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Abstract

In this paper we present a method for exploratory data analysis of streaming data
based on probabilistic graphical models (latent variable models). This method is
illustrated by concept drift tracking, using financial client data from a European
regional bank. For this particular setting, the analyzed data spans the period
from April 2007 to March 2014, and therefore starts before the beginning of the
financial crisis of 2008. The implied changes in the economic climate during this
period manifests itself as concept drift in the underlying data generating
distribution. We explore and analyze this financial client data using a probabilistic
graphical modeling framework that provides an explicit representation of concept
drift as an integral part of the model. We show how learning these types of
models from data provides additional insight into the hidden mechanisms
governing the drift in the domain. We present an iterative approach for
identifying disparate factors that jointly account for the drift in the domain. This
includes a semantic characterization of one of the main influencing drift factors.
Based on the experiences and results obtained from analyzing the financial data,
we discuss the applicability of the framework within a more general context.

Keywords: concept drift; latent variable models; financial data

1 Introduction
Performing data analysis in a streaming context raises several important issues that

are often less pronounced when conducting batch data analysis. In particular, the

instances in a data stream can often not be assumed independent, and when the

data stream exhibits concept drift the underlying data generating distribution may

change over time [1]. If the concept drift inherent in the domain is not carefully taken

into account, the result can be a deterioration of accuracy when doing classification

or, more generally, failure to capture and interpret intrinsic properties of the data

during data exploration.

In collaboration with a European regional bank (Banco de Crédito Cooperativo,

BCC[1]), we have been conducting data analysis over a subset of their clients based

on client-specific financial information captured during the period from April 2007

to March 2014. Specifically, focus has been on real-time analysis, detection, and

interpretation of financial changes during this period. Particular attention has been

given to two groups of clients, defined by whether or not they will default on their

financial obligations within the following 12 months.

[1]www.bcc.es/en

mailto:andresmasegosa@ual.es
www.bcc.es/en
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The period during which data has been collected starts before the beginning of

the financial crisis, hence the general economic climate exhibits changes during

the collection period. This is also directly reflected in the client data, where we,

for instance, see drifts in the average monthly account balances as illustrated in

Figure 1(d). Note that the drift is more pronounced for the defaulting clients than

for the non-defaulting clients, and that we also see a slightly inverse trend for the

two client groups. This is the reason why we included the defaulting information

in the analysis. Another example of drift can be seen for the unpaid amount in

mortgages for the two groups as shown in Figure 1(e).

Generally, when comparing these two financial indicators we see that they exhibit

different types of concept drift, and that a common/global contextual cause is not

immediately apparent from the data. We would therefore like to go beyond this

immediate analysis and instead consider ‘broader’ types of concept drift that are

less variable-specific and which influence and govern several key financial indicators

simultaneously and across client groups. We thus adopt the general definition of

concept drift from [1], where concept drift is defined as the existence of two consec-

utive time points for which the joint distribution over the domain variables differ.

Since this definition does not rely on a designated target variable, we can position

the problem as unsupervised concept drift detection and analysis [2].

In this paper, we further explore and extend a recently proposed model for captur-

ing concept drift [3]. The model proposed by [3] is based on probabilistic graphical

models and provides a principled approach for capturing concept drift by letting

the drift be encoded explicitly within the model class. There are several advan-

tages to this approach. First of all, the model does not rely on any of the standard

techniques to deal with concept drift, see [1] and the references therein. Such tech-

niques, including external concept drift detectors that, e.g., would use changes in

classification accuracy to imply a form of supervised concept drift, often require in-

formation that only becomes available after a certain time delay [4, 5] (such as the

true class labels). Secondly, by letting concept drift be an explicit and integral part

of the modeling framework we have added support for semantic interpretations of

potential drifts. In particular, concept drift can immediately be linked to selected

model components enabling an analysis of how concept drift affects different parts

of the model. The proposed method therefore not only provides an unsupervised

way of detecting concept drift, it may also enable a more systematic analysis of the

(local) domain specific factors that drive concept drift; this type of insight is not

immediately provided when, e,g, involving external concept drift detectors.

In comparison with the analysis conducted in [3], the contributions of the present

paper includes an extension of the model class of [3] that enables a more fine-grained

concept drift analysis targeting individual variables. Furthermore, we propose an it-

erative approach for identifying disparate factors that jointly account for the drifts

in the domain. We demonstrate the use of the proposed methods based om the

financial data set supplied by BCC. The results of the analysis includes the identi-

fication and semantic characterization of one of the key factors governing concept

drift for this particular domain. Lastly, we discuss the proposed modeling frame-

work in a more general setting, linking model validation and concept drift analysis.

The proposed methods are released as part of an open-source toolbox for scalable

probabilistic machine learning (http://www.amidsttoolbox.com) [6, 7, 8].

http://www.amidsttoolbox.com
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The remainder of the paper is organized as follows. In Section 2 we provide a

detailed description and analysis of the data set that is used in the study. Section 3

discusses and analyzes the modeling framework introduced by [3], on which the

concept drift analysis presented in Section 4 is based. In Section 5 we position

our analysis within a more general context, providing a critical discussion of the

limitations of our procedure as well as possible extensions to the framework and

open research questions. Lastly, we give some concluding remarks in Section 6.

2 Description of the Data
The data set, provided by BCC, contains monthly aggregated information for a set

of BCC clients for the period from April 2007 to March 2014. Only “active” clients

are considered, meaning that we restrict our attention to individuals between 18

and 65 years of age, who have at least one automatic bill payment or direct debit

in their accounts. To make the data set as homogeneous as possible, we only retain

clients residing in the region of Almeŕıa (a mainly agricultural area in the south of

Spain), and excluded BCC employees, since they have special banking conditions.

We reduced the resulting data set so that it only includes 50 000 clients each month.

