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Abstract. Pre-processing plays a vital role in classification tasks, particularly when complex features are involved, and this
demands a highly intelligent method. In bioinformatics, where datasets are categorised as having complex features, the need
for pre-processing is unavoidable. In this paper, we propose a framework for selecting the discriminatory features from protein
sequences prior to classification by integrating the filter and wrapper approaches. Several state-of-the-art multivariate filters
were explored in the first phase to remove the unwanted features that contributed to noise, while particle swarm optimisation
(PSO) with support vector machine (SVM) was adopted in the wrapper phase to produce the most optimal features. Several PSO
variants were investigated in the wrapper phase to compare the most suitable PSO variants for the problem domain. The results
of both phases were analysed based on classification accuracy, number of selected features, modelling time and area under
the curve on the main dataset and, five benchmark machine learning datasets of similar complexity. The higher classification
accuracy of the proposed framework was highly reliable with an improvement over the filter phase and the use of full features
despite using smaller features.
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1. Introduction

Increasingly sophisticated technology has led to more storage and manipulation of complex data. The
characteristics of complex datasets include, but are not limited to, high dimensionality, unstructured
and semi-structured data, temporal and spatial patterns, and heterogeneity [1]. Some categories and
typical examples of these datasets include spatial data (maps, VLSI chip layouts), biology data (gene
and protein sequences), web data (text, http logs), and multimedia data (video clips, voice). These kinds
of datasets pose a challenge to the data mining community and require an advance method that can
handle the anatomy and representation of data more efficiently. In bioinformatics for example, there
are still a number of challenges to be addressed despite many advancements. One main challenge is to
identify the most relevant subset of data in a particular classification. The presence of many irrelevant
and redundant features allows for overfitting and less cost-effective models [2], which necessitates the
selection of highly discriminatory features prior to mining the dataset.
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Previous research realised that data pre-processing is of considerable importance in most classification
tasks [3-5]. Feature transformation and feature selection are some forms of data pre-processing tasks
that have been commonly used in the literature [4,6—8]. These forms are generally aim to change the data
into a simpler dimension that enable the machine learning algorithms to learn faster. Feature construction
and feature extraction are two models of feature transformation. The former is defined as a process that
discovers missing information about the relationship between features and adds the space of features
by inferring or creating new features [9]. Feature extraction is defined as a process that extracts a set
of new features from the original features based on some transformation functions and usually only the
transformed features are used [10]. From the transformation view, feature construction usually expands
the feature space that causes the number of features to be larger than the original features whereas feature
extraction reduces the feature space that causes the number of features to be smaller than the original
features. Feature selection (FS) takes another view whereby no new features will be generated, instead
only a subset of original features is selected from the original features by removing the irrelevant and
redundant features. Therefore, it reduces the feature space and at the same time does not change the
semantics of the original features. These are the merits of FS that make it preferable over the others.

Generally, FS methods are classified into two models: filter and wrapper, depending on the evaluation
measures that they use in distinguishing the different class labels. The former utilises the intrinsic
properties of the data to select subsets of features independent of the classifier, while the latter utilises
a learning machine to assess subsets of features based on their performance. The filter category can be
further divided into two groups: the feature weighting or univariate approach that evaluates and ranks the
features individually and the feature subsets or multivariate approach that evaluates the goodness of each
subset using certain evaluation criteria. The wrapper approach to FS has attracted more attention than
the filter approach because this approach is seen as a stochastic optimisation that attempts to generate
better solutions by employing prior knowledge gained from a previous population after the raw features
are filtered. However, the higher computational complexity of the wrapper method suggests that the
feature space should be pre-reduced using the filter model prior to applying the wrapper approach [2].
Additionally, extensive searching using the wrapper approach suffers from overfitting, particularly in
datasets with many irrelevant features and fewer instances [11]. Generally, a common drawback of
the filter approach is that it ignores any interactions with the induction algorithm, and most proposed
techniques are univariate (i.e., they ignore feature dependencies), whereas the wrapper approach suffers
from the common weaknesses of higher overfitting and increased demand on computational resources.
In most complex applications, the number of features ranges from moderate (in tens of features) to
high dimensional data (in hundreds of features) and therefore the searching of feature subsets become
an NP-hard combinatorial problem. The framework of the filter and wrapper approaches is seen as
a complement when searching is performed. As mentioned in [12], “...the feature subset selection
problem requires complex function evaluations which are often not available in closed analytical form
or exhibits a nonlinear relationship with the space of feature subset”. Furthermore, the capability of
filter feature selection algorithms (FSAs) could be exploited by integrating them with a meta-heuristic
method, namely particle swarm optimisation (PSO). Such a combination will be examined in this study.

One key contribution of this study is the proposal of a multivariate filter approach and a meta-
heuristic approach using a PSO algorithm with support vector machine (SVM) classifier applied to
protein sequences. The aim of this approach is to increase the classification accuracy while generating
the most discriminatory feature subsets by making use of the strengths of both filter and wrapper
approaches. In implementing this work, rigorous comparisons were carried out in both phases. In the
filter phase, three state-of-the-art multivariate filters were tested using a Pectin Lyase-like (PLL) dataset,
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a protein sequence dataset, and five benchmark UCI datasets of similar complexity for comparison.
Our complexity definition is based on moderate to high dimensionality of features, mixed features type
(numeric, categorical, and both), unstructured, and semi-structured domains with two classes or more.
In the wrapper phase we employed PSO algorithms using three state-of-the-art PSO variants. The use
of PSO is motivated by two factors. First, compared to a genetic algorithm, the operation of PSO does
not involve crossover and mutation; thus, it is computationally inexpensive, in terms of both memory
and runtime [13]. Second, unlike other heuristic techniques, PSO has a flexible and well-balanced
mechanism to enhance global and local exploration abilities [14].

The remainder of this paper is organised as follows. Section 2 reviews literature on feature selection
algorithms. Sections 3 and 4 present the fundamentals behind the FSAs and PSO algorithms. Section 5
presents the proposed framework of filter and wrapper approach. In Sections 6 and 7, the experimental
setup and results are discussed, and in Section 8, we offer a conclusion.

2. Feature selection algorithms

FSAs have been applied in various fields, including bioinformatics [15,16], signal processing [17,18],
text categorisation [19], image retrieval [20] and pattern recognition [21]. There are several studies that
report the overview of state-of-the-art FS methodologies [4,5,22]. In [4] for example, a three-dimensional
categorising framework for FSAs is presented. The three dimensions framework was presented based on
search strategies (further categorised into complete, sequential and random), evaluation criteria (further
categorised into filter, wrapper and hybrid), and data mining task (further categorised into classification or
clustering). The benefits of FSAs are manifold, but the most important is prediction because it improves
the model performance and avoids the overfitting issue [4,5]. Employing FSAs also produces an effective
model because it is able to reduce memory and the time of learning while doing the processing task.
Consequently, one would understand the data better by identifying the relevant factors. A typical FSAs
process involves four steps namely subset generation, subset evaluation, stopping criterion, and result
validation [4,22].

