
Classifying evolving data streams with
partially labeled data

Hanen Borchani*, Pedro Larrañaga and Concha Bielza

Recently, several approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data
streams. However, most are based on supervised classification algorithms assuming that true labels are immediately and
entirely available in the data streams. Unfortunately, such an assumption is often violated in real-world applications given that
it is expensive or because it takes a long time to obtain all true labels. To deal with this problem, w e propose in this paper a new
semi-supervised approach for handling concept-drifting data streams containing both labeled and unlabeled instances. First,
contrary to existing approaches, w e monitor three possible kinds of drift: feature, conditional or dual drift. Drift detection is
based on a hypothesis test comparing Kullback-Leibler divergence between old and recent data, whose distribution under the
null hypothesis of coming from the same distribution is approximated via a bootstrap method. Then, if any drift occurs, a new
classifier is learned from the recent data using the E M algorithm; otherwise, the current classifier is left unchanged. Our
approach is so general that it can be applied to different classification models. Experimental studies, using the naive Bayes
classifier and logistic regression, on both synthetic and real-world data sets demonstrate that our approach performs well.

Keywords: Data streams, concept drift, change detection, semi-supervised learning

1. Introduction

With the rapid growth of information technology, infinite flows of records are collected daily. These
flows, deñned as data streams, pose many challenges to computing systems due to limited time and
memory resources. Furthermore, they are characterizedby their concept-drifting aspect [10,27]. Concept
drift means that the learned concepts and/or the underlying data distribution are not stable and may change
over time. As a result, the model in use becomes out-of-date and has to be updated.

The held of mining concept-drifting data streams has received increasing attention and has been
intensively researched in recent years. Several approaches have been proposed [3,5,13,19,25,28] and
applied to a wide range of real-world applications including network monitoring, telecommunications
data management, market-basket analysis, information filtering, fraud and intrusion detection, etc.

However, most of these approaches are based on supervised classification algorithms assuming the
availability of labeled data for accurate learning. Generally, they continuously monitor classification
performance and detect a concept drift if there is a significant fall overtime. Unfortunately, the assumption
of entirely labeled data streams availability is often violated in real-world problems, as labels may be
scarce and not readily available.

For instance, for the malware detection problem, only a few true labels (i.e. malware or goodware)
may be available immediately after the classification process, and therefore w e may have to wait for a
quite long time until all the instances are labeled. This leads a traditional stream classification algorithm
to choose between updating the classifier with just a few labeled data, which usually results in a poor
classifier, or waiting longer to get all labeled data. This can also affect the quality of the classifier since
most of the data will be outdated.

Semi-supervised learning methods have proved to be useful in such cases since they combine both
labeled and unlabeled data to enhance the performance of classification algorithms [34]. However, they
mainly assume that data is generated according to some stationary distribution, which is not true when
learning from evolving data streams, where changes may occur over time.

In this paper, w e propose a new semi-supervised learning approach for concept-drifting data streams.
Our aim is to take advantage of unlabeled data to detect possible concept drifts and, if necessary, update
the classifier over time even if only a few labeled data are available.

To this end, inspired by earlier work by Dasu et al. [6], w e use the Kullback-Leibler (KL) diver
gence [20] to measure distribution differences between data stream batches. Then, based on a bootstrap
ping method [8], w e determine whether or not the K L measures are statistically significant, i.e. whether
or not a drift occurs. However, our approach differs from Dasu's work on three key points. First, w e
do not only detect whether or not a drift occurs, but w e further distinguish and monitor three possible
kinds of drift: feature, conditional or dual drift. Second, w e do not assume the available data streams are
entirely labeled. Indeed, w e detect possible drifts using both labeled and unlabeled instances. Moreover,
w e propose a general approach for learning from all these instances. In fact, when any of the three
possible kinds of drift is detected, a new classifier is learned using the expectation-maximization (EM)
algorithm [7]. E M has been widely used in semi-supervised learning where it has been found to improve
classification accuracy, especially when there is a small number of labeled data [24]. Otherwise, i.e.
when no drift is detected, the current classifier is left unchanged.

Note that our approach is so general that it can be applied with different classification learning
algorithms. In this paper, w e consider two classifiers, namely naive Bayes and logistic regression. W e
perform experiments on rotating hyperplane and mushroom data sets using different percentages of
labeled instances. Moreover, w e evaluate our approach using a real-world malware detection data set,
where w e deal with the additional problem of unbalanced data streams and make use of two recently
proposed approaches for mining skewed data streams, namely clustering-sampling [31] and S E R A [5].
The results show that our approach performs well even using limited amounts of labeled data.

The remainder of this paper is organized as follows. Section 2 defines the concept drift problem and
three types of drift. It then goes on to briefly review existing approaches for learning from concept-
drifting data streams. Section 3 introduces our new approach. Section 4 presents the experimental study.
Finally, Section 5 rounds the paper off with some conclusions.

2. Concept drift

2J. fWVemde/zyMfioM

In dynamic environments, the characteristic properties of data streams are often not stable but change
over time. This is known as the concept drift problem [32]. According to Tsymbal [27], there are
two possible types of concept drift: reof concepf ¿frf/i, defined as a change of the target concept that

the classiñer is trying to predict, and W r f W concepf ¿frf̂ , denned as a change of the underlying data
distribution.

From a probabilistic point of view, concept drift can be deñned as the change in the joint probability
distribution f (x, c), where c is the class label of a feature vector x f (x, c) is the product of the class
posterior distribution f (c | x) and the feature distribution f (x). According to [14], there are three
possible sources of concept drifts:

- O o f W m o W c&onge: In this case, a change occurs in f (c | x), that is, the class labels change given
the feature vectors. For instance, a conditional change may occur in an information filtering domain
consisting of classifying a stream of documents, denoted by x, as relevant or irrelevant, denoted by c,
if the relevance of some documents changes overtime, that is, their class labels change from relevant
to irrelevant or vice versa. With respect to TsymbaTs concept drift categorization, a conditional
change corresponds to a real concept drift.

