techniques

of compound word splitting and text classification models become inefficient when

they encounter with subpart word mixing identifiers.Swordnot only copes with

incomplete word combination, but also with compound words,abbreviations and

single case identifiers.

The paper is organized as follows. Section 2 presents related work regarding identi-

fier name decomposing in software engineering tasks. Section 3, we review the existing

splitting algorithms and propose a novel identifier splitting algorithm. In Section 4, we

present how N-gram based text classification can be applied on identifier names, we de-

scribe how to represent identifier names in bag-of-word models based on N-grams. We

report the experimental results of splitting algorithms and the classification of identifier

names by using N-grams in Section 5. Finally, we conclude andpresent future work in

Section 6.

2 Related work

Most software engineering tasks involve identifier name decomposition; identifier names

must be split into word components so that they can be analyzed in software engineering

tasks (e.g., clustering concepts, feature location). Related work on decomposition of

identifier names have been proposed and are described below.

[1] proposed a method to decompose filenames into a list of constituent elements

which are called “concepts”. The work consists of 2 steps: (1) extracting candidate split-

ting terms from the existing source codes and (2) decomposing file names into splitting

terms. Many sources of words and abbreviations can be used togenerate a set of candi-

date splitting terms (e.g., file names, comments, identifiernames). Next, source words (in

case of filenames) are split using the candidate splitting terms and N-grams. An English

dictionary is also taken into account in order to enhance thedecomposing process. Their

results show that identifier names split by N-grams obtainedthe best accuracy (88.4%),

followed by file names with N-grams. When using a dictionary,the accuracies for all

sources are clearly improved. The work therefore describesa simple method for the de-

composition identifier names by splitting substrings contained in identifier names (but is

unable to handle subpart words combinations).

[5] proposed an approach to restructure programming identifier names with the aim

of improving the meaningfulness of identifier names. The approach comprises 3 prin-

cipal tasks: (1) Building a standard lexical dictionary (2)mapping identifier names into

5

standard terms (lexical standardization) and (3) rearranging the components of an iden-

tifier name according to the standard structure found from existing codes and the expert

suggestion (syntactical standardization). Unfortunately, the task of identifier name de-

composition is not performed automatically in this case. The system instead provides a

tool for users to edit the segmentation of identifier names, and no evaluation is provided.

[15] focuses on cases where there no word marker is found in identifier names and

describes two splitting techniques for such identifiers. A greedy algorithm and a neural

network are discussed. 4,000 identifier names were randomlyselected from the 186

programs and the results show that the neural network is faster and more adaptable to

the intuitive splitting.

[12] proposed an approach to split identifier names, namedSamurai. The Samurai

algorithm is able to automatically split identifier names into sequences of words by min-

ing word frequencies in source codes. With these word frequencies, the identifier splitter

uses a scoring technique to automatically select the most appropriate partitioning for an

identifier. The results show that frequency-based token splitting misses same-case splits

identified by the greedy algorithm [15], but outperforms thegreedy overall by making

significantly fewer oversplits.

[4] looked at how to improve the tokenization of identifier names when they appear

in single case forms or contain digits. The work proposes to use oracles to identify the

boundary of tokens; oracles can be lists of words from dictionaries, a list of abbreviations

and acronyms. and a list of acronyms containing digits. The pre-process of string splitting

with digits is performed by the heuristic rules proposed by the author.

The naming of meaningful identifiers has been widely studied. [8] observed identifier

names from Eclipse (Java code based) and established a solidfoundation for the identifier

naming definition. A dictionary is used to help with consistent naming rules and the

suitable names are generated in a context-specific manner, but no splitting technique is

provided.

[18] exploited identifier names from 100 Java applications to extract name-specific

implementation rules for the most common method names and define an identifier naming

bug. The work presents an approach for automatic suggestionof more suitable names in

the presence of mismatch between name and implementation.

[13] proposed a wordNet-like approach to extract the structure of a software using

the relationships among identifier names. The approach considers Natural Language Pro-

cessing techniques which consist of tokenization process (straightforward decomposition

technique by word markers, e.g. case changes, underscore etc.), part of speech tagging,

6

and rearranges order of terms by the dominance order of term rules based on part of

speech.

[2] exploited the mining part of speeches of identifier names. The tool provides part-

of-speech information, which improves the searching of software repositories. Although

the tagging can be used to support improved naming, no association between identifiers

and domain concepts is provided.

[3] investigated the lexical and syntactic composition of Java class identifier names.

This work identifies conventional patterns found in the use of part of speech. This work

also developed a tool to identify the structure of identifiernames among super classes and

implemented interfaces. The authors demonstrates how thisknowledge can be applied in

case of unconventional identifier names by refactoring a name into a conventional form.