Past literature that focused on filter methods mentioned that identifying features independently, or using
the so-called univariate approach, was insufficient [23] because features that are useless by themselves
can be useful together [5]. Among the approach’s merits, the concept of relevance and redundancy
become the focus of current literature. Relevance, as defined by Gutlein [23], “... is how crucial the
value of a feature for predicting the resulting class value.” while “two features are considered redundant
to each other if they are completely correlated”. Some existing FSAs that have been shown utilised
these concepts effectively include correlation feature selection (CFS) introduced by Hall [24] and fast
correlation feature selection (FCBF) introduced by Liu and Yu [25]. CFS algorithms issue high merits
to subsets that include features that are highly associated to the class feature but have low association
to its member. This algorithm exploits heuristic searches such as best first, forward and backward
elimination search, with a preference for low redundancy subsets. Similar to CFS, FCBF algorithms
consider the relevance of feature to the class, but the feature must also exhibit non-redundancy to the
other relevant features. Both algorithms have been successfully used for reducing the feature space,
but the capability of these algorithms could be further exploited by integrating with more advanced
meta-heuristic approaches, such as the particle swarm optimisation algorithm.

There are some recent works that attempt to improve the sequential forward selection algorithm.
Gutlein [26] in his work introduced the linear forward selection (LFS) algorithm search strategy that
aims to reduce the number of subset evaluations in each forward selection step. The LFS algorithm
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is useful for high dimensionality datasets and reduces the risk of overfitting by focusing only the top
k-rank features. They [26] have demonstrated that CFS with LFS is significant to a full forward selection
method when tested on 12 high dimensionality datasets when tied with naive Bayes and C4.5 classifiers.
Another interesting approach can be seen in Choo et al. [27] who proposed a fitness-rough algorithm
(i.e., an integration of statistical and rough set methods) for features selection. It is a simple but effective
approach to eliminate irrelevant features. Nevertheless, it is not suitable for non-quantitative datasets
due to a higher percentage of information loss. Zhao and Liu [28], for example, introduced INTERACT,
an attempt to improve the FCBF method that uses backward elimination. This method is a combination
of the symmetrical uncertainty and c-contribution that manages to maintain and improve the classifier’s
accuracy. It discards features with no or low c-contribution. In addition, the INTERACT manages the
interaction between the features by designing an exclusive hashing data structure to render the issue of
feature ranking. This method was compared with several other existing FS and showed a competitive
performance.

Several past studies that evaluate the FS method empirically include [8,29]. In [8], five FS methods:
ReliefF, random forest feature selector, sequential forward selection, sequential backward selection,
and Gini index were compared with several classifiers. Their results showed that ReliefF and random
forest enabled the classifiers to achieve the highest increase in classification accuracy on the average
while reducing the number of unnecessary features. An extensive research on FS methods was done
by Jeffery et al. [29] to identify the differentially expressed genes in microarray data. Ten FS methods
were compared on nine different microarray datasets and reported that the empirical bayes t-statistic
performed well across the variation of instance sizes. Although the study is limited to two classes of
domains, the study emphasizes the FS choice, the size of features, the instances sizes and the noise in
the dataset are greatly affect the classifier performance. All these studies suggest the benefits of FS that
could improve the classifier’s performance.

In the wrapper method, the meta-heuristic algorithm such as genetic algorithms [30], artificial immune
systems [31], ant colony optimisation [32], and particle swarm optimisation [33] are some of the popular
algorithms. Soto et al. [30] employed a genetic algorithm with various forms of non-linear fitness
function, namely decision trees, k-nearest neighbours (k-NN) and a polynomic non-linear function. The
study was performed on 73 molecular descriptors for predicting hydrophobicity using an aggregation of
neural networks in a chemo-informatics domain. The results were quite promising but rather limited
in their domain. Furthermore, Secker et al. [31] employed an artificial immune system in solving
clustering problems for protein function prediction, but their experiments were less practical as their
system required a highly solution space and time. The use of ant colony optimisation was proposed [32]
for text categorisation, and the performance was compared to the genetic algorithm and the several
statistical filters method. Interestingly, their results on two Reuter’s datasets were superior compared
to their counterparts. Additionally, the algorithm of particle swarm optimisation was performed [33]
for predicting protein function using naive Bayes and Bayes network classifiers on a G-protein-coupled
receptors and enzymes dataset. These datasets are based on four kinds of proteins signatures or motifs.
The predictive accuracy of the proposed method outperformed the baseline algorithm that use full feature
sets. In another study, Lin et al. [34] used PSO to search for the optimal values for SVM and the developed
approach was called PSO+SVM. The classification rate of their approach was better than grid search and
had a similar result to GA+SVM. Wang et al. [13] proposed a novel method based on rough sets and PSO
in which the PSO was employed to find reducts with fewer features. Their study demonstrated that PSO
is able to find minimal reducts efficiently compared to GA-based approaches and several established
rough set reduction algorithms.



S. Abdul-Rahman et al. / An intelligent data pre-processing of complex datasets 309

Another popular form of the FS method is hybrid methods that take advantage of both wrapper and
filter methods. According to Liu and Yu [4], this approach usually exploits the independent measure
for selecting the “... best subsets for a given cardinality and uses the mining algorithm to select
the final best subset among the best subsets across different cardinalities”. Previous studies on this
approach include those of Uncu and Turksen [35], and Yang et al. [36]. Uncu and Turksen [35]
proposed an integration of filter and wrapper methods using £-NN for evaluating the features. This study
employed the following independent FSAs during the pre-selection stage to select significant features:
k-NN sequential forward, £-NN sequential backward, correlation coefficients and functional dependency
concept. Subsequently, these four methods employed k-NN with an exhaustive search strategy to select
the best input combination. However, their proposed method would be overfitting if higher numbers
of features were involved, as the wrapper approach was employed in the first stage and rather limited
because it tested mathematical functions only.

Yang et al. [36] is closely related to our study but limited to microarray datasets. Their experiments
were compared on filter, wrapper, and hybrid method (filter and wrapper). The hybrid method effectively
improved the performance and selected fewer feature subsets. However, we could hardly compare
these results to our study because our protein sequences dataset has a different representation than
microarray datasets. Compared to protein sequence datasets, microarray datasets usually involve very
high dimensionality features (in more than thousands and ten thousand of features) with small numbers
of instances, simply known as the “curse of dimensionality” in which the dimensionality usually exceeds
the number of instances. For e.g., these kinds of datasets have a minimum of 5000 genes (features)
whereas the instance is less than 100. This kind of dataset is not comparable to other complex dataset
having moderate to high feature dimension with large instances. Protein sequences, however, have highly
dimensional features (in hundreds of features) with moderate (in hundreds and thousands of instances)
to large numbers of instances (in more than ten thousands of instances). Therefore, it is similar to
UCI datasets after the feature extraction process was performed on its original data representation. Due
to these limitations we would like to confirm the suitability of the hybrid approach over the protein
sequences dataset and some other complex datasets of similar complexity in particular on different kinds
of original data representation, feature’s dimension, and the instances sizes. Additionally, for the PSO
implementation, we proposed to employ the hamming distance method to map the real number of velocity
whereas Yang et al. [28] used the sigmoid function. Theoretically, the hamming distance method would
be faster because only a single value (the distance) is used to compare with each bit of velocity position.

