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Recently, several approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data 
streams. However, most are based on supervised classification algorithms assuming that true labels are immediately and 
entirely available in the data streams. Unfortunately, such an assumption is often violated in real-world applications given that 
it is expensive or because it takes a long time to obtain all true labels. To deal with this problem, w e propose in this paper a new 
semi-supervised approach for handling concept-drifting data streams containing both labeled and unlabeled instances. First, 
contrary to existing approaches, w e monitor three possible kinds of drift: feature, conditional or dual drift. Drift detection is 
based on a hypothesis test comparing Kullback-Leibler divergence between old and recent data, whose distribution under the 
null hypothesis of coming from the same distribution is approximated via a bootstrap method. Then, if any drift occurs, a new 
classifier is learned from the recent data using the E M algorithm; otherwise, the current classifier is left unchanged. Our 
approach is so general that it can be applied to different classification models. Experimental studies, using the naive Bayes 
classifier and logistic regression, on both synthetic and real-world data sets demonstrate that our approach performs well. 
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1. Introduction 

With the rapid growth of information technology, infinite flows of records are collected daily. These 
flows, deñned as data streams, pose many challenges to computing systems due to limited time and 
memory resources. Furthermore, they are characterizedby their concept-drifting aspect [10,27]. Concept 
drift means that the learned concepts and/or the underlying data distribution are not stable and may change 
over time. As a result, the model in use becomes out-of-date and has to be updated. 

The held of mining concept-drifting data streams has received increasing attention and has been 
intensively researched in recent years. Several approaches have been proposed [3,5,13,19,25,28] and 
applied to a wide range of real-world applications including network monitoring, telecommunications 
data management, market-basket analysis, information filtering, fraud and intrusion detection, etc. 

However, most of these approaches are based on supervised classification algorithms assuming the 
availability of labeled data for accurate learning. Generally, they continuously monitor classification 
performance and detect a concept drift if there is a significant fall overtime. Unfortunately, the assumption 
of entirely labeled data streams availability is often violated in real-world problems, as labels may be 
scarce and not readily available. 



For instance, for the malware detection problem, only a few true labels (i.e. malware or goodware) 
may be available immediately after the classification process, and therefore w e may have to wait for a 
quite long time until all the instances are labeled. This leads a traditional stream classification algorithm 
to choose between updating the classifier with just a few labeled data, which usually results in a poor 
classifier, or waiting longer to get all labeled data. This can also affect the quality of the classifier since 
most of the data will be outdated. 

Semi-supervised learning methods have proved to be useful in such cases since they combine both 
labeled and unlabeled data to enhance the performance of classification algorithms [34]. However, they 
mainly assume that data is generated according to some stationary distribution, which is not true when 
learning from evolving data streams, where changes may occur over time. 

In this paper, w e propose a new semi-supervised learning approach for concept-drifting data streams. 
Our aim is to take advantage of unlabeled data to detect possible concept drifts and, if necessary, update 
the classifier over time even if only a few labeled data are available. 

To this end, inspired by earlier work by Dasu et al. [6], w e use the Kullback-Leibler (KL) diver
gence [20] to measure distribution differences between data stream batches. Then, based on a bootstrap
ping method [8], w e determine whether or not the K L measures are statistically significant, i.e. whether 
or not a drift occurs. However, our approach differs from Dasu's work on three key points. First, w e 
do not only detect whether or not a drift occurs, but w e further distinguish and monitor three possible 
kinds of drift: feature, conditional or dual drift. Second, w e do not assume the available data streams are 
entirely labeled. Indeed, w e detect possible drifts using both labeled and unlabeled instances. Moreover, 
w e propose a general approach for learning from all these instances. In fact, when any of the three 
possible kinds of drift is detected, a new classifier is learned using the expectation-maximization (EM) 
algorithm [7]. E M has been widely used in semi-supervised learning where it has been found to improve 
classification accuracy, especially when there is a small number of labeled data [24]. Otherwise, i.e. 
when no drift is detected, the current classifier is left unchanged. 

Note that our approach is so general that it can be applied with different classification learning 
algorithms. In this paper, w e consider two classifiers, namely naive Bayes and logistic regression. W e 
perform experiments on rotating hyperplane and mushroom data sets using different percentages of 
labeled instances. Moreover, w e evaluate our approach using a real-world malware detection data set, 
where w e deal with the additional problem of unbalanced data streams and make use of two recently 
proposed approaches for mining skewed data streams, namely clustering-sampling [31] and S E R A [5]. 
The results show that our approach performs well even using limited amounts of labeled data. 

The remainder of this paper is organized as follows. Section 2 defines the concept drift problem and 
three types of drift. It then goes on to briefly review existing approaches for learning from concept-
drifting data streams. Section 3 introduces our new approach. Section 4 presents the experimental study. 
Finally, Section 5 rounds the paper off with some conclusions. 

2. Concept drift 

2J. fWVemde/zyMfioM 

In dynamic environments, the characteristic properties of data streams are often not stable but change 
over time. This is known as the concept drift problem [32]. According to Tsymbal [27], there are 
two possible types of concept drift: reof concepf ¿frf/i, defined as a change of the target concept that 



the classiñer is trying to predict, and W r f W concepf ¿frf̂ , denned as a change of the underlying data 
distribution. 