Up until December 2010 there are some clients that only become active every six

months (due to periodic fees). From December 2010 and until the end of the period

this pattern appears every 3 months [3]. The particular clients involved vary, and

removing them from the overall data set is therefore not feasible. Instead, and in

order to avoid the seasonal peaks produced by these known patterns, we remove

the affected 21 months.[2]

Assisted by BCC’s experts, we extracted six variables from the resulting data

set that encode monthly aggregated information, and which collectively describe

the financial status of a client. Figure 1 shows the evolution of these variables for

both defaulting and non-defaulting clients throughout the period. We note that

some clients may have missing values for some of the variables for a given month

(e.g., because a client was not active during that particular month). However, the

generative nature of the models we employ (detailed in the following section) ensures

that these missing values are naturally handled within the model and do not need

to be treated separately. Finally, each client also has an associated class variable,

which indicates if that particular client will default during the following 12 months.

If we take a closer look at the attributes, we observe several characteristics that

could further challenge the modeling process. Figure 2 shows the histograms for a

couple of the variables. The first thing we notice is the high density of zeros, but

also the long-tails of the distributions. The latter results in large variances for most

of the attributes.

When also considering the evolution of the means in Figure 1 we can see at least

two tendencies in the data. One general trend of gradual and monotonic movement

and the other of seasonal changes usually peaking at the end of the year. Thus, the

data sets appear to exhibit different types of concept drift.

[2]The analysis of the experiments in this paper are practically the same if we con-

sider the peak months, except that the results are more noisy around these months

[3].
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The drift in the data indicates the need for a model that takes these changes

into account. More specifically, we are interested in a simple density estimator that

is able to detect the different tendencies over multiple attributes simultaneously

while also maintaining the defaulting/non-defaulting distinction of the clients. The

following section introduces and discusses the particular model type we have used

for the analysis.

3 Modeling concept drift
Concept drift detection and adaptation has typically been considered within a su-

pervised learning context, where changes in model accuracy are seen as an indication

of concept drift [1]. This means that concept drift detection is closely linked to a

specific prediction task, which may be too restrictive for an exploratory data anal-

ysis setting. For example, labeled streaming data is needed in order to evaluate

changes in classification accuracy, but these labels often come with a (significant)

time delay. For example, for our financial setting described in Section 2, if the future

defaulting status of a client is considered as the class variable, then the true class

label will only be revealed after a delay of twelve months.

Instead we consider the framework for detecting and analyzing concept drift pre-

sented by [3], in which the key idea is to explicitly represent concept drift as an

integral part of the model definition without relying on a designated target variable.

Thus, the framework considers concept drift as the existence of an instance x and

two consecutive time points t0 and t1 such that pt0(x) 6= pt1(x), where pt(·) denotes

the density of x at time t. Note that this type of concept drift modeling can be

considered unsupervised. The concept in this context refers to a joint distribution

over the class and predictive variables, but with the class being treated as a normal

random variable. Incidentally, this is also what we will refer to as global concept

drift, as opposed to local concept drift, that captures concept drift happening at the

level of a single variable in the model. A more thorough discussion about the type

of concept drift that this framework is able to detect is given in Section 5.

The modeling framework proposed by [3] is illustrated using plate notation in

Figure 3 and can be seen as a special type of probabilistic graphical model [9]. In

the figure, (Yi,t,Xi,t) describes the behavior of client i at time t, where Yi,t represents

the defaulting status of client i at time t and Xi,t are the financial indicator variables

describing the client.[3] The distributions of Yi,t and Xi,t are parameterized using

the parameters θy and θx, respectively. Concept drift is captured in the model

through the latent variables H1, H2, . . . ,Ht, . . ., which are “shared” across clients

and indicator variables. Intuitively, when learning from data subject to concept

drift, the model responds by “tweaking” Ht over time, thereby using this sequence

of latent variables to aggregate the concept drift of each variable to a “model-global”

level. To enforce a smooth drift-model, the conditional distribution Ht|{Ht−1 =

ht−1} is defined as a random walk with variance θh, which has a priori been given

[3]We explicitly represent the class variable in this context as it is a requirement of

the BCC experts to have a clear distinction between defaulter and non-defaulter

clients. Since the percentage of defaulter clients is small, this ensures that this group

of clients is modeled separately. We stress again, however, that our general concept

drift model is not relying on classification accuracy to detect concept drift.
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preference to smaller movements over time. Note again that the emphasis here is

on the concept drift component and not on the specification of an accurate model;

hence the simplistic model structure for (Yi,t,Xi,t). The specific parametric families

employed by the modeling framework for analyzing this data set are presented in

Section 4, where the general model class will be instantiated to the financial data

set.

The overall framework is positioned in the Bayesian paradigm, where both param-

eters and unobserved variables (Ht, θx, θy, θh as well as missing data observations)

are treated as random variables in the model. For the data up to and including

time T , D1:T , inference amounts to calculating the distribution over the variables

of interest given D1:T , most notably p(HT |D1:T ).

Bayesian inference is in general NP-hard [10] and for the type of hybrid dynamic

models considered in this paper (detailed in the following section) exact inference

is intractable. Thus, we resort to approximate inference/learning based on a varia-

tional Bayes inference engine [11, 12]. Variational Bayes can be seen as a gradient

ascent algorithm, and when constraining the (conditional) distributions to be mem-

bers of the conjugate exponential family, it can be implemented through variational

message passing (VMP) [13].

There are several benefits of this approach, including i) having concept drift as

an integral part of a holistic model; ii) concept drift is explicitly represented and

therefore open for investigation; iii) immediate model validation; iv) good fit in

terms of marginal log-likelihood to complex data, even for this rather parsimonious

model.

A proof of concept of this modeling framework can be found in Appendix B,

where we analyze two synthetic data sets widely employed as benchmarks in the

concept drift literature. This analysis verifies the applicability of this framework for

modeling concept drift beyond the financial domain, which is the focus of this work.