Despite the advances described above, these studies fail toaddress the problem of

splitting identifiers names where they are composed of subparts of words, abbreviations,

with no word maker presences (e.g.,getabssupp), or when no partial matching is pro-

vided. Furthermore, the issue of automatic domain concept understanding by a software

using supervised learning has never been addressed. We takeadvantage of text classifica-

tion and the lists of programming terms, as well as dictionary words to enhance identifier

splitting process [1]. We also apply the greedy algorithm [15] andSamuraiapproach

[12] to generate a novel splitting technique capable of handling the problem of substring

mixing in identifier names.

3 Identifier Splitting Algorithms: Related Work and Orig-

inal Approach

Identifier names are used to define the entities in a software (e.g., names of packages,

classes, attributes, constants). Identifier names can be composed of a set of characters

according to the rules of programming languages. For example, the initial character can

not normally be a digit or it usually forbidden to use most of the special characters.

Typically, programmers create identifiers by mixing several words or abbreviations (e.g.,

isMatchingEOL, JEditBuffer, editSyntaxStyle, raduis2) to refer to working domain con-

cepts. Therefore automatic splitting of multi-word identifiers needs to be addressed to

capture word concepts from the base words.

In this Section, we review the state of the art of identifier splitting techniques, namely

the CamelCase splitter, the greedy algorithm [15] and the Samurai approach [12]. We

then propose a novel algorithm to split identifier names. This algorithm is based on both

7

the greedy algorithm and the Samurai approach, especially for handling the case of word

subparts or abbreviations (e.g., badNumEx, initPRforCP, getAbsSupp).

3.1 CamelCase splitting technique

CamelCase technique is a simple and widely used method for identifier splitting algo-

rithms [9] and the rules of splitting are broadly based on CamelCase convention. For

instance,getItemNameis split into get, Item, Nameor setID is split into setandID. If

two more upper case characters are followed by one or more lower case character the

identifier is split before the last upper case character: e.g., JScrollPaneis split into J,

Scroll andPane. If there are some underscores, they are replaced by space characters:

e.g.,do_Click is split into do andClick. However, the CamelCase splitting algorithm

cannot handle single case word composition such as DBNAME, maxvalues.

3.2 The greedy algorithm

The greedy algorithm [15] aims to solve the problem of singlecase identifier splitting.

The algorithm consists of two searching approaches: (1) thelongest prefix search and (2)

the longest suffix search. In this case, prefixes and suffixes mean words which occur in

identifier names (and not as defined in linguistics). The longest prefix searching scans the

longest substring in an identifier name which matches words from a dictionary, and keeps

the longest substring. The longest suffix searching performs the same searching but in

the opposite direction. The results of two searches are compared and the substring which

gives the highest ratio of term occurrences is retained in the analyzing software. The

algorithm recursively runs until no string remains in the identifier. If neither the prefix

nor the suffix searching generate a dictionary term, the process is repeated by removing

the first character of the identifier name.

Searching approaches Searching results The longest substring

The longest prefix search {the, then,..., newest,...} newest

The longest suffix search {one, stone, ...} stone

Table 1An example of the greedy algorithm (identifier = ‘thenewestone”)

For example, if an identifier name = “thenewestone”, the set of prefix searching can be

{the, then,..., newest,...}, and the longest prefix substring isnewest. While the set of suffix

searching can be {one, stone, ...} and the longest suffix substring is stone(Table 1). The

8

ratio score is used to decide which term will be split. This technique can overcome the

single case problem of identifier names. Nevertheless, abbreviations and word subparts

mixing remain a problem for this technique.

3.3 Samurai splitting approach

Samuraiis an automatic identifier splitting algorithm proposed by [12]. The approach re-

lies on term frequencies in source codes and is based on the assumption that identifiers are

often composed of terms used frequently in source codes. Samurai addresses the prob-

lem of CamelCase technique when identifiers contain consecutive upper case characters

(more than two). For example, CamelCase splitsKNNclassifierinto KN andNclassifier,

instead ofKNN, classifier. Samurai overcomes this problem by using two tables of fre-

quencies: the first contains a programming term a list of an analyzed source code, while

the second is list of terms from a large programming corpus. Samurai runs CamelCase

splitting and creates alternative splitting terms, beforeranking candidates using the Score

function from Equation 1.

Score(s) = Freq(s, p)+
globalFreq(s)

log10(AllStrsFreq(p))
(1)

where p is a source code under analysis.Freq(s, p) is the frequency of terms in

source codep. globalFreq(s) is the frequency of terms in a large programming corpus.

AllStrsFreq(p) is the total occurrence number of all terms found in the source codep.

In the single case identifier name problem, the approach of Samurai is to find the best

splitting position in an identifier name. To achieve this goal, an identifier name will be

divided into the left and the right term. The best position iswhere the summation of the

left-right term score gives the highest value (Maximum (score(left)+score(right))) among

all left and right candidate terms. A set of left and right candidate terms is obtained using

a sliding window technique, starting the split from the firstcharacter and continuing one

character at a time (e.g.,getname⇒ (g etname), (ge tname)) until finding the maximum

score for the left and the right terms. For example, the termswhich obtain the maximum

score of the left-right summation areget and name, then split the left term (get) and

recursively process the right term until no more string remains in the token, (e.g., Table

2).