From a probabilistic point of view, concept drift can be deñned as the change in the joint probability 
distribution f (x, c), where c is the class label of a feature vector x f (x, c) is the product of the class 
posterior distribution f (c | x) and the feature distribution f (x). According to [14], there are three 
possible sources of concept drifts: 

- O o f W m o W c&onge: In this case, a change occurs in f (c | x), that is, the class labels change given 
the feature vectors. For instance, a conditional change may occur in an information filtering domain 
consisting of classifying a stream of documents, denoted by x, as relevant or irrelevant, denoted by c, 
if the relevance of some documents changes overtime, that is, their class labels change from relevant 
to irrelevant or vice versa. With respect to TsymbaTs concept drift categorization, a conditional 
change corresponds to a real concept drift. 

- fgofwrg c&onge: In this case, a change occurs in f (x). Intuitively, some previously infrequent 
feature vectors may become more frequent or vice versa. For instance, the relative frequency of 
some documents in information filtering domain changes over time regardless of their relevance, 
which may remain constant over a long period of time. With respect to TsymbaTs concept drift 
categorization, a feature change represents a virtual concept drift. 

- D W c&onge: In this case, changes occur in both P(x) and f (c | x). According to the information 
filtering example, changes in both the relative frequency and the relevance of some documents are 
observed, i.e. a virtual and a real concept drift both occur together. 

Moreover, Zhang et al. [33] proposed an additional categorization also based on the decomposition of 
P(x, c) into two parts, as P(x, c) = P(x) P(c | x). In fact, they deñned ngorows concepf ¿frf/HMg for 
changes in both P(x) and f (c | x), and kwsg concepf ¿fn/Hng for changes in P(x) only. 

To the best of our knowledge, in spite of these categorizations, all existing approaches dealing with the 
concept drift problem either update the current classiñer without using any detection method, or detect 
only whether or not there is drift, i.e. without specifying which type of concept drift occurs. 

In this paper, w e propose an efñcient approach for quantifying and detecting the three possible types 
of drift: feature, conditional or dual using both labeled and unlabeled data. Details are presented in 
Section 3.2. 

2.2. # g f o W w o r & 

Different approaches have been proposed to handle concept-drifting data streams. As pointed out 
in [12], these approaches can be classiñed into 6 Z W opprooc&gs that adapt the classiñer at regular 
intervals without considering whether changes have really occurred, and m/brmgff approoc&as that are 
used in conjunction with a detection method and only adapt the classiñer after a change is detected. 

Examples of blind approaches include weighted examples [16] and ñxed size time windows [32]. 
Weighted examples assigns lower weights to old instances according to their age and/or utility in order 
to focus more on recent instances incorporating the new concepts. Fixed size time windows consider 
over time a ñxed number of instances over time: In this case, the choice of an appropriate window size 
should trade off fast adaptation in phases with concept drifts against good generalization in stable phases 
without concept drifts. 

Ensemble methods can also be considered as blind approaches. In fact, the general technique applied 
by these methods is that the data stream is divided into sequential blocks of ñxed size, and each of these 
blocks is used to train a classiñer. The ensemble is continuously reñned by adding a new classiñer, 



removing the oldest or the weakest classifier, increasing or decreasing the classiñer weights using some 
criteria usually based on current data block performance [4,19,28,30,31]. 

The adaptive size time window is an example of informed methods [32]. In fact, the window size is 
adjusted dynamically to the current concept drift: As a general rule, if a drift is detected the window size 
decreases to exclude the out-of-date instances; otherwise the window size increases to include the more 
recent instances [21]. 

Clearly, informed methods are more interesting since they are a more efficient way of coping with 
concept drifts and avoid the uncontrolled updating of the current classifier. The main issue is how to 
detect concept drifts. Most of the existing research monitors at least one performance indicator over 
time [3,12,18,25,32]. Classification accuracy is the most used indicator, i.e. if there is a consistent drop 
in the accuracy, a drift is signaled. Other performance indicators, such as error rate, recall and precision, 
have also been used. 

A n alternative approach detecting drift is to monitor the data distribution in two different windows [13, 
15,29]. It is assumed that as long as the distribution of old instances is similar to the distribution of 
recent ones, no concept drift occurred. A distribution difference, on the other hand, indicates a concept 
drift. In particular, Dasu et al. [6] and Sebastiao and G a m a [26] used the Kullback-Leibler divergence to 
measure the distance between the probability distributions of two different windows to detect possible 
changes, and proved its generality, efficiency and resilience to false alarms. 

However, note that all previously presented works assume that true labels are entirely available in data 
streams. To the best of our knowledge, only two relevant previous works have addressed the problem of 
scarceness of labeled instances in concept drifting data streams. 
The first, proposed by Klinkenberg [17], is based on transductive support vector machines and it 

maintains two separate adaptive windows on labeled and unlabeled data in order to monitor, respectively, 
the probabilities f (c | x) captured by labeled data and f (x) underlying both labeled and unlabeled data. 
This was justified by the fact that f (c | x) and f (x) may change at different rates. However, although 
theoretically well-founded, this method has never been evaluated. 

The second work was recently proposed by Masud et al. [22]. It is based on an ensemble approach 
where each model in the ensemble is built as micro-clusters using a semi-supervised clustering technique. 
In fact, the learning step of each model starts by choosing Ac points from the labeled data of class C 
to initialize Ac centroids. Then, the E M algorithm is applied by iterating the following two steps until 
convergence: The E-step assigns each unlabeled data point x to a cluster such that its contribution to a 
cluster-impurity function is minimized, and the M-step recomputes each cluster centroid by averaging 
all the points in that cluster. Finally, a summary of the statistics of the instances belonging to each built 
cluster is saved as a micro-cluster. These micro-clusters serve as a classification model. 