4 Analyzing Concept Drift with Hidden Variables
In this section we detail the instantiation of the general methodology presented in

Section 3 with respect to our financial data set in order to analyze the trend in the

evolution of the financial profile of the clients. For this, we use a publicly available

toolbox[4], called the AMIDST Toolbox. This toolbox is open source and gives access

to a modeling language, where models can be described and combined with inference

procedures that support Bayesian learning of the model parameters. Moreover, since

the data setup is of a streaming nature, scalability is an important feature of the

toolbox. A streaming data set is potentially unbounded, thus inference amounts to

doing filtering (also known as the forward pass in dynamic model inference). This

means that for any t, only the data D1:t will influence the posterior estimate of Ht;

observations at, e.g., t+ 1, will not be taken into account.

We consider two general types of models. First we explore a model containing

a hidden variable Hj,t for each attribute Xj,t with the purpose of analyzing the

drift behavior of the different features independently. Secondly, we use a single

hidden variable for all features Xt to capture more global types of concept drift.

[4]The code and models used in this paper can be downloaded from the AMIDST

Toolbox webpage (through its GitHub repository): www.amidsttoolbox.com

www.amidsttoolbox.com
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We subsequently analyze the residuals produced by the global model to identify

other factors that jointly account for the drift.

4.1 Local Hidden Variables

As a first step we employ a variant of the models presented in Section 3 to track

concept drift of individual attributes. In this way, we examine whether or not the

six attributes in our data set exhibit different drift behavior. This simpler setting

also allows us to better illustrate how our approach captures the general trend in

the data over time.

We make a simple instantiation of the general framework, where each attribute

is linearly dependent on a local hidden variable, which enables the use of efficient

learning algorithms. More complex (non-linear) dependencies could eventually be

used by employing alternative parametrizations of the conditional probability dis-

tributions, at the cost of having to use more complex learning algorithms.

More precisely, we use a concept drift model with a hidden variable Hj,t for each

attribute. This model can be expressed as follows:

x+i,j,t = α+
j + β+

j ·Hj,t + ε+i,j,t, (1)

x−i,j,t = α−
j + β−

j ·Hj,t + ε−i,j,t,

where xi,j,t denotes the value of the j-th attribute of the i-th client at time t.

The superscripts + and − refer to the group of defaulter and non-defaulter clients,

respectively. The rest of the parameters are defined as random variables following

a Bayesian framework (where we have suppressed the + and − to indicate that the

same a priori model is assumed for both groups of customers):

αj , βj , Hj,0 ∼ N (µ, σ2),

εi,j,t ∼ N (0, σ2
j ),

σ2
j ∼ InvGamma(α, β),

Hj,t ∼ N (Hj,t−1, σ
2).

Using standard properties of the Gaussian distribution, we then have that

Xi,j,t|{αj , βj , σ2
j , hj,t} ∼ N (αj + βj · hj,t, σ2

j ). Note that in this model, we have a

single hidden variable Hj,t that jointly tracks the drift of the profile of the defaulter

and non-defaulter clients for the j-th attribute. Furthermore, the attribute specific

β(·) coefficients can account for potential scale differences among the features.

In Figure 4 we plot a detailed result of this analysis for two attributes: Account

Balance (AB) and Unpaid Amount in Mortgages (UM), respectively. All means

in the normal distributions have been arbitrarily initialized to zero: αj , βj , H0 ∼
N (0,∞), where the variance has been initialized with a sufficiently large number

to allow for adaption; σ2
j ∼ InvGamma(0, 1) and Hj,t ∼ N (Hj,t−1, 0.1). Each figure

displays the following series:

• {x+j,t} and {x−j,t} show the empirical mean of the attribute (for defaulter/non-

defaulters clients) at every month, i.e. x+j,t = 1/N+ ·
∑
i x

+
i,j,t, where N+ is

the number of defaulter clients at month t (x−j,t is defined analogously). With

this series we see how the empirical mean changes over time.
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• {E[Hj,t]} shows the expected value of the hidden variable Hj,t, which aims at

tracking the drift in the empirical means at each month for attribute j.

• Two series defined by {a+j,t}
.
= {E[α+

j ] + E[β+
j ] · E[Hj,t]} and {a−j,t}

.
=

{E[α−
j ] + E[β−

j ] · E[Hj,t]} with the linear combination of the expected value

of the variables α+
j , β+

j , α−
j , β−

j and Hj,t at every month. This last series

should approximate the series describing the empirical mean of the attribute

(cf. Equation 1).

Considering Figure 4 we can make the following tentative conclusions:

• The series {aj,t} try to approximate the empirical mean series. The fit is not

perfect because we are using a model with a small number of parameters, that

is, we aim to fit two series with 126 values (the empirical monthly means of

defaulters and non-defaulters) with a model which contains only 67 parameters

(the 63 expected values of the variable Hj,t plus the αj and βj parameters

of both client groups). Still, {aj,t} is able to capture the general trend of the

empirical means series.

• The {E[Hj,t]} series aim to capture the drift in both empirical mean series

{x+j,t} and {x−j,t}. We note that the drifts in the {x+j,t} series are different from

the drifts in the {x−j,t} series, as we commented in Section 1. The {E[Hj,t]}
series try to make a compromise between the two different drift trends. This

is especially visible at the final stages of both time series (defaulters/non-

defaulters) in Figure 4.

• The movements of the time series are scaled by the values of their αj and βj

parameters for the same {E[Hj,t]}.[5] If we take a closer look at the αj and

βj values of both defaulters and non-defaulters, we can understand why the

same change in {E[Hj,t]} affects the estimated means differently. Intuitively

speaking, the value of αj determines the expected mean value of the variables

when βj is zero, whereas βj determines the change with respect to {E[Hj,t]}.
If we consider the Unpaid amount in mortgages for Figure 4 (b), the ratio

αj

βj

for non-defaulters is much higher than for defaulters, which means that the

former will be less sensitive to changes in {E[Hj,t]}.
Finally, in Figure 5 we plot the set of {E[Hj,t]} series for all the six attributes

analyzed in our financial data set. We note again that each {E[Hj,t]} series tries to

reflect the joint evolution of the profile of the defaulter and non-defaulter clients

with respect to the j-th attribute.