- fgofwrg c&onge: In this case, a change occurs in f (x). Intuitively, some previously infrequent
feature vectors may become more frequent or vice versa. For instance, the relative frequency of
some documents in information filtering domain changes over time regardless of their relevance,
which may remain constant over a long period of time. With respect to TsymbaTs concept drift
categorization, a feature change represents a virtual concept drift.

- D W c&onge: In this case, changes occur in both P(x) and f (c | x). According to the information
filtering example, changes in both the relative frequency and the relevance of some documents are
observed, i.e. a virtual and a real concept drift both occur together.

Moreover, Zhang et al. [33] proposed an additional categorization also based on the decomposition of
P(x, c) into two parts, as P(x, c) = P(x) P(c | x). In fact, they deñned ngorows concepf ¿frf/HMg for
changes in both P(x) and f (c | x), and kwsg concepf ¿fn/Hng for changes in P(x) only.

To the best of our knowledge, in spite of these categorizations, all existing approaches dealing with the
concept drift problem either update the current classiñer without using any detection method, or detect
only whether or not there is drift, i.e. without specifying which type of concept drift occurs.

In this paper, w e propose an efñcient approach for quantifying and detecting the three possible types
of drift: feature, conditional or dual using both labeled and unlabeled data. Details are presented in
Section 3.2.

2.2. # g f o W w o r &

Different approaches have been proposed to handle concept-drifting data streams. As pointed out
in [12], these approaches can be classiñed into 6 Z W opprooc&gs that adapt the classiñer at regular
intervals without considering whether changes have really occurred, and m/brmgff approoc&as that are
used in conjunction with a detection method and only adapt the classiñer after a change is detected.

Examples of blind approaches include weighted examples [16] and ñxed size time windows [32].
Weighted examples assigns lower weights to old instances according to their age and/or utility in order
to focus more on recent instances incorporating the new concepts. Fixed size time windows consider
over time a ñxed number of instances over time: In this case, the choice of an appropriate window size
should trade off fast adaptation in phases with concept drifts against good generalization in stable phases
without concept drifts.

Ensemble methods can also be considered as blind approaches. In fact, the general technique applied
by these methods is that the data stream is divided into sequential blocks of ñxed size, and each of these
blocks is used to train a classiñer. The ensemble is continuously reñned by adding a new classiñer,

removing the oldest or the weakest classifier, increasing or decreasing the classiñer weights using some
criteria usually based on current data block performance [4,19,28,30,31].

The adaptive size time window is an example of informed methods [32]. In fact, the window size is
adjusted dynamically to the current concept drift: As a general rule, if a drift is detected the window size
decreases to exclude the out-of-date instances; otherwise the window size increases to include the more
recent instances [21].

Clearly, informed methods are more interesting since they are a more efficient way of coping with
concept drifts and avoid the uncontrolled updating of the current classifier. The main issue is how to
detect concept drifts. Most of the existing research monitors at least one performance indicator over
time [3,12,18,25,32]. Classification accuracy is the most used indicator, i.e. if there is a consistent drop
in the accuracy, a drift is signaled. Other performance indicators, such as error rate, recall and precision,
have also been used.

A n alternative approach detecting drift is to monitor the data distribution in two different windows [13,
15,29]. It is assumed that as long as the distribution of old instances is similar to the distribution of
recent ones, no concept drift occurred. A distribution difference, on the other hand, indicates a concept
drift. In particular, Dasu et al. [6] and Sebastiao and G a m a [26] used the Kullback-Leibler divergence to
measure the distance between the probability distributions of two different windows to detect possible
changes, and proved its generality, efficiency and resilience to false alarms.

However, note that all previously presented works assume that true labels are entirely available in data
streams. To the best of our knowledge, only two relevant previous works have addressed the problem of
scarceness of labeled instances in concept drifting data streams.
The first, proposed by Klinkenberg [17], is based on transductive support vector machines and it

maintains two separate adaptive windows on labeled and unlabeled data in order to monitor, respectively,
the probabilities f (c | x) captured by labeled data and f (x) underlying both labeled and unlabeled data.
This was justified by the fact that f (c | x) and f (x) may change at different rates. However, although
theoretically well-founded, this method has never been evaluated.

The second work was recently proposed by Masud et al. [22]. It is based on an ensemble approach
where each model in the ensemble is built as micro-clusters using a semi-supervised clustering technique.
In fact, the learning step of each model starts by choosing Ac points from the labeled data of class C
to initialize Ac centroids. Then, the E M algorithm is applied by iterating the following two steps until
convergence: The E-step assigns each unlabeled data point x to a cluster such that its contribution to a
cluster-impurity function is minimized, and the M-step recomputes each cluster centroid by averaging
all the points in that cluster. Finally, a summary of the statistics of the instances belonging to each built
cluster is saved as a micro-cluster. These micro-clusters serve as a classification model.

To cope with stream evolution, Masud et al. [22] keep an ensemble of ¿ models. Whenever a new
model is built from a new data chunk, they update the ensemble by choosing the best ¿ models from
¿ + 1 models (previous ¿ models and the new model), based on their individual accuracies on the labeled
instances of the new data chunk. Besides, they refine the existing models in the ensemble whenever a new
class of data evolves in the stream. Note finally that this approach is blind since it does not incorporate
any drift detection method.

3. Background on E M algorithm

Let D denote the data stream that arrives over time in batches. Let D^ denotes the batch at step s. D^
consists of the union of two disjoint subsets D ^ and D^. D ^ denotes a set of 7V^ unlabeled instances

(x), whereas D^ denotes a set of 7V^ labeled instances (x, c), s.t. x represents an M-dimensional feature
vector (%i,..., Zn) and c e Q c = {ci, C2,..., ci^i} represents the corresponding class value for labeled
instances. TV* = 7V¿ + 7V^ denotes the total size of _D\

Learning a classifier from the D^ data corresponds to maximizing the likelihood of D^ given the
parameters 0*. Assuming that instances are independent, this likelihood is the product of all (labeled
and unlabeled) instance probabilities expressed as follows [24]:

P (D * I 0') = % % % - I x,;0')f (x, I 0')

N¿ |C|

¿=1j=i

where the first term is derived from labeled instances, and the second one is based on unlabeled data
where the sum expresses the fact that the unknown class value can be any of the existing values.
Then, considering ¿ogf(D* | 0*) = ¿¿(D* | 0*), we have:

¿¿(D* I 0') = ¿ ¿ o g (% I x,;03f (x, I 0'))

^ |C|

+ E ̂ E ̂ (^ 1 ̂ ̂)^(^ 1 ^)- (?)
Notice that this equation contains a log of sums for the unlabeled data, which makes a maximization by
partial derivatives with respect to 0* analytically intractable.