In this study, we designed and tested the integration of multivariate filters with a meta-heuristic approach
for a classification problem following a hybrid approach. This paper extends previous work [37] in two
ways. First, instead of focusing on one bioinformatics dataset, it compares five benchmark UCI datasets
of similar complexity which have been used in [11,38,39]. Second, our study explores three variants
of the PSO algorithms, whereas previous work focused on only a single PSO variant. In this study, we
selected three multivariate approaches: correlation feature selection with best search strategy (CFS-BS),
correlation feature selection with linear forward search strategy (CFS-LFS), and fast correlation based
filter (FCBF). The performance of these multivariate filters methods was compared with datasets without
FS based on the criteria of classification accuracy, selected features, modelling time and area under the
curve (AUC). All these methods applied SVM for evaluating the selected features. Out of the three
multivariate filter FS methods, the one that yielded the most competitive result was selected as the
outcome of the first stage, and its feature was used in the second stage. For the wrapper approach, we
have selected three variants of the PSO algorithm, which we named PSO-1, PSO-2 and PSO-3. The
next section describes the fundamental theory behind the selected methods for both phases: the filtering
phase (i.e. multivariate filters) and the wrapper phase (i.e. particle swarm optimisation algorithm).
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3. Multivariate filters
3.1. Correlation feature selection with best search (CFS-BS)

Correlation feature selection (CES) [24] is a filter method that originates from statistical methods that
evaluates subset of features instead of individual features, thus belongs to the family of multivariate filter.
It selects feature subsets with a higher degree of correlation to the target class and a lower degree of
inter-correlation to each other using a heuristic score, merits. The subset with the highest merit indicates
the higher correlation between the features subset to the target class and the lower the inter-correlation
among them. The merit; or the score of a feature subset S that contains & features is calculated using

Eq. (1).

k‘rcf
k+ k(k — 1)y

ey

Meritss =

where,
Merit, is the heuristic score of a feature subset S containing & features
T is the average feature-class correlation
T is the average feature-feature inter-correlation

Prior to applying the merits, a symmetrical uncertainty (SU) is utilised to measure the degree of
correlation between discrete features X and Y. Equation (2) gives the formula for SU. The values of
feature-class and feature-feature correlations are calculated using SU prior to search the feature subset
space. The numeric features are usually discretised using the minimum description length principle
(MDLP) method [40]. The study uses CFS with best first search (CFS-BS) to rank the features according
to the heuristic score with Eq. (1).

H(X)+H(Y) - H(X,Y)
H(X)+ H(Y)

SU = 2.0 x 2)
where
H(X) is the marginal entropy for discrete features X

H(Y') is the marginal entropy for discrete features Y’
H(X,Y) is the joint entropy of X and YV’

3.2. Correlation feature selection with linear forward search (CFS-LFS)

This kind of multivariate filter adopts the same concept as CFS but with a different search strategy
and we labelled it as Correlation Feature Selection-Linear Forward Search (CFS-LFS). The difference
lies in the way searching is done and it offers a slightly different approach than the traditional sequential
forward selection (SFS) algorithm whereby a simple hill-climbing search method is executed. In the
traditional SFS algorithm, the total of evaluations expands quadratically with the number of features, V.
For each step, the total number of evaluations is similar to the number of remaining features not yet taken
into account. This kind of approach is computationally extensive in particular for datasets that have a
large number of features. For example, for N number of features, the sequence of subset evaluations
wouldbe N, N — 1, N — 2, ..., and so forth. Therefore, the upper bound on the number of evaluations
18, Zizo(N — Z) = 1/2 XN (N +1).
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In the linear forward search strategy (LFS), instead of using all features during evaluations, it starts
by ranking all features and chooses the top-k ranked features as inputs for forward selection. Reported
in [26], the LFS has two variants: fixed set and fixed width. The fixed set, as the name implies reduces
the number of features to a fixed set of size k. The beginning ranking is carried out by assessing each
feature individually based on their scores using a filter or wrapper evaluator. Next, only the k best
features are used in the subsequent forward selection while the remaining features are removed. This
process decreases the upper bound on the total of evaluations that need to be considered to 12 x k(k 4 1).
Besides, the number of potential subset extensions decreases along the step and indirectly reduces the
computation complexity. In the fixed width method, the same initial ranking in fixed set is performed
whereby the search starts with the top-k ranked features. The difference exists during the subsequent
forward selection, in which the number of subset extensions in each forward selection step is constantly
maintained to a fixed width k. This is performed by adding the next best feature in the ranking to the
set of expansions. This process result to an increase in the theoretical upper bound for the number of
evaluations in the forward search process to N x /2 x k(k 4 1). Because our initial experiments showed
a similar result for each of these models, we omitted the fixed width model and only focused on the fixed
set model. As suggested from the literatures, we employed £ = 50 and k£ = 100 for medium and high
dimensionality of features, respectively.

3.3. Fast correlation based filter

Fast correlation-based filter FCBF [38], is another type of multivariate filter to handle features with
high dimensionality. FCBF involves two main steps: relevance analysis and redundancy analysis. The
relevance analysis measures information entropy to calculate the dependencies of features. Similar to
CFS, it uses symmetrical uncertainty (SU) function as in Eq. (2) to calculate the dependence of features,
and it finds the best subset using a backward search technique with a sequential search strategy. If a feature
has a relevance score below a predefined threshold, then it is considered irrelevant and discarded. The
redundancy analysis measures predominant features and remove redundant features among the relevant
features. A feature is said meaningful if it is predominant in predicting the target class. The predominant
definition is described in greater detail in [38]. Based on the predominant concept, they defined FS
as a process that identifies all predominant features to the class and removes the remaining features.
To identify the predominant features and discard redundant features among the relevant features, three
heuristic functions were proposed as below [38]:

Heuristic 1: (if S}JSZ. = {}). Treat F; as a predominant feature, remove all features in S5, and skip
identifying redundant peers for them.

Heuristic 2: (if S}JSZ. # {}). Process all features in S;ﬁi before making a decision on F;. If none of
them becomes predominant, follow Heuristic 1; otherwise only remove F; and decide whether or not to
remove features in .S, based on other features in .S”.

Heuristic 3: (starting point). The feature with the largest SU; . value is always a predominant feature
and can be a starting point to remove other features;

where Fj, is the correlation between a feature (F; € S). S pi(S;i, Sp;) is the set of all redundant
peers for F;. SU; . is the symmetrical uncertainty value that measures the correlation between a feature,
F}; and the class, c.

