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Abstract

Irregular features disrupt the desired classification. In this paper, we consider aggressively
modifying scales of features in the original space according to the label information to form well-
separated clusters in low-dimensional space. The proposed method exploits spectral clustering
to derive scaling factors that are used to modify the features. Specifically, we reformulate the
Laplacian eigenproblem of the spectral clustering as an eigenproblem of a linear matrix pencil
whose eigenvector has the scaling factors. Numerical experiments show that the proposed method
outperforms well-established supervised dimensionality reduction methods for toy problems with
more samples than features and real-world problems with more features than samples.
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1 Introduction
Dimensionality reduction is a technique for reducing the number of variables of data samples and
has been successfully applied in many fields to make machine learning algorithms faster and more
accurate, including the pathological diagnoses of gene expression data [26], the analysis of chemi-
cal sensor data [16], the community detection in social networks [27], the analyses of neural spike
sorting [1], and others [22]. Due to their dependence on label information, dimensionality reduc-
tion methods can be divided into supervised and unsupervised methods. Typical unsupervised
dimensionality reduction methods are the principal component analysis (PCA) [12, 15], the clas-
sical multidimensional scaling (MDS) [4], the locality preserving projections (LPP) [11], and the
t-distributed stochastic neighbor embedding (t-SNE) [28].

To make use of prior knowledge on the labels, we focus on supervised dimensionality reduction
methods. Supervised dimensionality reduction methods map data samples into an optimal low-
dimensional space for satisfactory classification while incorporating the label information. One of
the most popular supervised dimensionality reduction methods is the linear discriminant analysis
(LDA) [3], which maximizes the between-class scatter and reduces the within-class scatter in a low-
dimensional space. However, LDA is based on the assumption that the input data obeys a Gaussian
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distribution and may fail to capture the underlying local data structure. To overcome its drawback,
variants of LDA have been proposed. Bressan and Vitrià [5] proposed a variant that preserves the
local data structure by redefining the between-class scatter and within-class scatter matrices based
on the k-nearest neighbors of each data sample. Weinberger and Saul [30] considered penalizing
large distances among data samples with the same label and the k-nearest neighbors and small dis-
tances among data samples with different labels according to a cost function. Sugiyama proposed
the local Fisher discriminant analysis (LFDA) [24], which maximizes the between-class separability
and preserves the within-class local structure, incorporating LPP for supervised dimensionality re-
duction. Cai et al. [7] proposed another variant, which captures the local geometrical data structure
to map k-nearest neighbors in the same classes and those in different classes to a low-dimensional
space as close and as distant as possible, respectively. Instead of preserving the local data structure
based on the distances among data samples in the original data space, Li et al. [17] introduced a
weight between a pair of samples in the same class and exploited the local manifold structure of
data samples in a low-dimensional space.

In addition to capturing the local structure, as in LDA and its variants, we consider aggressively
modifying the scales of the features in the original space before mapping the data samples to a
low-dimensional space. This results in reducing the effect of features that interfere in the desirable
classification as well as enhancing the separations of different clusters. For these purposes, we derive
quantities called feature scaling factors, which are used to scale features based on spectral clustering
(SC) for dimensionality reduction [18]. SC projects given data samples to a low-dimensional space
formed by eigenvectors of a similarity or Laplacian matrix. In [33, 32], it was reported that SC
is effective in detecting cluster structures, and in [31], it was reported that SC preserves the local
data structure for feature selection. These reports motivated us to also use SC to learn local cluster
structures.

Our purpose is to scale features of given data samples and form (well-separated) clusters in
a lower dimensional space. Previous spectral feature scaling methods aimed at binary classifica-
tion [18]: in this paper, we extend the scope of classification problems to handle multiclassing.
Multiclass classification problems with more than two classes have typically been solved by com-
bining independently produced binary classification problems [13]. We take an approach different
from [13] to enable a multiclass classification. The contributions of this study can be summarized
as follows:

Extension to multiclass classification
We extend the scope of problems that the spectral feature scaling method can handle to
multiclass classification. Previous formulations allow only binary classification and require
repeated applications of the method for multiclass classification.