Consider that we can have access to the class labels of all the instances, represented using a matrix
of binary indicator variables z, where rows correspond to different instances and columns to different
classes, so that an entry is % = 1 iff c, is the class of instance x¿, and % = 0 otherwise. Thus, Eq. (2)
can be rewritten as follows without a log of sums, because only one term inside the sum would be
non-zero:

N' |C|

¿¿(D* I G*;%) = ̂] ̂]%j W % I x,; 0')f (x, I 03)- (3)
$=1 j=l

W e use the E M algorithm [7] to ñnd the maximum 0 of Eq. (3). Let z¿ and 0¿ denote the estimates
for z and 0* at iteration ¿. E M starts with an initial estimate of classifier parameters 0\ from only the
labeled data in D^. Then, it iterates over the E- and M-steps:

- The E-step uses the current classifier parameters to probabilistically assign labels to the unlabeled
instances in D^. Formally, it computes the expected value of

z , + i = # s | D * ; 0 ;] . (4)

Clearly, for labeled data, % is easily determined since classes are already known. For unlabeled
data, % should be estimated as follows:

FU.. i /y. ¿*i _ Í 1 if Cj = arg maxc?(c | x¡; 0")- ^
6^|^,e,j_^() otherwise. ^

- The M-step re-estimates the classifier for all the data in _D\ i.e. using all instances (the originally

labeled and the newly labeled by the E-step). In fact, this step consists of computing new parameters

0¿_l_i using the current expected value of z. Formally, we have

¿t+i = &rg mazg'¿¿(D^ | 0^;zt+i)- (6)

These two steps are iterated until convergence as proved by Dempster etal. [7]. At convergence, E M

nnds 0 that locally maximizes the log likelihood with respect to both labeled and unlabeled data.

4. N e w approach for mining concept-drifting data streams with a limited number of labeled
instances

In this section, we will ñrst introduce the two considered classifiers, namely naive Bayes and logistic
regression, leamt from both labeled and unlabeled instances. Then, we will present the drift detection
method.

4. A A AWveMyes(M*)
Naive Bayes [23] is a generative classifier that optimizes the joint log likelihood of the data as previously

detailed. Based on the assumption that the features are all conditionally independent of one another
given the class variable C, parameters 0* denote the probability table of C, i.e. f (C), as well as the
conditional probability tables of each feature %r given C, i.e. P(%r | C),r G {1,... ,m}.
To classify a given instance, the posterior probability of each possible class value c, is computed, and

then, the most probable class is selected. More formally,

c = &rg m a z ^ f (c^) ̂ % f (%r I (%)- (7)
r=l

Logistic regression [11] is a discriminative classifier that maximizes the conditional log likelihood
instead of the log likelihood. Hence, in this case, instead of (3), E M algorithm maximizes the following
formula:

N' |C|

¿¿(D* | G*;%) = ̂] ̂]%j ¿og% | x,; 03- (8)
$=1 j=l

where parameters 6* are represented by the vector (0jo,0^,... , 0 ^) ^ for j = 1,..., |C|.
To classify a given instance, the posterior probability of each possible class value c, is computed as

follows:

P (C = %|x;6T) = <

Vj < |C|,

(9)

forj = |C|-

Then, the Cj value with the maximum probability is assigned as a label.

4.2. Dgfgcfmg o concepf ¿frf/̂

Given a new batch of data _D*+i, the objective is to detect changes whenever they occur and adapt the
current classiñer if necessary. In general, it is assumed that as long as the joint probability distribution
of _D*+i is similar to the distribution of _D\ no concept drift occurs. Otherwise, a concept drift should
be indicated.

In order to detect possible changes, w e use the K L divergence [20], also known as the relative entropy,
to measure differences between the empirical distributions of D^+^ and D^. Note that the K L divergence
has two fundamental properties, namely, non-negativity, being 0 iff the two compared distributions
are the same, and asymmetry. Moreover, a higher K L value indicates a higher dissimilarity between
distributions, and so, a pronounced drift.

First, in order to monitor the conditional change, w e proceed to measure the K L divergence Mcc between
the class posterior distributions of D^+^ and D^ using only their corresponding labeled instances. &¿cc is
computed as a sum of K L divergences, each of which measuring the divergence between the conditional
distributions of the class given feature instantiation, expressed as follows:

Wcc = ̂ K % . + i (C I x)||A).(C I %))
X

¡Hi &+i(c x

x ^ í ' fD'(Cj|x)

In addition, to monitor the feature change, w e measure the K L divergence AZ/c between the feature
distributions of _D*+i and D^ using all the labeled and unlabeled instances except the class variable:

W/c = K¿(&,+i(x)||AXx)) = V f D . + i (x) ^ 2 ^ 4 ^ ' (11)

In order to determine whether or not the computed K L measures are statistically significant, w e use the
bootstrapping method [8] following previous work reported in [6]. Intuitively, this method allows us to
determine, by repeated sampling with replacement from the data, whether or not a specific measurement
on the data is significant.

Specifically, to decide whether or not the resulting &¿cc value is significant, w e consider the null
hypothesis

%cc:fD"+i(C|*)=fWC|X),

denoting that no conditional change has occurred. So, our objective is to determine the probability of

observing the value &¿cc if #0cc is true.

To this end, given the empirical distribution fb«(C | x), w e sample A data sets denoted %, 6 =

!,...,&, each of size 2A^. Then, w e consider the first A ^ instances S¿,i as coming from the distribution

fb«(C I x), and the remaining A ^ instances S¿,2 = <% \ % i as coming from the other distribution

fp.+i(C | x); and w e compute the bootstrap estimates Écd, = E x ^ ^ (^ w (C I x)ll^%i(C I %))

between each two samples % 2 and % i , 6 = !,...,&. The obtained estimates form an empirical

distribution from which w e construct a critical region [M^, oo), where M ^ represents the (1 — a)-

percentile of the bootstrap estimates, and a is a desired significance level.