4. Particle Swarm Optimisation algorithm (PSO algorithm)

The PSO algorithm falls under the class of complex systems that attempt to exploit Nature’s intelligence.
In recent years, its ability to solve hard problems efficiently and credibly was clear. This algorithm,
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inspired by flocks of birds and shoals of fish, was published by Kennedy and Eberhart [41] to solve
non-linear optimisation problems. As such, PSO creates a swarm of candidate solutions in which each
potential solution is seen as a particle with a particular rate of change or velocity that operates through
the search space. The earlier PSO implementation was meant for continuous search space domain.
However, many real world problems can easily be adapted into binary-valued domain. In the area of
dimensionality reduction, specifically in the FS problem, each solution of the particle is represented as

fixed length binary strings (i.e. z; = (zi1, %2, ..., 2;N), in N dimensional search space, where ;4 €
{0,1},i=1,2,...,nandd = 1,2, ..., N). The coordinates z;4 of these particles have a velocity,
v; = (vi1, vz, ..., vin ). Usually the velocity value is limited in a specified range, V;;,q,. If the list of

features, f = (f1, f2, f3, f4, f5) and n = 4, a random initialisation of particles in a swarm could be
encoded as follows:

T = (LO’ 1> 1’0)7$2 = (Oa la 1>Oa 1)7$3 = (15 1>Oa 0» 1),334 = (15 1>Oa 1>0)

In the above example, the selected features in particle x; are f1, f3, f4. If features are N = 5, there are
25 possible feature subsets, thus the selected features subset in particle x; has been reduced to 23.

PSO is initialised as a population of particles in which each particle retains its own individual memory
or the best position it has visited, as well as a global memory of the best position visited by all particles in
the swarm so far. The position of the particle is adjusted by a stochastic velocity, which depends on two
forms of distances: the particle’s distance from its own best, pbest denoted as p; = (pi1, pi2s - - -, PiN)
and the particle’s distance from the swarm overall’s best, gbest denoted as p; = (pg1,Pg2, - - - s Pgn ). In
searching for the optimal solution, each particle updates its velocity and position as follows: Eqs (3) and

4).
vig(new) = w.v;q(0ld) + ©1.U(0,1)(pia — zia(old)) + p2.U(0,1)(pga — x4(0ld)) 3)

Where w is the inertia weight; 1 and (o are the acceleration positive constants known as cognitive
learning rate and social learning rate respectively; U (0, 1) is a random function within the range [0,1].
The velocity update in Eq. (3) contains three essential parameters for PSO: the momentum component,
the cognitive component and the social component. The first component guides how much the particle
recalls its previous velocity via its inertial constant, w. The second component guides how much the
particle heads towards its personal best via its cognition learning factor, ¢;. The last component attracts
the particle towards swarm’s best ever position via its social learning factor, 5.

Each particle has its own fitness value that needs to be optimised. In FS problem, evaluation of the
performance or fitness function of any particles ¢ is usually computed based on the classification accuracy
and the length of selected feature subsets. The two parameters, « and § determine the significance of
these two principles. In this study, o was set to 0.9 and (§ was set to 0.1, indicating that classification
accuracy had a higher degree than the subset length. In addition, g (A) is the classification accuracy
of the selected feature subset, F,;; is the initial number of features, and F,,; is the length of selected
feature subsets. The formula for the fitness function is then defined in Eq. (5) as follows [13]

|Fall| - ‘Fsel|

5
Fon] ®)

ﬁtness =« 'VFsez (A) + /8 :

In applying PSO, several parameters, including inertia weight (w), cognition learning factor (1), social
learning factor (¢3), velocity limit, population size and number of generations should be determined
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properly as these influence PSO performance. However, past studies [42] observed that particles tending
to operate from personal and global best position distances caused the velocities to reach large values.
This phenomena led to large position updates and indirectly forced the particles to leave the boundaries
of their search space. Therefore, Eberhart and Shi [43] suggested velocity clamping within a maximum
value in each feature’s dimension. Specifically, the maximum velocity, V., should be set equal to the
dynamic range of each dimension. Moreover, in a recent study [44] suggested the maximum velocity
should grow with the problem size.

Inertia weight is another important parameter that can control and reduce the importance of V4.
From the literature, we found that there are numerous strategies for setting the inertia weight (w) such as
a nonlinear decreasing inertia weight, a random inertia weight, a constant inertia weight, a time-varying
inertia and a fuzzy inertia weight [13,42,43,45-47]. The nonlinear decreasing weight inertia usually
decreases within the range of 0.9 and 0.4 during a run; the formula for this is shown in Eq. (6). This high
value of inertia weight in the beginning allows for exploration, and a much lower value of inertia weight
allows the swarm to be more exploitative. In addition, this strategy usually employs constant coefficients;
p1 = @2 = 2. However, Eberhart and Shi [43] mentioned that this cannot guarantee a good result for
tracking a nonlinear dynamic system. Their concern brings us to explore the random inertia strategy in
which inertia weight is defined as a random number within the range of 0.5 and 1.0, resulting in a mean
value of 0.75. Besides the nonlinear decreasing weight and the random inertia weight, past studies [45]
also mentioned that the use of constriction coefficients, v may improve the overall performance. The
role of constriction coefficients is similar to the inertia weight except that it is multiply with the whole
parameters as shown in Eq. (7). The aim of the constriction coefficients is to avoid the particles deducing
very large values and to manage convergence without the need for velocity clamping [48]. Nevertheless,
later studies [49] suggested that it is still useful to limit v;,4, to the dynamic range of each dimension
of x,,4.. In this study, the value for the acceleration coefficients, ¢ was set to 4.1, and the constriction
coefficient, y, was approximately 0.7298 that can be derived using Eq. (8).

(weight ;; — 0.4) * (iterqp — iterq,,)

weight,e, = iter s + 0.4 ©
vig(new) = y(vig(old) + p1U(0,1)(pia — xiq(0ld)) + ©2U(0,1)(pga — xiq(0ld))) @)
where,
+ g2 > dand 2 ®)
Y =¢1 ©2 and vy =
lp =2+ /9? — 4¢|

Generally, two methods in interpreting the velocity of the binary PSO exist: the hamming distance
and the sigmoid function. In the hamming distance method, the distance is calculated based on the
number of different bits between two particles which basically correspond to the difference between
their positions [13]. Let pgpese =[1 0 1 1 1], p; =[0 1 1 0 1]. The difference between these two
particle’s position: pgest —p; = [1 —1 0 1 0 ]in which the value of one implies that this bit should
be selected but is not selected while the value of negative one implies that this bit should not be selected
but is selected. The distance is calculated based on the difference between total number of ones and
total number of negative ones [13]. The positive and negative differences in this value allow particles
to be more explorative in the searching space. Then the particle’s bit is transformed into a requisite O
and 1 by comparing to this distance value. Whereas, the velocity that employs the sigmoid function is
transformed into a requisite 0 or 1 by comparing to a uniformly random value in the interval [0.0, 1.0].
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Algorithm 1