It is interesting to see in Figure 5 how we can clearly identify two groups of

attributes with different evolution trends. On the one hand, we have that the at-

tributes “Total Credit Amount”, “Unpaid Amount in Mortgages” and “Unpaid

Amount in Personal Loans” (Att1, Att5 and Att6 respectively) exhibit a kind of

monotonically increasing trend over time, with no seasonality. According to our

BCC’s experts, they mainly show the financial deterioration of the defaulting clients

(c.f. Figure 1): higher unpaid amount in mortgages and higher total credit loans, al-

though for “Unpaid Amount in Personal Loans” we can see a slow reduction across

the period. The latter is because personal loans are typically small short term loans

with high interest rates, which clients prefer to pay back on time. Another effect

[5]Due to confidentiality reasons, we are unfortunately not able to disclose the α and

β values.
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comes into play here: during the observation period many weak non-defaulter clients

changed to the group of defaulting clients, leaving in the former group those clients

that were more robust to changes in the economic climate. This translates into an

improvement of the financial profile of the group of non-defaulter clients.

The other group of attributes, “Income”, “Expenses” and “Account Balance”

(Att2, Att3 and Att4 respectively), identified in Figure 5, presents a yearly seasonal

pattern down-peaking at the end of the year, which characterizes the particular

financial profile of the BCC’s clients. The “Account Balance” attribute seems to

have a more complex evolution, which will be discussed in more detail in the next

section.

During the analysis above we have deliberately neglected that the estimators

{E[α+
j ]}, {E[α−

j ]}, {E[β+
j ]} and {E[β+

j ]} can also evolve over time. The time-

dependency is a consequence of the definition of the estimators; recall that they are

calculated as streaming Bayesian posterior mean values, which in turn are based on

the data seen so far. In consequence, the analysis of the {E[Hj,t]} series could in

principle be hiding other types of concept drift: a constant {E[Hj,t]} series would,

for example, be interpreted as if there was no concept drift, even though a drift

could actually be absorbed by the αj and βj series. We examine this potential is-

sue further in Appendix A. We do so by conducting an off-line analysis to evaluate

what happens when the parameters are kept fixed (i.e., we prevent the α and β

series to evolve over time), thereby ensuring that the {E[Hj,t]} series are the only

means for the model to absorb the inherent dynamics. We show that the results in

this setting are comparable to those of the procedure outlined above, and therefore

conclude that this issue does not invalidate the present analysis.

4.2 Global Hidden Variables

In the previous section we looked at the individual trends of each of the attributes.

In this section, we are interested in capturing the joint global trend of all of them.

For simplicity, let us start by disregarding the defaulter status of the clients, i.e.,

xi,j,t = αj + βj ·Ht + εi,j,t. (2)

We are now employing a single scalar variable to model the drift of the full set

of variables defining the profile of the client (as before αj and βj do not evolve

over time). Despite this simple structure, the model is flexible enough to capture

different interesting types of concept drift as exemplified below:

• Let us assume we have two series: {x1,t} does not change over time (beyond

random white noise) while {x2,t} linearly increases over time (beyond random

white noise). This can be captured by setting β1 to 0 and choose a proper

positive value for β2 (both α1 and α2 need to be properly fixed to fit the

data). {Ht} will then linearly increase reflecting the change of {x2,t}.
• Assume now that {x1,t} increases linearly, and that {x2,t} decreases linearly at

a higher pace. This can be captured by a positive β1 value and a comparatively

larger negative β2 value. {Ht} will then increase linearly reflecting the change

of {x1,t} and {x2,t}. {Ht} could also decrease linearly if we flip the signs of

β1 and β2.
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Table 1: Person’s Correlation Coefficient between the Unemployment Rate (3

months shifted) and the {E[Hj,t]} and {E[Ht]} series.

{E[H1,t]} {E[H2,t]} {E[H3,t]} {E[H4,t]} {E[H5,t]} {E[H6,t]}
0.926 0.672 0.818 -0.131 0.872 0.857

{
∑

E[Hj,t]} {E[Ht]}
0.935 0.961

By extending the model to also include the defaulter status of the clients, we get

x+i,j,t = α+
j + β+

j ·Ht + ε+i,j,t; (3)

x−i,j,t = α−
j + β−

j ·Ht + ε−i,j,t,

Again, a single hidden variable Ht will be used to jointly track the drift over time

in the profiles of the two client groups. This extended version corresponds to the

model described in Section 3, where variable X is conditioned on variable Y .

Figure 6 shows the result of this analysis by plotting the {E[Ht]} series. It is inter-

esting to see how this {E[Ht]} series displays a combination of monotonic increasing

trend with a seasonal change, so it seems to aggregate the different individual trends

of each of the attributes. Even more interesting is to look at this series when com-

pared to the unemployment rate in the region of the financial institution when the

latter is shifted three months to the past. As can be seen, both series are highly

correlated. For example, during most of the first two years there is hardly any sea-

sonality in either series. But after this period, starting from February 2009, both

the unemployment rate and the {E[Ht]} series show a clear overlapping seasonality

pattern.

In Table 1 we show the Pearson correlation coefficient between the unemployment

rate (three months shifted) and the {E[Hj,t]} and {E[Ht]} series. We also compute

the Pearson correlation coefficient with respect to the series {
∑
j E[Hj,t]}, defined

by the sum of all the local hidden variables. As can be seen, the correlation achieved

by {E[Ht]} is higher than the correlation obtained by the rest of the series. This

indicates that by using the global model defined in Equation 2 we are able to better

capture the global trend present in our data, which turned out to be largely driven

by the unemployment rate.

Correlation does not imply causation, but common sense tells us that when the

unemployment rate in a small region moves from 12% to 30% in less than two

years, it is difficult to imagine another factor that could have more impact on the

financial situation of the inhabitants of this region. Thus, from this analysis it

seems reasonable to postulate that the enormous change in the economic profile of

the clients was mainly driven by the changes in the unemployment rate during this

period.