Finally, if w e observe that /ĉ c falls into the critical region, i.e. /c^c > A;/^, w e conclude that it is
statistically significant and invalidates _%^. In other words, w e conclude that a conditional change is
detected.

Similarly, in order to decide whether or not the resulting My^ value is significant, w e consider the null
hypothesis

and apply the same process to determine the critical region [H ̂ ; oo) and decide about a feature change.
Note that, if either a feature or conditional change is detected, w e proceed to learn a new classifier.
Otherwise, the current classifier is left unchanged.

To recapitulate, Algorithm 1 outlines the whole proposed approach. First, K L divergence and the
bootstrapping method are used to monitor possible conditional and feature changes (steps 1 to 4). If any
change is detected, a new classifier is learned using the expectation maximization algorithm (step 5.1):

an initial estimate of classifier parameters 0^ is induced using only the labeled instances of the new
data set D ^ (step 5.2), then E M iterates over the E- and M-steps until convergence (step 5.3). In case
that no change occurred, the classifier is left unchanged (step 6).

Algorithm 1

begin

Output: @"+i

J. Compute kfcc
2. Compute t/ie oootatmp estimates Meet, o = !,...,&, and critical region [&fcc,oo)
& Compute M/c
j. Compute t/ie oootatnap estimates M/cb, 6 = !,...,&, ana" critical region [&!/c,oo)
5. if Mcc > Mcc or M/c > M/c then

¿¡.J .A cmange ¿a detected, learn a new clasai/ier/rom C + *
5.& 0%"*"* <— initial parametera induced only /rom labeled data f)*"*"^
5. ,9 while mo convergence do
I E-atep; compute tne expected laoek /or all unlaoefed iiwtancca using ^^
|_ M-step; update cWa*/:er parameters uaing fgj obtaining 6^+^

g. else
L tVo cnange *a detected; 6"+^ 4 — 6°

7. Actum 6"+i

end

5. Experimental study

5.7. ¿7.?g6Wafa.?gf.?

W e test our approach on the following synthetic and real data sets.

5.7.7. 7WafmgA){pg?pZa»g&zfa.?gf
The rotating hyperplane data set is considered as a benchmark synthetic data set and has been widely

used to simulate the concept drift problem [10,14,28,30]. In fact, this synthetic data set allows us to
carry out experiments with different types of drift, as well as different percentages of labeled data and,
hence, to investigate the performance of our approach under controlled conditions.

A hyperplane in an ̂ -dimensional space is denoted by ̂ L ^ w % = wo, where w = (tui,..., w ^) ^
is the weight vector. Instances for which ̂ % ^ w¿z¿ ̂ wo are labeled positive, and instances for which

^ % i w¿z¿ < Wo are labeled negative. Weights w* are initialized by random values in the range of [0,1],
and wo values are determined so that 1% = -g ̂ % ¡ t%.
W e generated z¿ from a Gaussian distribution with mean //¿ and variance a^. The feature change

is simulated by changing the mean, i.e. ¡u¿ is changed to //¿s¿(l + ¿), and the conditional change is
simulated by the change of weights t% to w*s*(l + ¿). Parameter í e [0,1] represents the magnitude of
the changes, and parameter s¿ e {—1,1} specifies the direction of the changes which could be reversed
with a probability of 0.1. W e generated a data stream of 10 dimensions (m = 10) with 80,000 instances,
using different magnitudes of change ¿ respectively set to 0.1,0.2,0.5,1 for each 20,000 instances. Then,
w e split the whole data stream into sets of blocks of size 2000, and from each block w e considered equal
training and testing subsets of size 1000, such that every training set is followed by a testing set.

5.7.2. Mws&room dofo sef
The mushroom data set, from the U C I repository [2], is regarded as having virtual concept drift (i.e.

feature changes) but no real concept drift (i.e. conditional changes) [19]. The mushroom data set contains
22 variables and 8124 instances. W e split it into 6 blocks, and used 1000 instances from each block for
training and 354 instances for testing.

5.7.J. MofwwgdgfgcffOMdofosef
The malware detection data set represents the important problem of continuously classifying received

hies into malware (e.g. viruses, spyware, trojans, phishing, spam, etc.) or goodware to ensure that users
are protected against malicious code. This data set has been provided by an IT security company and
consists of 40,000 records. It contains 5398 features and a binary class taking either the malware or
goodware value. Due to the confidentiality of the data, w e omit the name of the company here, as well
as the detailed description of the features.

Contrary to experiments with the previous data, w e do not know whether or not changes occur in this
real data set; and if so, w e do not know when and which kind of changes occur. Moreover, w e do not ñx
the percentage of labeled data in each block. Instead, w e use all the available labeled data, the number
may vary from one data block to another.

W e also deal with two additional issues to process this malware detection data set. The nrst is/gofwrg
sekcffOM, which aims to select a small subset of relevant features in order to avoid features dependency
and redundancy and enhance classifier performance. In this paper, w e use the conditional mutual
information maximization criterion (C M I M) [9]. It iteratively picks features that maximize their mutual
information with the class variable, conditionally upon the response of the already picked features. In
this way, C M I M ensures weak dependency and no redundancy as it does not select a feature similar to
any that have already been picked even if it is individually powerful.

In our case, feature selection is applied each time w e leam a new classifier, i.e. each time w e detect
changes. Hence, a new and more informative subset of features is selected given new incoming data.
In fact, some old selected features may be removed and new different features may be selected. This,
consequently, allows us to build more efficient classifiers.

The second issue is ¿mW<mcg(f dofo since the number of malware instances is much higher than
goodware instances. This leads to an important problem since the learned classifier may be biased
towards the malware class, and therefore its predictive accuracy may be very poor on the goodware class.
W e apply two recent approaches to balance the class distribution:

- The clustering-sampling approach proposed by Wang et al. [31] makes use of the k-means clustering
algorithm to select negative instances for representing the negative class (i.e. malware class in our

Table 1
Data set descriptions

Data set Number of Number of Number of Number of
features instances blocks instances in a block

Rotating hyperplane 10 80000 40 2000
Mushroom 22 8124 6 1354
Malware detection 50 40000 10 4000

case). Firstly, the number of clusters Mc is set to the size of positive instances (i.e. goodware
instances). Then, the negative instances are clustered into Mc clusters and the centroid of each
cluster is used as as negative instance for representing the negative class.