Input:
n: the swarm size; ¢,, ¢»: positive constants
w inertia weight; U(0,1): random number (0,1)
Max_Vel: maximum velocity of particles
Max_Gen: maximum generation
Max_Fit: maximum fitness value

Output: gbest: Global best position

Begin
Initial Pbest(i) = 0; Gbest = 0; Iter = 0;
/* Create and randomly initialize particles’ position and velocities on N dimensions*/
While Iter < Max_Gen and Gbest < Max_Fit
for each particle i=1,...,n do
/*Calculate the performance fof each particle to its best performance so far */
if f{i) = Pbest(i) then
Pbest(i) = fi); piu=xit; d = 1,. . ,N:
if f{i) > Gbest then
Gbest = f(i); gbest = i;
for each particle i=1,...,n do
for each dimension d=1,...,N do
/* Calculate the distance between the current particle & Ibest and

current particle with gbest using Hamming distance method*/

Vilnew) = w.vifold) +¢,. U0, 1)(py— xialold) + 02.U(0,1)(pey — xidlold))
/* Update velocity where p; is the best position visited so far by x;,

p. is the best position visited so far by any particle */

if viy> Max Vel then v,y = Max Vel /* Limit the velocity’s magnitude *

if viy> - Max_Vel then vy = -Max_Vel

if v; < distance(gbest) then /*Update position following gbest */
xi; = rand(); /* the bits of the particle are randomly change, different from gbest */
else
for every k do /*change the bits outside the different bits between the particle and gbest */
if (ghest, = = xy)
X = rand();
Iter=Iter+1;
Qutput gbest

End

Fig. 1. Pseudo-code for the binary PSO using hamming distance method.
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Algorithm 2
Input:
n: the swarm size; ¢, @5 positive constants;
w: inertia weight; U(0,7): random number (0,1)
Max_Vel: maximum velocity of particles
Max Gen: maximum generation
Max_Fit: maximum fitness value

Output: gbest: Global best position

Initial Pbest(i) = 0; Gbest = 0; Iter = 0;
/* Create and randomly initialize particles’ position and velocities on N dimensions™/
While Iter < Max_Gen and Gbest < Max_Fit
for each particle i=1,...,n do
/*Calculate the performance fof each particle to its best performance so far */
if /(i) > Pbest(7) then
Pbest(i) = fli);
if /(i) > Gbest then
Ghbest = f(i); gbest = i;
for each particle i=1,...,n do
for each dimension ¢=1,.., N do
via(new) = w.viglold) +¢,. U0, 1)(pia— xialold)) + @2.U(0,1)(peq — Xia(old)) /*PSO-2 */
Via(new) = yfviglold) +@,. U0, 1)(piq—xiu(0ld)) + @2 U(0,1)(pei— xis(0ld))] /*PSO-3 */
/* Update velocity where p; is the best position visited so far by x;,
P. is the best position visited so far by any particle */
I via(k+1)E (Viin, Vinax) then

Vig(k+ 1)= max(min(V,yu, Via(kt 1)), Viiy)  /*Limit the velocity’s magnitude */

1
S(via(new)) = 1+ g Vid (W)

If (U0, 1)< Svi{new) then x;y (new) = 1 else x;; (new) = 0 /*Update position*/
Iter=Iter+1;

Output gbest

Fig. 2. Pseudo-code for the binary PSO using sigmoid function.

In this paper, we are interested to explore the PSO algorithms with the nonlinear decreasing inertia
weight, the random inertia weight and the constriction coefficient as it offers different kind of control to the
velocity update. In this paper, the PSO following the nonlinear decreasing weight with hamming distance
method is designated as PSO-1, while the PSO that follows the random inertia weight and constriction
coefficient using sigmoid function is designated as PSO-2 and PSO-3 respectively. Figures 1 and 2
describe the pseudo code of these three PSO variants (adapted from [13]). The details of other parameter
settings in these variants are presented in the experimental setup section.



316 S. Abdul-Rahman et al. / An intelligent data pre-processing of complex datasets

5. The proposed filter-wrapper approach

The goal of this study is to find the best combination of FS approaches for the classification problem
from complex domains. Specifically, we propose to examine the FS framework created by integrating
multivariate filters and meta-heuristic wrapper approaches in a complex classification problem. The
proposed method avoids the issue of overfitting by filtering the potential significant input features prior
to identifying the best input combination with the wrapper approach. This process is basically composed
of three main stages: the discretisation stage, the filter stage and the wrapper stage.

5.1. Discretisation stage

Discretisation is a process of quantising continuous attributes [50] that prove to be important to
guarantee more accurate and faster learning. Discretisation methods have been developed according to
several taxonomies which generally fall into supervised and unsupervised discretisation. Till date there
are three kind of taxonomies reported in literatures [51-53]. The most recent taxonomy [51] proposed
four levels of data discretisation taxonomy based on hierarchical approach: (1) hierarchical and non-
hierarchical, (2) splitting, merging, and combination, (3) supervised, unsupervised, and combinations,
(4) binning, statistics, entropy, and etc. In this study, we employed entropy discretisation specifically a
minimum description length principle (MDLP), to descretise the dataset with numeric values. MDLP,
proposed by Fayyad and Irani [40], was suggested as one of the most successful supervised discretisation
method due to smaller error rates and less modelling time [50]. It has also been widely used in complex
domains [54,55]. As a confirmation, our initial experiment on the selected datasets also shows a better
performance with the MDLP method.

5.2. The integration approach — Filter and wrapper

The proposed approach for this study adopted the filter-wrapper approach (Fig. 3). In the filter
phase, we examined the multivariate filters using WEKA [56] and evaluated them using SVM. The
justification of the classifier was mentioned in the previous paper [57]. In WEKA, the SVM classifier
was implemented by the sequential minimal optimisation (SMO). For both phases, SVM used the
normalised values whereby all the discretised value are normalised by default [56] in the filter phase and
svm-scale function was used in the wrapper phase. For each dataset, we randomly split into a training set
(90%) and a testing set (10%). In the wrapper phase, the aim was to further refine the features by only
selecting the most optimum features for the classification task. The implementation of PSO was done
in Java and NetBeans IDE 6.9 environment. The optimum features produced are classified using SVM
algorithm in libSVM [58] using radial basis function (RBF) kernel’s function. The use of RBF kernel
involved the searching of two optimum parameters, C (cost) and + (gamma), within the range 27° and
215 for C while the range 27 1% and 23 for v [59]. In the filter phase, the searching of these two parameters
was handled by the WEKA SVM (SMO) within the default ranges and this was performed on the dataset
with 10-fold cross validation. Whereas, the searching of these parameters in the wrapper phase was
performed using the grid search method, a commonly used method to get the optimum parameter of C
and v, on the training set (90%) with 10-fold cross validation method. This process produces a set of
optimum parameters which was used to retrain the training data. Subsequently, the model file was used
to predict the testing set (10%).
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Table 1
Protein features and its description

Features/Label Description #Features
Amino Acids (f1 — f20) Percentage of Amino Acid Compositions (AAC) 20
Mol weight (f21) The molecular weight of the protein 1
AA Size, (f22) Number of residues in each protein 1
Charged, (f23) Physiochemical properties 1
Aliphatic, (f24) Physiochemical properties 1
Aromatic, (f25) Physiochemical properties 1
Polar, (fa6) Physiochemical properties 1
Neutral, (f27) Physiochemical properties 1
Hydrophobic, (f2g) Physiochemical properties 1
+ve charged, (f29) Percentage of positively charged residues in the protein 1
—ve charged, (f30) Percentage of negatively charged residues in the protein 1
Tiny, (f31) Physiochemical properties 1
Small, (f32) Physiochemical properties 1
Large, (f33) Physiochemical properties 1
Dpc (f3a— fas3) Percentage of Dipeptide Composition (DPC) 400
Total Total number of features 433

Discretisation 4— Rawdata

¢ Wrapper
Filter Best
. . I —
(Multivariate) » PSO SVM > Solution

r ]

Fig. 3. Diagram for the proposed Filter-Wrapper approach.