Automatic parameter tuning
We propose an automatic tuning technique to determine the values of parameters that specify
entries of the (Fielder) eigenvectors according to the labels of training data samples. The
extension of the spectral feature scaling method to multiclass classification naively increases
the number of hyperparameters and the computational cost. Our technique can save this cost
in the multiclass case.

The remainder of this paper is organized as follows. In Section 2, we present preliminaries. In
Section 3, we present the proposed spectral feature scaling method. In Section 4, we describe the
difference between the proposed method and previous methods. In Section 5, we present experi-
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mental results comparing the proposed method with previous methods. In Section 6, we conclude
the paper. Throughout the paper, we use italic bold characters to represent column vectors.

2 Preliminaries
Conventional spectral clustering nonlinearly reduces the dimensionality of data samples but may
not form the desired data sample clusters due to irregularity of the data features. To improve
the classification of reduced data samples, we may modify the scales of features. Simple feature
scaling techniques, such as centering, standardization, and normalization, serve as preprocessing
for the support vector machine and k-means algorithm. This motivated us to propose supervised
feature scaling that enhances the separation of reduced data samples based on prior knowledge from
training data.

The spectral clustering partitions a weighted undirected graph in which the edge weight wi,j
between nodes i and j is defined according to the similarity between data samples xi and xj , where
i, j = 1, 2, . . . , n and n is the number of data samples. We use the locally scaled Gaussian kernel
function [34] to define the similarity between data samples xi and xj as follows:

wi,j = exp
(
−(xi − xj)T S (xi − xj)

σ′iσ
′
j

)
, (1)

where S = diag (s1, s2, . . . , sm) ∈ Rm×m, and σ′i denotes the local scaling of data samples around
xi. Thus, we convert a given set of data samples to a graph according to similarities or distances
among data samples. A similarity graph is given by a model of the local relationship between data
samples. We set σ′i =

(
xi − x(k)

i

)T
S
(
xi − x(k)

i

)
, where x(k)

i is the kth nearest neighbor of xi.
Zelnik-Manor and Perona [34] recommended the value k = 7 for S = I in spectral clustering in
practice, and we adopted this choice.

Spectral clustering partitions a graph into subgraphs that are contradictory to each other and
forms clusters from the corresponding data samples. Let Ws = (wi,j) ∈ Rn×n be the similarity
matrix,

Ds = diag (d1, d2, . . . , dn) ∈ Rn×n with di =
n∑
j=1

wi,j , (2)

e be a vector of all ones, and ti ∈ {±1} be an indicator such that ti = 1 when data sample i belongs
to a cluster and ti = −1 when data sample i belongs to another cluster. Then, the graph partitioning
is given by the constrained minimization problem of the normalized cut (Ncut) function [21]:

minv
vT(Ds −Ws)v

vTDsv
,

subject to eTD
(p)
s v = 0, vi ∈ {1,−b}, b =

∑
i:ti>0 di∑
i:ti<0 di

. (3)

The entry vi ∈ {1,−b} takes two discrete values to devide the set of data samples into two clusters.
By the continuous relaxation vi ∈ {1,−b} to vi ∈ R, (3) is reduced to finding the Fiedler vector
v ∈ Rn \{0} [9] corresponding to the minimum eigenvalue of the constrained generalized eigenvalue
problem

Lsv = λsDsv, λs ∈ R, subject to eTDsv = 0, (4)
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if the minimum eigenvalue has multiplicity one, where Ls = Ds −Ws is the Laplacian matrix. The
entries of the Fiedler vector are referred to as the coordinates of the data samples in the reduced
space. In practice, we use more eigenvectors corresponding to the minimum eigenvalues of (4)
to form a larger space for accurate classification. When clustering well-separated data samples,
we will find hyperplanes that separate the data samples with reduced dimensions formed by a
few eigenvectors in (4). Here, if S = I in (1), i.e., S is the identity matrix, (4) is reduced to a
conventional spectral clustering method with relaxed Ncut [21]. If S 6= I, (4) is a generalization of
the method [21] and we can calculate the diagonal entries si (i = 1, 2, . . . ,m) of S, which are called
the scaling factors, for each data feature for binary classification problems [18].