We are now interested in exploring if the changes in tendency for all the different

variables are entirely explained by the {E[Ht]} series in this time period, and,

consequently, fully determined by the unemployment rate. For that, we plot in

Figures 7 and 8 the expected monthly values of the predictive variables as a linear

combination of the parameters. That is, we plot the series {a+j,t} and {a−j,t} together
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with the empirical means {x+j,t} and {x−j,t} and analyze the goodness of the fit (in

Section 4.4 we discuss a formal way to look at this issue). If all variables were

perfectly learned, that would mean that a single global variable would be able to

capture all the changes. There are some variables, like Income (Figure 7) whose

trend is very well captured by the global variable, despite the noise. However, if

we look at other variables like Account Balance and Unpaid amount in mortgages

(Figure 8), we see that, especially towards the end of the time series, the fit starts

to degrade.

In the next subsection we show how we can extend our approach to determine if

there are unexplained trends which have not been captured by our single {E[Ht]}
series and how we could capture them in a meaningful manner.

As for the local model, we also evaluate the robustness of the {E[Ht]} estimates

wrt. changes in the series of α and β estimators in Appendix A. Once again we

find that the conclusions drawn above are not significantly affected by the potential

drift in the parameter estimators.

4.3 Residual Analysis

In order to possibly identify other unexplained trends, we look at the residuals de-

fined as the difference between the observed value and the estimated value according

to the model specified in Equation 3,

ri,j,t = xi,j,t − E[αj ]− E[βj ] · E[Ht], (4)

where E[αj ], E[βj ] and E[Ht] denote the expected value of the random variables at

month t.

We then employ the same modeling approach we used in the previous sections, but

now focusing on the calculated residuals. Firstly, we generate sequences of hidden

variables Hr
j,t to track the drift over time of the residuals for each attribute,

ri,j,t = αrj + βrj ·Hr
j,t + εri,j,t. (5)

Secondly, we generate another sequence of hidden variables Hr
t to track the drift

over time of the residuals for all the attributes jointly,

ri,j,t = αrj + βrj ·Hr
t + εri,j,t. (6)

We want to point out that this residual analysis has a straightforward interpre-

tation in terms of multiple hidden variables. That is, an extension of the models

given in Equation 3 or Equation 1 to include two hidden variables corresponding

to Hr
t and Hr

j,t respectively. This can be seen if we take expectations in Equation

5 or Equation 6 and use the equality of Equation 4,

E[xj,t] = E[αj ] + E[αrj ] + E[βj ] · E[Hj,t] + E[βrj ] · E[Hr
j,t]

for the local model and

E[xj,t] = E[αj ] + E[αrj ] + E[βj ] · E[Ht] + E[βrj ] · E[Hr
t ],
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Series Att1 Att2 Att3 Att4 Att5 Att6
Var({E[Hj,t]}) 25.50 8.75 15.50 29.34 41.23 96.93
Var({E[Hr

j,t]}) 8.00 4.10 3.68 43.17 27.17 3.67

Var({E[Hr2
j,t]}) 0.42 3.74 2.94 2.23 7.14 1.34

Table 2: Variances of the {E[Hj,t]}, {E[Hr
j,t]} and {E[Hr2

j,t]} series; expected mean

of the first global hidden variables, the global hidden variable for the first set of

residuals and the global hidden variable for the second set of residuals respectively.

The index j corresponds to Attribute Attj.

for the global model. In both cases, E[xj,t] denotes the expected value of the j-th

attribute at time t. Consequently, the following residual analysis results can also be

interpreted as trying to capture an additional hidden variable modeling the drift

behavior of the profile of the clients over time.

In Figure 9 we show the {E[Hr
j,t]} series according to Equation 5 for the residuals

of all the attributes. When we compare these results with the ones displayed in

Figure 5, we can see that the {E[Hr
j,t]} series displays, for most of the attributes, a

much more constant profile than the {E[Hj,t]} series. A quantitative evaluation of

this fact is given in Table 2 (Rows 1 and 2), where we compare the variance of the

{E[Hj,t]} and {E[Hr
j,t]} series, defined as Var({E[Hj,t]}) = 1

T

∑T
1

(
E[Hj,t]− H̄j

)2
,

where H̄j = 1
T

∑T
1 E[Hj,t]; similarly for Var({E[Hr

j,t]}). As can be seen, the variance

is reduced for all the attributes, except for Att4 (Account Balance). It is interesting

to see how the Account Balance attribute clearly diverges showing that the trend

of this attribute could not be captured by the previous hidden variable. Something

similar happens, but only at the end of the series, for Att1 and Att5.

The behavior in Figure 9 of the Account balance attribute (Att4) can partly be

understood by looking at Figure 8 (a). Here we can see that the Account Balance

attribute has a negative trend until the end of 2008. After that time point, the

Account Balance has a positive trend, which even seems to accelerate from Decem-

ber, 2012 and until the end of the series. According to BCC’s expert, the first phase

until the end of 2008 could show the progressive financial deterioration of weak non-

defaulter clients at the first years of the financial crisis. The posterior increase in

mean account balance would show that the clients that still remain non-defaulters

are the ones with higher savings. This first phase seems to be mainly driven by the

increase in the unemployment rate. This is the reason why the {E[Hr
4,t]} series is

largely constant during this period (that is, this change was already explained by

{E[Ht]}). The second and third phase of the evolution of Account Balance cannot

be explained by the evolution of the unemployment rate. This is when the {E[Hr
4,t]}

series for the Account Balance attribute starts to capture this deviation from the

main trend.