Samurai overcomes the limitation of CamelCase and also handles the single case

problem of identifier names. However, Samurai does not address the word subparts mix-

ing identifier. Moreover, the algorithm run time is correlated with the number of char-

9

Round Left/Right Maximum (score(left)+score(right)) keep

Round 1, getname/-

token=“getname” g/etname

ge/tname

get/name X get

getn/ame

getna/me

getnam/e

Round 2, name/- X name

token=“name” na/me

. . .

Table 2An example of Samurai algorithm (identifier = “getname”)

acters in an identifier. The follow Section, we propose an algorithm to overcome this

problem.

3.4 Our Original Approach: Sword

Our approach, named“Sword” , aims to combine the greedy and Samurai algorithms in

order to tackle the identification of word subparts, abbreviations and single case identi-

fiers. Firstly, a set of candidate splitting terms is createdand three lists of words used to

match with an identifier: the list of abbreviations found in the analyzed source code, the

list of words found in the existing source codes (the standard programming terms) and a

list of words from a dictionary. Exactly matched words from the lists are retained in the

candidate set together with substrings from the partial matchings. Secondly, the candi-

date splitting terms are ranked using the score function from Samurai. Finally, the term

giving the highest score from Eq. 1 is split from the identifier. The algorithm recursively

performs the remaining terms until no string is left in the identifier.

The following steps show Sword (Algorithm 1) using with theidenti f ier = “getab-

ssupp”as an example:

1. An identifier name is split into tokens (we keep only the token whose length is

more than 2 characters, otherwise we look for it in the abbreviation list) using

word markers (underscore, CamelCase) if they exist. E.g., there is no word marker

in “getabssupp”, thentoken= “getabssupp”).

2. For every token,

10

• If the token is found in the lists of words (the standard programming terms or

a dictionary), splitting stops.

• If no word from the lists matches the token, then performpartial matching

between the token and words from the list (use the standard programming

list first, then if no word is found then use a dictionary) (forour example,

matchList= {get, sup, supp}) (line 11).

• The set of candidate splitting terms is separated into two sets. The first

set is the substring that is found in the earliest position ofthe token (e.g.

strMinPosition= {get} (line 12)). The second group is the longest substring

matched (e.g. strMaxLength= {supp} (line 13))

• The scores of substrings in the two sets are computed and the substring that

obtains the highest score is retained. If the scores of both terms are equal,

then the longest substring is retained (e.g., assume, the kept splitting term is

keep= {get} line 14-21).

• The remaining strings in the token will be split into the leftand the right

term. The algorithm is recursively performed for both remaining terms until

no string remains in the token (e.g., le f t= “ ”, right = {abssupp}, line 22-36).

• Finally, if the token is not found in any word from the lists, the list of abbrevi-

ations is used. If the token does not match any abbreviation then the original

token remains as a splitting term (line 40-45).

The example of splitting“getabssupp”is shown in Table 3.

Token
Words/ The earliest The longest

Keep Remark
Substring matched position term substring

getabssupp {get, sup, supp} get supp get

{get} from the standard

programming terms

{sup, supp}

from the partial matching

abssupp {sup, supp} sup supp supp

The longest substring,

if the scores of

both terms

are equal or zero

abs
{abs} - - abs

{abs} found from

the abbreviation list

Table 3An example of theSwordidentifier splitting algorithm

Sword provides an efficient method for splitting identifier names into relevant word

11

subparts and the next Section describes how these subparts can be exploited by text clas-

sification algorithms to achieve improve methods for automatic identifier name classifi-

cation.

4 N-gram Based Text Classification of Identifier Names

Fig. 3 N-gram based text classification of identifier names

Classification is a data mining technique that assigns itemsinto predefined categories

or classes. In our context, items are equivalent to text and the technique is called the text

classification model. An example of it use would be to automatically label an incoming

news story into a topic such as “sports”, “politics” or “art”etc. Typically, whatever the

classifiers are employed, text classification tasks start with a training set of documents that

have been labeled with class(es). Generally, text classification models require a suitable

representation of text, as plain text cannot be processed directly in a text classification

12

model. N-grams is a language independent text representation technique that transforms

text into high dimensional feature vectors where each feature corresponds to a contiguous

substring. N-grams consist ofn adjacent characters (substring) of a given text [6]. We

use character N-grams to represent terms (identifier names,words) in source codes and

extracting character N-grams from a term by moving ann character wide-window across

the term character-by-character. We insert “_” into the terms to manage space for the

first, last and internal positions (e.g., “numRules”→ “num Rules”→ "_nu num um_ m_r

ru rul ule les es"). The methodology of N-grams based text classification of identifier

names is shown in Fig. 3 and the methodology can be summarizedas follows:

1. The first step prepares the training dataset by the data pre-processing:

(a) Extracting identifier names from source codes: this stepaims to extracting

identifier names, and also file names and comments that can be considered

informative [1]. Moreover, the packages names must be stored as domain

concept names for each source file.