3 Proposed method
In this section, we formulate the spectral feature scaling method (SFS) for dimensionality reduction.
The method was originally proposed for binary clustering and classification, but it is here extended
to multiclass classification. The proposed method does not use typical means of extension to
multiclass classification, such as multiclass support vector machines [13]. The new formulation of
SFS computes r scaling factors for each feature and merges them into a single scaling factor. Here,
the parameter r is the number of combinations that divide the set of data samples into two classes:
we will discuss the selection of r in Section 3.3.

If the labels of the training data samples are known, we use discrete variable vi ∈ {1,−b} in (3)
to prescribe the entries of the r eigenvectors v(p) ∈ Rn \ {0} (p = 1, 2, . . . , r) of the Laplacian
eigenvalue problem

L(p)
s v

(p) = λ(p)
s D(p)

s v
(p), eTDsv

(p) = 0, λ(p)
s ∈ R, (5)

where v(p) ∈ {1,−b(p)}, L(p)
s = D

(p)
s −W (p)

s , D(p)
s = diag

(
d

(p)
1 , d

(p)
2 , . . . , d

(p)
n

)
, and W (p)

s =
(
w

(p)
i,j

)
∈

Rn×n depend on the feature scaling factors s(p)
i ∈ R, i = 1, 2, . . . ,m, and b(p) is a parameter: we will

discuss how to estimate the values of b(p) in Section 3.3. The entries w(p)
i,j and d(p)

i are analogously
defined as (2). We form the scaling matrix S from s

(p)
i and will discuss the detail in Section 3.2.

Then, we apply S1/2 to data [XT, TT]T, which consists of the training data X = [x1,x2, . . . ,xn]T ∈
Rn×m and the test data Y ∈ RN×m as follows:

Z =
[
X
Y

]
S1/2. (6)

With the feature scaling S, we enhance the separation of the reduced data samples as desired in the
low-dimensional space formed by spectral clustering. This will improve the classification results.
Finally, we classify the scaled data Z ∈ R(N+n)×m using ` eigenvectors corresponding to the positive
minimum eigenvalue of the Laplacian eigenvalue problem

L′u = λ′D′u, eTD′u = 0, u ∈ RN \ {0}, λ′ ∈ R,

where L′ = D′ −W ′ ∈ RN×N ,W ′ =
(
w′i,j

)
∈ RN×N ,

w′i,j = exp
(
−‖zi − zj‖2

2

σiσj

)
, i, j = 1, 2 . . . , N, (7)

zi ∈ Rm is the ith column of ZT, d′i =
∑n
j=1w

′
i,j , D

′ = diag (d′1, d′2, . . . , d′N ), and σi = ‖zi − z(k)
i ‖2.

The values of parameters ` and r can be determined by cross-validation.
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3.1 Formulation

Now, we reformulate (5) as another eigenvalue problem to extract the scaling factors
√
s

(p)
i (i =

1, 2, . . . ,m) as an eigenvector. Denote the scaling matrix by S(p)1/2 = diag(
√
s

(p)
1 ,

√
s

(p)
2 , . . . ,

√
s

(p)
m ) ∈

Rm×m and the (i, j) entry of the similarity matrix W (p)
s of scaled data XS(p)1/2 by

w
(p)
i,j =


1− (xi−xj)TS(p)(xi−xj)

σiσj

= 1− s(p)Txi,j

σiσj
' exp

(
− (xi−xj)TS(p)(xi−xj)