- The selectively recursive approach (SERA) proposed by Chen and H e [5] makes use of the previous
data blocks knowledge to balance the current data block. In fact, it consistently collects the positive
instances from the previous data blocks. Then, it applies the Mahalanobis distance to measure the
similarity between each instance and the current positive instances, and includes a subset of the
most similar previous positive instances of a size proportional to the size of the current negative set
only. This is justified by the fact that only the previous positive instances not including the drifting
concepts are actually helpful for the learning process.

The malware detection data set is divided into sets of blocks of size 4000, and from each block, the
first 2000 instances are used for training while the remaining instances are used for testing. For feature
selection, w e select 50 of the 5398 features.

To summarize, the details of the three considered data sets are given in Table 1. Note finally that,
for bootstrap parameters, w e use the significance level a = 0.05 and samples number A = 500 in all
experiments. Our choice is based on Dasu et al.'s work [6] where they prove that the number of samples
does not significantly affect the quality of the results and suggest that A = 500 is a reasonable number of
samples. They also point out that lower a values make the null hypothesis harder to reject, leading to a
lower change detectability. According to our experiments, a = 0.05 works well and can be considered
as an appropriate value.

5.2. ExpgTTmgMfoZrgWfs

5.2J. # g W # m f & rofofmg Aypeyp&ZMg dofo sef
Table 2 represents the results for the drift detection proposal. The first column represents the block

numbers of the training sets. For instance, 1-2 denotes that the current data is the training set of the
first block, while the new data corresponds to the training set of the second block. Then, in columns 2
and 3, w e show the AZ/c and A L ^ values. These values are the same for all experiments irrespective of
the different percentages of labeled data, since they only use the feature values. Finally, columns 4 to 9
report &¿cc and A ^ respectively, for 2 % , 5 % and 1 0 % of labeled data.

As expected, a feature change is only detected between blocks 10 and 11 where the magnitude of
change ¿ goes from 0.1 to 0.2, blocks 20 and 21 where ¿ goes from 0.2 to 0.5, and blocks 30 and 31
where the ¿ goes from 0.5 to 1. The larger the modification of ¿ values, the higher the AZ/c values are,
showing a more significant drift in the feature distributions between the data blocks.

The same applies to the conditional distributions monitored by &¿cc values for both 5 % and 1 0 % of
labeled data, where higher &¿cc values are obtained for higher ¿ values. However, in the case of 2 %
of labeled data, no conditional changes are detected. This can be explained by the fact that the true
conditional distribution cannot be accurately approximated with very few labeled instances. In their

Table 2
Drift detection results for rotating hyperplane data set

Feature change Conditional change

2% labeled 5% labeled 10% labeled

blocks

1-2
2-3
3-^
4-5
5-6
6-7
7-8
8-9
9-10
10-11
11-12
12-13
13-14
14-15
15-16
16-17
17-18
18-19
19-20
20-21
21-22
22-23
23-24
24-25
25-26
26-27
27-28
28-29
29-30
30-31
31-32
32-33
33-34
34-35
35-36
36-37
37-38
38-39
39^W)

M/c
0.0962
0.1353
0.1214
0.1245
0.1069
0.1008
0.1013
0.1304
0.1017
0.1434
0.1249
0.1154
0.0882
0.0956
0.1344
0.1373
0.1374
0.1316
0.0932
0.1544
0.1378
0 1141
0.1296
0.0851
0.0849
0.0653
0.0880
0.1139
0.1383
0.1767
0.1011
0.1332
0.1360
0 1171
0.0951
0.0957
0.1056
0.1264
0.1378

M/c
0.1386
0.1801
0.1364
0.1381
0.1404
0.1378
0.1381
0.1388
0.1398
0.1405
0.1402
0.1390
0.1398
0.1378
0.1369
0.1866
0.1444
0.1400
0.1392
0.1408
0.1538
0.1387
0.1366
0.1370
0.1382
0.1342
0.1373
0.1434
0.1521
0.1466
0.1373
0.1394
0.1565
0.1395
0.1376
0.1395
0.1367
0.1625
0.1367

k̂ c
0.4807
0.8112
0.0637
0.0158
0.3166
1.4039
1.2359
0.9124
1.2339
3.2875
1.2026
1.9967
1.8104
2.4464
2.3008
0.7418
1.0548
2.3245
1.4075
4.1283
0.0637
0.9158
1.4257
1.1079
1.0042
1.4721
1.2339
1.9099
1.7233
4.7233
1.4792
0.6748
0.9099
0.8475
1.2339
0.9213
0.6014
0.9078
0.3478

&Cc
3.1025
3.9845
5.7233
6.1474
2.6613
6.9068
5.6246
6.2563
4.2875
6.4493
6.2875
7.3604
8.2256
6.4493
6.3567
6.2875
5.1297
6.5493
6.3649
6.4512
6.4502
5.8614
6.5915
6.1807
6.4346
6.3684
6.6503
6.5288
6.8027
6.4346
6.2875
6.7841
5.1964
3.5168
6.4593
4.8143
6.3684
6.3125
5.6177

k̂ c
0.1168
0.0862
0.3874
0.4248
0.2985
0.7706
0.6927
0.5369
0.2925
1.3862
0.2534
0.4209
1.0638
0.5212
0.8237
1.6932
0.7915
1.3169
0.5472
1.3821
0.4669
0.3925
0.4248
0.3472
0.2812
0.5004
0.5257
0.6927
0.0818
1.9310
0.1613
0.4838
0.6927
0.4354
0.9211
0.3234
0.2648
0.1763
0.4517

