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Abstract

We present a machine learning approach to modeling bowing control pa-
rameter contours in violin performance. Using accurate sensing techniques
we obtain relevant timbre-related bowing control parameters such as bow
transversal velocity, bow pressing force, and bow-bridge distance of each
performed note. Each performed note is represented by a curve parameter
vector and a number of note classes are defined. The principal components
of the data represented by the set of curve parameter vectors are obtained
for each class. Once curve parameter vectors are expressed in the new space
defined by the principal components, we train a model based on inductive
logic programming, able to predict curve parameter vectors used for render-
ing bowing controls. We evaluate the prediction results and show the poten-
tial of the model by predicting bowing control parameter contours from an
annotated input score.

1 Introduction
The interaction between a performer and his/her musical instrument is difficult to
model. This is particularly true in the case of excitation-continuous musical in-
struments, for which variations of sound are achieved by continuous modulations
of the physical actions directly involved in sound production mechanisms, i.e. in-
strumental gestures [3]. Because of the complex and continuous nature of gestures
involved in the control of bowed-string instruments (often considered among the
most articulate and expressive), analysis of bowed-string instrumental gestures
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has been an active and challenging topic of study for several years. Particularly
for the case of violin, recent studies have taken the advantage of currently avail-
able motion tracking and force sensing techniques for providing accurate gesture
data [19] [11] [6].

Violin bowing control data analysis has been approached recently by several
works. Rasamimanana and coworkers [14] used bow acceleration extrema for au-
tomatic bow stroke classification. In a similar fashion, Young [18] extends the
classification to different bowing techniques by extracting the principal compo-
nents of raw acceleration and strain gage sensor data. None of these approaches is
aligned toward a generative model able to also provide means for the automation
of bowing control parameter rendering.

A first attempt to create synthetic bowing control parameter contours from an
annotated score is found in the work by Chafe [4], where the author presents an al-
gorithm for rendering a number of violin performance gesture parameter contours
(including both left and right hand) by concatenating short segments following
a number of hand-made rules. Following the same line, extensions dealing with
left hand articulations and string changes were introduced by Jaffe and Smith [9].
Both approaches lack real performance data -driven definition of segment con-
tours parameters. A more recent study working with real data is found in the work
by Demoucron [6], where bow velocity and bow force contours of different bow
strokes are quantitatively characterized and reconstructed mostly using sinusoidal
segments. Flexibility limitations of the proposed contour representation may im-
pede to easily generalize its application to other bowing techniques.

Maestre [10] points directions toward a general framework for the automatic
characterization of real instrumental gesture cue contours using parametric Bézier
curves, foreseeing them as a more powerful and flexible basis for contour shape
representation (see their use for speech prosody modeling by Escudero and cowork-
ers [7]). Aimed at providing means for reconstructing contours by concatenating
short curve units, implied a structured representation as opposed as the work pre-
sented by Battey [1], dealing with audio perceptual attributes. Later, Maestre and
coworkers [12] used Bézier concatenated curves for pursuing a model for different
note-to-note articulation classes in singing voice performance.

In this paper, we present a machine-learning-based framework for modeling
bowing control parameter contours (bow velocity, bow force, and bow-bridge dis-
tance) using concatenated Bézier cubic curves. We have represented in Figure 1 an
overview of the system. Curve parameter extraction is carried out automatically
which provides a representation usable both in gesture analysis and synthesis ap-
plications. Contour modeling is adapted to specific note classes, having notes
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classified in a previous step by attending to a number of musical contextual char-
acteristics. The dimensionality of the spaces where different contour parameter
vectors reside is then reduced by analyzing their principal components. We apply
inductive logic programming techniques to predict those curve parameter vectors
when expressed in the new space. We evaluate the prediction results and show the
potential of the model by predicting bowing control parameter contours from an
annotated input score.