Similar conclusions can be extracted for the Unpaid Mortgages attribute (Att5)

by looking at Figure 8 (c) and the {E[Hr
5,t]} series for this attribute. Again, ac-

cording to the BCC expert, these three phases are due to the effect of a mortgage

restructuring process. During the first years of the crisis, we can again see a financial

deterioration of the non-defaulter clients until mid 2009, which is mainly explained

by the unemployment rate (that is, the {E[Hr
5,t]} series is constant for this phase

because the trend was already captured by {E[Ht]}). Then, during the period from

mid. 2009 to the end 2010 it was common at the bank to allow clients to restructure
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their mortgages in order to pay them more easily. This policy aimed to slow down

the quick increase in the number of defaulter clients due to the financial crisis. This

is the reason why the {E[Hr
5,t]} series starts to capture something that cannot be

explained by the unemployment rate (or the {E[Ht]} series). However, as bad eco-

nomic conditions persisted, these non-defaulter clients with restructured mortgages

finally started to default and were moved to the group of defaulter clients. Observe

that the unpaid amount in mortgages starts to decrease for non-defaulter clients

after 2011, but it increases more quickly for defaulter clients after the same date.

With the above comments in mind, we can better interpret the behavior of the

{E[Hr
t ]} series for the model in Equation 6, plotted in Figure 10. As can be seen in

the figure, the {E[Hr
t ]} series can again identify three different phases which seems

to summarize the behavior of the set of {E[Hr
j,t]} series shown in Figure 9.

In the {E[Hr
t ]} series displayed in Figure 10, we can also see a rapid increase of

the series starting at the beginning of 2013. BCC’s expert argues that this coincides

in time with the fusion of BCC with another smaller regional bank as part of a

big restructuring process of the financial institutions that took place in Spain that

year. However, a deeper analysis should be performed in order to corroborate these

conclusions.

4.4 Quantitative Model Evaluation

The residual approach presented in the previous sections can obviously be repeated

in an iterative fashion. This would be equivalent to trying to add more hidden

variables for better modeling the drift of the attributes over time. In Figure 10 we

also show the result of this approach by including the {Hr2
t } and {Hr3

t } series,

where {Hr2
t } refers to the residuals of {Hr

t } and {Hr3
t } refers to the residuals of

{Hr2
t }. It can be seen that, at every new iteration the curve becomes more constant,

showing that there is less and less trend to be captured as time evolves. This can

also be tested in a quantitative way by looking at the prequential marginal log-

likelihood of the data according to the different models (with one hidden variable,

two hidden variables, three hidden variables, etc) and comparing them to the simple

model xi,j,t = αj + εi,j,t, i.e., a model without hidden variables.

In Figure 11, we plot the evolution of the marginal log-likelihood[6] of the data for

models with none, one, two, three, and four hidden variables. The plot shows that

including a few hidden variables is enough to increase the marginal log-likelihood

of the model, suggesting that increasing the model complexity beyond that point

only yields small improvements.

In Table 2 (Row 3), we also show the variance of the {Hr2
j,t} series which corre-

sponds to the local residual analysis associated to {Hr2
t } series (when having three

hidden variables). This again shows that the local effect of the variables is again

strongly reduced and, in consequence, mainly explained by the series {Hj,t} and

{Hr
j,t}.

[6]This is an approximated value by variational methods, which is called the evidence

lower bound (ELBO).
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5 Discussion
In this section we first want to highlight that the models used in this paper are

simple instantiations of the general model family described in Section 3. For exam-

ple, we are making the unrealistic assumption that the attributes are independent

conditional on the defaulter status of the clients (although this is partly alleviated

by the global latent variable), even when knowing that there is a strong correlation

between income, expenses, and the account balance of a client. Moreover, we assume

that the attributes are normally distributed, which is also an inaccurate assump-

tion considering the histograms displayed in Figure 2. There exist straightforward

ways to alleviate the assumptions about independence and normality in distribu-

tion by explicitly linking the observed variables or using extra hidden variables and

non-Gaussian distributions. Still, since our goal was to understand the underlying

dynamics rather than to find a model that is a perfect fit to the data, we have

not pursued this line of investigation. Instead we have seen that even when using

this simple model class we are able to obtain important insights about the general

trends governing the evolution of the financial profile of the clients. In our opinion,

this is a strong point in favor of the robustness of our approach.

As commented above, the proposed probabilistic concept drift model considered

here is able to detect both global and local concept drift, depending on the hidden

structure of the model. Additionally, the iterative process of analyzing the residuals

helps reveal different levels of concept drift that may be present. For instance,

different attributes may vary at different rates in opposite directions, so that the

trend cannot be captured by simply aggregating the local hidden variables or by

using a single global hidden variable.

The presented framework can easily be extended in different directions. Compu-

tationally, the only requirement is that we choose distributions s.t. the full model

is in the conjugate exponential family. Interesting alternatives include the expo-

nential distribution (for positive real numbers with heavy tails) and the Poisson

distribution (for count data). The use of more complex dependency structures be-

tween the attributes, reflecting expert knowledge, would also allow us to design

more faithful models. Referring to the qualitative characterization of types of con-

cept drift described in [14], the instantiation of the framework employed in Section 4

is specifically targeting gradual, non-reoccurring drift. This model-behaviour is to a

large extent defined through the assumed prior distribution for Ht|{Ht−1 = ht−1}
and Hj,t|{Hj,t−1 = hj,t−1} (for the global and local model, respectively). We chose

Gaussian distributions with low a priori variance for these dynamic model when

analyzing the financial data set, thereby encoding a preferrence for smooth dy-

namics in latent space. A larger a priori variance would fit well with situations

with incremental or probabilistic drift. Reoccurring drift can be modelled using a

mixture-model for the latent variables, where the dynamic model is used to encode

an a priori preference for staying in a regime.

Another direction would be to position our concept drift analysis within a batch

learning context. In such a setting real-time analysis is not required, which means

that future data can be used for making inferences about the past. In contrast, in

this paper, we have pursued, following the requirements of our problem, a streaming

approach, where inference is only based on past and present data. The Bayesian
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framework naturally supports the alternative batch approach, which we can exploit

to get a more accurate global picture of our analysis. This is equivalent to the

“smoothing” phase usually employed in dynamic systems with hidden variables [9].