(b) Cleaning Process: this step to removes non informative terms such as special

characters, reserved words and stopwords.

(c) Tokenization: At this stage, identifier names are split into primitive words

by CamelCase. We put “_” to separate between word componentssuch as

“setMinSupp”⇒ “get_min_supp”.

(d) Creating standard term list and an abbreviation lists: words matching dictio-

nary entries will be added to a standard programming list, otherwise they are

placed in the abbreviated list (awaiting refinement by experts).

(e) N-gram Generation: to separate terms from the result of tokenization into

sequences ofn characters. For instance, 3-grams of “ set_min_supp” will be:

se,set,et, t_m,_mi,min, in_,n_s,_su,sup,upp, pp_

(f) Bag-of-word models: this step aims to create a vector model of identifier

names based on N-grams (see Section 4.1 for details).

(g) Feature selection techniques: Chi-square feature selection is used to reduce

the number of features and select discriminative features for the text classifi-

cation model.

2. The analysis of phase deals by assigning domain concepts to testing identifier

names. For example, an identifier name =“getabssupp”

13

(a) Input an identifier name.

(b) Tokenize the identifier bySwordalgorithm (e.g., splitting getabssupp by Sword

produces get abs supp).

(c) Generate N-grams of the identifier name according to N-grams from pre-

processing phase (e.g., 3-grams: _ge get eta tab abs bss ssu sup upp pp_).

(d) Classify the identifier name into a domain concept.

(e) The result shows the relevant concepts with respect to the classification scores

obtained from the classifier. For example, Naive Bayes classifier classifies

“getabssupp” into “Association Rules” with respect to the highest condi-

tional probability of the concept (“Association Rules”), given by the identifier

(“getabssupp”) (P(c j |wi)).

4.1 Bag-of-word Models

In this work, identifier names or words found in source codes are represented by a vector

of N-gram terms (e.g., Table 4).

Identifier 3-grams Domain concept

numRules "_nu num um_ m_r _ru rul ule les es_" associationRules

randomRule "_ra ran and ndo dom om_ m_r _ru rul ule le_" associationRules

numClasses "_nu num um_ m_c _cl cla las ass sse ses es_" classification

classifiers "_cl cla las ass ssi sif ifi fie ier ers rs_" classification

bestClusters "_be bes est st_ t_c _cl clu lus ust ste ter ers rs_" clustering

tmpClusters "_tm tmp mp_ p_c _cl clu lus ust ste ter ers rs_" clustering

noAttributes "_no no_ o_a _at att ttr tri rib ibu but ute tes es_" featureSelection

selectedAttributes "_se sel ele lec ect cte ted ed_ d_a _at att ttr tri rib ibu but ute tes es_" featureSelection

Table 4The examples of identifier name representations on 3-grams

Identifier names (or words) are represented by a vector of N-gram features. Let an

identifier namewi be a vector space that consists of features (t j) where j ∈ [1..|S|], and

|S| is the number of the features:

wi =< ti1, ti2, ti3, ..., ti|S|,ck >

whereti j is frequency featuret j in wi , ck is a domain concept, and fork∈ [1..m], m is the

number of domain concepts in the training set.

Table 5 shows the construction of the bag-of-word representation (3-grams).

14

Identifier . . . _ru rul le_ . . . _at att Domain concept

numRules . . . 1 1 1 . . . 0 0 associationRules

randomRule . . . 1 1 1 . . . 0 0 associationRules

noAttributes . . . 0 0 0 . . . 1 1 featureSelection

selectedAttributes . . . 0 0 0 . . . 1 1 featureSelection

Table 5The bag-of-word of identifier names based on 3-grams

4.2 Feature Selection Techniques

The main problem of text classification is the high dimensionality of textual data. Feature

selection methods have been proposed to select the most relevant attributes [28]. It has

been shown that feature selection improves classification effectiveness and computation

efficiency.

Mutual information (MI) is an established measure for many successful feature se-

lection techniques in text classification. MI measures how much information of a feature

t is related to a concept regarding its presence or absence in each concept compared to

other concepts. Mutual information can be defined as [22] :

I(U ;C) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1

+
N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0

whereN10 is the number of words that contain featuret and not in conceptc. For

example,N1. = N10+N11 is the number of words that contain featuret, N = N00+N01+

N10+N11 is the total number of words in the domain.

Chi-square (χ2) is one of the most efficient methods for optimizing classification

results [11, 20].

