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Abstract

The accuracy of methods for the assessment of mammographic risk

analysis is heavily related to breast tissue characteristics. Previous work

has demonstrated considerable success in developing an automatic breast

tissue classification methodology which overcomes this difficulty. This pa-

per proposes a unified approach for the application of a number of rough

and fuzzy-rough set methods to the analysis of mammographic data. In-

deed this is the first time that fuzzy-rough approaches have been applied

to this particular problem domain. In the unified approach detailed here

feature selection methods are employed for dimensionality reduction de-

veloped using rough sets and fuzzy-rough sets. A number of classifiers

are then used to examine the data reduced by the feature selection ap-

proaches and assess the positive impact of these methods on classification

accuracy. Additionally, this paper also proposes a new fuzzy-rough classi-

fier based on the nearest neighbour classification algorithm. The novel use
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of such an approach demonstrates its efficiency in improving classification

accuracy for mammographic data, as well as considerably removing redun-

dant, irrelevant, and noisy features. This is supported with experimental

application to two well-known datasets. The overall result of employing

the proposed unified approach is that feature selection can identify only

those features which require extraction. This can have the positive effect

of increasing the risk assessment accuracy rate whilst additionally reduc-

ing the time required for expert scrutiny, which in-turn means the risk

analysis process is potentially quicker and involves less screening.

Keywords: Fuzzy-rough sets, Rough sets, Feature selection, Classifica-

tion, Mammographic risk assessment.

1 Introduction

Breast cancer is a major health issue, and the most common amongst women in

the EU. It is estimated that 8–13% of all women will develop breast cancer at

some point during their lives [6], [16]. Furthermore, in the EU and US, breast

cancer is recognised as the leading cause of death of women in their 40s [6],

[7], [16]. Although increased incidence of breast cancer has been recorded, so

too has the level of early detection through the screening of potential occurence

using mammographic imaging and expert opinion. However, even expert radi-

ologists can sometimes fail to detect a significant proportion of mammographic

abnormalities. In addition, a large number of detected abnormalities are usually

discovered to be benign following medical investigation.
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Existing mammographic Computer Aided Diagnosis (CAD) systems [21, 32]

concentrate on the detection and classification of mammographic abnormali-

ties. As breast tissue density increases however, the effectiveness of such sys-

tems in detecting mammographic abnormalities is reduced significantly. Also,

it is known that there is a strong correlation between mammographic breast

tissue density and the risk of development of breast cancer. Automatic clas-

sification which has the ability to consider tissue density when searching for

mammographic abnormalities is therefore highly desirable.

This paper presents two novel ideas. The first is a unified approach which

employs a number of rough and fuzzy-rough approaches to deal with mam-

mographic data. In particular, this method considers each step from feature

extraction through to data classification, although this paper focuses primarily

on the latter two steps. The second idea is a new nearest-neighbour classifier

based on fuzzy-rough sets which is one of a number of fuzzy-rough classifier com-

ponents that can be ’plugged-into’ the previously described unified approach.

The use of the unified approach results in a reduction in the number of mislead-

ing or redundant image features and the new classifier demonstrates improved

classification accuracy.

The remainder of the paper is structured as follows. An overview of related

work is presented in section 2, this forms the basis for the work demonstrated

later in the paper. A unified fuzzy-rough framework is proposed in section

3 along with an examination of the methods employed in the dimensionality

reduction, and classification phases. In section 4, the new fuzzy-rough nearest
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neighbour (FRNN) classification algorithm is introduced, and a worked example

is presented. Section 5 demonstrates the application of a number of classifiers

including the fuzzy-rough nearest neighbours (FRNN) approach, to two mam-

mographic datasets. Additionally, the experimental setup is discussed in this

section, and comparative results are presented for a number of dimensional-

ity reduction and classifier approaches within the framework presented earlier.

Section 6 concludes the paper with a short discussion of future work.

2 Background

It is important to emphasise that the problem under consideration in this pa-

per is mammographic risk analysis rather than mammographic diagnosis from

images, an area where many publications have been written with respect to the

application of machine learning techniques [1], [5], [18], [35]. Mammographic

risk analysis, involves the extraction of mammographic breast density informa-

tion from images which is then used to assess how likely a woman is to develop

breast cancer. The basic steps involved are outlined in Fig.1, with detailed

background described in [30]. The initial stages involve the segmentation and

filtering of the mammographic images: all mammograms are pre-processed to

identify the breast region and remove image background, labels, and pectoral

muscle areas. This segmentation step results in a very minor loss of skin-line

pixels in the breast area, however these pixels are not required for tissue esti-

mation.

Then, a feature extraction step is performed, where the fuzzy c-means (FCM)
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algorithm [4] is employed which results in the division of the breast into two

clusters. A co-occurrence matrix (which is essentially a 2D histogram) is then

used to derive a feature set which results in 10 features to describe morphological

characteristics and 216 for the texture information (226 total). This feature set

is then labelled using the consensus opinion of 3 experts to manually assign a

label to each actual mammographic image using the BIRADS [2] classification.

This consensus is determined where the classification for a given mammogram,

which two or three radiologists agreed upon (majority vote) is selected as the

‘consensus class’. If all experts classified a single mammogram differently, the

median value is chosen as consensus opinion. The divergence in the opinion

of the experts, is a major factor which often frustrates the use of automatic

methods. This highlights the need to remove inter-observer (inter-operator)

variability through the development of more autonomous approaches.