The inherent flexibility of Bayesian latent variable models reinforces the impor-

tance of model validation. In Section 4.4 we applied a simple approach in order to

study the suitability of our model. More complex evaluation procedures, which look

at temporal dependencies between the residuals, would be a new line of work to

validate the faithfulness of our model with respect to the analyzed data.

6 Conclusions
In this paper we have used a novel model to capture different sources of concept

drift in financial client data from the Spanish bank BCC. The data covers the

period from April 2007 to March 2014. Despite the challenging distributions of the

analyzed attributes and the simplicity of the applied model, we have been able to

detect different trends that on the one hand relate to the general economic climate

and on the other to the particular policies implemented by BCC during the period.

The analysis is done in a streaming fashion, meaning that inferences drawn at

a given point in time t cannot rely on data observed after t. We show that this

filtering approach is sufficient to extract interesting concept drift information, and

by comparing the generated results to those obtained by utilizing a computationally

more expensive non-streaming technique we conclude that on-line analysis is indeed

viable for concept drift detection and analysis.

The expected mean of the global concept drift variable in the model correlates al-

most perfectly with the unemployment rate in the region of the financial institution.

It is thus natural to hypothesize that the main driving factor for concept drift is

the unemployment rate, a perspective that was corroborated by a BCC expert. The

analysis of the residuals has allowed us to pinpoint the attributes that do not follow

the trend of the unemployment rate, mainly Account balance and Unpaid amount in

mortgages. Closer analysis of these and consecutive residuals, have shown different

phases in which we can see the deterioration of the non-defaulter clients on the first

years of the crisis, a shift of weak non-defaulter clients to the defaulter state, and

more specific actions taken by BCC like debt restructuring and possibly a fusion

with other smaller regional banks.

We have outlined future lines of research both from the point of view of the

concept drift detector model and from the point of view of the practitioners.

Appendix A: Robustness Analysis
In this paper, we pursued an approach which is able to model concept drift in a

streaming fashion. This approach is based on two different models: the local model

described in Section 4.1 and in Equation (1), and the global model described in

Section 4.2 and in Equation (3). In both models, we assumed that the expected

values over α and β coefficients (i.e. E[α+
j ], E[α−

j ], E[β+
j ], E[β−

j ]) were constant

over time. We note, however, that this is not entirely accurate, because the expected

value is computed from the posterior distribution over the parameters following a

Bayesian approach,

E[α+
j ] =

∫
α+
j p(α

+
j |D1, . . . , Dt)dα

+
j ,
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and this posterior therefore depends on D1:t, the data seen so far, and therefore

also on time. More precisely, we should therefore have indexed this expected value

with time to reflect this dependency.

In this appendix we show that disregarding this temporal dependency of the ex-

pected values only has a marginal impact on the conclusions we draw from our

interpretation of the evolution of the local and global hidden variables. In conse-

quence, we argue that our approach can be safely used to track concept drift in a

streaming fashion.

For this purpose we rerun the same experiments whose results were displayed in

Figure 5 and Figure 6 for the local and the global model, respectively. During these

new experiments, all the α+
j , α−

j , β+
j , β−

j values in the local and global models were

fixed across time (i.e. they were not considered random variables in the Bayesian

model). [7] To find meaningful values for these parameters, we decided to choose the

last available estimate of the parameters in the local and global models (i.e. after

processing the information for all the months). For example, when rerunning the

global model we set the α+
j value equal to

ᾱ+
j =

∫
α+
j p(α

+
j |D1:T )dα+

j , (7)

where T = 84 is the last month of data made available to us. The other α and β

values were computed in the same way.

In consequence, the modeling equations of the global model (cf. Equation (3))

were rewritten as follows,

x+i,j,t = ᾱ+
j + β̄+

j ·Ht + ε+i,j,t;

x−i,j,t = ᾱ−
j + β̄−

j ·Ht + ε−i,j,t,

where the following entities are now assumed to be random variables according to

the Bayesian formulation:

H0 ∼ N (µ, σ2),

εi,j,t ∼ N (0, σ2
j ),

σ2
j ∼ InvGamma(α, β),

Ht ∼ N (Ht−1, σ
2).

We follow the same approach to re-run the local model.

Notice how Equation (7) takes α+
j outside the streaming paradigm; we are utilizing

all the data D1:T when estimating Ht, even if t < T . The model defined in this

appendix is therefore not suitable for online analysis, but will serve as a basis for

post-analysis of the results presented in displayed in Figure 5 and Figure 6.

[7]This setup is only intended to illustrate the marginal effect the time varying pa-

rameters have on the previous analysis. It is not being proposed as an alternative

analysis method, which would haven taken the proposed method out of the stream-

ing context.
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Series Global Att1 Att2 Att3 Att4 Att5 Att6
All Months 0.793 -0.182 0.776 0.855 0.702 0.755 0.867
Last 2/3 Months 0.945 0.703 0.954 0.952 0.984 0.942 0.998

Table 3: Pearson Correlation coefficient between the {E[Hj,t]} ({E[Ht]}) series

according to the standard local (global) model and for the local (global) model

with α and β values fixed. First row shows the correlation considering all months.

Second row consider the correlation considering only the last two thirds of the

months.

To this end, Figure 12 and Figure 13 show the result of this analysis for the

local and global model, respectively. In these figures we plot together the output of

both approaches (with and without fixed α and β values). In order to appreciate

better the comparison, we rescale the series[8]. Note that the absolute values of the

hidden variables are not relevant for this analysis, only the relative changes. From

a statistical point of view, this is not a problem because Gaussian distributions are

translation invariant.

It can be appreciated that in the first months the trend captured the hidden

variables (i.e. {E[Ht]} and {E[Hj,t]} series) hardly match in some cases, but they

tend to be much more overlapped in the rest of the months.

In Table 3 we quantitatively evaluate this assessment by computing the Pearson

correlation coefficient between both series (i.e. with and without fixed α and β val-

ues), considering all months and, also, after discarding the first third of the months.