To cope with stream evolution, Masud et al. [22] keep an ensemble of ¿ models. Whenever a new 
model is built from a new data chunk, they update the ensemble by choosing the best ¿ models from 
¿ + 1 models (previous ¿ models and the new model), based on their individual accuracies on the labeled 
instances of the new data chunk. Besides, they refine the existing models in the ensemble whenever a new 
class of data evolves in the stream. Note finally that this approach is blind since it does not incorporate 
any drift detection method. 

3. Background on E M algorithm 

Let D denote the data stream that arrives over time in batches. Let D^ denotes the batch at step s. D^ 
consists of the union of two disjoint subsets D ^ and D^. D ^ denotes a set of 7V^ unlabeled instances 



(x), whereas D^ denotes a set of 7V^ labeled instances (x, c), s.t. x represents an M-dimensional feature 
vector (%i,..., Zn) and c e Q c = {ci, C2,..., ci^i} represents the corresponding class value for labeled 
instances. TV* = 7V¿ + 7V^ denotes the total size of _D\ 

Learning a classifier from the D^ data corresponds to maximizing the likelihood of D^ given the 
parameters 0*. Assuming that instances are independent, this likelihood is the product of all (labeled 
and unlabeled) instance probabilities expressed as follows [24]: 

P ( D * I 0') = % % % - I x,;0')f (x, I 0') 

N¿ |C| 

¿=1j=i 

where the first term is derived from labeled instances, and the second one is based on unlabeled data 
where the sum expresses the fact that the unknown class value can be any of the existing values. 
Then, considering ¿ogf(D* | 0*) = ¿¿(D* | 0*), we have: 

¿¿(D* I 0') = ¿ ¿ o g ( % I x,;03f (x, I 0')) 

^ |C| 

+ E ̂  E ̂ (^ 1 ̂  ̂ )^(^ 1 ^)- (?) 
Notice that this equation contains a log of sums for the unlabeled data, which makes a maximization by 
partial derivatives with respect to 0* analytically intractable. 

Consider that we can have access to the class labels of all the instances, represented using a matrix 
of binary indicator variables z, where rows correspond to different instances and columns to different 
classes, so that an entry is % = 1 iff c, is the class of instance x¿, and % = 0 otherwise. Thus, Eq. (2) 
can be rewritten as follows without a log of sums, because only one term inside the sum would be 
non-zero: 

N' |C| 

¿¿(D* I G*;%) = ̂ ] ̂ ]%j W % I x,; 0')f (x, I 03)- (3) 
$=1 j=l 

W e use the E M algorithm [7] to ñnd the maximum 0 of Eq. (3). Let z¿ and 0¿ denote the estimates 
for z and 0* at iteration ¿. E M starts with an initial estimate of classifier parameters 0\ from only the 
labeled data in D^. Then, it iterates over the E- and M-steps: 

- The E-step uses the current classifier parameters to probabilistically assign labels to the unlabeled 
instances in D^. Formally, it computes the expected value of 

z , + i = # s | D * ; 0 ; ] . (4) 

Clearly, for labeled data, % is easily determined since classes are already known. For unlabeled 
data, % should be estimated as follows: 

FU.. i /y. ¿*i _ Í 1 if Cj = arg maxc?(c | x¡; 0")- ^ 
6^|^,e,j_^() otherwise. ^ 



- The M-step re-estimates the classifier for all the data in _D\ i.e. using all instances (the originally 

labeled and the newly labeled by the E-step). In fact, this step consists of computing new parameters 

0¿_l_i using the current expected value of z. Formally, we have 

¿t+i = &rg mazg'¿¿(D^ | 0^;zt+i)- (6) 

These two steps are iterated until convergence as proved by Dempster etal. [7]. At convergence, E M 

nnds 0 that locally maximizes the log likelihood with respect to both labeled and unlabeled data. 

4. N e w approach for mining concept-drifting data streams with a limited number of labeled 
instances 

In this section, we will ñrst introduce the two considered classifiers, namely naive Bayes and logistic 
regression, leamt from both labeled and unlabeled instances. Then, we will present the drift detection 
method. 

4. A A AWveMyes(M*) 
Naive Bayes [23] is a generative classifier that optimizes the joint log likelihood of the data as previously 

detailed. Based on the assumption that the features are all conditionally independent of one another 
given the class variable C, parameters 0* denote the probability table of C, i.e. f (C), as well as the 
conditional probability tables of each feature %r given C, i.e. P(%r | C),r G {1,... ,m}. 
To classify a given instance, the posterior probability of each possible class value c, is computed, and 

then, the most probable class is selected. More formally, 

c = &rg m a z ^ f (c^) ̂ % f (%r I (%)- (7) 
r=l 

Logistic regression [11] is a discriminative classifier that maximizes the conditional log likelihood 
instead of the log likelihood. Hence, in this case, instead of (3), E M algorithm maximizes the following 
formula: 

N' |C| 

¿¿(D* | G*;%) = ̂ ] ̂ ]%j ¿og% | x,; 03- (8) 
$=1 j=l 

where parameters 6* are represented by the vector (0jo,0^,... , 0 ^ ) ^ for j = 1,..., |C|. 
To classify a given instance, the posterior probability of each possible class value c, is computed as 

follows: 

P ( C = %|x;6T) = < 

Vj < |C|, 

(9) 

forj = |C|-

Then, the Cj value with the maximum probability is assigned as a label. 