σ′iσ
′
j

)
, i 6= j,

0, i = j,

(8)

where σi = ‖xi−x(k)
i ‖2, s(p) =

[
s

(p)
1 , s

(p)
2 , . . . , s

(p)
m

]T
∈ Rm, and the kth entry of xi,j ∈ Rm is (xi,k−

xj,k)2 [20]. Here, we used the first-order approximation of the exponential function exp (−x) ' 1−x
for 0 < x� 1. Then, the ith row of W (p)

s is

w
(p)T
i = [1, . . . , 1, 0, 1, . . . , 1]− s(p)T

[
xi,1
σiσ1

,
xi,2
σiσ2

, . . . ,
xi,n
σiσn

]
= ẽT

i − s(p)TXi,

where ẽi is an n-dimensional vector with zero in the ith entry and ones in all other entries, and
Xi =

[
xi,1
σiσ1

,
xi,2
σiσ2

, . . . ,
xi,n

σiσn

]
∈ Rm×n. Hence, we have

W (p)
s v(p) =

[
ẽT

1 , ẽ
T
2 , . . . , ẽ

T
n

]
v(p) −

[
X1v

(p), X2v
(p), . . . , Xnv

(p)
]T
s(p).

Let x̂i =
∑n
j=1

xi,j

σiσj
. Then, the ith diagonal entry of D(p)

s is

d
(p)
i =

n∑
j=1

w
(s)
i,j = (n− 1)− s(p)Tx̂i.

Hence, denoting the eigenvector by v(p) =
[
v

(p)
1 , v

(p)
2 , . . . , v

(p)
n

]T
, we have

D(p)
s v

(p) = (n− 1)v(p) −
[
v

(p)
1 x̂1, v

(p)
2 x̂2, . . . , v

(p)
n x̂n

]T
s(p).

Thus, (5) can be written as

L(p)
s v

(p) = λ(p)
s D(p)

s v
(p)

⇔ W (p)
s v(p) =

(
1− λ(p)

s

)
D(p)
s v

(p)

⇔
[
A(p) α(p)

] [s(p)

−1

]
= µ(p)

[
B(p) β(p)

] [s(p)

−1

]
, (9)

where µ(p) = 1− λ(p)
s ,

A(p) =



(
X1v

(p)
)T(

X2v
(p)
)T

...(
Xnv

(p)
)T


∈ Rn×m, B(p) =


v

(p)
1 x̂T

1
v

(p)
2 x̂T

2
...

v
(p)
n x̂T

n

 ∈ Rn×m, (10)

α(p) = [ẽ1, ẽ2, . . . , ẽn]T v(p) ∈ Rn, β(p) = (n− 1)v(p) ∈ Rn. (11)
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Furthermore, the feature scaling factors have the constraint

eTD(p)
s v

(p) =
n∑
i=1

(
(n− 1) v(p)

i − v
(p)
i s(p)x̂i

)
= 0

⇔
(

n∑
i=1

v
(p)
i x̂T

i

)
s(p) − (n− 1)

n∑
i=1

v
(p)
i = 0. (12)

Combining (9)–(12), we can obtain the generalized eigenvalue problem of a linear matrix pencil

A(p)
[
s(p)

−1

]
= µ(p)B(p)

[
s(p)

−1

]
, s(p) ∈ Rm, µ(p) ∈ R, (13)

where

A(p) =
[
A(p) α(p)

γ(p)T ρ(p)

]
∈ R(n+1)×(m+1), (14)

B(p) =
[
B(p) β(p)

0T 0

]
∈ R(n+1)×(m+1), (15)

γ(p) =
n∑
i=1

v
(p)
i x̂i ∈ Rm, ρ(p) = (n− 1)

n∑
i=1

v
(p)
i ∈ R, (16)

and we solve (13) for the scaling factors s(p) for each p = 1, 2, . . . , r. If the r eigenproblems (13)
have a common eigenpair, they can be combined as

A(1)

A(2)

...
A(r)


[
s
−1

]
= µs


B(1)

B(2)

...
B(r)


[
s
−1

]
, s ∈ Rm, µs ∈ R, (17)

where µs = 1 − λs. The existence of an eigenvalue µ(p) of (13) is assured by the equality[
eT 0

]
(A− B)T = 0T. Because the Fiedler vector is associated with the smallest eigenvalue, we

adopt the eigenvector of (13) and (17) associated with the eigenvalues µ(p) = 1−λ(p)
s and µs closest

to but less than one as a candidate feature scaling factors, respectively. Here, the r eigenproblem
(17) may not have the same eigenpair, so we find an eigenpair

(
λ, [sT,−1]T

)
of (14) and (15) as

close as possible in the r eigenproblems. To solve (13) or (17), we can use the contour integral
method [19] for n < m; otherwise, we can also use the minimal perturbation approach [14].