The approach outlined in Fig.1 is used as a starting point for the unified

approach which is proposed in this paper where the existing classification step

is replaced with a dimensionality reduction phase and a classification phase.

The existing extracted feature set is used, as is the consensus expert labelling

of the data.

3 Unified Fuzzy-Rough Approach

A unified framework such as that shown in Fig.2 is adopted to simplify the way

in which knowledge can be efficiently learned from the (mammographic) training

data, and therefore applied to real-world risk assessment problems. In this work,
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the focus lies in the implementation of rough and fuzzy-rough techniques for

the dimensionality reduction and classifier learner steps. The approach for the

feature extraction step employed in this paper is documented in [30], however

there is no reason why future work could not include a fuzzy-rough method to

accomplish this in an effort to unify the underlying mathematical approach (see

conclusion for further discussion).

Efficient, and in particular accurate classification of mammographic imaging

is of high importance. Any improvement in accuracy for automatic mammo-

graphic classification systems can result in a reduction in the amount of required

expert analysis thus improving the time taken to perform breast tissue risk as-

sessment. The data in mammographic imaging is real-valued and as mentioned

previously can be noisy. Clearly, any classifier employed must therefore have the

ability to deal with such data. Discrete methods require that the real-valued

data is discretised and thus result in information loss, however the methods

described in this paper require no discretisation and use only the information

contained within the data. The following sections describe the fuzzy-rough di-

mensionality and classification methods which are used within the proposed

unified framework.

3.1 Dimensionality Reduction

In this work, feature selection (FS) is utilised as the dimensionality reduction

technique. This allows the identification of a minimal feature subset from a

problem domain while retaining both a suitably high accuracy and the semantics

entailed by the original features. In many real world problems, FS is necessary
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due to the level of noisy, irrelevant or misleading features. By removing these

factors, techniques for learning from data can benefit greatly. A detailed review

of FS techniques devised for classification tasks can be found in [12], [24], [27],

and [28]. The focus of this paper however lies in the implementation of FS

techniques which are based exclusively on rough sets and fuzzy rough sets.

The work on rough set theory (RST) [31], offers a formal methodology that

can be employed to reduce the dimensionality of datasets, as a preprocessing

step to assist any chosen modeling method for learning from data. It assists in

identifying and selecting the most information-rich features in a dataset. This

is achieved without transforming the data, whilst simultaneously attempting

to minimise information loss during the selection process. In terms of com-

putational effort, this approach is highly efficient, as it is based on simple set

operations. This makes it suitable as a preprocessor for techniques that are

much more complex. In contrast to statistical correlation-reduction approaches

[13], RST requires no human input or domain knowledge other than the given

datasets. Perhaps most importantly though, it retains the underlying semantics

of the data, which results in data models that are more transparent to human

scrutiny.

At the heart of the rough set approach is the concept of indiscernibility. Let

I = (U, A) be an information system, where U is a non-empty set of finite objects

(the universe) and A is a non-empty finite set of attributes so that a : U → Va

for every a ∈ A. Va is the set of values that a can take. For any P ⊆ A, there

exists an associated equivalence relation IND(P ):
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IND(P ) = {(x, y) ∈ U
2 | ∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denoted U/IND(P ) or abbreviated

to U/P and is calculated as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})} (2)

where,

U/IND({a}) = {{x | a(x) = b, x ∈ U} | b ∈ Va} (3)

and,

A⊗B = {X ∩ Y | ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= ∅} (4)

where A and B are families of sets.

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P .

The equivalence classes of the P-indiscernibility relation are denoted [x]P . Let

X ⊆ U. X can be approximated using only the information contained in P by

constructing the P-lower and P-upper approximations of X:

PX = {x | [x]P ⊆ X} (5)

PX = {x | [x]P ∩X 6= ∅} (6)
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Let P and Q be attribute sets that induce equivalence relations over U, then

the positive, negative and boundary regions can be defined:

POSP (Q) =
⋃

X∈U/Q

PX (7)

NEGP (Q) = U−
⋃

X∈U/Q

PX (8)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (9)

By employing this definition of the positive region it is possible to calculate

the rough set degree of dependency of a set of attributes Q on a set of attributes

P . This can be achieved as follows: for P , Q ⊆ A, it can be said that Q depends

on P in a degree k (0 ≤ k ≤ 1), this is denoted (P ⇒k Q) if:

k = γP (Q) =
| POSP (Q) |

| U |
(10)

The reduction of attributes or selection of survival features can be realised

through the comparison of equivalence relations generated by sets of attributes.

Attributes are removed such that the reduced set provides identical predictive

capability of the decision feature or features as that of the original or unreduced

set of features.

The QuickReduct algorithm [10] shown in Fig. 3 searches for a minimal

subset without exhaustively generating all possible subsets. The search begins

with an empty subset, attributes which result in the greatest increase in the

rough set dependency value are added iteratively. This process continues until
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the search produces its maximum possible dependency value for that dataset

(γC(D)). Note that this type of hill-climbing search does not guarantee a mini-

mal subset and may only discover a local minimum.

3.2 Rough and fuzzy-rough feature selection

Unfortunately, one of the main disadvantages of the classical rough set method-

ology is its inability to deal with real-valued data unless the data is discretised

which can result in information loss. One particular extension which has been

proposed to address this shortcoming is the tolerance rough set model (TRSM)

[38]. other extensions such as variable precision rough sets (VPRS) [45] deal

with misclassification of objects rather than real-valued data.