The rest of the paper is organised as follows: in Section 2, we present the
methodology followed for carrying out contour parameter automatic extraction.
Section 3 gives details on the prediction model and reports on obtained results.
We conclude by pointing out possible extensions and applications.

Figure 1: Overview of the proposed system, in which the learning and prediction
tasks have been illustrated separately
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2 Feature extraction

2.1 Bowing data acquisition
Bowing data acquisition was performed by means of a commercial electromag-
netic field sensing device as reported in previous work by Maestre and coworkers
[11], extracting bow force by applying the techniques presented by Guaus et al.
[8] and by Demoucron [6]. Recording scripts (including both exercises and short
musical pieces) were designed to cover four different articulation types (détaché,
legato, staccato, and saltato), three different dynamics, and varied note durations
in different performance contexts (attending to bow direction changes and rests).
Score-performance alignment was carried automatically by means of a dynamic
programming (based on the Viterbi algorithm [17]) adaptation of the procedure
introduced in [11] plus manual correction when needed for ensuring the appropri-
ate segmentation of bow velocity, bow force, and β ratio contours of around 10K
notes. The β ratio is defined as the proportion between the effective string length
(distance from the finger and the bridge) and the measured distance between the
bow hair and the bridge (see [11]). We have depicted in Figure 2 examples of ac-
quired raw data corresponding to the four different articulation types considered
in our corpus.

2.2 Note classification
Concerning different score annotation -based characteristics of the notes in the
corpus, we perform a classification that will define different classes of notes for
which specific gesture models will be later constructed. The basis for classifying
note samples is divided into two main groups: intrinsic aspects and contextual
aspects.

Regarding intrinsic note characteristics, we considered three aspects. The first
and most important is the articulation type (expressed as [ART]), and we have
considered four different articulations: détaché, legato, saltato, and saltato. Sec-
ondly, we considered the dynamics type (expressed as [DYN]), comprising piano,
mezzoforte, or forte. The last of this group is the bow direction (expressed as BD)
including downwards and upwards.

In terms of what we call contextual characteristics, we considered two main
aspects: which is the position of a note within a bow (e.g. in legato articula-
tion, several notes are played successively without any bow direction change),
and which is the position of a note with respect to rest segments (e.g. silences).
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Figure 2: Captured bowing control parameter cues for each of the four articulation
types we are considering. From top to bottom: bow force (expressed in 50N
units), bow transversal velocity (cm/s), and bow-bridge distance (25cm units) are
depicted with dashed curves. Solid horizontal lines represent their respective zero
level. Vertical dashed lines represent note onsets and offsets.
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For the case of bow context, we classify a note as init when, in a succession of
notes sharing the same bow direction, is played first. A note is classified as mid
when is played neither first nor last. The class end corresponds to notes played in
last sequence order, while notes appearing as the only notes within a bow (e.g. in
détaché articulation) are classified as iso. Analogously to the case of bow context,
for what we called phrase context, we look at successions of notes with no rest
segments or silences in between. Classified as init will be those preceded by a
silence and followed by another note, as mid those preceded by and followed by a
note, as end those preceded by a note and followed by a silence, and as iso those
surrounded by silences.

Each possible combination of the classes above represented will lead to a note
gesture class Ci characterized by the tuple in (1). Note that not every possible
combination of any of the classes considered within each of the five characteristics
is feasible in practice, getting a final number of combinations that leads to 102 note
classes.

Ci = [ ARTi DY Ni BDi BCi PCi ] (1)

2.3 Contour representation
Bowing control parameter cue contours of recorded notes are represented in this
framework by sequences of a predefined number of units (e.g. lines, curve seg-
ments). For the use case presented here, we used constrained cubic Bézier curve
segments, similarly as Battey in [1] used for representing perceptual audio param-
eter contours. In contrast to the lack of consistent score-performance relation in
the organization of the representation proposed there, here we define a structured
representation applying at note-level. We have represented the basic unit in Figure
3.