3.2 Integrating candidates of feature scaling factors

Here, we describe how to determine the scaling factors from the candidates in the multiclass case.
The scaling factors

√
s

(p)
i given by solving (13) are used to form a single feature scaling matrix

S1/2 = diag (s1, s2, . . . , sm)1/2. We have the following five approaches to computing the diagonal
elements s1/2

i (i = 1, 2, . . . ,m) of S1/2:
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• Principal component analysis (PCA) [12, 15]
We can obtain s1/2

i by using the principal component, i.e., the eigenvector φ ∈ Rr associated
with the maximum eigenvalue τ ∈ R of the eigenproblem

Mφ = τφ, M =
m∑
i=1

(ŝi − µ̂) (ŝi − µ̂)T ,

where ŝT
i ∈ Rr is ith row of the matrix

√
s

(1)
1

√
s

(2)
1 . . .

√
s

(r)
1√

s
(1)
2

√
s

(2)
2 . . .

√
s

(r)
2

...
... . . . ...√

s
(1)
m

√
s

(2)
m . . .

√
s

(r)
m

 ∈ Rm×r,

and µ̂ = 1
m

∑m
i=1 ŝi. Thus, s

1/2
i = ŝT

i φ is obtained.

• Arithmetic mean s1/2
i = 1

r

∑r
p=1

√
s

(p)
i .

• Geometric mean s1/2
i =

(∏r
p=1

√
s

(p)
i

)1/r
.

• Root mean square s1/2
i =

√
1
r

∑r
p=1 s

(p)
i .

• Harmonic mean s1/2
i = r

/
r∑
p=1

(
1/
√
s

(p)
i

)
.

We will compare the classification accuracy of each approach for integrating scaling factors in the
numerical experiments.

3.3 Number of prescribed eigenvectors and prescription of the entries

Consider determining a reasonable number r of prescribed eigenvectors v(p) to prevent solving many
eigenvalue problems (13) or a large eigenvalue problem (17). Let K be the number of classes. In
particular, if K = 2, we prescribe only one eigenvector v(p), p = 1, r = 1 in (5), as in [18]. This is
because one eigenvector is sufficient for binary classification if the clusters are well-separated [8].
If K > 2, we split the set of training data samples into r combinations of binary classes with two
options: take r = K or take at least r = dlog2Ke and determine the entries of the eigenvector v(p)

as

v
(p)
i =

{
1 if sample i is in class c, c = 1, 2, . . . ,K,
−b(p) otherwise (18)

for p = 1, 2, . . . , r according to the label information of the training data, where b(p) is a parameter
we discuss how to determine later in this section. Remark that the r-dimensional indicator vector
[v(1)
i , v

(2)
i , . . . , v

(r)
i ] for sample i is uniquely chosen to a label. This is a solution of discrete optimiza-

tion for a binary clustering (3) reduced from multiclass classification. That is, one cluster consists of
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data samples belonging to several classes, and the other clusters consist of data samples belonging
to other classes. The classification accuracy varies depending on the combination of such binary
classifications. By setting r = K, the computational cost for solving (13) or (17) is large, while
the classification accuracy tends to be less sensitive to the choice of combinations. When setting
r as small, the classification accuracy tends to be sensitive and the computational cost for solving
(13) or (17) is small. Hence, there is a trade-off between the cost and sensitivity of classification
accuracy for these approaches.