This paper utilises two approaches: one which is rough set-based and another

which is based on fuzzy-rough sets, both of which have the ability to deal with

real-valued data. The first approach implements a version of tolerance rough

sets [38] which also takes advantage of the information in the boundary region

or region of uncertainty [29]. The second utilises fuzzy-rough sets [14] which

extend the rough set approach outlined previously.

Unlike the classical rough set methodology TRSM employs a similarity rela-

tion to minimise data as opposed to the indiscernibility relation, thus allowing

a degree of ‘fuzziness’. This allows a relaxation in the way equivalence classes

are considered. This flexibility allows a blurring of the boundaries of the former

rough or crisp equivalence classes and objects may now belong to more than

one tolerance class. Suitable similarity relations must be defined for each fea-

ture, although a common definition can be used for all features if applicable. A
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standard measure for this purpose, given in [38], is:

SIMa(x, y) = 1−
| a(x)− a(y) |

| amax − amin |
(11)

where a is a considered feature, and amax and amin denote the maximum and

minimum values of a respectively.

When considering the case where there is more than one feature, the defined

similarities must be combined to provide an overall measure of similarity of

objects. For a subset of features, P , this can be achieved in many ways including

the following approaches:

(x, y) ∈ SIMP,τ ⇐⇒
∏

a∈P

SIMa(x, y) ≥ τ (12)

(x, y) ∈ SIMP,τ ⇐⇒

∑

a∈P SIMa(x, y)

| P |
≥ τ (13)

where τ is a global similarity threshold and determines the required level of

similarity for inclusion within a tolerance class. This framework allows for the

specific case of traditional rough sets by defining a suitable similarity measure

(e.g. complete equality of features and the use of equation (12)) and threshold

(τ = 1). An algorithm can be formulated which uses this framework to search

for subsets in the same way that the classical rough set QuickReduct does.

Further detail of this approach can be found in [29].

The requirement of rough set theory to rely on discrete data implies an

objectivity in the data that is simply not present. For example, consider an
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attribute Blood Pressure in a medical dataset. In the real world, this is a real-

valued measurement but for the purposes of RST must be discretized into a

small set of labels such as Normal, High, etc. Subjective judgments are therefore

required to establish boundaries for objective measurements.

A more appropriate way of handling this problem is the use of fuzzy-rough

sets [14]. Subjective judgments are not entirely removed as fuzzy set mem-

bership functions still need to be defined. However, the method offers a high

degree of flexibility when dealing with real-valued data, enabling the vagueness

and imprecision present to be modelled effectively.

Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness

(for fuzzy sets) and indiscernibility (for rough sets), both of which occur as a

result of uncertainty in knowledge. Vagueness arises due to a lack of distinction

or hard boundaries in the data itself. This is typical of human communication

and reasoning. Rough sets can be said to model ambiguity resulting from a lack

of information through set approximations.

Definitions for the fuzzy lower and upper approximations can be found in

[34], where a T -transitive fuzzy similarity relation is used to approximate a fuzzy

concept X:

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (14)

µRP X(x) = sup
y∈U

T (µRP
(x, y), µX(y)) (15)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy similarity relation

induced by the subset of features P :

µRP
(x, y) = Ta∈P {µRa

(x, y)} (16)
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µRa
(x, y) is the degree to which objects x and y are similar for feature a, and

may be defined in many ways, for example:

µRa
(x, y) = 1−

|a(x)− a(y)|

|amax − amin|
(17)

µRa
(x, y) = exp(−

(a(x)− a(y))2

2σa
2

) (18)

µRa
(x, y) = max(min(

(a(y)− (a(x)− σa))

(a(x)− (a(x)− σa))
,

((a(x) + σa)− a(y))

((a(x) + σa)− a(x))
, 0) (19)

where σa
2 is the variance of feature a. As these relations do not necessarily

display T -transitivity, the fuzzy transitive closure can be computed for each

attribute.

In a similar way to the original crisp rough set approach, the fuzzy positive

region [23] can be defined as:

µPOSRP
(D)(x) = sup

X∈U/D

µRP X(x) (20)

An important issue in data analysis is the discovery of dependencies between

attributes. This is of particular significance for feature selection and pattern

classification. The fuzzy-rough dependency degree of D on the attribute subset

P can be defined as:

γ′
P (D) =

∑

x∈U

µPOSRP
(D)(x)

|U|
(21)

A fuzzy-rough reduct R is defined as a subset of features which preserves

the dependency degree of the entire dataset, i.e. γ′
R(D) = γ′

C
(D). Based on this,

a fuzzy-rough QuickReduct algorithm can be constructed that uses equation
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(21) as shown in to gauge subset quality when searching for a minimal reduct.

It is this algorithm which is used in this paper to generate reducts for mammo-

graphic data.

3.3 Classifier Learning

The work presented here addresses the classification of mammographic imaging.

This requires the learning of the classifier employed in the overall system (see

Fig.2). A number of existing classifiers as well as a new hybrid fuzzy-rough

classifier are examined. These include: FNN [26], a fuzzy version of the well-

known kNN algorithm [15]; FRNN-O a fuzzy-rough ownership function based

classifier [36, 41]; and VQNN a nearest neighbour (NN) classifier based on the

vaguely quantified rough set model [11].