Even though it responds to a parametric curve defined by the x-y points p1,
p2, p3, p4, the constrains found in (2) allow defining its shape by a vector b =
[d vs ve r1 r2], where d represents the segment duration, vs represents the starting
y-value, ve represents the ending y-value, and r1 and r2 represent the relative x-
values of the attractors p2 and p3 respectively. Among the reasons why we choose
this as the building block for modeling bowing control parameter contours, we
highlight its linearity (small changes in curve control points lead to small changes
in curve contour) and its flexibility (a diverse number of shapes can be modeled by
different values of r1 and r2, as it is illustrated by gray curves in Figure 3, which
correspond to rather extreme values of r1 and r2).
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p1y = p2y = vs

p3y = p4y = ve

r1 =
p2x− p1x

d

r2 =
p4x− p3x

d
0≤ r1 ≤ 1
0≤ r2 ≤ 1 (2)

Figure 3: Constrained Bézier cubic segment used as the basic unit in the representation
of bowing control parameter contours.

Given a time-series bowing parameter motion cue segment s(t) with t ∈ [0,d],
starting value s(0) = vs, and ending value s(d) = ve, optimal attractor relative x-
values r∗1 and r∗2 leading to an optimal approximation σ∗(t) of the cue segment
can be found via constrained optimization (see [1]).

2.4 Segmentation constrains definition
Contours of the bowing control parameter cues (bow velocity, bow force, and β

ratio) corresponding to the samples present in the corpus of each note class Ci have
been carefully observed in order to foresee an optimal representation scheme by
using the constrained Bézier cubic curve segments presented in previous Section.
When observing the data and taking the decisions on the segment sequence ar-
rangement, we aimed at keeping the length of the sequences at a minimum while
preserving the fidelity of representation.

For each of the note classes Ci, we have defined a set ρ i of segmentation
constrains composed by three different tuplas ρ i

V , ρ i
F , and ρ i

β
, each one defin-

ing the number of segments Ni
{V,F,β} and the slope sequence constrain vector

∆si∗
{V,F,β}.The slope sequence constrain vectors ∆s{V,F,β}

i∗ define the expected se-
quence of slope changes for each of the gesture parameter cues. If each i-th seg-
ment is approximated linearly, a contour slope sequence s = [si · · ·sN ] is obtained.
Each pair of successive slope leads to a parameter δ si that might take three dif-
ferent values: δ si ∈ {−1,+1,0}. The value δ si = 0 will be assigned whenever
there is no clear expectancy in the relationship between successive slopes si and
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si+1 (due to observations), while on the presence of a particular expectancy, the
value for δ si will be defined by equation 3. The reader can find the segmentation
constrain sets used for pursuing this analysis in Section 4.

δ si = sign(si+1− si) (3)

2.5 Contour segmentation and fitting
Driven by each previously defined segmentation constrain set ρ i for each note
class Ci, the acquired bowing control parameter raw contours of each note sam-
ple are automatically segmented and approximated by appropriate sequences (see
Section 2.4) of Bézier cubic curve segments as the one depicted in Figure 3. An
overview of the procedure for carrying out contour segmentation and curve fitting
is given next.

For every i-th segment (each one presenting a relative duration di), the real
(aquired) bow velocity contour is denoted as qi, while the approximated Bézier
contour is denoted by σi. We set the problem of segmentation and fitting as the
optimization task of finding an optimal relative duration vector d∗ = [d∗1 · · ·d∗N ]
such that a total cost C is minimized while satisfying that ∑

N
i=1 di = 1. This is

expressed in equation (4), where we defined the approximation error ξi for the i-
th segment as the mean squared error between the real contour qi and the optimal
Bézier approximation σ∗i (see Section 2.3), and a weight wi applied to each ξi.

d∗ = [d∗1 · · ·d∗N ] = argmin
d,∑N

i=1 di=1
C(d) = argmin

d,∑N
i=1 di=1

N−1

∑
i=1

wiξi +ξN (4)