In the previous SFS with r = 1 in (18), we empirically determined the value of b [18]. In this
study, we found that the values of b(p) in (18) determined by

b(p) =
∑
i:ti>0 d

(p)
i∑

i:ti<0 d
(p)
i

, p = 1, 2, . . . , r (19)

according to the label information of training data X give favorable results, where ti = 1 indicates
that data sample i belongs to a cluster, and ti = −1 indicates that data sample i belongs to another
cluster. The choice of ti = 1 or ti = −1 is flexible in (19) and can be fixed by cross-validation in
practice (see Section 5). Note that the ideal Fiedler vector does not necessarily take such an entry
and is not necessarily unique.

We summarize the procedures of the proposed method in Algorithm 1.

Algorithm 1 Supervised dimensionality reduction method with spectral features scaling
Input: Training data X ∈ Rn×m with n samples and m features, test data Y ∈ RN×m, number of

reduced dimensions `.
Output: Low-dimensional data samples U = [u1,u2, . . . ,u`]T ∈ R`×(N+n).

1: Decide the number of eigenvectors to prescribe r.
2: Compute the parameter b(p) using X and set the eigenvectors v(p), (p = 1, 2, . . . , r).
3: Compute A(p), B(p),α(p),β(p),γ(p), and ρ(p) using (10), (11), and (16).
4: Solve (13) for an eigenvector s(p).
5: Compute the scaling matrix S1/2 from the scaling factors s(p) (Section 3.3).
6: Compute the scaled data matrix Z (6).
7: Compute the similarity matrix W ′ ∈ R(N+n)×(N+n) (7) and D′.
8: Compute the Laplacian matrix L′ = D′ −W ′.
9: Solve L′u = λ′D′u for the eigenvectors u1,u2 . . .u` corresponding to the ` smallest nonzero

eigenvalues.

4 Related methods
In this section, we discuss the difference between the proposed method and previous methods. Many
supervised dimensionality reduction methods, such as LDA and its variants, utilize knowledge from
labels and map given data samples to an optimal low-dimensional space. The objective of these
methods is to find a transformation matrix T to map given data samples X to low-dimensional data
samples U

U = TXT,
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whereas the objective of our method is to generate a scaling matrix S1/2 and modify the scales of
the features of given data samples X as XS1/2 and then map them to low-dimensional data samples
U ′ using a transformation matrix T ′:

U ′ = T ′φ
(
S1/2XT

)
,

where φ : Rm×n → Rm×n is a transformation with a nonlinear kernel function. The methods
in [17, 29] modify the weights among data samples, whereas the proposed method modifies the
scales of features in the original space and uses the same feature scaling factors for all data samples.

5 Numerical experiments
We compare the proposed method (SFS) with previous supervised dimensionality reduction meth-
ods in terms of accuracy by numerical experiments on artificial data and practical datasets and
show that the proposed method outperforms previous methods in some cases, and is more robust
than the previous methods. The previous methods were kernel versions of LDA (KDA) [2, 6] and
LFDA (KLFDA)[25] and LADA [17]. The performance measures used for comparisons were overall
accuracy (OA), average accuracy (AA), and normalized mutual information (NMI) [%] [23]. Here,
OA and AA are defined as

OA =
∑K
i=1 n̂i∑K
i=1 ni

, AA = 1
K

K∑
i=1

n̂i
ni
,

where ni is the number of samples in class i, n̂i is the number of samples classified by a method
to class i, and K is the number of classes. We performed five-fold cross-validation and show the
mean and standard deviation of each performance measure. The reduced dimension ` was chosen
by four-fold cross-validation regarding OA between one to the number of features when the number
of features is smaller than the number of training data samples and between one to the number
of training data samples, otherwise. In SFS, we used the seven nearest neighbors to sparsify the
matrix W ′. We chose optional values of the parameters λ and γ of LADA [29] among 1, 10±1, 10±2,
and 10±3 according to cross-validation. In SFS, we chose the value of ti = 1 or ti = −1 to which
class i is set when using the number of classes as the number of reduced dimensions (Section 3.3),
chose the number of reduced dimension `, and chose the value of ti again. We used the KLFDA
code from the Sugiyama–Sato–Honda Lab site1 and programmed the LADA and KDA codes. All
programs were coded and run in MATLAB 2018a.