In the previous approach [30] shown in Fig.1, conventional crisp classifier

learners were employed for the classification of the mammographic data – kNN,

C4.5 [33], and a combined Bayesian estimation approach type classifier [15]. In

this paper a number of hybrid fuzzy set and rough set-based classifiers have

been employed to classify the mammographic data. Each classifier algorithm is

discussed in further detail in this section.

The kNN algorithm assigns a test object to the decision class most common

among its ‘k nearest neighbours’, i.e., the k training objects that are closest to

the test object. An extension of the kNN algorithm to fuzzy set theory (FNN)

was introduced in [26]. It allows partial membership of an object to different

classes, and also takes into account the relative importance (proximity) of each

neighbour with respect to the test instance. However, as correctly argued in [36],
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the FNN algorithm has problems dealing adequately with insufficient knowledge.

In particular, when every training pattern is far removed from the test object,

and hence there are no suitable neighbours, the algorithm is still forced to make

clear-cut predictions. This is because the sum of the predicted membership

degrees to the various decision classes is always required to be equal to 1.

For the purposes of FNN, the extent to which an unclassified object y belongs

to class X is defined as:

µX(y) =
∑

x∈N

µR(x, y)µX(x) (22)

where N is the set of object y’s k-nearest neighbours and µR(x, y) is the fuzzy

similarity of y and object x. In the traditional fuzzy kNN approach, this is

defined in the following way:

µR(x, y) =
||y − x||−2/(m−1)

∑

j∈N ||y − j||−2/(m−1)
(23)

where || · || denotes the Euclidean norm, and m is a parameter that controls

the overall weighting of this fuzzy similarity. The FNN algorithm employs these

definitions to determine the extent to which an object y belongs to each class,

typically classifying y to the class with the highest resulting membership. The

complexity of this algorithm for the classification of one test pattern is O(|U|+

k · |C|),

Initial attempts to combine the FNN algorithm with concepts from fuzzy

rough set theory were presented in [36, 41] (here denoted FRNN-O). In these

papers, a fuzzy-rough ownership function is constructed that attempts to han-

dle both “fuzzy uncertainty” (caused by overlapping classes) and “rough uncer-
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tainty” (caused by insufficient knowledge, i.e. attributes, about the objects).

All training objects influence the ownership function, and hence no decision is

required as to the number of neighbours to consider, although there are other

parameters that must be defined for its successful operation.

Note that the approach does not use fuzzy lower or upper approximations

to determine class membership unlike the method proposed in this paper. The

fuzzy-rough ownership function was defined as:

τX(y) =

∑

x∈U
µR(x, y)µX(x)

|U|
(24)

This can be modified to consider only the k nearest neighbours as follows:

τX(y) =

∑

x∈N µR(x, y)µX(x)

|N |
(25)

where N is the set of object y’s k-nearest neighbours. When k = |U| the

original definition is obtained as illustrated in eqn. (25). The fuzzy similarity

is determined by

µR(x, y) = exp(−
∑

a∈C

κa(a(y)− a(x))2/(m−1)) (26)

where m controls the weighting of the similarity (as in FNN) and κa is a pa-

rameter that decides the bandwidth of the membership, defined as

κa =
|U|

2
∑

x∈U
||a(y)− a(x)||2/(m−1)

(27)

For FRNN-O, initially a parameter κa is calculated for each attribute and

all memberships of decision classes for test object y are set to zero. Next, the

16



weighted distance of y from all objects in the universe is computed and used

to update the class memberships of y via eqn. (24). Finally, when all training

objects have been considered, the algorithm outputs the class with the highest

membership. The complexity of the algorithm is O(|C||U| + |U| · (|C| + |C|)).

This method still requires a choice of parameter m, which plays a similar role

to that in FNN.

Equations (14) and (15) have been conceived with the purpose of conserving

the traditional lower and upper approximations in mind. Indeed, when X and

RP are both crisp, it can be verified that the original crisp rough set definitions

are recovered. Note in particular how the inf and sup operations play the same

role as the ∀ and ∃ quantifiers of the classical rough sets approach, and how a

change in a single element can thus have a large impact on (14) and (15). This

makes fuzzy-rough sets equally susceptible to noisy data (which is difficult to

rule out in real-life applications) as their crisp counterparts.

To make up for this shortcoming, the work in [11] proposed to soften the

universal and existential quantifier by means of vague quantifiers like most and

some. Mathematically, the vague quantifiers were modeled in terms of Zadeh’s

notion of a regularly increasing fuzzy quantifier Q: an increasing [0, 1] → [0, 1]

mapping that satisfies the boundary conditions Q(0) = 0 and Q(1) = 1.

Examples of fuzzy quantifiers can be generated by means of the following
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parametrised formula, for 0 ≤ α < β ≤ 1, and x in [0, 1],

Q(α,β)(x) =



















0, x ≤ α
2(x−α)2

(β−α)2 , α ≤ x ≤ α+β
2

1− 2(x−β)2

(β−α)2 , α+β
2 ≤ x ≤ β

1, β ≤ x

(28)

For instance, Q(0.1,0.6) and Q(0.2,1) might be used respectively to reflect the

vague quantifiers some and most from natural language.