&Cc
0.5257
1.7670
0.1958
1.4025
1.4885
1.3782
1.3755
1.6424
1.3847
1.2369
1.7670
1.5021
1.7860
1.3369
1.6660
1.8060
1.9310
1.8142
1.3725
1.2364
1.7670
1.6927
1.2849
0.5288
1.2745
1.3369
1.1575
1.7670
1.7495
1.3660
0.2534
1.7897
1.0546
0.4999
1.3369
1.7495
0.6364
0.4376
1.6849

k̂ c
0.0222
0.0514
0.1013
0.2139
0.3100
0.5962
0.1665
0.1990
0.2180
0.9812
0.1355
0.1544
0.1419
0.2552
0.1580
0.1862
0.1273
0.1355
0.3919
1.0118
0.0456
0.1153
0.1030
0.0168
0.0953
0.3651
0.2120
0.3275
0.1094
1.3369
0.0375
0.1978
0.3248
0.1279
0.1947
0.1456
0.1898
0.1504
0.3973

&Cc
0.4989
0.6499
0.7847
0.5257
0.7380
0.8997
0.3234
0.2339
0.6060
0.6499
0.5428
0.3575
0.7648
0.6499
0.6694
0.3013
0.6499
0.5005
0.7842
0.8162
0.5257
0.2978
0.1375
0.2311
0.2110
0.5147
0.6499
0.5005
0.4257
0.7648
0.3409
0.4885
0.7648
0.5694
0.6348
0.5257
0.2339
0.4342
0 5389

experiments studying the effect of window size on the performance of the change detection scheme,

Dasu et al. [6] come to the same conclusion, i.e a larger window size gives better approximation of the

true underlying distribution and results in a better detection of changes.

Furthermore, Fig. 1 presents accuracy curves for N B and LR. For each curve, the x-axis represents the

block number, and the y-axis represents the classification accuracy. Obviously, the performance of both

N B and L R is much better when higher percentages of labeled data are considered. Note also that in this

data set L R always outperforms N B , which is mainly due to the small percentages of labeled data. In

fact, as also pointed out in [1], the presence of only few labeled data may lead to poor estimates of the

generative approach.

Driñ detection results for mushroom data set

blocks

Feature change

M/c M/c

Conditional change

2 % labeled 5% labeled

W^ &C K. W^
10% labeled

W ^ W"c

1-2
2-3
3 ^
4-5
5-6

0.2251
0.0365
0.1184
1.2973
0 0007

0.0450
0.0755
0.1536
0.2373
0 0814

0.0003 0.1430
0.0019 0 0156
0.0031 0.0049
0.0043 0.1347
0.0028 0.0105

0 0001 0 0035
0.0005 0.0030
0.0054 0.0057
0.0002 0.0063
0.0018 0.0092

0.0079
0.0003
0.0002
0 0013
0 0001

0 0176
0.0009
0 0181
0.0030
0.0053

2r

u
^

I I 11 11 I I I

31 34 37 40

Naive Bayes

- — 1 0 % labeled

5 % labeled

* — 2 % labeled

Blocknumber

I I I I I I I H I

4 7 10 13 16 19 22 25 28 31 34 37 40

Logistic regression

— i — 1 0 % labeled

— 5 % labeled

— # — 2 % labeled

Blocknumber

Fig. 1. Classification results of NB and LR for rotating hyperplane data set.

5.2.2. ^gWfstWf&fMws&roofMdofosef
According to the results in Table 3, feature changes are only detected between blocks 1 and 2, and

blocks 4 and 5. However, no conditional changes are detected for any of the percentages of labeled data
as expected. This proves that our detection method is resilient to false alarms.
Moreover, according to Fig. 2, using more labeled data improves the predictive accuracies of both N B

and LR. Nevertheless, the improvement is negligible for LR from 5 % to 1 0 % of labeled data and the
corresponding curves are almost superimposed. Notice also that LR always outperforms N B and has a
more stable behavior especially when more labeled data are used.

5.2. J. # g W # mf& mafworg dgfgcfzon dofo sef
Table 4 presents drift detection results for the malware detection data set. The nrst column reports as

previously the block numbers, while the second column represents the percentage of labeled instances

Table 4
Drift detection results for malware detection data set

blocks

1-2
2-3
3-^
4-5
5-6
6-7
7-8
8-9
9-10

% labeled instances

70.00-80.45
80.45-69.30
69.30-67.10
67.10-78.35
78.35-71.25
71.25-74.85
74.85-76.05
76.05-83.80
83.80-78.85

M/c
0.1304
0.1057
0.3892
0.1272
0.1095
0.0665
0.0967
1.0006
0.1221

Mfc

0.2049
0.1553
0.1408
01939
0.3717
0.2760
0.1434
0.2445
0.9668

k̂ c
0.0797
0.1609
0.4330
0.2975
0.0190
0.5373
0.5028
0.7558
0.3390

&4c
0 9180
0.2062
0.2717
0.3473
01652
0 6614
0.5484
0.6033
0.4493

Logistic regression

% 0,9 -

= __ — — 1 0 % labeled
y 0,85-

< o,8 - —— 5 % l a b e l e d
0,75 -I 1 1 , 1 1 — 2 % labeled

1 2 3 4 5 6

Block number

Fig. 2. Classification results of N B and L R for mushroom data set.

in each considered block. Then, columns 3 to 8 show respectively AZ/c, AL^, &¿cc and M ^ values. W e

observe that feature and conditional changes occur together and are detected between blocks 3 and 4,

and again between blocks 8 and 9.

To evaluate classiñer performance, w e previously used only the overall classification accuracy How

ever, when dealing with unbalanced data sets, this metric is often insufficient, as it does not distinguish

between the number of correctly classified instances of different classes.

Using balancing methods mainly aims to improve the classiñer performance over the positive class,

i.e. reduce the number of false positives. In order to appropriately monitor the behavior of N B and L R

classifiers on the positive class in this case, then, w e also calculate the precision, recall, Fl and G-mean

metrics based on the confusion matrix analysis.

The results of the N B and L R classifiers for the first balancing approach S E R A are described in Table 5.

W e observe that, in most cases, L R accuracies are slightly higher than for N B .

Furthermore, both N B and L R provide high precision values for all testing blocks, where all values

are greater than 9 5 % , and yield good results in terms of Fl and G-mean values, which is indicative of a

good performance predicting the positive instances.