χ2 is a test of independence between two variables. In text classification, let us define

t as a term in text andc as a class. In our work,t refers to features such as N-grams

andc refers to concepts from a thesaurus. The main idea of this technique is to select

discriminative features by measuring the dependence between features and concepts. As

a result ofχ2 test, a feature (t) is selected only if it associated with a concept.χ2 statistic

is defined as following [22]:

χ2(D, t,c) = ∑
et∈{0,1}

∑
ec∈{0,1}

Net ec−Eetec

Eetec

15

Whenet indicates the appearance of termt andec indicates the appearance of the

conceptc. For example,N10 is the number of words that contain termt (et = 1) but not

in conceptc (ec = 0). Eetec is the expected frequency,E11 means the expected frequency

of termt in conceptc as follows:

E11 = N∗
N11+N10

N
∗

N11+N01

N

4.3 Classification Models

4.3.1 Naive Bayes

The Naive Bayes classifier is a simple classifier model based on probabilistic theory. The

Bayesian theorem includes an independence assumption calledNaive Bayes assumption.

The assumption assumes that all attributes of the examples are independent. In fact this

assumption is not correct in real-world text classification, however, Naive Bayes performs

very well in classification tasks as reported in [10]. The probability model for the clas-

sifier is a conditional modelP(c j |di) whenc j is a member in the set of conceptsC in

classification domain anddi is a testing document. The conditional probability of con-

ceptc j given by documentdi can be defined as :

P(c j |di) =
P(c j)P(di |c j)

P(di)

.

In our task, the classification model follows Naive Bayes formula as:

P(c j |wi) =
P(c j)P(wi |c j)

P(wi)

where wordwi is represented by a feature vector as defined in section 4.1.

The most relevant concept is selected by maximum a posteriori probability (Cmap):

Cmap = argmax
cj∈C

P̂(c j |wi)

= argmax
cj∈C

P̂(c j)P̂(wi |c j)

16

4.3.2 kNN

k-Nearest Neighbor (kNN) is a similarity-based learning algorithm which is very effective

for various domains in text classification [16, 27, 21]. For agiven unlabeled example, the

algorithm finds the closestk labeled examples in the training set and assigns the class by

majority voting among those examples in the set ofk neighbors.

Several measures can be considered in order to compute the similarity between words

in training set and a testing identifier name. In our case, we consider the Euclidean

distance. The Euclidean distance between wordswi andwj with wi =< ti1, ti2, ti3, ..., tin >

andwj =< t j1, t j2, t j3, ..., t jn >, wheren is the number of features in the vector space is

defined as:

∆(wi ,wj) =

√

n

∑
m=1

(tim− t jm)2 (2)

The algorithm used to compute the k-nearest neighbors is shown below:

Input : an identifier name, Output:k nearest neighbor identifiers of an input identifier.

1. Determine the number ofk nearest neighbors beforehand.

2. Sort the distances for all the training samples and determine the nearest neighbor

based on the K-th minimum distance.

3. Group the examples in the set ofk nearest neighbors regarding to their concepts.

4. Assign the concept by majority voting among the set ofk neighbors.

4.4 Evaluation Metrics

The performance of text classification model can be measuredin many ways. The com-

monly used measures areAccuracy, PrecisionandRecall[24]. In this work, the accuracy

measures the correctness of assigning a domain concept to anidentifier. Precision is the

fraction of retrieved identifiers that are relevant in a domain concept. Recall is the frac-

tion of relevant identifiers that are retrieved. The evaluation metrics for a domain concept

c j are defined as follows:

17

Precision =
#correctly classi f ied identi f iers o f cj
#identi f iers that are classi f ied in cj

Recall(t p rate) =
#correctly classi f ied identi f iers o f cj

#identi f iers in cj

F−Measure =
2∗ precision∗ recall
precision+ recall

Accuracy =
#correctly classi f ied identi f iers o f cj

total number o f identi f iers

f p rate =
#incorrectly classi f ied identi f iers o f cj

#identi f iers not in cj

Although the measures above have been used as standard, simple classification ac-

curacy is often a poor metric for measuring performance [23]. In most real-world cases,

the distribution of classes is skewed and the cost of error for one type of classification

is much more expensive than another. In addition, most of theclassifiers (Naive Bayes,

kNN, etc.) can produce the probability or “confidence” of class prediction. Unfortu-

nately, this information is ignored in the classical metrics described above [19]. Receiver

Operator Characteristic (ROC) analysis is used to solve accuracy measure problem. ROC

curves are not insensitive to changes in class distribution. If the proportion of positive to

negative changes in a test set, the ROC curves will not change. Since ROC based ontp

rate (recall) andfp rate, not depend on class distribution [14].