4.2. Dgfgcfmg o concepf ¿frf/̂  

Given a new batch of data _D*+i, the objective is to detect changes whenever they occur and adapt the 
current classiñer if necessary. In general, it is assumed that as long as the joint probability distribution 
of _D*+i is similar to the distribution of _D\ no concept drift occurs. Otherwise, a concept drift should 
be indicated. 

In order to detect possible changes, w e use the K L divergence [20], also known as the relative entropy, 
to measure differences between the empirical distributions of D^+^ and D^. Note that the K L divergence 
has two fundamental properties, namely, non-negativity, being 0 iff the two compared distributions 
are the same, and asymmetry. Moreover, a higher K L value indicates a higher dissimilarity between 
distributions, and so, a pronounced drift. 

First, in order to monitor the conditional change, w e proceed to measure the K L divergence Mcc between 
the class posterior distributions of D^+^ and D^ using only their corresponding labeled instances. &¿cc is 
computed as a sum of K L divergences, each of which measuring the divergence between the conditional 
distributions of the class given feature instantiation, expressed as follows: 

Wcc = ̂ K % . + i ( C I x)||A).(C I %)) 
X 

¡Hi . . . . &+i(c x 

x ^ í ' fD'(Cj|x) 

In addition, to monitor the feature change, w e measure the K L divergence AZ/c between the feature 
distributions of _D*+i and D^ using all the labeled and unlabeled instances except the class variable: 

W/c = K¿(&,+i(x)||AXx)) = V f D . + i ( x ) ^ 2 ^ 4 ^ ' (11) 

In order to determine whether or not the computed K L measures are statistically significant, w e use the 
bootstrapping method [8] following previous work reported in [6]. Intuitively, this method allows us to 
determine, by repeated sampling with replacement from the data, whether or not a specific measurement 
on the data is significant. 

Specifically, to decide whether or not the resulting &¿cc value is significant, w e consider the null 
hypothesis 

%cc:fD"+i(C|*)=fWC|X), 

denoting that no conditional change has occurred. So, our objective is to determine the probability of 

observing the value &¿cc if #0cc is true. 

To this end, given the empirical distribution fb«(C | x), w e sample A data sets denoted %, 6 = 

!,...,&, each of size 2A^. Then, w e consider the first A ^ instances S¿,i as coming from the distribution 

fb«(C I x), and the remaining A ^ instances S¿,2 = <% \ % i as coming from the other distribution 

fp.+i(C | x); and w e compute the bootstrap estimates Écd, = E x ^ ^ ( ^ w ( C I x)ll^%i(C I %)) 

between each two samples % 2 and % i , 6 = !,...,&. The obtained estimates form an empirical 

distribution from which w e construct a critical region [M^, oo), where M ^ represents the (1 — a)-

percentile of the bootstrap estimates, and a is a desired significance level. 



Finally, if w e observe that /ĉ c falls into the critical region, i.e. /c^c > A;/^, w e conclude that it is 
statistically significant and invalidates _%^. In other words, w e conclude that a conditional change is 
detected. 

Similarly, in order to decide whether or not the resulting My^ value is significant, w e consider the null 
hypothesis 

and apply the same process to determine the critical region [H ̂ ; oo) and decide about a feature change. 
Note that, if either a feature or conditional change is detected, w e proceed to learn a new classifier. 
Otherwise, the current classifier is left unchanged. 

To recapitulate, Algorithm 1 outlines the whole proposed approach. First, K L divergence and the 
bootstrapping method are used to monitor possible conditional and feature changes (steps 1 to 4). If any 
change is detected, a new classifier is learned using the expectation maximization algorithm (step 5.1): 

an initial estimate of classifier parameters 0^ is induced using only the labeled instances of the new 
data set D ^ (step 5.2), then E M iterates over the E- and M-steps until convergence (step 5.3). In case 
that no change occurred, the classifier is left unchanged (step 6). 

Algorithm 1 

begin 

Output: @"+i 

J. Compute kfcc 
2. Compute t/ie oootatmp estimates Meet, o = !,...,&, and critical region [&fcc,oo) 
& Compute M/c 
j. Compute t/ie oootatnap estimates M/cb, 6 = !,...,&, ana" critical region [&!/c,oo) 
5. if Mcc > Mcc or M/c > M/c then 

¿¡.J .A cmange ¿a detected, learn a new clasai/ier/rom C + * 
5.& 0%"*"* <— initial parametera induced only /rom labeled data f)*"*"^ 
5. ,9 while mo convergence do 
I E-atep; compute tne expected laoek /or all unlaoefed iiwtancca using ^^ 
|_ M-step; update cWa*/:er parameters uaing fgj obtaining 6^+^ 

g. else 
L tVo cnange *a detected; 6"+^ 4 — 6° 

7. Actum 6"+i 

end 

5. Experimental study 

5.7. ¿7.?g6Wafa.?gf.? 

W e test our approach on the following synthetic and real data sets. 

5.7.7. 7WafmgA){pg?pZa»g&zfa.?gf 
The rotating hyperplane data set is considered as a benchmark synthetic data set and has been widely 

used to simulate the concept drift problem [10,14,28,30]. In fact, this synthetic data set allows us to 
carry out experiments with different types of drift, as well as different percentages of labeled data and, 
hence, to investigate the performance of our approach under controlled conditions. 