ξi =
∫ di

0 (qi(t)−σi(t))2dt
di

(5)

The weight wi applied to each of the first N− 1 computed ξi will depend on the
fulfillment of the slope sequence constrains defined by δ s∗. Expressed in (6), the
weight wi will be set to a arbitrary value W >> 1 in case δ si (computed from the
slopes of the linear approximations of the i-th and (i + 1)-th segments) does not
match the sign of its corresponding δ s∗i (see Section 2.4).

wi =

{
W >> 1 if δ si

δ s∗i
< 1 and δ s∗i 6= 0,

1 otherwise.
(6)
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The solution for this problem is found by using dynamic programming techniques,
in particular based on the Viterbi decoding algorithm [17]. As a result, the whole
set of note samples corresponding to each of the note classes included in the cor-
pus is analyzed, so that the set of parameters defining the Bézier curve segments
that best model each of the bowing control parameter contours of each note is
attached to each note sample. Some examples of the results on automatic segmen-
tation and fitting are shown in Figure 4, where acquired bowing parameter cues
are compared to their corresponding Bézier approximations for détaché, legato,
staccato, and saltato articulations.

(a) Staccato articulation (b) Saltato articulation

Figure 4: Bowing control parameter cue segmentation and fitting results. In each figure,
from top to bottom: acquired bow force (expressed in 50N units), bow transversal veloc-
ity (cm/s), and bow-bridge distance (25cm units) are depicted with think dashed curves
laying behind the modeled, contours, represented by solid thick curves. Solid horizon-
tal lines represent the respective zero levels. Junction points between successive Bézier
segments are represented with black squares, while vertical dashed lines represent note
onsets and offsets.

3 Prediction model
In this section we describe our approach to learning a model for predicting curve
parameter vectors used for rendering bowing controls. A prediction model is built
from the obtained bowing control parameter contour representation data of notes
present in the database. For each note class Ci, a space with a dimensionality de-
fined by the number of parameters needed for modeling bowing control parameter
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contours is defined. The bowing control parameter contours are characterised by
a number of Bézier cubic segments. Each note in the database is represented by
both (1) a contour parameter vector constructed from the obtained curve fitting
parameters and (2) a performance context vector containing information about the
characteristics of the note used for the prediction of the contour curve parameters.
First, a dimensionality reduction based on principal component analysis is per-
formed on the contour parameter vectors of each class. We apply inductive logic
programming techniques to predict the contour parameter vectors in the reduced
dimensionality space given the performance context vector of a note. This is, we
train our prediction model with examples of the form:

EXi = [ARTi,DY Ni,BDi,BCi,PCi,si,p∗i ]

where ARTi, DY Ni, BDi, BCi, and PCi are articulation type, dynamics type, bow di-
rection, bow context, and phrase context, respectively (see Section 2 for a detailed
description), and define the note class Ci to which the note belongs. The vector
si (see next Section) corresponds to a set of specific score-based annotations (e.g.
duration, pitch, etc.) The vector p∗i is the contour parameter vector, as expressed
in the reduced dimensionality space, to be predicted by the model. Thus, once the
prediction model has been trained with a set of examples EXi, the model’s input
consists of values for ARTi, DY Ni, BDi, BCi, PCi, and si while its output (e.g. pre-
diction) is a value for p∗i . Prediction results (i.e. the predicted contour parameter
vector in the reduced dimensionality space) are returned back to the original space
so that they can be used for rendering bowing parameter contours.