6. Experimental setup

The experiment was performed on protein sequences from the pectin lyase-like (PLL) superfamily col-
lected from UniProt databases. The functional information was extracted from Pfam, a large collection of
protein families, available at http://pfam.sanger.ac.uk/search [60]. The classification of PLL into various
subfamilies was done on the basis of amino acid compositions extracted from COPid, a composition-
based protein identification web server available at http://www.imtech.res.in/raghava/copid/ [61]. The
initial data set had 1074 sequences belonging to seven subfamilies of PLL; however, classes contains
insignificant members were excluded in this study, resulting in 859 proteins in four subfamilies (classes).
These subfamilies were pertactin (128 instances), glyco_hydro_28 (326 instances), pectinesterase (204
instances) and pectate_lyase_C (201 instances).

A total of 433 features from three categories (amino acid composition (AAC), physico-chemical
composition (PCC), and dipeptide composition (DPC)) were extracted from each protein sequence. In
addition, the AAC category was composed of 20 features, the PCC category was composed of 13 features,
and DPC category was composed of 400 features. The use of these feature categories was motivated
by past studies [62—64], and Table 1 describes the details of these feature sets. The complexity of data
can be justified based on several factors such as the feature’s dimension (FD) or number of features
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Table 2
Feature summary
Dataset Description Domain Data type Feature type Features Instances Classes Past usage
DS1  USCensus90[red] Economic data Multivariate Categorical 67 2500 3 [38,39]
DS2  Coil2000[red] Insurance data Multivariate Categorical, Numeric 85 1941 2 [11,38,39]
DS3  Promoters DNA data Sequence Nominal 228 106 2 [38,39]
DS4  Arrhythmia ECG data Multivariate Categorical, Numeric 279 452 16 [11,38,39]
DS5  Multi-features Multi-features Multivariate Categorical, Numeric 649 2000 10 [38,39]
DS6  Bioinformatics Protein data Sequence  Numeric 433 672 4
Table 3
PSO parameter settings
Parameters PSO-1[13] PSO-2 [43] PSO-3 [48]
Inertia weight nonlinear decreasing [1.4,0.4]; random inertia weight [0.5, constriction coefficient; constant
Formula as in Eq. (6) 1.0] value = 0.7928 formula as in
Eq. (8)
Constant coefficient 1 =2; @2 =2; o1+ p2 =2 p1 = @2 = 1.494 p1 =2 =2.05; 0 =1+ 2
Velocity update Hamming Distance Sigmoid function Sigmoid function
Velocity limit Vinaz = [1, (1/3) * N)] Vimaz = [—6, +6] Vimaz = [—6, +6)]
Control parameter a=09,3=0.1 a=09,38=0.1 a=09,38=0.1
Max generation 100 100 100
Population size 30 30 30

(medium to very high dimensions), the number of instances, and the type of data (semi-structured
or/and unstructured), and heterogeneity [1]. These kinds of dataset usually exist in domains such as
in biological data, world-wide web data, time series data, spatial data, and graphical data. Therefore,
a complex dataset can be defined as having any two of these factors. However, the definition on the
number of instances is quite subjective. A small number of instances (less than hundred) with high
dimensionality (thousands or more) can also be considered as a complex dataset. The microarray dataset
usually contains thousand of genes with limited number of instances [11,65,66]. Previously, Kudo and
Sklansky [21] defined dimensional category as follow: low (0 < FD < 19), moderate (20 < FD < 49),
high (50 < FD). We improvised this definition after analysing the profile of datasets used in [11] and
proposed our new definition on the feature’s dimension as follow: low (0 < FD < 49), moderate (50 <
FD < 99), high (100 < FD < 999), very high (1000 < FD).

Apart from the PLL dataset, we obtained five other datasets from the benchmark UCI repository
with similar complexity. These datasets are USCensus90 (DS1), Coil2000 (DS2), Promoters (DS3),
Arrhythmia (DS4), and Multi-Features (DS5) whereby the selection was based on several criteria, which
involved unstructured data (DS3) and multivariate type of data (DS1, DS2, DS4, DS5), and both moderate
and high dimensional datasets. For DNA data, its raw representation was preprocessed by transforming
each position into four binary attributes, one for each nucleotide [11]. The original number of features
for DS3 was 57 features. For large datasets such as DS1 and DS2, the instances of the data were removed
using weka.filters.supervised.instance.StratifiedRemoveFolds features and these datasets were marked
with the tag [red]. In evaluating the effectiveness over the real world data, the classification accuracy on
the selected features subsets was considered as an indirect measure [39] using SVM from WEKA [56].
The details of these datasets are presented in Table 2. Table 3 describes the three types of PSO parameter
settings mentioned in Section 4. Most of the settings followed closely to the past studies [13,43,48]
except for the last two parameters which were based on our preliminary experiments on the selected
benchmark UCI datasets.
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Table 4
Comparison of SVM classification accuracy and the selected number of features from full features (FF), correlation feature
selection-best search (CFS-BS), correlation feature selection-linear forward search (CFS-LFS), and fast based correlation filter
(FCBF) on 10-fold cross validation. The W/T/L summarises the wins/ties/losses (at p-value < 0.05) over FF over all datasets

Dataset Accuracy (%) Selected number of features (feature length, (%))

FF CFS-BS CFS-LFS FCBF FF CFS-BS CFS-LFS FCBF
DS1 93.40  90.04% 90.00" 90.00" 67 3.27(4.9) 3.27(4.9) 3.28(4.9)
DS2 94.02  94.02T 94.02T 94.02T 85 7.34(8.6) 7.34(8.6) 4.04(4.8)
DS3 9320 93.17" 93.20" 92.89% 228 7.99(3.5) 7.99(3.5) 6.36(2.8)
DS4 7029  61.74% 61.60" 54.53% 279 18.51(6.6) 18.51(6.6) 7.60(2.7)
DS5 96.11 98.85WW  98.87W 98.58W 649 147.51(22.7)  131.59(20.3)  129.28(19.9)
DS6 93.03  97.69%  97.78W 97.50W 433 52.25(12.1) 49.72(11.5) 43.42(10)
Average  90.01  89.25 89.25 87.92 290.2 39.48(9.7) 36.40(9.2) 32.33(7.5)
W/T/L 2/1/3 21212 2/1/3 6/0/0 6/0/0 6/0/0

7. Experimental results and discussion

This section empirically evaluates the performance of filter and wrapper phases by comparing several
multivariate FS algorithms and three variants of PSO algorithms for information loss. Information loss
is defined as the quantity of information lost in the process of data mining that degrades the classifier
performance due to dimension reduction, size reduction or missing values [27]. This study adopts
classification accuracy as the measure of information loss; the higher the classification accuracy, the
lower the information loss from the selected FSAs. Apart from the classification accuracy, some other
principles, such as the selected number of features, the modelling time and the area under curve (AUC),
are also compared.