5 Experimental Results

5.1 Dataset

To select training sets, domain knowledge is required. Domain experts play important

role to select relevant source files; identifier names contain words or strings referring to

domain concept information (e.g., identifier names in association rule concept (from data

mining software tools) contain subnames: “rules”, “itemset”, “support”, “confidence”),

To our knowledge, we setup the preliminary experiment by using data mining software

packages as training sets. We have selected 4 packages (called “concept” in our work)

18

taken from two data mining software tools: ARuleGUI1 and Java Machine Learning Li-

brary (Java-ML)2. The identifier names are collected from file names, identifier names

(classes, methods, attributes) and comments. Data pre-processing performed by remov-

ing reserved words of Java and stopwords for comments. The total number of identifier

names for each domain concept is shown in Table 6. The number of words in the stan-

dard programming term list and the number of abbreviations are shown in Table 7. En-

glish words are obtained from the standard file on Unix or Unix-like operating systems

(ispell). In our case, we use Ubuntu 12.04.1 whichwordsfile contains 99,171 words

from /usr/share/dict/words.

Concept #Occurrences #Distinct #Source files
of identifier names identifier names

Association Rules 4,394 657 8

Classification 4,578 819 22

Clustering 7,715 1,415 20

Feature Selection 1,692 406 14

Total 18,379 3,297 (2,672 unique names) 64

Table 6Concepts and the number of identifier names

The list #words

Standard programming terms 1,226

Abbreviations 55

English words 99,171

Table 7The number of words in various sources

Each word from the domain concepts is separated into 3 and 4-grams and they are

converted into a bag-of-word model. The overall numbers of features are 2,029 and 2,718

for 3 and 4-grams respectively. Chi-square feature selection is used to select discrimina-

tive features. Naive Bayes and kNN from the WEKA packages[17] are used to classify

an identifier name.
1http://www.borgelt.net/argui.html
2http://java-ml.sourceforge.net/

19

5.2 Identifier Splitting Evaluation

The testing set contains 571 identifier names that have been randomly selected from train-

ing dataset. Our algorithm obtains 92.8% accuracy, which isbetter than the greedy algo-

rithm and Samurai approach (86.0% and 83.8% respectively).The highest accuracy was

achieved when using identifiers composed of abbreviations or word subparts, in particular

when they are not in the word lists.

5.3 Results of Naive Bayes Classifier

The results of Naive Bayes classifier on 10-fold cross validation3 show that 4-grams ap-

proach obtains the highest level of accuracy (73.7%) with 2,718 features. The 4-grams

approach also outperforms the 3-grams approach in recall, f-measure and ROC. When

the number of features increases, evaluation measures mostly increase, (Table 8 and Fig.

4).

N-gram #Feature Accuracy(%) Precision(%) Recall(%) F-measure(%) ROC(%)

3 1,000 69.7 69.7 69.7 69.5 87.3

3 2,000 71.2 71.4 71.2 71.2 88.6

3 2,029 (all) 71.2 71.4 71.2 71.2 88.6

4 1,000 70.1 70.3 70.0 69.5 85.8

4 2,000 72.9 72.9 72.9 72.7 89.0

4 2,718 (all) 73.7 73.6 73.5 73.5 89.5

Table 8The result of Naive Bayes classification on 10-fold cross validation

5.4 Results of kNN Classifier

The results of kNN classifier on 10-fold cross validation show that the highest accuracy

(74.6%) is obtained by 1,000 features using 4−grams withk = 5, (Table 9). Whenk

increases, the accuracy slowly drops (Fig. 5). It should also be noted that 4-grams out-

performs 3-grams on the average of accuracies. However the difference between the the

accuracies of 3 and 4-grams is marginal (Fig. 6). We also found that kNN outperforms

Naive Bayes (Fig. 7).

3Cross validation is a technique to ensure that every examplefrom the dataset has the equal
chance of appearing in the training and testing set.n-fold cross-validation: divide the dataset up
into n groups andn train times, treating a different group as the holdout set each time, more detail:
http://www.cs.cmu.edu/ schneide/tut5/node42.html

20

 0

 20

 40

 60

 80

 100

1000 2000 all

A
cc

ur
ac

y
(%

)

#num of features

3-grams
4-grams

Fig. 4 The accuracy of Naive Bayes

N-gram k #Feature Accuracy(%) Precision(%) Recall(%) F-measure(%) ROC(%)

3 5 1,000 74.2 74.7 74.2 73.4 91.1

3 10 1,000 72.0 72.7 72.0 70.9 89.7

3 15 1,000 69.9 71.1 69.9 68.6 88.5

3 5 2,000 74.3 74.7 74.3 73.5 91.2

3 10 2,000 71.3 72.2 71.3 70.2 89.6

3 15 2,000 68.6 70.0 68.6 67.3 88.4

3 5 2,029 (all) 74.3 74.7 74.3 73.5 91.2

3 10 2,029 (all) 71.3 72.1 71.3 70.2 89.6

3 15 2,029 (all) 68.5 69.9 68.5 67.1 88.4

4 5 1,000 74.6 75.4 74.6 73.8 91.1

4 10 1,000 71.1 72.7 71.1 69.8 88.8

4 15 1,000 68.3 70.8 68.3 66.6 87.0

4 5 2,000 72.3 74.2 72.3 71.3 88.6

4 10 2,000 69.9 72.1 69.9 68.4 87.2

4 15 2,000 67.8 70.5 67.8 66.0 85.9

4 5 2,718 (all) 74.0 75.4 74.0 73.0 90.6

4 10 2,718 (all) 70.6 72.7 70.6 69.0 88.7

4 15 2,718 (all) 68.1 70.9 68.1 66.1 87.0

Table 9The results of kNN on 10-fold cross validation

5.5 Interpreting the Identifier Classification

Given an identifier name, the classifier finds the most relevant concept based on character

patterns in the existing identifiers. If the testing identifier is composed of substrings often