Once a couple (Ql, Qu) of fuzzy quantifiers is fixed, the Ql-upper and Qu-

lower approximation of a fuzzy set A under a fuzzy relation R are defined by

µQu

RP X(y) = Qu

(

|RP y ∩X|

|RP y|

)

(29)

µQl

RP X
(y) = Ql

(

|RP y ∩X|

|RP y|

)

(30)

for all y in U. In other words, an element y belongs to the lower approximation

of X if most of the elements related to y are included in X. Likewise, an element

belongs to the upper approximation of X if some of the elements related to y

are included in X. Notice that when X and RP are a crisp set and a crisp

equivalence relation respectively, the approximations may still be non-crisp.

The algorithm given in Fig. 4 can be adapted to perform VQRS-based

nearest neighbours (VQNN) classification by replacing µRP X(y) and µRP X(y)

with µQu

RP X(y) and µQl

RP X
(y). The computational complexity of this approach is

similar to that of classical rough set approach.

4 Fuzzy-Rough Nearest Neighbours

This section concentrates on the description of the novel fuzzy-rough nearest

neighbour algorithm. The need for such a new classification technique arises
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from the fact that although the FRNN-O algorithm proposed in [36] uses a fuzzy-

rough framework, no use is made of the fuzzy upper and lower approximations

to determine class membership. This has prompted the development of an

approach which was built upon the existing fuzzy-rough techniques which had

been applied successfully to the feature selection problem [23]. As both the FS

problem and the classification problem are similar is many ways, the motivation

was therefore quite clear.

The intuitive basis for the approach is that the lower and the upper approx-

imation of a decision class, calculated by means of the nearest neighbours of a

test object y, provide good clues to predict the membership of the test object

to that class. Thus, by calculating the upper and lower approximation of a

given decision class these can be employed as a metric for the test object in

determining class membership.

4.1 FRNN Algorithm

The membership of a test object y to each (crisp or fuzzy) decision class is

determined via the calculation of the fuzzy lower and upper approximation.

The algorithm outputs the decision class with the resulting best fuzzy lower

and upper approximation memberships. More specifically, if the membership of

y to the fuzzy lower approximation of class C is high, it means that all of y′s

neighbours belong to class C, while a high membership value of the fuzzy upper

approximation of C indicates that at least one neighbour or neighbours belong

to that class. The algorithm iterates through all of class concepts (X) in the

training data. The decision class which results in the highest upper and lower
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approximation membership values is assigned to the test object.The complexity

of the algorithm is O(|C| · (2|U|)).

Although the parameter k (number of nearest neighbours to consider) is not

required, it can be incorporated into the algorithm by replacing line (2) with

“N ← getNearestNeighbours (y, k)”. As µRP
(x, y) becomes smaller, x tends to

have only a minor influence on µRP X(y) and µRP X(y).

The algorithm works by examining each of the classes in the training data

in-turn. It computes the membership of a test object to the fuzzy upper and

lower approximations. These values are then compared with the highest exist-

ing values µ1(y) and µ1(y). If the approximation membership values for the

currently considered class are higher, then both µ1(y) and µ1(y) are assigned

these values and the class label is assigned to this test object. If not, the algo-

rithm continue to iterate through all remaining decision classes. Classification

accuracy is calculated by comparing the output with the actual class labels of

the test objects.

4.2 Worked example

In order to demonstrate the application of the algorithm, a small worked exam-

ple is presented. This example employs a dataset with 3 real-valued conditional

attributes (a,b, and c) and a single crisp discrete-valued decision attribute (q)

as the training data, shown in Table 1. A further dataset shown in Table 2 con-

taining 2 objects is used as the test data to be classified, again with the same

number of conditional and decision attributes.

Referring to the FRNN algorithm described in the previous section, the first
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Object a b c q
1 −0.4 −0.3 −0.5 yes
2 −0.4 0.2 −0.1 no
3 0.2 −0.3 0 no
4 0.2 0 0 yes

Table 1: Example training data

Object a b c q
t1 0.3 −0.3 0 no
t2 −0.3 −0.4 −0.3 yes

Table 2: Example test data

step is to calculate the fuzzy upper and lower approximations for all decision

classes. In Table 1 there are 4 objects and as noted previously a decision at-

tribute which has 2 classes ({yes}, and {no}).

Using the fuzzy similarity measure as defined in (17) the similarity of each

test object is compared to all of the objects in the training data. For instance,

consider the training object t1:

µR{P}(t1, 1) = T (µR{a}(t1, 1), µR{b}(t1, 1), µR{c}(t1, 1)) = 0

µR{P}(t1, 2) = T (µR{a}(t1, 2), µR{b}(t1, 2), µR{c}(t1, 2)) = 0.16

µR{P}(t1, 3) = T (µR{a}(t1, 3), µR{b}(t1, 3), µR{c}(t1, 3)) = 0.83

µR{P}(t1, 4) = T (µR{a}(t1, 4), µR{b}(t1, 4), µR{c}(t1, 4)) = 0.40

These similarity values can then be used to generate the lower and upper ap-

proximations. Note that the fuzzy connectives chosen for this example are

the Lukasiewicz t-norm (max(x + y − 1, 0)), and Lukasiewicz fuzzy implicator
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(min(1− x + y), 1).