For the clustering-sampling balancing approach, as shown in Table 6, L R outperforms N B , except on

the last two testing sets, where N B shows better accuracies, as well as better recall and Fl values.

Finally, note that the results of the two applied balancing approaches are comparable, with a slightly

better performance of the clustering-sampling approach in terms of overall accuracy, recall and Fl

metrics. In most cases, though, S E R A provides slightly better precision with both N B and L R classifiers.

Naive Bayes

075 i i i i

2 3 4 5

Block number

Table 5
Performance results of N B and L R for malware detection data set using
S E R A balancing approach

blocks Algo. Accuracy Recall Precision Fl G-mean

1

2

3

4

5

6

7

8

9

10

NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR

0.7063
0.7211
0.7995
0.7212
0.7540
0.7951
0.7970
0.8328
0.7668
0.7787
0.7462
0.8051
0.7488
0.7576
0.8385
0.8006
0.7625
0.7339
0.8044
0.8011

0.6392
0.6483
0.7701
0.6696
0.7354
0.7788
0.7375
0.7846
0.7330
0.7409
0.7289
0.7906
0.7019
0.7111
0.8334
0.7964
0.7551
0.7182
0.7878
0.7884

0.9792
0.9942
0.9613
0.9537
0.9838
0.9883
0.9656
0.9722
0.9818
0.9904
0.9781
0.9858
0.9890
0.9911
0.9993
0.9966
0.9746
0.9799
1.0000
0.9947

0.7735
0.7848
0.8551
0.7868
0.8417
0.8711
0.8363
0.8684
0.8393
0.8477
0.8353
0.8775
0.8211
0.8281
0.9089
0.8853
0.8509
0.8289
0.8813
0.8797

0.7795
0.7996
0.8312
0.7729
0.8148
0.8491
0.8316
0.8620
0.8270
0.8455
0.7995
0.8503
0.8227
0.8308
0.9058
0.8568
0.7907
0.7909
0.8876
0.8658

Table 6
Performance results of N B and L R for malware detection data set using
clustering-sampling balancing approach

blocks

1

2

3

4

5

6

7

8

9

10

Algo.

NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR
NB
LR

Accuracy

0.6992
0.7087
0.7546
0.8455
0.7793
0.8381
0.7508
0.8078
0.7936
0.8590
0.8014
0.8753
0.8403
0.9359
0.8795
0.9195
0.8457
0.8264
0.9038
0.8648

Recall

0.6279
0.6347
0.7226
0.8344
0.7696
0.8314
0.7042
0.7745
0.7645
0.8389
0.7949
0.7837
0.8240
0.9304
0.8966
0.9238
0.8735
0.8435
0.9142
0.8623

Precision

0.9823
0.9906
0.9447
0.9592
0.9774
0.9840
0.9231
0.9418
0.9834
0.9899
0.9756
0.9832
0.9781
0.9909
0.9769
0.9924
0.9506
0.9582
0.9802
0.9897

Fl

0.7661
0.7737
0.8188
0.8925
0.8611
0.9013
0.7989
0.8500
0.8602
0.9082
0.8760
0.9252
0.8945
0.9597
0.9350
0.9569
0.9104
0.8972
0.9460
0.9217

G-mean

0.7759
0.7879
0.7884
0.8581
0.8122
0.8609
0.7787
0.8287
0.8462
0.8964
0.8221
0.8807
0.8684
0.9456
0.5918
0.8580
0.7253
0.7559
0.8453
0.8782

6. Conclusion

W e deal with a more realistic and important problem in data stream mining, which most existing
research has failed to address assuming data streams to be entirely labeled. In our research, using
both labeled and unlabeled instances, w e not only assert the presence or absence of drift but w e also
efficiently determine which kind of drift has occurred -feature, conditional or dual-using Kullback-
Leibler divergence and a bootstrapping method. Then, if required, w e update the classifier using the
E M algorithm. Experimental results with naive Bayes and logistic regression show that our approach
is effective for detecting different kinds of changes from data containing both labeled and unlabeled
instances, as well as having a good classification performance.

In the future, it would be interesting to investigate and compare the performance of other classifiers
with our results. Furthermore, note that in this paper w e assume that labeled and unlabeled data come
from the same distribution. This usually leads to a better classification accuracy. A n interesting future
line of research would be to consider the scenario where labeled and unlabeled data possibly come from
different distributions, inspect the impact of unlabeled data, and study the possibility of refining the
change detection proposal.

Acknowledgements

This work has been supported by the Spanish Ministry of Science and Innovation under projects
TIN2007-62626, TIN2008-06815-C02-02, Consolider Ingenio 2010-CSD2007-00018, and by the Cajal
Blue Brain project.

[1] M.R. Amini and P. Gallinari, Semi-supervised logistic regression, in: Fi/kenf& Ewn%?eon Con/erence on Arfi/icW
/nfeZZigence, 2002, pp. 390-394.

[2] A. Asuncion and D.J. Newman, UCI Machine Learning Repository, University of California, Irvine, http://www.ics.
uci.edu/^mleam/ MLRepository.html, 2007.

[3] A. Bifet and R. Gavalda, Learning from time-changing data with adaptive windowing, in: fmceedmgs o/f/ie 7fA S M M
ZnfemafionoZ Con/erence on Dofo Mining, 2007, pp. 29—40.

[4] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby and R. Gavald, N e w ensemble methods for evolving data streams, in:
f mcee¿ingí o/ f&e 73f& A C M S7GKDD ZnfemafionoZ Con/erence on ̂ TnoWedge Discovery and Dafa Mining, 2009,
pp. 139-148.

[5] S. Chen and H. He, SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining, in:
Proceedings o/f&e ZnfemafionoZ Joinf Con/erence o/^Ve«roZ JVefworts, 2009, pp. 522-529.

[6] T. Dasu, S. Krishnan, S. Venkatasubramanian and K. Yi, A n information-theoretic approach to detecting changes in multi-
dimensianal data streams, in; Proceedings o/f&e 3&f& Synyosiwfn on f&e Znfer/oce o/Aofisfics, Conywfing Science, and
AfpZicafions, 2006, pp. 1-24.