7.1. Filter phase

Tables 4 and 5 record the results of the filter phase in which the last two rows in each table summarise the
average values of each measurement and the results of all datasets in terms of its wins/ties/losses at p-value
< 0.05 (indicated by the letters W/T/L) over the full features set. In addition to average measurement, we
emphasise wins/ties/losses because the average criteria would be susceptible to outliers [67]. In general,
it can be seen that all these FSAs produced a good trend in most of the datasets. We defined a good trend
as when the reduction of features maintained or improved the classification accuracy of the SVM. This
result can be seen in CFS-LFS, for example, in which four out of the six datasets produced a good trend
with two wins and two ties. For both CFS-BS and FCBF, the results were competitive with two wins and
one tie if compared to the full features set. Overall, out of the six datasets, two datasets were statistically
significant (i.e., wins) over the full set of features (DS5 and DS6). This result indicated the need of the
wrapper phase to further optimise the selected features.

On average, all these FSAs achieve competitive classification accuracy over the full features, but they
achieve significant reduction of dimensionality by selecting only a small number of features from the
full feature set. This can be seen from the results of selected number of features. The average numbers
of selected features for the three FSAs were 39.48 (CFS-BS), 36.40(CFS-LFS), and 32.33(FCBF). In the
DS6 (Bioinformatics) for example, the percentage of the selected number of features was only 12.1%
(CFS-BS), 11.5% (CFS-LFS), and 10% (FCBF) and yet the classification accuracy is improved from
93.03% to 97.69% (CFS-BS), 97.78% (CFS-LFES), and 97.5% (FCBF). These results highlighted that
not all features were necessary to achieve high classification accuracy. Except for the DS4, the proposed
FSAs were able to minimise information loss (within 3% allowance) in all datasets based on classification
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Table 5
Comparison of average modelling time and ROC on full features (FF), correlation feature selection-
best search (CFS-BS), correlation feature selection-linear forward search (CFS-LFS), and fast based
correlation filter (FCBF) on 10-fold cross validation. The W/T/L summarises the wins/ties/losses in
modelling time and AUC (at p-value < 0.05) for FF over all datasets

Dataset Modelling Time (seconds) AUC

FF CFS-BS CFS-LFS  FCBF FF CFS-BS CFS-LFS FCBF
DS1 12.43 1.72W 1.63% 1.59W 1.00  1.007 1.00T 1.00T
DS2 6.31 0.69W 0.65V 0.39W 050  0.507 0.50T 0.50T
DS3 0.13 0.15" o0.11w 0.08W 0.93 0937 0.93T 0.93T
DS4 7.38 8.2k 6.94W 5.76W 0.73  0.60" 0.59% 0.50"
DS5 40.60 5.18W 3.38W 2.50W 092 1.00V 1.00% 1.00%
DS6 25346 8740V 6290V 6357V 0.99  1.00V 1.00% 1.00%
Average  53.39 17.22 12.60 12.32 0.85 0.84 0.84 0.82
W/T/L 4/0/2 6/0/0 6/0/0 2/3/1 2/3/1 2/3/1

accuracy compared to the full features. Reviewing the complexity measurement, the use of FSAs was
able to decrease the degree of complexity of search space from 229 to 236 (290 is the average feature
length for all datasets, and 36 is the average feature length of the three FSAs).

Further comparison was made on the modelling time and AUC on full features as well as all of the
FSAs. Modelling time was defined as the elapsed time during the classification on the training datasets
while the AUC was defined as the probability of the classifier in ranking a randomised positive instance
above the negative instance with a perfect condition of “1”. From the experiments, all FSAs showed a
significant reduction of modelling time over the full features set. For modelling time, both CFS-LFS
and FCBF won in all the datasets, with FCBF being the fastest and CFS-BS being the slowest. In terms
of AUC, all three FS algorithms gave a similar number of wins, ties and losses over the full features set.
However, except for the DS1, DS5 and DS6 datasets, the other three datasets demanded further action,
as their AUC values were less than “1”.

To sum up, the experimental results of the filter phase employing the multivariate FSAs verified the
need of the wrapper phase in optimising its selected feature based on the evaluation criteria mentioned
above. In selecting the most suitable FSAs for the next phase, we chose CFS-LFS because it maintained
and improved the classification accuracy over the other FSAs on four out six datasets and gained similar
number of wins to FCBF with the least number of losses.

7.2. Wrapper (Optimisation) phase

Table 6 compares the results of each PSO variant for ten runs based on classification accuracy, number
of selected features and modelling time on the DS6 or the Bioinformatics (PLL) dataset with the results
from the filter phase using a multivariate (MV) approach. The comparison was analysed in terms of the
average value and t-test (p-value < 0.05). From the results, we could observe that the fewer selected
features did not influence the classification accuracy. In this dataset, for example, although the selection
of feature was about 40% (average number of selected features in PSO-1, PSO-2, and PSO-3 over the
number of selected features in MV method) from the first phase, the accuracy results among the PSO
variants were better than the MV method. This indicated that the selected features from the first phase
still contain noise that could be further enhanced with an optimisation method.