A hyperplane in an ̂ -dimensional space is denoted by ̂ L ^ w % = wo, where w = (tui,..., w ^ ) ^ 
is the weight vector. Instances for which ̂ % ^ w¿z¿ ̂  wo are labeled positive, and instances for which 



^ % i w¿z¿ < Wo are labeled negative. Weights w* are initialized by random values in the range of [0,1], 
and wo values are determined so that 1% = -g ̂ % ¡ t%. 
W e generated z¿ from a Gaussian distribution with mean //¿ and variance a^. The feature change 

is simulated by changing the mean, i.e. ¡u¿ is changed to //¿s¿(l + ¿), and the conditional change is 
simulated by the change of weights t% to w*s*(l + ¿). Parameter í e [0,1] represents the magnitude of 
the changes, and parameter s¿ e {—1,1} specifies the direction of the changes which could be reversed 
with a probability of 0.1. W e generated a data stream of 10 dimensions (m = 10) with 80,000 instances, 
using different magnitudes of change ¿ respectively set to 0.1,0.2,0.5,1 for each 20,000 instances. Then, 
w e split the whole data stream into sets of blocks of size 2000, and from each block w e considered equal 
training and testing subsets of size 1000, such that every training set is followed by a testing set. 

5.7.2. Mws&room dofo sef 
The mushroom data set, from the U C I repository [2], is regarded as having virtual concept drift (i.e. 

feature changes) but no real concept drift (i.e. conditional changes) [19]. The mushroom data set contains 
22 variables and 8124 instances. W e split it into 6 blocks, and used 1000 instances from each block for 
training and 354 instances for testing. 

5.7.J. MofwwgdgfgcffOMdofosef 
The malware detection data set represents the important problem of continuously classifying received 

hies into malware (e.g. viruses, spyware, trojans, phishing, spam, etc.) or goodware to ensure that users 
are protected against malicious code. This data set has been provided by an IT security company and 
consists of 40,000 records. It contains 5398 features and a binary class taking either the malware or 
goodware value. Due to the confidentiality of the data, w e omit the name of the company here, as well 
as the detailed description of the features. 

Contrary to experiments with the previous data, w e do not know whether or not changes occur in this 
real data set; and if so, w e do not know when and which kind of changes occur. Moreover, w e do not ñx 
the percentage of labeled data in each block. Instead, w e use all the available labeled data, the number 
may vary from one data block to another. 

W e also deal with two additional issues to process this malware detection data set. The nrst is/gofwrg 
sekcffOM, which aims to select a small subset of relevant features in order to avoid features dependency 
and redundancy and enhance classifier performance. In this paper, w e use the conditional mutual 
information maximization criterion ( C M I M ) [9]. It iteratively picks features that maximize their mutual 
information with the class variable, conditionally upon the response of the already picked features. In 
this way, C M I M ensures weak dependency and no redundancy as it does not select a feature similar to 
any that have already been picked even if it is individually powerful. 

In our case, feature selection is applied each time w e leam a new classifier, i.e. each time w e detect 
changes. Hence, a new and more informative subset of features is selected given new incoming data. 
In fact, some old selected features may be removed and new different features may be selected. This, 
consequently, allows us to build more efficient classifiers. 

The second issue is ¿mW<mcg(f dofo since the number of malware instances is much higher than 
goodware instances. This leads to an important problem since the learned classifier may be biased 
towards the malware class, and therefore its predictive accuracy may be very poor on the goodware class. 
W e apply two recent approaches to balance the class distribution: 

- The clustering-sampling approach proposed by Wang et al. [31] makes use of the k-means clustering 
algorithm to select negative instances for representing the negative class (i.e. malware class in our 



Table 1 
Data set descriptions 

Data set Number of Number of Number of Number of 
features instances blocks instances in a block 

Rotating hyperplane 10 80000 40 2000 
Mushroom 22 8124 6 1354 
Malware detection 50 40000 10 4000 

case). Firstly, the number of clusters Mc is set to the size of positive instances (i.e. goodware 
instances). Then, the negative instances are clustered into Mc clusters and the centroid of each 
cluster is used as as negative instance for representing the negative class. 

- The selectively recursive approach (SERA) proposed by Chen and H e [5] makes use of the previous 
data blocks knowledge to balance the current data block. In fact, it consistently collects the positive 
instances from the previous data blocks. Then, it applies the Mahalanobis distance to measure the 
similarity between each instance and the current positive instances, and includes a subset of the 
most similar previous positive instances of a size proportional to the size of the current negative set 
only. This is justified by the fact that only the previous positive instances not including the drifting 
concepts are actually helpful for the learning process. 

The malware detection data set is divided into sets of blocks of size 4000, and from each block, the 
first 2000 instances are used for training while the remaining instances are used for testing. For feature 
selection, w e select 50 of the 5398 features. 

To summarize, the details of the three considered data sets are given in Table 1. Note finally that, 
for bootstrap parameters, w e use the significance level a = 0.05 and samples number A = 500 in all 
experiments. Our choice is based on Dasu et al.'s work [6] where they prove that the number of samples 
does not significantly affect the quality of the results and suggest that A = 500 is a reasonable number of 
samples. They also point out that lower a values make the null hypothesis harder to reject, leading to a 
lower change detectability. According to our experiments, a = 0.05 works well and can be considered 
as an appropriate value. 

5.2. ExpgTTmgMfoZrgWfs 

5.2J. # g W # m f & rofofmg Aypeyp&ZMg dofo sef 
Table 2 represents the results for the drift detection proposal. The first column represents the block 

numbers of the training sets. For instance, 1-2 denotes that the current data is the training set of the 
first block, while the new data corresponds to the training set of the second block. Then, in columns 2 
and 3, w e show the AZ/c and A L ^ values. These values are the same for all experiments irrespective of 
the different percentages of labeled data, since they only use the feature values. Finally, columns 4 to 9 
report &¿cc and A ^ respectively, for 2 % , 5 % and 1 0 % of labeled data. 