3.1 Data preparation
The procedure that follows applies to any note class Ci. The curve parameters of
each note are represented as a vector p resulting from the concatenation of three
curve parameter vectors pV, pF, and pβ , corresponding to the bow velocity, bow
force, and β ratio contours respectively. The dimensionality of these vectors will
depend on the number of segments used for modeling each bowing control pa-
rameter contour, which is defined by the corresponding segmentation constrain
(see Section 2.4). Each of the three parameter vector contains three different sub-
vectors: a first subvector pd containing the relative durations di/D of each of the
segments, a second subvector pv containing the the inter-segment y-axis values
(starting or ending values vs,i or ve,i of each one of the segments), and a third
subvector pr containing the pairs of attractor x-value ratios r1,i and r2,i.
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Once each note sample has been annotated with its corresponding contour
parameter vector p, we attach to each note a context vector s that will be used
as the input for predicting the curve parameter vector p (output of the prediction
model). The performance context vector s is defined by equation (7), where D is
the note duration (seconds), Lst is the effective length of the string (obtained from
the string being played and the pitch of the note, and expressed as relative to the
total length of the string as going from the nut to the bridge), and BPON represents
the starting bow transversal position of the played note (measured from the frog
end of the hair ribbon to the hair ribbon position in contact with the string, and
expressed as relative to the total length of the hair ribbon).

s = [ D Lst BPON ] (7)

3.2 Dimensionality reduction
In order to reduce the dimensionality of the space where our prediction model
is trained, but while limiting the information loss, we used principal component
analysis (PCA) [15] of the space where curve parameter vectors reside. For the
reported experiments we have constrained the dimensionality reduction process to
keep at least 60% information.

Applying to each note class Ci, the procedure followed for applying PCA is
based on eigenvector decomposition of the covariance matrix CX0 of the mean-
subtracted data (arranged into a M×N matrix X0 where M represents the di-
mensionality of the curve parameter vector p, and N represents the number of
examples). The first step is to subtract the mean from each dimension of the orig-
inal curve parameter vector examples data matrix X for obtaining X0. Then, we
obtained the covariance matrix CX0 from X0 as expressed in equation (8). As the
covariance matrix CX0 is orthogonally diagonizable, we obtain the N×N matrix
of eigenvectors U by searching for a N×N diagonal variances matrix D accom-
plishing equation (9). Now, each of the orthogonal principal components defining
the new space is represented by a column of U, having the the elements in the di-
agonal matrix D representing the variances of X0 in terms of the new dimensions
defined by the columns of U.

CX0 =
1

N−1
X0X0

′ (8)

CX0 = UDUT (9)
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In the next step, we searched for the n < N dimensions that hold the most sig-
nificant curve parameter distribution information, say above a percentage thresh-
old t, and project the original mean-subtracted curve parameter vectors X0 into a
new space of lower dimensionality n. For that, we used the transformation matrix
U∗ composed by the n most important eigenvectors, found by sorting the columns
of U in decreasing order of their corresponding variance component in D, obtain-
ing US and DS. The matrix U∗ is constructed by concatenating the first n columns
of US that account for the minimum relative variance energy tn holding tn > t com-
puted as in equation (10). The new curve parameter examples data matrix X0

∗ is
obtained by equation (11).

tn =

n

∑
i=1

DS(i, i)

N

∑
i=1

DS(i, i)

(10)

X0
∗ = US

′X0 (11)

Different dimensionality reduction ratios were found for the 102 different note
classes Ci. As an example, an original dimensionality of N = 40 was reduced to
n = 8 for one of the note classes, having an average dimensionality reduction rate
of 81.2% for all classes while keeping the most significant information.