A validation using a t-test also showed that this result of selected length was statistically significant,
with all the three variants of PSO having a p-value less than 0.05. However, in terms of modelling time,
both MV+PSO-2 and MV+PSO-3 methods took a longer time than the MV phase. The longer time for
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Table 6
Comparison of average classification accuracy, length and modelling time on multivariate (MV), MV+PSO-1, MV+PSO-2 and
MV+PSO-3 methods over ten runs. The last row records the significance level at p-value < 0.05

PLL Accuracy Number of selected features Time (seconds)

MV MV+ MV+ MV+ MV MV+ MV+ MV+ MV MV+ MV+ MV+

PSO-1 PSO-2 PSO-3 PSO-1 PSO-2 PSO-3 PSO-1 PSO-2 PSO-3

runl 97.80 100.0 100.0  100.0 49.4 31 18 13 3.35 7 275 614
run2 98.06 100.0 100.0 100.0 49.8 26 18 12 3.36 1 1044 1056
run3 97.93 100.0 100.0 100.0 50.0 28 18 11 3.38 10 622 1054
run4 97.80 100.0 100.0  100.0 49.5 27 18 14 3.32 1 590 1169
rund 97.54 100.0 100.0  100.0 50.3 30 19 14 3.31 12 195 1711
run6 97.92 100.0 100.0 100.0 49.2 25 18 15 3.33 11 812 1152
run? 97.67 99.3 100.0  100.0 49.6 26 21 13 3.39 6 275 901
run8 97.54 100.0 100.0 100.0 49.7 29 19 18 3.49 3 942 1095
run9 97.67 99.3 100.0  100.0 50.2 27 18 12 3.50 3 590 932
runl0 9793 100.0 100.0  100.0 49.5 29 18 15 3.40 3 797 1012

avg 97.78 99.9 100.0 100.0 49.7 27.8 18.5 13.7 3.38 5.7 614.2 1069.6
p-value 0.00"  0.00%  0.00" 0.007  0.00"  0.00" 1.007  0.00- 0.00"

Table 7

Comparison of average classification accuracy, number of selected features, and modelling time between the FF(full features),
multivariate (MV), MV+PSO-1, MV+PSO-2 and MV+PSO-3 using a support vector machine classifier

Accuracy (%) Number of selected features Modelling time (seconds)
FF MV MV+ MV+ MV+ FF MV MV+ MV+ MV+ FF MV MV+ MV+ MV+
PSO-1 PSO-2 PSO-3 PSO-1 PSO-2 PSO-3 PSO-1 PSO-2 PSO-3

DSI 934 90.0 924W 924%W 924V g7 3 2W W oW 124 16 44% 106 7.8°
DS2 940 940 94.1W 94.1W 941V 85 73 1.7V 13V (W 631 06 155 332% 87t
DS3 932 932 98.5% 100V 100%Y 228 79 35W 3W 3w 0.13 0.1 8.1 6.6% 43"
DS4 703 61.6 78.0% 81.1W 809V 279 185 112V 107V 107W 738 69 225 968.5% 580
DS5  96.1 989 98.8 99.5W 99.6W 649 132 66.1V 622V 363V 254 629 1703 15068" 16080
DS6  93.0 97.8 99.9W 100V 100V 433 49.6 27.8V 185V 137V 406 34 57 6142% 1069"
Avg.  90.0 892 93.6 945 945 290 363 187 163 11.1W 534 126 327 2784 2972
W/T/L 5/0/1  6/0/0  6/0/0 6/0/0  6/0/0  6/0/0 0/0/1  0/0/6  0/0/6

The symbols W/T/L indicate the wins, ties or losses over the multivariate method (MV) at p < 0.05.

these variants is caused by the way the particle’s position is updated. In MV+PSO-1, the new particle is
updated based on hamming distance method while in MV+PSO-2 and MV+PSO-3, the new is updated
based on sigmoid function. The details of this implementation can be found in Figs 1 and 2.

7.3. Discussion of overall results

The experimental results for the six datasets are summarised in Table 7. We analysed the results
based on the classification accuracy, number of selected features and modelling time over the use of full
features (FF), the multivariate (MV) filter, and the filter and wrapper (MV+PSOs). The last two rows
summarise the average results of each criteria and the wins/ties/losses (at p-value <0.05) over the MV
method. The overall results showed that the proposed method produced a good trend in most of the
datasets. We defined a good trend as when the selected number of features or the reduction of features
produced higher classification accuracy than the use of the MV method.

From Table 7, we can see that the MV+PSO-1 produced a good trend in most datasets with five wins
and one loss in the classification accuracy. The MV+PSO-1 method also preserved its information loss
in all datasets in which the classification accuracy increased, despite the fewer features (except in the
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DS5). However, within an allowance of less than 1%, the information loss in the DS5 dataset was
considered small and insignificant. Additionally, MV+PSO-1 greatly reduced the unwanted features in
all dataset with an average of 50% feature reduction from the features in the MV method. As for modeling
time, although on average the MV+PSO-1 took more time than the MV method, but it was statistically
insignificant in all the datasets except for DS1 dataset. Both MV+PSO-2 and MV+PSO-3 methods
gave similar average classification accuracy and outperformed the MV method with an average of 5.3%
difference while MV+PSO-1 outperformed the MV method with an average of 4.4% difference. In
addition, both MV+PSO-2 and MV+PSO-3 methods gave all wins over the MV method in classification
accuracy that implies the information loss is preserved. Similar to MV+PSO-1, both MV+PSO-2 and
MV+PSO-3 methods greatly attained smaller numbers of selected features, with an average of more than
50% feature reduction from the features in the MV method.

Overall, the above results demonstrated the superiority of the integrated method over the MV method
from several aspects. The proposed method has produced a good trend in most datasets in terms of
higher classification accuracy with a fewer number of selected features. In DS6 (Bioinformatics) dataset
for example in the first phase, although the selected number of features was about 12% from the original
features, the classification accuracy was improved more than 4%. Further improvement in this dataset
could be seen in the second phase, where the selected number of the features was within the range of
3-6% from the original features. On average, the classification accuracy of the proposed method was
about 5% higher than the single approach, despite using less number of features. The high number
of wins in the proposed method further emphasised the reliability of the proposed method. In most
cases, the higher classification accuracy is significantly better than the MV method, which also translates
more information is preserved. However, to accommodate the risk of losing information on a particular
domain, the expert involvement would benefit the final analysis. In this study, the information loss is
indicated by the improvement of accuracy despite the reduce features. The accuracy results among the
three PSO variants were comparatively similar with a difference of less than 1%. This was also true for
the number of selected features in which only 50% of the features from the single method was used.
Among the three PSO-variants, PSO-3 obtained the least number of selected features but requires the
longest modelling time which is almost nine times higher than the PSO-1. The faster modelling time in
MV+PSO-1 and the less number of selected features explained that a hamming distance method is a better
choice. Additionally, there is no statistical difference in the modelling time between the MV+PSO-1
with the MV method. In terms of complexity, measurements on all the selected datasets illustrated that
the complexity of the search space was reduced from 22%° to 236 in the first phase and 236 to 215 in the
second phase.

8. Conclusion

This study introduced a framework of dimensionality reduction by integrating a multivariate filter
with a meta-heuristic algorithm, specifically the PSO algorithm, to attain the classification problems on
complex datasets. The need of the proposed method is justified with the increase of accuracy despite
the smaller number of features on most selected datasets. A significant decrease of the selected features
subset in both phases highlighted the importance of pre-processing to guarantee the discriminatory
features for classification. The accuracy and the selected number of features among the three variants
of PSO were comparatively similar except on modelling time. Our experimental results conclude the
need of data pre-processing particularly for complex datasets prior to classification via the integration
of FSAs approach. A future continuation of our work is to improve the efficiency of the velocity’s
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updates that influence the particle’s position. In the current implementation, we followed the standard
PSO algorithms using the identified velocity and inertia weight settings. We believe the improvement of
the velocity’s update would enhance the performance of the proposed method.
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