5.1 Artificial datasets

In this subsection, we report results on a toy problem consisting of 600 data samples with ten
features. The data samples had three classes, and each class had 200 samples. Figure 1 shows three
of the ten features, where the symbols ◦, M, and � represent data samples in classes 1, 2, and 3,
respectively, and the data samples in each class are normally distributed along a ring. The rings of
class 1 and 2, and those of classes 2 and 3 intersect, respectively. The variances of the first to third
features are 0.35, 2.01, and 0.19, respectively. The remaining seven features are normally distributed
with center zero and variance σ2. We changed the variance σ2 from 1 to 25 in increments of 1. These

1http://www.ms.k.u-tokyo.ac.jp/
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seven features interfere with data sample classification according to the first three features. The
classification of data samples with the reduced dimension was done by logistic regression. Results
for other classifiers are given in the Appendix. In SFS, the number of prescribed eigenvectors v(p)

was set to the number of classes.
Figure 2 shows the performance measures for variances σ2 = 1, 2, . . . , 25 where SFS (one-versus-

all) represents the “one-vs-all” approach [10, p. 658] for the previous SFS for a binary classification
problem. Regarding the performance measures, some of the proposed methods were more accurate
than the previous methods, and KDA was the worst regardless of the variance. SFS (PCA) was the
best when the variance was small, while SFS(arithmetic) and SFS (RMS) were the best when the
variance was large. SFS(RMS), SFS(arithmetic), and LADA tended to be robust against interfering
features. SFS(one-vs-all) was almost as accurate as KDA, and the line was hidden by the KDA line.
LADA was more accurate than KLFDA, though LADA is not kernelized. Among the compared SFS
methods, the RMS approach was most accurate for many values of σ2. The proposed SFS methods
were more accurate than the conventional “one-vs-all” approach for the multiclass classification
problem.

Figure 3 and 4 show the first and second features of the original data in parts (a) and the
two-dimensional data samples reduced by each method in parts (b)–(d) for σ2 = 1 and 25, respec-
tively. LADA and KLFDA failed to enhance the separations of clusters, while the proposed method
separated clusters well.

Figure 5 shows the absolute values of the obtained scaling factors of SFS(RMS) for σ2 = 1 and
σ2 = 25. Because the fourth to tenth features given by random numbers are not involved in the
classification, the values of the scaling factors of these seven features were small. Thus, the values
of the scaling factors indicate which features are effective in the desired classification.

5.2 Real-world datasets

In this section, we report results for five datasets with more features than samples in the real
world from a public repository2. Table 1 gives the numbers of samples, features, and classes of the
datasets. Datasets (a)–(d) are of gene expressions, and dataset (e) is of face images. In SFS, the
number of prescribed eigenvectors was set to the number of classes, and we used RMS to generate
the feature scaling matrix. The classification was done by KNN for k = 1 since it was the best in
the experiment in Section 5.1.

Table 2 gives the mean and standard deviation of the performance measures for each method.
For the colon and lymphoma, the NMI of KDA was Not-a-Number (NaN) because KDA gave the
same label to all test data samples. In all performance measures, SFS (RMS) was the best or second
best for all datasets. KLFDA was the best for warpPIE10P.

6 Conclusions
In this paper, to deal with irregularity or uncertainty in features, we extended previously proposed
feature scaling methods to multiclass classification and proposed a supervised dimensionality re-
duction method that exploits knowledge of labels of training data samples. The proposed method
aggressively modifies the scales of features, and feature scaling can reduce the effects of features that
prevent us from obtaining the desired clusters. To obtain the factors for scaling the features based

2http://featureselection.asu.edu/datasets.php
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Figure 1: Visualization of the artificial data in three dimensions
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Figure 2: Mean of each performance measure vs. variance σ2

(a) Original data (b) LADA (c) KLFDA (d) SFS (RMS)

Figure 3: Test data samples for σ2 = 1 in the original and reduced two-dimensional space

on spectral clustering, we derived matrix eigenproblems whose eigenvectors have the feature scaling
factors and described the procedures for the proposed method. The multiclass extension asks for
more hyperparameters and computational cost. To reduce the number of hyperparameters, we pro-
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(a) Original data (b) LADA (c) KLFDA (d) SFS (RMS)