[7] A P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the E M algorithm, JownW
o/fAe Koyof SWisficoZ Sociefy 39 (1977), 1-38.

[8] B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical
accuracy, SfofisficaZ Science 1(1) (1986), 54-75.

[9] F. Fleuret, Fast binary feature selection with conditional mutual information, J o w n W o/Mac/zme Leammg /feseofc/i 5
(2004), 1531-1555.

[10] G. Hulten, L. Spencer and P. Domingos, Mining time changing data streams, in: Proceedings o/f/ie 7fA ZnfemafionoZ
Con/erence on fnoWedge Discovery and Dafa Mining, 2001, pp. 97-106.

[11] D.W. Hosmer and S. Lemeshow, A p p / W Logz'sn'c ̂ egressz'oM, John Wiley and Sons, N e w York, 2nd edition, 2000.
[12] J. Gama and G. Castillo, Learning with local drift detection, m.- Proceedings o/f&e 2 W /nfemofionoZ Con/erence on

Advanced Dofo Mining and A^pZicafions, 2006, pp. 42-55.

http://www.ics

[13] J. Gama, R. Femandes and R. Rocha, Decision trees for mining data streams, ZnfeHigenf Dofo AnoZyííí 10(1) (2006),
23-45.

[14] J. Gao, B. Ding, W. Fan, J. Han and PS. Yu, Classifying data streams with skewed class distributions and concept drifts,
ZEEE/nfemef Compwfing 12(6) (2008), 37^9.

[15] D. Kifer, S. Ben-David and J. Gehrke, Detecting change in data streams, in: fmcee¿mgí o/fne JOfA AifemaAonoZ
Con/kngnce on %ry ¿arge ̂ °^° Boaes, 2004, pp. 180-191.

[16] R. Khnkenberg, Learning drifting concepts: Example selection vs. example weighting, ZnfeZZigenf Dofo AnoZyííí 8(3)
(2004), 281-300.

[17] R. Khnkenberg, Using labeled and unlabeled data to leam drifting concepts, in: fmceedmgs o//nfemafionaZ Joinf
Con/erence on Arfi^cfoZ AifeZZigence, 2001, pp. 16-24.

[18] R. Khnkenberg and I. Renz, Adaptive information filtering: Learning in the presence of concept drifts, Wbr&/zop AWes
o/fAe 7CMI/4AAÍ-^ ¿awTimg/br 7e%f Cofegonzoffon, 1998, pp. 33-40.

[19] J.Z. Kolter and M A . Maloof, Dynamic weighted majority: A n ensemble method for drifting concepts, JowmoZ o/
MocAme ¿awTimg ̂ eieayc/i 8 (2007), 2755-2790.

[20] S. Knllback andR.A. Leibler, O n informationand snfñciency, TTie AnnoZí o/MofnemoficoZ Aofíífící 22(1) (1951), 79-86.
[21] L.I. Kuncheva and I. Zliobaite, O n the window size forclassihcation in changing environments, ZnfeZZigenf DofaAnoZysi,;

13(6) (2009), 861-872.
[22] M M . Masud, J. Gao, L. Khan, J. Han and B. Thuraisingham, A practical approach to classify evolving data streams:

Training with limited amount of labeled data, TTie <Sfn IEEE /nfemafionoZ Con/erence on Dofo Mining, 2008, pp. 929-934.
[23] M . Minsky, Steps towards artificial intelligence, Conywfer; on¿ TTiowgnf (1961), 406-^50.
[24] K. Nigam, A. McCallum, S. Thrun and T. Mitchell, Text classification from labeled and unlabeled documents using E M ,

Mocnine ¿awning 39(2/3) (2000), 103-134.
[25] K. Nishida and K. Yamauchi, Detecting concept drift using statistical testing, in: fmcee¿ingí o/7nfemofionaZ Con/erence

o/Discovery Science, 2007, pp. 264-269.
[26] R. Sebastiao and J. Gama, Change detection in learning histograms from data streams, in: fmceejfngs o/ fne 7Jfn

forf«g«eie Con/erence on Arfi^cW/nfeZZigence E f M , 2007, pp. 112-123.
[27] A. Tsymbal, The problem of concept drift: Definitions and related work, TecnnicoZ Keporf TCD-CS'^OO^-^J, Department

of Computer Science, Trinity College Dublin, Ireland, 2004.
[28] A. Tsymbal, M . Pechenizkiy, P. Cunningham and S. Puuronen, Dynamic integration of classifiers for handling concept

drift, /n/brmofion f W o n 9(1) (2008), 56-68.
[29] P. Vorburg and A. Bernstein, Entropy-based concept shift detection, m.- Pmceejfngs q^Ae 6fn ÍMferMan'oMa/ Con/erence

on Dofo Mining, 2006, pp. 1113-1118.
[30] H. Wang, W. Fan, P. Yu and J. Han, Mining concept drifting data streams using ensemble classifiers, in: fmcee¿ingí o/

fne 9fn A C M 5 7 G K D D /nfemofionoZ Con/erence on ̂ TnoWedge Discovery on¿ Dofo Mining, 2003, pp. 226-235.
[31] Y. Wang, Y Zhang and Y. Wang, Mining data streams with skewed distribution by static classifier ensemble, in: fn?-

cee¿ingí o/fne 22n¿/nfemafionoZ Con/enence on ZnJwsfnaZ, Engineering on¿ OfnerA^Zicafioní o/A^Zie¿/nfeZZigenf
Sysfema, 2009, pp. 65-71.

[32] G. Widmer and M . Kubat, Learning in the presence of concept drift and hidden contexts, Mac/zme Leammg 23(1) (1996),
69-101.

[33] P. Zhang, X. Zhu and Y Shi, Categorizing and mining concept drifting data streams, in: Proceeding,; o/fne 7*n A C M
57GKDD /nfemofionoZ Con/erence on f n o w W g e Discovery on¿ Dofo Mining, 2008, pp. 812-820.

[34] X. Zhu, Semi-supervised learning literature survey, Tec/zMfca/ /kporf, Computer Sciences, University of Wisconsin-
Madison, 2008.