With this analysis we can observe than the correlation in that last two thirds of

the months is high (except for Att1), while when considering all the months the

correlation drops. The reason we find for this situation is that at the beginning α

and β values are randomly initialized. During the first months α and β values are

adjusted, in combination with the hidden variables, to fit the data. The prior dis-

tribution on the α and β values is N (0,∞), see Section 4.1, which means that large

changes in their values are allowed, specially when little data has been observed.

Estimates of the hidden variables during these first moths are therefore affected by

these earlier estimates of the α and β values and, in consequence, not very reliable.

This is akin to a burn-in phase where the estimates should be discarded. But this

problem vanishes as the time goes on and both series (with and without fixed α

and β values) become strongly correlated. This analysis shows that the trends cap-

tured by the local and global method without fixed α and β values is reliable after

discarding the first time steps.

Appendix B: Synthetic data sets
We show how the concept drift modeling framework detailed in Section 3 can be used

to analyse two synthetic data sets, widely employed as benchmarks in the concept

drift literature. All the experiments have been performed using MOA [15], where the

developed concept drift model (in Fig. 3) has been integrated as a new Bayesian

[8]Series cross zero in the middle of the time series by substracting the original value.

And all values are divided by the maximum of the series to guarantee a maximum

value of one in each series.
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streaming classifier, named bayes.amidstModels. The Java code to reproduce the

experiments can be downloaded from http://amidst.github.io/toolbox/.

B.1 SEA Data set

We first analyse the SEA data set [16] containing 60 000 samples, with 3 attributes

(x1, x2, x3) and 2 classes (y = 0 and y = 1). The attributes are numerical and

uniformly distributed between 0 and 10. Only two of the attributes are relevant for

the class label, y, which is defined as yt = 1 if xt1 + xt2 ≤ εt and yt = 0 otherwise.

Concept drift has been created by changing the threshold εt as a function of t. The

data set covers four “phases”, each with a duration of 15 000 samples, and with

different εt (9, 8, 7, and 9.5 for the four phases, respectively). Figure 14 (left) shows

the results of this analysis for batches of size Nt equal to 1000. The plot illustrates

the progress of the expected value of the latent variable (denoted Ht) as well as the

prequential accuracies computed using a sliding windows of size 1000 for a simple

Näıve Bayes model (NB) and the adaptive Hoeffding tree model (AHT). As can be

observed, the output of our model (i.e., the expected value of Ht) detects the drift

points and clearly identifies the occurrences of the four different phases in the data,

whereas those phases are less easily detected based on the accuracy results.

B.2 Rotating Hyperplane Data set

The second data set considered is the rotating hyperplane [17]. This benchmark

data set is widely used to simulate “gradual” concept drift problems. We considered

three versions of this data set, denoted Hyp1, Hyp2, and Hyp3, each including 10 000

instances. For each data set, 8 out of 9 attributes are drifting but with different

magnitudes of change (i.e., 0.1, 0.5, and 1 for the three data sets, respectively),

see [17] for details. Figure 14 (right) shows the evolution of the latent variable Ht

for each considered data set using a sliding window of size 1000. Here we see that

the different drift magnitudes of the three data sets are directly reflected in the

development trends of the latent variables. For instance, for the Hyp1 data, the

curve of the Ht variable presents a stable behavior which correctly illustrates the

very low change magnitude for this data set, i.e., 0.1.
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Figure 1: Mean evolution of all predictive variables for defaulting and non-

defaulting clients (monthly aggregated). The ranges on the y-axes, both here

and in successive figures, have been deliberately removed for confidentiality

reasons.
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Figure 3: Model of concept drift [3]. In this model structure it is assumed that

Xi,j,t⊥Xi,k,t |Yi,t; ∀t ∈ {1, . . . , T}, ∀j, k ∈ {1, . . . , n}, where n is the number of

attributes.
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Figure 4: Empirical, model means, and the expectation of the local hidden

variables for the two feature variables Att4 and Att5. More specifically, {x−j,t}
and {x+j,t} are the empirical mean series for defaulter and non-defaulter clients

respectively, {a−j,t} and {a+j,t} the learned expected means, and {E[Hj,t]} are

the expected values of the learned hidden variable Hj,t for Attribute Attj.
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expected value of the hidden variable Hj,t for Attribute Attj.
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Figure 7: Empirical {x+j,t} and model mean {a+j,t} (monthly aggregated) for two

predictive variables whose trend seems to be captured by the global hidden.
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Figure 8: Empirical {x+j,t} and learned mean {a+j,t} (monthly aggregated) for

two predictive variables whose trend is not entirely captured by the global

hidden.

ab
r 

20
07

ag
o 

20
07

di
c 

20
07

m
ar

 2
00

8

ju
l 2

00
8

oc
t 2

00
8

fe
b 

20
09

ju
n 

20
09

se
p 

20
09

en
e 

20
10

ab
r 

20
10

ag
o 

20
10

di
c 

20
10

ab
r 

20
11

se
p 

20
11

en
e 

20
12

ju
n 

20
12

oc
t 2

01
2

m
ar

 2
01

3

ju
l 2

01
3

di
c 

20
13

{E[H1,t
r ]}

{E[H2,t
r ]}

{E[H3,t
r ]}

{E[H4,t
r ]}

{E[H5,t
r ]}

{E[H6,t
r ]}

Figure 9: Expected values of the local hidden variables for the residuals
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j,t]}, where the index j corresponds to Attribute Attj.
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(c) Att3: Expenses (d) Att4: Account balance
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(e) Att5: Unpaid amount in mortgages (f) Att6: Unpaid amount in personal loans

Figure 12: Expected values {E[Hj,t]} of all the variables according to the

standard local model and for the local model with fixed α and β values.
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Figure 13: Expected values of the global hidden {E[Ht]} for the standard global

model and for the global model with fixed α and β values.
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Figure 14: Left: Results for the SEA data set. Right: Results for the hyperplane

data sets
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