For the decision concept X = yes these are:

µRP
X(t1) = inf

y∈U

{I(µRP
(t1, y), µX(y)}

= inf{I(0, 1), I(0.16, 0), I(0.83, 0), I(0.4, 1)} = 0.14

and,

µRP
X(t1) = sup

y∈U

{I(µRP
(t1, y), µX(y)}

= sup{T (0, 1), T (0.16, 0), T (0.83, 0), T (0.4, 1)} = 0.84

Similarly for the decision concept X = no:

µRP
X(t1) = inf{I(0, 0), I(0.16, 1), I(0.83, 1), I(0.4, 0)} = 0.16

µRP
X(t1) = sup{T (0, 0), T (0.16, 1), T (0.83, 1), T (0.4, 0)} = 0.86

With reference once again to the FRNN algorithm in Fig.4, it can be seen

that the upper and lower approximation membership values for test object t1 for

the class label X = no are higher than those for when X = yes. The algorithm

will therefore classify t1 as belonging to the class X = no. The procedure can be
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repeated for training object t2 which results in upper and lower approximation

values for X = no:

µRP
X(t2) = inf{I(0.6, 1), I(0.6, 0), I(0.17, 0), I(0.17, 1)} = 0.4

µRP
X(t2) = sup{T (0.6, 1), T (0.6, 0), T (0.17, 0), T (0.17, 1)} = 0.6

And, X = yes:

µRP
X(t2) = inf{I(0.6, 0), I(0.6, 1), I(0.17, 1), I(0.17, 0)} = 0.4

µRP
X(t2) = sup{T (0.6, 0), T (0.6, 1), T (0.17, 1), T (0.17, 0)} = 0.6

In this case, both upper and lower approximation membership values for

each of the classes X = no and X = yes are identical. However because of line

6 of the FRNN algorithm, t2 will be classified as belonging to X = yes.

5 Experimentation

In this section the results of applying the previously described classifiers and FS

preprocessors are presented. Initially the classifiers are applied to the unreduced

extracted feature data - i.e. data on which FS has not been performed, see

Fig.5. Classification is then performed on data which has been reduced by two

previously described FS preprocessors DMTRS [29], and FRFS [23].
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The results are then assessed for both FS methods used in conjunction with

each of the individual classifiers. Additionally the results obtained in this paper

are briefly compared with those reported in [30].

5.1 Experimental Setup

The are two datasets considered in this paper, and both are available in the pub-

lic domain: the Mammographic Image Analysis Society (MIAS) database [39],

and the Digital Database of Screening Mammography (DDSM) [19]. The MIAS

dataset is composed of Medio-Lateral-Oblique (MLO) left and right mammo-

grams from 161 women (322 objects). Each mammogram object is represented

by 281 features extracted using the process detailed in [30]. The spatial resolu-

tion of the images is 50µm× 50µm and quantized to 8 bits with a linear optical

density in the range 0− 3.2.

The DDSM database provides four mammograms, comprising left and right

Medio-Lateral-Oblique (MLO) and left and right Cranio-Caudal (CC) views, for

most women. To avoid bias only the right MLO mammogram for each woman

is selected. The dataset contains 832 mammograms (objects) and again 281

features obtained in the same manner as those for the MIAS dataset above.

The class labels for each mammogram are assigned by three experts consen-

sus opinion as described previously in section 2. There are four discrete labels

ranging from 1 to 4 relating to the BIRADS classification [2], where 1 represents

a breast that is entirely fatty and 4 represents a breast that is extremely dense.

For the FRFS preprocessor the fuzzy similarity employed is defined in eqn.(19)

along with the  Lukasiewicz t-norm (max(x+y−1, 0)) and the  Lukasiewicz fuzzy
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implicator (min(1 − x + y, 1)). It has been shown that these work particularly

well when used for fuzzy-rough feature selection [23].

The DM-TRS preprocessor used 4 different tolerance values (τ) – 0.97 and

0.98 for the MIAS dataset, while for the DDSM dataset the values 0.98 and

0.99 were chosen. These were the values that empirically demonstrated the best

level of dimensionality reduction for each of the datasets respectively.

For each of the classifier learners the value of k is initialised as 30 and then

decremented by 1 each time, resulting in 30 experiments for each dataset. Such

a wide range of values for k ensures a comprehensive exploration and comparison

of each of the classifiers. Cross validation of 10×10-fold cross-validation (10-fold

CV) is performed for each experiment. Note that the k parameter is essential

only for FNN and FRNN-O and is not required for the other classifier learners.

However, for ease of comparison, the other approaches have been adapted such

that a k value can be specified. This is achieved by calculating the test objects

k nearest neighbours rather than using all of the objects in the training set.

For FNN and FRNN-O, m is set to 2. The VQNN approach was implemented

using the commonly adopted Ql = Q(0.1,0.6) and Qu = Q(0.2,1.0), according to

the general formula in equation (28).

For the new classifier approach, although there are no parameters to tune,

decisions about which fuzzy relations and implicators must still be made. For

the purpose of the experimentation documented in this paper, the fuzzy relation

given in eqn. (17) was chosen for simplicity. In the FRNN approach, the min

t-norm and the Kleene-Dienes implicator I (defined by I(x, y) = max(1−x, y))
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were used.

Initially, the three classification techniques described previously as well as the

new FRNN technique are applied to the unreduced datasets and some results

are then generated. The dimensionality of the data is then reduced and a

summary of the average classification values achieved for each FS method is

used to compare the methods.

5.2 Unreduced data

The classification accuracy results for the unreduced data are presented in this

section. This was achieved by applying each of the four classifiers to both

of the datasets which gives a background against which to make subsequent

comparative studies.

Considering the classification accuracy results illustrated in Fig. 6, it can

be seen that there is little variation in the performance for the MIAS dataset.