21

 0

 20

 40

 60

 80

 100

 0 5 10 15

A
cc

ur
ac

y
(%

)

#num of k

3-grams
4-grams

Fig. 5 The accuracy of kNN on 1,000 features

arising in a specific concept, the classifier will assign the identifier to that concept. For

example,getabssuppis classified into association rule concept (Fig. 8). These results can

be explained using the set of discriminative features:absandsuppare members in a set

of discriminative features in association rule concept.

6 Conclusion and Future work

In this article, we propose an approach based on text classification to assist automatic

software understanding. Identifier names are used by programmers to better understand

the role of code parts (packages, functions, etc.). For thispurpose, identifier names must

first be split into their root subcomponents. Thus, we propose a novel identifier split-

ting algorithm capable aims to handle software identifiers built from multiple subparts.

We demonstrate that our identifier splitting algorithm achieves better accuracy than the

existing techniques. An N-gram based text classification isalso run in order to classify

identifier names into predefined concepts and experimental results show the applicability

of our approach to real world problems.

For legacy software, one main problem is to understand the software. The analysis

of identifiers is a clue in this understanding. Then, being able to analyze identifiers and

extract their meaning favors several refactoring operations that are based on terms. In the

22

 0

 20

 40

 60

 80

 100

1000 2000 all

A
cc

ur
ac

y
(%

)

#num of feature

3-grams
4-grams

Fig. 6 The accuracy of kNN when k= 5

case of forward engineering, our technique can help choosing the right identifiers, that

will help further understanding and use.

In future work, we consider the study of how such a technique can be integrated dur-

ing software development to prevent programmers creating identifiers evoking irrelevant

concept. In software development technology, we would liketo investigate how our ap-

proach (which may help with checking or construction of linguistic cohesion in a set of

identifiers) could be associated with judging or finding modules, or with mining separate

concerns (cross-cutting) in Aspect-oriented software development [7]. The challenge is

how to integrate the identifier analysis into software development cycle, the data prepa-

ration of legacy software involving domain knowledge must be discussed.

23

 0

 20

 40

 60

 80

 100

1000 2000 all

A
cc

ur
ac

y
(%

)

#num of features

NB
KNN

Fig. 7 The accuracy of Naive Bayes and kNN, k=5

Fig. 8 An example of identifier name classification

24

Algorithm 1: Sword

1 Input : tokenis a token to be split,
2 dictionaryis a set of words in a dictionary,
3 standardListis a set of standard programming terms,
4 abbreviationListis a set of abbreviations found in the analyzed programs

5 Output : matchListis a set of the words or substrings which partially matches
token,

6 strMinPositionis the exactly word which exactly matchestoken,
7 strMaxLengthis the longest substring which matchestoken,
8 newTokenis a new token

9 n← length(token)
10 if n> 2 then
11 matchList← f indStrMatching(token,dictionary,standardList)
12 strMinPosition← f indMinPositionStr(matchList, token)
13 strMaxLength← f indMaxLengthStr(matchList, token)
14 strMinPositionScore← ScoreToken(strMinPosition)
15 strMaxLengthScore← ScoreToken(strMaxLength)
16 if strMinPositionScore> strMaxLengthScorethen
17 keep← strMinPosition
18 end
19 else
20 keep← strMaxLength
21 end
22 if length(keep) = 0then
23 keep← f indMatchAbbrList(token,abbreviationList)
24 end
25 le f t← “ ”
26 right ← “ ”
27 if length(keep)≥ 2 then
28 i ← f indFirstPosition(keep, token)
29 if i > 0 then
30 le f t← token[0 : i−1]
31 end
32 next← length(le f t) + length(keep)
33 if next != n then
34 right ← token[next: n]
35 end
36 end
37 newToken← Sword(le f t) + “ ” + keep+ “ ” + Sword(right)
38 end
39 else
40 if token found in abbreviationListthen
41 newToken← abbreviationList[token]
42 end
43 else
44 newToken← token
45 end
46 end
47 returnnewToken

25

References

[1] N. Anquetil and T. Lethbridge. Extracting concepts fromfile names: a new file

clustering criterion. InProceedings of the 20th international conference on Software

engineering, ICSE ’98, pages 84–93. IEEE Computer Society, 1998.

[2] D. Binkley, M. Hearn, and D. Lawrie. Improving identifierinformativeness using

part of speech information. InProceedings of the 8th Working Conference on Min-

ing Software Repositories, MSR ’11, pages 203–206. ACM, 2011.