3.3 Learning algorithm
As mentioned before, we apply inductive logic programming techniques to in-
duce a model for predicting contour parameter vectors in the reduced dimension-
ality space (obtained from applying the PCA projection on the contour parameter
data). Training examples consist of the performance context vector values (input)
and the n bowing control parameters values after dimensionality reduction (pre-
diction). Given the information preservation preservation constraint t = 0.6, the
value of n may be different for different note classes. We apply the Tilde’s top-
down decision tree induction algorithm ([2]). Tilde is a first order logic extension
of the C4.5 [13] decision tree algorithm in which instead of testing attribute val-
ues at the nodes of the tree, it tests logical predicates. Tilde can also be used to
build multivariate regression trees, i.e. trees able to predict a vector. In our case
the predicted vector is the vector consisting n values of the bowing control pa-
rameters expressed in the new space. Tilde’s algorithm induces a first-order logic
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decision tree taking a set of examples E, a background knowledge B and a query
Q as inputs. For each contour parameter group, we apply Tilde with the query
predict(I1, I2, I3, I4, I5, I6, I7, I8(O1, . . . ,On)), where I1, I2, I3, I4, I5 are performance
context attributes for articulation type, dynamics type, bow direction, bow con-
text, phrase context, and I6, I7, I8 are the components of the performance context
vector s respectively, and (O1, . . . ,On) is the vector consisting of the n contour
parameter values in the low dimensionality space.

3.4 Prediction results
We have evaluated the induced model both in the reduced dimensionality space
and in the original contour parameter space (after returning data by applying in-
verse PCA transformation and adding the estimated mean in each original dimen-
sion) for each of the 102 note classes. For doing so, we have performed a 5-fold
cross validation in which 20% of the training set was held out in turn as test data
while the remaining 80% was used as training data.

Table 1 report results for a note class in which the principal component analy-
sis yielded an eight-dimensional space, here ni represent each of the dimensions.
The mean absolute error (MAE) is shown for each dimension. The note class
mean MAE (represented as MAE is obtained by averaging the mean absolute er-
rors for each of the n dimensions of the principal components space. In order to
provide a more meaningful error measure accounting for the relative importance
of each of the n dimension’s variance, we have computed a weighted average of
each dimension’s MAE using as a weight the inverse of the corresponding vari-
ance, and we have represented it as MAED. After returning data to the original
contour parameter space, we have also computed the average of the mean abso-
lute errors for each of the initial dimensions, expressed as MAE0. In Table 2 we
show the average of the computed errors for all note classes.

MAE MAE MAED MAE0
n1 n2 n3 n4 n5 n6 n7 n8

0.3362 0.3404 0.1475 0.1869 0.1260 0.1297 0.0881 0.0984 0.2385 0.1631 0.0913

Table 1: Prediction mean absolute errors for a particular note class.

Even though some note classes presenting only a few examples led to worse
prediction results, in general we have observed reasonable errors for the majority
of the note classes. When returning data to the original contour parameter space,

13



avgMAE avgMAED avgMAE0
0.2808 0.1862 0.1353

Table 2: Global prediction errors computed by averaging all 102 note classes.

the errors decrease significantly, mainly due to the fact that the ratio between the
previously subtracted mean and the range of the predictions is of great importance
for most of the original dimensions.

4 Conclusion
We have introduced a modeling framework for predicting violin bowing control
parameter contours from an annotated score. Common patterns observed in bow
velocity, bow force, and bow-bridge distance cues lead to the definition of a set
of segmentation constrains able to dictate an automatic cue contour segmentation
and fitting algorithm adapted to several articulations and contexts. Each note is
represented by a high dimensional feature vector from which bowing control pa-
rameter contours can be reconstructed. In order to be able to apply a prediction
model given a reduced set of note characteristics to be found in an unknown input
annotated score, we have reduced the dimensionality of the vectors to be predicted
by applying principal component analysis. A prediction model based on inductive
logic programming has been applied to the data expressed in the reduced dimen-
sionality space. Predicted contour parameter values have been evaluated both in
the low dimensionality space to wihch they were transformed space and in their
original space after applying inverse PCA transformation, obtaining very interest-
ing results that enable us to further investigate and apply the modeling framework.