The FRNN-O approach seems to have a slight advantage, however this is only

in the order of 2-6% for all values of k. The results for the DDSM dataset

tell a slightly different story with VQNN achieving a small but clear advantage.

FNN also appears to marginally outperform FRNN, and FRNN-O methods

follow a similar trend to that of VQNN. Generally, as the number of objects

in the dataset increases, so too does the potential for measurement noise. The

noise-tolerant characteristics of VQNN and the fact that the DDSM dataset has

many more objects than the MIAS dataset may explain why VQNN performs

particularly well in this case.

It is important to note at this point that the levels of performance shown
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for the FRNN approach are of little importance in this section as the data prior

to reduction with FS contains much redundancy, irrelevance, and noise.

5.3 Reduced Data

In this section the results of classifying the MIAS and DDSM datasets following

feature selection are presented. Classification accuracy results are provided

for both DMTRS and FRFS, again using both 10-fold CV. In Table 3, the

subset sizes obtained following FS are presented. It is interesting to note that a

substantial level of dimensionality reduction is achieved for both approaches. A

reduction of 97.15% and 97.5% were achieved for the MIAS dataset, while the

DDSM dataset (Table 4) achieved 97.15%, and 98.22%.

Orig No. DMTRS DMTRS FRFS
of feats (τ=0.97) (τ=0.98)

281 8 7 7

Table 3: Subset sizes - MIAS dataset after FS

Orig No. DMTRS DMTRS FRFS
of feats. (τ=0.98) (τ=0.99)

281 8 5 8

Table 4: Subset sizes - DDSM dataset after FS

The results presented here illustrate the classification accuracies obtained

when using DMTRS as a FS preprocessing step. There are a total of four

diagrams (Fig. 7 and 8), two of which represent the tolerance values for the

MIAS dataset (0.97 and 0.98), and the remaining two represent the values for

the DDSM dataset (0.98 and 0.99).
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The results shown in Fig. 9 are those obtained when applying the classifiers

to the data following the application of FRFS to reduce the data.

Perhaps the most obvious aspect of the results demonstrated here is the in-

crease in classification accuracy for all classifiers following the use of FS. The

advantages of applying FS are manifold, however in this case the level of dimen-

sionality reduction and the aforementioned increase in classification accuracy

are borne out in Figs. 7–9.

5.4 Comparative Investigation I: classifying unreduced data

As clearly demonstrated in Figs. 7–9 employing either method for FS results in

a significant increase in classification accuracy. Importantly, the newly proposed

FRNN technique performs best for both the MIAS and DDSM datasets, with

the VQNN approach closely mirroring the performance of FNN. FRNN-O also

seems to show similar accuracy for some values of k to FRNN but fails to do so

consistently.

Figs. 7 – 9 present the classification accuracy results following the appli-

cation of both the FRFS and DMTRS feature selection pre-processors. What

is most noticeable about these results is the overall increase in classification

accuracy when FS has been employed. This not only highlights the level of

redundant features in the original (unreduced) dataset, but also the ability of

fuzzy-rough FS methods to reduce the data dimensionality considerably.

For ease of comparison, the classification results of figs.7–9 have been sum-

marised in Tables 5 and 6. Note that this summary is of average classification

accuracy values. It is interesting that the subset sizes obtained for each FS ap-
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proach. For example in Table II, the DMTRS approach achieves a subset sizes

of 7 and 8 for the MIAS dataset. In Table 5, it can be seen that there is little

difference in average classification accuracy between each of the tolerance values

for DMTRS. Similarly, FRFS produces average classification results which are

comparable with those of DMTRS for all classifiers. For the DDSM dataset how-

ever the DMTRS method manages better classification accuracies than FRFS

for τ=0.98 for all classifiers except FRNN-O. Indeed the standard deviation

values for this DMTRS subset is also lower than that achieved by FRFS. For

the subset selected when τ=0.99, which is of size 5 compared to that of FRFS

which is 8, there is little to separate FRFS and DMTRS in terms of average

classification accuracy despite the greater level of dimensionality reduction.

Classifier FRFS st.dev DMTRS st.dev DMTRS st.dev
(τ = 0.97) (τ = 0.98)

FRNN 86.99 6.85 86.69 7.16 86.30 7.07
FNN 75.78 8.65 71.18 10.13 71.61 10.03

FRNN-O 82.21 7.42 75.77 8.77 75.78 8.53
VQNN 76.85 8.34 80.85 8.10 80.75 7.98

Table 5: MIAS - Average classification accuracy, and standard deviation results

Classifier FRFS st.dev DMTRS st.dev DMTRS st.dev
(τ = 0.98) (τ = 0.99)

FRNN 82.60 7.98 84.85 6.75 84.52 7.36
FNN 72.98 9.43 74.07 8.83 72.08 10.29

FRNN-O 81.14 8.69 77.39 7.67 74.14 9.44
VQNN 72.81 9.13 77.05 8.08 75.20 9.13

Table 6: DDSM - Average classification accuracy, and standard deviation

29



5.5 Comparative Investigation II: comparison with cur-

rent state-of-the-art

When comparing the results obtained for this paper with those of [30], which rep-

resents the current state-of-the-art in automated mammographic breast density

classification, it is clear that there is a significant improvement in classification

accuracy. In [30], for the MIAS dataset classification rates of 77%, 72%, and 86%

are achieved respectively for each of the classifier learners employed - namely

SFS+kNN, C4.5, and a Bayesian classifier (although this is an approach which

combines the previous two methods). Leave-one-out cross validation (LOOCV)

is employed for cross validation in the paper in question, and k=7, for the kNN

classifier. Additionally, the SFS+kNN approach employs a ‘wrapper’ type FS

approach to select a subset of size 9 for MIAS and 9 also for the DDSM data.