[3] S. Butler. Mining Java class identifier naming conventions. InProceedings of the

2012 International Conference on Software Engineering, ICSE 2012, pages 1641–

1643. IEEE Press, 2012.

[4] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improvingthe tokenisation of iden-

tifier names. InProceedings of the 25th European conference on Object-oriented

programming, ECOOP’11, pages 130–154. Springer-Verlag, 2011.

[5] B. Caprile and P. Tonella. Restructuring Program Identifier Names. InProceedings

of the International Conference on Software Maintenance (ICSM’00), ICSM ’00,

pages 97–. IEEE Computer Society, 2000.

[6] W. B. Cavnar and J. M. Trenkle. N-Gram-Based Text Categorization. InSymposium

On Document Analysis and Information Retrieval, pages 161–175, 1994.

[7] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. A quali-

tative comparison of three aspect mining techniques. InIWPC, pages 13–22. IEEE

Computer Society, 2005.

[8] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software Quality

Control, 14(3):261–282, Sept. 2006.

[9] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol. Can Better Identifier Split-

ting Techniques Help Feature Location? InICPC, pages 11–20. IEEE Computer

Society, 2011.

[10] P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Classifier

under Zero-One Loss.Machine Learning, 29, 1997.

[11] S. T. Dumais and H. Chen. Hierarchical classification ofWeb content. InSIGIR,

pages 256–263, 2000.

26

[12] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Mining source code to au-

tomatically split identifiers for software analysis. InProceedings of the 2009 6th

IEEE International Working Conference on Mining Software Repositories, MSR

’09, pages 71–80. IEEE Computer Society, 2009.

[13] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao. Auto-

matic Extraction of a WordNet-Like Identifier Network from Software. InProceed-

ings of the 2010 IEEE 18th International Conference on Program Comprehension,

ICPC ’10, pages 4–13. IEEE Computer Society, 2010.

[14] T. Fawcett. An introduction to ROC analysis.Pattern Recognition Letters,

27(8):861–874, 2006. ROC Analysis in Pattern Recognition.

[15] H. B. D. Feild and D. Lawrie. Identifier Splitting: A Study of Two Tchniquese.

In Proceedings of MASPLAS’06 Mid-Atlantic Student Workshop on Programming

Lanquages and Systems Rutgers University, 2006.

[16] G. Guo, H. Wang, D. A. Bell, Y. Bi, and K. Greer. An kNN Model-Based Approach

and Its Application in Text Categorization. InCICLing’04, pages 559–570, 2004.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

WEKA data mining software: an update.SIGKDD Explor. Newsl., 11(1):10–18,

2009.

[18] E. W. Høst and B. M. Østvold. Debugging Method Names. InProceedings of

the 23rd European Conference on ECOOP 2009 — Object-Oriented Programming,

Genoa, pages 294–317. Springer-Verlag, 2009.

[19] C. X. Ling, J. Huang, and H. Zhang. AUC: a statistically consistent and more

discriminating measure than accuracy. InProceedings of the 18th international

joint conference on Artificial intelligence, pages 519–524, San Francisco, CA, USA,

2003. Morgan Kaufmann Publishers Inc.

[20] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving Text Classifi-

cation by Shrinkage in a Hierarchy of Classes. InProc. of the int. conf. on Machine

Learning, pages 359–367, 1998.

[21] T. M. Mitchell. Machine learning. McGraw Hill, 1996.

[22] I. C. Mogotsi. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze:

Introduction to information retrieval.Information Retrieval, 13:252–253, 2010.

27

[23] F. Provost and T. Fawcett. Analysis and Visualization of Classifier Performance:

Comparison under Imprecise Class and Cost Distributions. In In Proceedings of the

Third International Conference on Knowledge Discovery andData Mining, pages

43–48. AAAI Press, 1997.

[24] F. Sebastiani. Machine learning in automated text categorization.ACM Computing

Surveys, 2002.

[25] P. Warintarawej, A. Laurent, P. Pompidor, A. Cassanas,and B. Laurent. Classifying

Words: A Syllables-Based Model. InProceedings of the 2011 22nd International

Workshop on Database and Expert Systems Applications, DEXA ’11, pages 208–

212. IEEE Computer Society, 2011.

[26] P. Warintarawej, A. Laurent, P. Pompidor, and B. Laurent. Classification of brand

names based on n-grams. InSOCPAR’10, pages 12–17, 2010.

[27] Y. Yang and X. Liu. A re-examination of text categorization methods. InPro-

ceedings of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval, SIGIR ’99, pages 42–49. ACM, 1999.

[28] Y. Yang and J. Pedersen. A comparative study on feature selection in text catego-

rization. In Proceedings of the Fourteenth International Conference onMachine

Learning (ICML’97), pages 412–420. Morgan Kaufmann Publishers, 1997.

28