Figure 4: Test data samples for σ2 = 25 in the original and reduced two-dimensional space

(a) σ2 = 1 (b) σ2 = 25

Figure 5: Values of the scaling factors for (a) σ2 = 1 and (b) σ2 = 25 when using the root mean
square

Table 1: Specifications of datasets

# of samples # of features # of classes
(a) Colon 62 2000 2
(b) CLL_SUB_111 111 11340 3
(c) Lung 203 3312 5
(d) Lymphoma 96 4026 9
(e) WarpPIE10P 210 2420 10

posed an automatic tuning technique based on the formula for discrete optimization to determine
the entries of prescribed eigenvectors. The demanding combinations of entries of prescribed vectors
are related to the number of eigenproblems to solve and can be reduced with a trade-off between
accuracy and computational cost. Numerical experiments showed that feature scaling is effective
when combined with the proposed classification method. For toy problems with more samples than
features, feature scaling improved accuracy and was more robust to interfering features. In terms of
flexibility in merging candidates of scaling factors for each feature, our experimental results indicate
that the RMS approach is preferable in practice. For real-world problems with more features than
samples, the proposed method was more robust than previous methods and outperformed previous
methods in some cases.

12



Table 2: Performance rates (mean% ± std) for real-world datasets

(a) Colon
OA AA NMI

SFS (RMS) 81.76.2 81.38.8 35.119.2
LADA 63.36.7 57.58.3 12.58.0
KLFDA 83.37.5 78.88.5 36.722.2
KDA 66.70.0 50.00.0 NaN

(b) CLL_SUB_111
OA AA NMI

SFS (RMS) 68.25.0 72.78.8 37.32.2
LADA 53.67.3 38.06.5 11.28.3
KLFDA 67.37.8 70.79.3 34.27.9
KDA 50.05.0 35.34.0 15.913.3

(c) Lung
OA AA NMI

SFS (RMS) 94.51.9 85.411.1 85.76.3
LADA 93.53.4 79.413.1 79.810.2
KLFDA 93.02.9 82.010.7 78.78.3
KDA 64.58.7 20.44.4 8.510.0

(d) Lymphoma
OA AA NMI

SFS (RMS) 94.89.2 94.89.2 94.65.2
LADA 60.07.8 42.815.4 62.77.4
KLFDA 90.52.1 80.04.4 90.72.2
KDA 47.40.0 11.10.0 NaN

(e) WarpPIE10P
OA AA NMI

SFS (RMS) 88.62.8 88.92.6 90.32.4
LADA 82.92.8 82.63.2 83.73.0
KLFDA 99.51.0 99.51.0 99.51.0
KDA 23.37.6 8.72.5 24.114.1
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Appendix A. Comparison of classifiers
In Section 5.1, we used logistic regression to classify data samples with reduced dimensions. In fact,
the proposed method is not specialized to a particular classifier, which means we can choose an
arbitrary classifier after the dimensionality reduction. In this appendix, we observe the dependence
of the accuracy on classifiers and compare four classifiers: logistic regression (LR), k-nearest neigh-
bor algorithm (KNN), support vector machine (SVM), and naive Bayes classifier (NB). Among the
proposed methods, we used SFS (RMS) because it performed the best in many cases.

Figure 6 shows the mean OA for each method and each classifier. SFS(RMS) was more accu-
rate than other methods for every classifier. SFS (RMS) with KNN was more accurate than the
other classifiers. The relative positions of the compared methods are the same for all performance
measures.

Figure 7 shows the OA of each method for k = 1, 2, . . . , 50 in the KNN. For k=1, SFS (RMS)
was the best and its OA was 93.7%. The accuracies of the compared methods did not largely depend
on the value of k. The relative positions of the compared methods are also the same for all k in the
KNN.

Figure 6: Mean performance measure (OA) vs.
classifier

Figure 7: Mean of performance measure (OA)
vs. k in the k-NN classifier
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