As expected, a feature change is only detected between blocks 10 and 11 where the magnitude of 
change ¿ goes from 0.1 to 0.2, blocks 20 and 21 where ¿ goes from 0.2 to 0.5, and blocks 30 and 31 
where the ¿ goes from 0.5 to 1. The larger the modification of ¿ values, the higher the AZ/c values are, 
showing a more significant drift in the feature distributions between the data blocks. 

The same applies to the conditional distributions monitored by &¿cc values for both 5 % and 1 0 % of 
labeled data, where higher &¿cc values are obtained for higher ¿ values. However, in the case of 2 % 
of labeled data, no conditional changes are detected. This can be explained by the fact that the true 
conditional distribution cannot be accurately approximated with very few labeled instances. In their 



Table 2 
Drift detection results for rotating hyperplane data set 

Feature change Conditional change 

2% labeled 5% labeled 10% labeled 

blocks 

1-2 
2-3 
3-^ 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 
10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-17 
17-18 
18-19 
19-20 
20-21 
21-22 
22-23 
23-24 
24-25 
25-26 
26-27 
27-28 
28-29 
29-30 
30-31 
31-32 
32-33 
33-34 
34-35 
35-36 
36-37 
37-38 
38-39 
39^W) 

M/c 
0.0962 
0.1353 
0.1214 
0.1245 
0.1069 
0.1008 
0.1013 
0.1304 
0.1017 
0.1434 
0.1249 
0.1154 
0.0882 
0.0956 
0.1344 
0.1373 
0.1374 
0.1316 
0.0932 
0.1544 
0.1378 
0 1141 
0.1296 
0.0851 
0.0849 
0.0653 
0.0880 
0.1139 
0.1383 
0.1767 
0.1011 
0.1332 
0.1360 
0 1171 
0.0951 
0.0957 
0.1056 
0.1264 
0.1378 

M/c 
0.1386 
0.1801 
0.1364 
0.1381 
0.1404 
0.1378 
0.1381 
0.1388 
0.1398 
0.1405 
0.1402 
0.1390 
0.1398 
0.1378 
0.1369 
0.1866 
0.1444 
0.1400 
0.1392 
0.1408 
0.1538 
0.1387 
0.1366 
0.1370 
0.1382 
0.1342 
0.1373 
0.1434 
0.1521 
0.1466 
0.1373 
0.1394 
0.1565 
0.1395 
0.1376 
0.1395 
0.1367 
0.1625 
0.1367 

k̂ c 
0.4807 
0.8112 
0.0637 
0.0158 
0.3166 
1.4039 
1.2359 
0.9124 
1.2339 
3.2875 
1.2026 
1.9967 
1.8104 
2.4464 
2.3008 
0.7418 
1.0548 
2.3245 
1.4075 
4.1283 
0.0637 
0.9158 
1.4257 
1.1079 
1.0042 
1.4721 
1.2339 
1.9099 
1.7233 
4.7233 
1.4792 
0.6748 
0.9099 
0.8475 
1.2339 
0.9213 
0.6014 
0.9078 
0.3478 

&Cc 
3.1025 
3.9845 
5.7233 
6.1474 
2.6613 
6.9068 
5.6246 
6.2563 
4.2875 
6.4493 
6.2875 
7.3604 
8.2256 
6.4493 
6.3567 
6.2875 
5.1297 
6.5493 
6.3649 
6.4512 
6.4502 
5.8614 
6.5915 
6.1807 
6.4346 
6.3684 
6.6503 
6.5288 
6.8027 
6.4346 
6.2875 
6.7841 
5.1964 
3.5168 
6.4593 
4.8143 
6.3684 
6.3125 
5.6177 

k̂ c 
0.1168 
0.0862 
0.3874 
0.4248 
0.2985 
0.7706 
0.6927 
0.5369 
0.2925 
1.3862 
0.2534 
0.4209 
1.0638 
0.5212 
0.8237 
1.6932 
0.7915 
1.3169 
0.5472 
1.3821 
0.4669 
0.3925 
0.4248 
0.3472 
0.2812 
0.5004 
0.5257 
0.6927 
0.0818 
1.9310 
0.1613 
0.4838 
0.6927 
0.4354 
0.9211 
0.3234 
0.2648 
0.1763 
0.4517 

&Cc 
0.5257 
1.7670 
0.1958 
1.4025 
1.4885 
1.3782 
1.3755 
1.6424 
1.3847 
1.2369 
1.7670 
1.5021 
1.7860 
1.3369 
1.6660 
1.8060 
1.9310 
1.8142 
1.3725 
1.2364 
1.7670 
1.6927 
1.2849 
0.5288 
1.2745 
1.3369 
1.1575 
1.7670 
1.7495 
1.3660 
0.2534 
1.7897 
1.0546 
0.4999 
1.3369 
1.7495 
0.6364 
0.4376 
1.6849 

k̂ c 
0.0222 
0.0514 
0.1013 
0.2139 
0.3100 
0.5962 
0.1665 
0.1990 
0.2180 
0.9812 
0.1355 
0.1544 
0.1419 
0.2552 
0.1580 
0.1862 
0.1273 
0.1355 
0.3919 
1.0118 
0.0456 
0.1153 
0.1030 
0.0168 
0.0953 
0.3651 
0.2120 
0.3275 
0.1094 
1.3369 
0.0375 
0.1978 
0.3248 
0.1279 
0.1947 
0.1456 
0.1898 
0.1504 
0.3973 