Both DMTRS and FRFS feature selection approaches achieve results of 8 and

7 for MIAS and 5 and 8 for DDSM. Both of these approaches find smaller subset

sizes when compared to the approach noted above whilst simultaneously leading

to a significant increase in both average classification accuracy values albeit

using 10-fold CV - see Fig. 7 - 9 . As demonstrated previously, more optimum

values can be achieved for individual values of k (Figs. 7 - 9) rather than

considering only those average classification accuracy results. Preliminary work

which employs LOOCV also demonstrates that the unified approach adopted

in this paper achieves results similar to those for 10-fold CV documented here,

however such a comprehensive investigation is beyond the scope of this paper.

Both FS techniques employed in this paper are data-driven and do not re-
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quire any normalisation or transformation of the data. In the work of [30]

however, the data has to be normalised prior to the application of wrapper

FS using kNN. This may have the effect of information loss since it involves

subjective human intervention when dealing with the data.

Considering the FRNN results obtained in this paper for the MIAS dataset,

classification accuracies of 91.4%, 90.28%, and 90.81%, were achieved for DMTRS(τ =

0.97), DMTRS(τ = 0.98), and FRFS reduced data respectively. Indeed, if the

results from Table 5 are examined, it can be seen that even the average classi-

fication accuracies are considerably better in most cases than those obtained in

[30].

For the DDSM dataset where classification accuracies of 70%, 72%, and

77% have been achieved in the previous work [30], considerably improved results

have also been obtained using the new fuzzy and fuzzy-rough methods - 89.24%,

88.51%, and 85.84%. Again the average classification results of Table 6 reflect

what has also been demonstrated in the case of the MIAS dataset.

Once again, although it is acknowledged that the classifiers were learned

using 10-fold CV, the performance increases of the unified approach are em-

phasised by the subset size results and the increase in classification accuracy

following the application of FS.

6 Conclusion

This paper has demonstrated the application of fuzzy-rough methods to data

for mammographic risk analysis. It has also introduced a new NN classifica-
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tion approach and demonstrated how this can be applied for the analysis of

mammographic data. In particular, it has demonstrated how the classification

accuracy for mammographic risk-analysis can be increased significantly by em-

ploying fuzzy classifiers which have the ability to handle real-valued data.

Most importantly however, the value of adopting a unified approach has been

highlighted. This is clearly shown in the large improvement of classification ac-

curacy over the unreduced data for all classifier methods and also the significant

reduction in dimensionality, which has a direct impact on the time taken to clas-

sify mammographic density. The use of FS to identify information-rich features

whilst minimising feature measurement noise from the many initially extracted

features is important as it can then be used as an indicator to identify the same

information in previously unseen mammograms thus, reducing the time needed

in extracting many irrelevant, redundant and noisy features. Increases in clas-

sification accuracy for diagnosis means a benefit not only for the patient but

also a reduction in expert analysis thus the minimising inter-observer variation.

Additionally, correct initial identification of breast density can potentially mean

that further additional screening of the same woman is not required, reducing

the physical demands and stresses of further examination.

Areas for future work include the application of an unsupervised FS ap-

proach to the unlabeled MIAS and DDSM data and compare the classification

results with those of the FS approaches used here. Also, a closer examination of

the feature extraction process, especially in-terms of how rough and fuzzy-rough

approaches could be applied to the extraction of features from mammographic
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images is an area which requires further exploration. A further more in-depth

evaluation, of the various fuzzy implicators, membership functions, and simi-

larity measures which can employed for both the FS and classification phases

of the approach is also required. The experimental evaluation in this paper

utilised those which had been previously available and further improvements in

performance may be realised through the use of different measures. Application

of the unified FS/classifier approach could also be extended to other problem

domains, such as forensic evidence [25], industrial systems monitoring [22], or

heterogeneous data found in e.g. microarray analysis [3].
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Figure 1: Mammographic Density Classification
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Figure 2: Unified fuzzy-rough framework for mammographic data analysis

QuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}
(2) do

(3) T ← R
(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Figure 3: The QuickReduct algorithm
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FRNN(U,C,y).
U, the training data; C, the set of decision classes; y, the object to be classified.

(1) N ← U

(2) µ1(y)← 0, µ2(y)← 0, Class ← ∅
(3) ∀X ∈ C
(4) µRP X(y) = inf

z∈N
I(µRP

(y, z), µX(z))

(5) µRP X(y) = sup
z∈N

T (µRP
(y, z), µX(z))

(6) if (µRP X(y) ≥ µ1(y) && µRP X(y) ≥

µ2(y))
(7) Class ← X
(8) µ1(y)← µRP X(y), µ2(y)← µRP X(y)

(9) output Class

Figure 4: The FRNN algorithm

Figure 5: Overview of the experimental evaluation
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Figure 6: Classification accuracy: Unreduced MIAS and DDSM data

Figure 7: Classification accuracy: DMTRS reduced MIAS data
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Figure 8: Classification accuracy: DMTRS reduced DDSM data

Figure 9: Classification accuracy: FRFS reduced MIAS and DDSM data
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