Several extensions to the general methodology presented here remain clear:
adding more note articulations, including left-hand gesture analysis, considering
further performance context parameters (e.g. playing closer to the tip or to the
frog), etc. Also, note classification could be enriched by taking into account more
contextual variables, like for instance the preceding and following articulations.
Likewise, approaches for automatic definition of segmentation constrains could
greatly contribute. Apart from considering the application of the modeling frame-
work to other excitation-continuous instruments, a number of violin use-cases are
to be studied. Automatic performance annotation might be useful for expressive-
ness or style analysis and modeling by applying a similar framework. We also plan
to evaluate the system performance for different PCA information loss thresholds
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in order to determine an optimal prediction performance given the contour de-
scription model.

We have successfully used the predicted bowing control parameter contours
for driving a violin sound synthesizer based on digital waveguides as described
in [16] by using the implementation found in [5]. Although the sound synthesis we
used is a very simplified model, obtained synthetic violin performances resulted
highly natural-sounding, thus providing further validation of the bowing control
parameter contour prediction framework presented here. The reader can listen to
preliminar synthetic sound examples in1.
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Appendix
Here we report the detailed list of the bowing control segmentation constrain sets
used when analyzing the database. Note that only 17 different constrain sets are
reported, being each one corresponding to only the possible combinations of ar-
ticulation type, bow context and phrase context. Since the corpus covers all 12
feasible combinations of dynamics type and bow direction for each of the feasible
combinations of articulation type, bow context and phrase context, we decided
(based on observation of contour shape similarities) to use a unique segmentation
constrain set for all 12 combinations of the 4 articulation and the 3 dynamics,
leading to a final number of 17 usable sets.
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Segmentation constrains
[ ART BC PC ] [ ART BC PC ]
[ détaché iso init ] [ détaché iso mid ]

NV 4 4
∆s∗V [ -1 0 -1 ] [ -1 0 -1 ]
NF 3 3
∆s∗F [ -1 -1 ] [ -1 -1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ détaché iso end ] [ détaché iso iso ]

NV 4 4
∆s∗V [ -1 0 -1 ] [ -1 0 -1 ]
NF 3 3
∆s∗F [ -1 -1 ] [ -1 -1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ legato init init ] [ legato init mid ]

NV 2 2
∆s∗V [ -1 ] [ -1 ]
NF 2 2
∆s∗F [ -1 ] [ -1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ legato mid mid ] [ legato end mid ]

NV 2 2
∆s∗V [ -1 ] [ -1 ]
NF 2 2
∆s∗F [ 0 ] [ -1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ legato end end ] [ staccato iso init ]

NV 2 3
∆s∗V [ -1 ] [ -1 +1 ]
NF 2 3
∆s∗F [ -1 ] [ -1 +1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]

Table 3: Bowing control parameter contour segmentation constrains, defined for
each of the different combinations of articulation (ART), bow context (BC), and
phrase context (PC).
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Segmentation constrains (cont’d)
[ ART BC PC ] [ ART BC PC ]
[ staccato iso mid ] [ staccato iso end ]

NV 3 3
∆s∗V [ -1 +1 ] [ -1 +1 ]
NF 3 3
∆s∗F [ -1 +1 ] [ -1 +1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ staccato iso iso ] [ saltato iso init ]

NV 3 3
∆s∗V [ -1 +1 ] [ -1 -1 ]
NF 3 3
∆s∗F [ -1 +1 ] [ -1 +1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ saltato iso mid ] [ saltato iso mid ]

NV 3 3
∆s∗V [ -1 -1 ] [ -1 -1 ]
NF 3 3
∆s∗F [ -1 +1 ] [ -1 +1 ]
Nβ 2 2
∆s∗

β
[ 0 ] [ 0 ]
[ saltato iso iso ]

NV 3
∆s∗V [ -1 -1 ]
NF 3
∆s∗F [ -1 +1 ]
Nβ 2
∆s∗

β
[ 0 ]

Table 4: Bowing control parameter cue segmentation constrains, defined for each
of the different combinations of articulation (ART), bow context (BC), and phrase
context (PC) (cont’d).
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