&Cc 
0.4989 
0.6499 
0.7847 
0.5257 
0.7380 
0.8997 
0.3234 
0.2339 
0.6060 
0.6499 
0.5428 
0.3575 
0.7648 
0.6499 
0.6694 
0.3013 
0.6499 
0.5005 
0.7842 
0.8162 
0.5257 
0.2978 
0.1375 
0.2311 
0.2110 
0.5147 
0.6499 
0.5005 
0.4257 
0.7648 
0.3409 
0.4885 
0.7648 
0.5694 
0.6348 
0.5257 
0.2339 
0.4342 
0 5389 

experiments studying the effect of window size on the performance of the change detection scheme, 

Dasu et al. [6] come to the same conclusion, i.e a larger window size gives better approximation of the 

true underlying distribution and results in a better detection of changes. 

Furthermore, Fig. 1 presents accuracy curves for N B and LR. For each curve, the x-axis represents the 

block number, and the y-axis represents the classification accuracy. Obviously, the performance of both 

N B and L R is much better when higher percentages of labeled data are considered. Note also that in this 

data set L R always outperforms N B , which is mainly due to the small percentages of labeled data. In 

fact, as also pointed out in [1], the presence of only few labeled data may lead to poor estimates of the 

generative approach. 



Driñ detection results for mushroom data set 

blocks 

Feature change 

M/c M/c 

Conditional change 

2 % labeled 5% labeled 

W^ &C K. W^ 
10% labeled 

W ^ W"c 

1-2 
2-3 
3 ^ 
4-5 
5-6 

0.2251 
0.0365 
0.1184 
1.2973 
0 0007 

0.0450 
0.0755 
0.1536 
0.2373 
0 0814 

0.0003 0.1430 
0.0019 0 0156 
0.0031 0.0049 
0.0043 0.1347 
0.0028 0.0105 

0 0001 0 0035 
0.0005 0.0030 
0.0054 0.0057 
0.0002 0.0063 
0.0018 0.0092 

0.0079 
0.0003 
0.0002 
0 0013 
0 0001 

0 0176 
0.0009 
0 0181 
0.0030 
0.0053 

2r 

u 
^ 

I I 11 11 I I I 

31 34 37 40 

Naive Bayes 

- — 1 0 % labeled 

5 % labeled 

* — 2 % labeled 

Blocknumber 

I I I I I I I H I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

4 7 10 13 16 19 22 25 28 31 34 37 40 

Logistic regression 

— i — 1 0 % labeled 

— 5 % labeled 

— # — 2 % labeled 

Blocknumber 

Fig. 1. Classification results of NB and LR for rotating hyperplane data set. 

5.2.2. ^gWfstWf&fMws&roofMdofosef 
According to the results in Table 3, feature changes are only detected between blocks 1 and 2, and 

blocks 4 and 5. However, no conditional changes are detected for any of the percentages of labeled data 
as expected. This proves that our detection method is resilient to false alarms. 
Moreover, according to Fig. 2, using more labeled data improves the predictive accuracies of both N B 

and LR. Nevertheless, the improvement is negligible for LR from 5 % to 1 0 % of labeled data and the 
corresponding curves are almost superimposed. Notice also that LR always outperforms N B and has a 
more stable behavior especially when more labeled data are used. 

5.2. J. # g W # mf& mafworg dgfgcfzon dofo sef 
Table 4 presents drift detection results for the malware detection data set. The nrst column reports as 

previously the block numbers, while the second column represents the percentage of labeled instances 



Table 4 
Drift detection results for malware detection data set 

blocks 

1-2 
2-3 
3-^ 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

% labeled instances 

70.00-80.45 
80.45-69.30 
69.30-67.10 
67.10-78.35 
78.35-71.25 
71.25-74.85 
74.85-76.05 
76.05-83.80 
83.80-78.85 

M/c 
0.1304 
0.1057 
0.3892 
0.1272 
0.1095 
0.0665 
0.0967 
1.0006 
0.1221 

Mfc 

0.2049 
0.1553 
0.1408 
01939 
0.3717 
0.2760 
0.1434 
0.2445 
0.9668 

k̂ c 
0.0797 
0.1609 
0.4330 
0.2975 
0.0190 
0.5373 
0.5028 
0.7558 
0.3390 

&4c 
0 9180 
0.2062 
0.2717 
0.3473 
01652 
0 6614 
0.5484 
0.6033 
0.4493 

Logistic regression 

% 0,9 -

= __ — — 1 0 % labeled 
y 0,85-

< o,8 - —— 5 % l a b e l e d 
0,75 -I 1 1 , 1 1 — 2 % labeled 

1 2 3 4 5 6 

Block number 

Fig. 2. Classification results of N B and L R for mushroom data set. 

in each considered block. Then, columns 3 to 8 show respectively AZ/c, AL^, &¿cc and M ^ values. W e 

observe that feature and conditional changes occur together and are detected between blocks 3 and 4, 

and again between blocks 8 and 9. 

To evaluate classiñer performance, w e previously used only the overall classification accuracy How

ever, when dealing with unbalanced data sets, this metric is often insufficient, as it does not distinguish 

between the number of correctly classified instances of different classes. 

Using balancing methods mainly aims to improve the classiñer performance over the positive class, 

i.e. reduce the number of false positives. In order to appropriately monitor the behavior of N B and L R 

classifiers on the positive class in this case, then, w e also calculate the precision, recall, Fl and G-mean 

metrics based on the confusion matrix analysis. 

The results of the N B and L R classifiers for the first balancing approach S E R A are described in Table 5. 

W e observe that, in most cases, L R accuracies are slightly higher than for N B . 

Furthermore, both N B and L R provide high precision values for all testing blocks, where all values 

are greater than 9 5 % , and yield good results in terms of Fl and G-mean values, which is indicative of a 

good performance predicting the positive instances. 

For the clustering-sampling balancing approach, as shown in Table 6, L R outperforms N B , except on 

the last two testing sets, where N B shows better accuracies, as well as better recall and Fl values. 

Finally, note that the results of the two applied balancing approaches are comparable, with a slightly 

better performance of the clustering-sampling approach in terms of overall accuracy, recall and Fl 

metrics. In most cases, though, S E R A provides slightly better precision with both N B and L R classifiers. 

Naive Bayes 

075 i i i i 

2 3 4 5 

Block number 



Table 5 
Performance results of N B and L R for malware detection data set using 
S E R A balancing approach 

blocks Algo. Accuracy Recall Precision Fl G-mean 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 

0.7063 
0.7211 
0.7995 
0.7212 
0.7540 
0.7951 
0.7970 
0.8328 
0.7668 
0.7787 
0.7462 
0.8051 
0.7488 
0.7576 
0.8385 
0.8006 
0.7625 
0.7339 
0.8044 
0.8011 

0.6392 
0.6483 
0.7701 
0.6696 
0.7354 
0.7788 
0.7375 
0.7846 
0.7330 
0.7409 
0.7289 
0.7906 
0.7019 
0.7111 
0.8334 
0.7964 
0.7551 
0.7182 
0.7878 
0.7884 

0.9792 
0.9942 
0.9613 
0.9537 
0.9838 
0.9883 
0.9656 
0.9722 
0.9818 
0.9904 
0.9781 
0.9858 
0.9890 
0.9911 
0.9993 
0.9966 
0.9746 
0.9799 
1.0000 
0.9947 

0.7735 
0.7848 
0.8551 
0.7868 
0.8417 
0.8711 
0.8363 
0.8684 
0.8393 
0.8477 
0.8353 
0.8775 
0.8211 
0.8281 
0.9089 
0.8853 
0.8509 
0.8289 
0.8813 
0.8797 

0.7795 
0.7996 
0.8312 
0.7729 
0.8148 
0.8491 
0.8316 
0.8620 
0.8270 
0.8455 
0.7995 
0.8503 
0.8227 
0.8308 
0.9058 
0.8568 
0.7907 
0.7909 
0.8876 
0.8658 

Table 6 
Performance results of N B and L R for malware detection data set using 
clustering-sampling balancing approach 

blocks 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Algo. 

NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 
NB 
LR 

Accuracy 

0.6992 
0.7087 
0.7546 
0.8455 
0.7793 
0.8381 
0.7508 
0.8078 
0.7936 
0.8590 
0.8014 
0.8753 
0.8403 
0.9359 
0.8795 
0.9195 
0.8457 
0.8264 
0.9038 
0.8648 

Recall 

0.6279 
0.6347 
0.7226 
0.8344 
0.7696 
0.8314 
0.7042 
0.7745 
0.7645 
0.8389 
0.7949 
0.7837 
0.8240 
0.9304 
0.8966 
0.9238 
0.8735 
0.8435 
0.9142 
0.8623 

Precision 

0.9823 
0.9906 
0.9447 
0.9592 
0.9774 
0.9840 
0.9231 
0.9418 
0.9834 
0.9899 
0.9756 
0.9832 
0.9781 
0.9909 
0.9769 
0.9924 
0.9506 
0.9582 
0.9802 
0.9897 

Fl 

0.7661 
0.7737 
0.8188 
0.8925 
0.8611 
0.9013 
0.7989 
0.8500 
0.8602 
0.9082 
0.8760 
0.9252 
0.8945 
0.9597 
0.9350 
0.9569 
0.9104 
0.8972 
0.9460 
0.9217 

G-mean 

0.7759 
0.7879 
0.7884 
0.8581 
0.8122 
0.8609 
0.7787 
0.8287 
0.8462 
0.8964 
0.8221 
0.8807 
0.8684 
0.9456 
0.5918 
0.8580 
0.7253 
0.7559 
0.8453 
0.8782 



6. Conclusion 

W e deal with a more realistic and important problem in data stream mining, which most existing 
research has failed to address assuming data streams to be entirely labeled. In our research, using 
both labeled and unlabeled instances, w e not only assert the presence or absence of drift but w e also 
efficiently determine which kind of drift has occurred -feature, conditional or dual-using Kullback-
Leibler divergence and a bootstrapping method. Then, if required, w e update the classifier using the 
E M algorithm. Experimental results with naive Bayes and logistic regression show that our approach 
is effective for detecting different kinds of changes from data containing both labeled and unlabeled 
instances, as well as having a good classification performance. 

In the future, it would be interesting to investigate and compare the performance of other classifiers 
with our results. Furthermore, note that in this paper w e assume that labeled and unlabeled data come 
from the same distribution. This usually leads to a better classification accuracy. A n interesting future 
line of research would be to consider the scenario where labeled and unlabeled data possibly come from 
different distributions, inspect the impact of unlabeled data, and study the possibility of refining the 
change detection proposal. 
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